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ABSTRACT

The recent prevalence of low cost robotic platforms such as oceanographic glid-

ers has increased the availability of long–term measurements of the ocean environ-

ment. Gliders can take direct measurements of the ocean sound speed environment,

which is of interest in many ocean acoustic problems, including source localization

and tomography. These measurements, however, have a low spatial–temporal res-

olution that makes them difficult to use directly. These measurements have the

potential to provide an accurate environmental parameterization for acoustic in-

versions, which could in turn be used to measure the sound speed field at a much

higher spatial–temporal resolution.

This study uses glider measurements to provide the environmental parameter-

ization used in the adjoint inversion method. The adjoint method calculates the

gradient of a cost function describing the mismatch between observed data and

acoustic model predictions with respect to the ocean sound speed. This gradient

is a measure of how changing the sound speed at any point in the acoustic envi-

ronment would affect this misfit. This cost function and its gradient information

is then used as inputs to a numerical optimization routine, which efficiently finds

a local minimum.

There are two challenges of this method addressed in this study; the first is

restricting the search space of this inversion. Proper parameterization of the in-

version will ensure that the local minimum found in the numerical optimization

routine is the correct result of the inversion. This parameterization allows for

the combination of the relative strengths of both methods of measuring the sound

speed field, the robust direct measurement of the glider and the near instantaneous

result of an acoustic inversion. A covariance matrix is created from glider measure-

ments of the range dependent sound speed field, which is then decomposed into an



empirical orthogonal function (EOF) base. The mean profile and the significant

EOF bases then form the search space of the adjoint method.

The second issue is the proper treatment of the acoustic interaction between

the ocean and its sea floor. The adjoint method uses the implicit finite difference

form of the Parabolic Equation, which has a few possible bottom treatments. Two

simple bottom interface treatments are the local boundary conditions of McDaniel

and Lee [1] and the non–local boundary conditions of Papadakis et al. [2]. Lo-

cal boundary conditions treat the interface by altering sound speed values at the

interface to account for density interfaces. This interface treatment was selected

over the more complete treatment of non–local boundary conditions, which treat

the interface with a reflection coefficient. This decision was based on the relative

simplicity of the testing environment, which did not require sophisticated bottom

treatments.

Finally, the performance of the adjoint method was tested by numerical sim-

ulation with a number of different test environments. The adjoint performance

was most sensitive to the range of propagation, and relatively insensitive to other

environmental parameters such as source depth and bottom depth. These results

suggest that the adjoint inversion method will perform consistently in appropriate

testing conditions.
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CHAPTER 1

Introduction

Inversion methods are designed to measure the properties of a physical system

that are difficult or impossible to measure directly. Ocean sound speed, which is

determined by the temperature, salinity and pressure of the seawater, is an example

of such a system. In this case the number of measurements required to completely

characterize the environment of an acoustic propagation is overwhelming for rea-

sons of costs and logistics. Ocean acoustic inversion methods are therefore designed

to measure the sound speed properties of the ocean by measuring an acoustic prop-

agation that has passed through the environment. The adjoint method is such an

inversion method, which seeks to determine which physical system best recreates

an acoustic propagation measurement.

Knowledge of the sound speed of the ocean between an acoustic source and

receiver is useful in several applications; two common examples are source localiza-

tion and ocean acoustic tomography. Source localization is a problem that arises

in passive SONAR systems, which attempt to determine the location of a ship or

submarine by the noise radiated from the vessel. This problem is very sensitive

to uncertainties in the acoustic environment, and solutions are more successful in

well characterized environments [4].

Another example is ocean acoustic tomography, an important field in oceanog-

raphy. These experiments are designed to measure the range–averaged tempera-

ture of the ocean. Acoustic inversions methods are used to solve for sound speed

environment, which is then used to determine the temperature of the ocean. This

technique requires a conversion from ocean sound speed to ocean temperature. The

ocean parameters that determine sound speed are well characterized in literature
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[5] and sound speed is accepted as a sensitive indicator of ocean temperature [6].

Acoustic tomography has been used to measure ocean temperature on the scale of

ocean basins in several remarkable experiments, including the Heard Island Feasi-

bility Test and the related ATOC experiment from 1996 to 2006 [6].

Smaller scale acoustic tomography remains a substantial challenge in ocean

acoustics, mainly due to a much larger number of factors that change on short

time scales. Important environmental effects include significant interaction with

both the ocean surface and bottom. Interaction with the ocean surface introduces

wave scattering to the propagation, and bottom effects introduce partial bottom

reflection of acoustic energy. These bottom effects are often complicated by the

specific bathymetry of the area.

The adjoint method is only one possible approach to the inversion of sound

speed on small scales. A general discussion of inversion methods is required to

consider the relative strengths of the adjoint method and its restrictions. Tarantola

[7] breaks down the general inverse problems in three steps.

i Parameterization of the system: Discovery of a minimal set of model parameters

whose values completely characterize the system (from a given point of view).

ii Forward modeling : discovery of the physical laws allowing us, for given values

of the model parameters, to make predictions on the results of measurements

on some observable parameters.

iii Inverse modeling : use of the actual results of some measurements of the ob-

servable parameters to infer the actual values of the model parameters.

The first step of the parameterization of the system is closely related to any

previous knowledge of the system available to the inversion. The level of accuracy

and relevance of this knowledge affect which approach is best suited for a given

2



problem. In general, inversion problems attempt to integrate all of the available

information about the system before solving for the system parameters. Therefore,

when an independent ocean observing system is available to the inversion it is

desirable to incorporate its measurements into the estimation of the system.

Ideally, the ocean observing system would be capable of providing sustained

observations that meet two criteria. First, it would be capable of mapping ocean

structures at a predetermined scale of spatial resolution. Second, it would make

this measurement faster than significant changes occur at this scale. This goal is

difficult because of the turbulent dynamics of the marine environment, which in-

volve interactions between wide ranges of spatio–temporal scales. Many traditional

oceanographic measurement platforms cannot meet the requirement for adequate

spatio–temporal resolution. For this reason, ocean–observing technology is trans-

forming to provide networking capabilities for ocean observing systems; this may

be the most efficient and economic way to sample the ocean.

Gliders are an example of a recently developed technology for ocean observa-

tion that fit into this networking approach. These autonomous underwater plat-

forms use buoyancy changes and hydrodynamic shape to carry out zigzag motions

between the surface and some depth into the ocean with a net horizontal displace-

ment [8]. Nominal horizontal speed is about 0.5 m/s with spatial cycle periods

depending on the programmed pitch and immersion depths [9]. Unlike profiling

floats, glider motions are controllable to a degree determined by the strength of

the current field. Their endurance allow long duration measurement of gross sound

speed features local to a test area. However, they have limited speed in both the

horizontal and vertical direction, which makes their measurements best suited for

statistical, rather than direct, measurements of the sound speed field. This infor-

mation is complimentary to an acoustic inversion survey, which can be thought of

3



as taking much quicker samples of the sound speed field. Gliders instead provide

a means to parameterize the physical system being measured with empirical data,

increasing the success rate of the inversion process.

The second point in Tarantola’s list is the forward model used in an inversion.

This organization is appropriate when performing an inversion, but less so when

designing an inversion method. In the case of adjoint inversions the forward model

is dictated by the choice of the inverse method. A general discussion of inverse

methods is necessary to clarify the relationship between the forward model and

the inverse method.

The inverse problem is ill conditioned; meaning the number of unknowns is

larger than the number of measurements. This means that there is no single

solution to the inversion problem. The strategy used to solve an inversion problem

is therefore a design decision, made with the aim of finding the most physically

likely solution. A common strategy is to create a least–squares cost function of the

mismatch of the observed parameter and the prediction of a forward model. In this

case the forward model can be chosen from a variety of ocean acoustic propagation

models [4]. The goal of the inverse method is to minimize this cost function.

The most important decision with this strategy is choosing a search method

to finds the minimum of the cost function. The first choice is between local and

global search methods. Global search methods, such as simulated annealing and

genetic algorithms do not require any restriction on the forward model. On the

other hand, local search methods, like the adjoint method, are commonly based

on analytic derivations of a specific forward model.

The major difference between global and local is in how they search the large

parameter space of possible sound speed fields. The search space of an inverse

problem is simply shown to large to search completely. For example, if the sound
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speed field has 5 possible parameters each with 20 possible values, a complete

search will require over 3 million function evaluations. Global search methods use

a semi–random search of the entire search space, always saving the best solutions,

and will eventually cover the entire search domain. This approach is time con-

suming but has the advantage that it does not preferentially search one area over

another. This means that global search methods provide robust searches in cost

function that have spurious local minima, and one global minimum.

In contrast to global search methods, Hursky’s adjoint method is a local

optimization method. Specifically, this is a gradient–based local optimization.

Gradient–based optimizations can be thought of as proceeding down the slope of

the cost function until all directions increase the cost. The specific strategy of

the optimization is often more advanced than this steepest–decent algorithm, but

similar in principal. While local optimization strategies can be applied to any

function using numerical differencing, it is much more efficient when the gradient

is analytically calculated [10]. The purpose of the adjoint method is simply to

compute the gradient of the cost function [11].

Local optimization methods require many fewer cost function evaluations than

a global search; in addition they have a clear termination criterion. The disad-

vantage of optimization methods is that the search area is limited to the area of

its starting point. This makes them vulnerable to terminating in local minima

of the cost function. Local searches are best suited for problems where there is

very good a priori knowledge of the testing environment. This study incorporates

glider measurements of the study area to parameterize the system.

The heart of the adjoint method is the adjoint operator, a linear algebra

identity. This places a restriction on the forward acoustic model used to calcu-

late the measured pressure field. The specifics of this operator are discussed in

5



the methodology section 3.2.2. This operator makes the implicit finite difference

parabolic equation (IFD-PE) acoustic model 3.1.3 well suited for this method, as it

simply propagates acoustic pressure along in range using a series of matrix vector

products.

The adjoint inversion method has all three of the steps described by Taran-

tola’s list. This study validates each part of this inversion method by computer

simulation, and the performance of this inverse method is tested using simulated

reference measurements created with an acoustic model. The collection of the ob-

servable parameters mentioned in Tarantola’s list remains an outstanding issue for

practical application of this method. However, simulating pressure measurements

was the simplest way to verify the adjoint method and to test the limits of its

performance in different environments.

The collection of appropriate sound speed data for the validation of this inverse

method remains an outstanding challenge. Complete validation of the inversion

method would require a sampling of the sound speed field at higher spatial and

temporal resolutions than those provided by the acoustic inversion. This data

would confirm the results could adequately characterize the sound speed field with

the level of resolution used. Glider sound speed measurements are well suited for a

preliminary study of the adjoint method however, because they provide long term

sound speed information at low cost.

This work investigates a proposed method of characterizing a marine sound

speed environment using a glider platform and an acoustic system. Glider data

was collected during the REP11 experiment, performed in the Gulf of Taranto in

September 2011. This data was employed to assess the performance of acoustic

inversion when coarse glider observations along the acoustic path were available.

6



CHAPTER 2

Previous Work

The adjoint method for range dependent sound speed inversions was intro-

duced to the field of ocean acoustics by Hursky et al. in 2004 [12]. In this in-

version method, the adjoint operator determines the gradient of a least squares

cost function with respect to changes in the ocean index of refraction. The index

of refraction is a function of sound speed more convenient to use in the parabolic

equation. Proper care is required to maintain consistency when using both sound

speed and index of refraction measurements, but in this case knowledge of one is

equivalent to knowledge of the other. The gradient information of the cost function

with respect to perturbations of the ocean sound speed is then used with the cost

function in a numerical optimization solver, i.e. minfunc [10] in MATLAB. This

function finds the sound speed field with the least cost, the result of the acoustic

inversion. This method is described in more detail in section 2.1.

The adjoint method uses the implicit finite difference parabolic equation (IFD-

PE) as a forward propagation model. This forward model selection means that the

adjoint model has some limitations on the environments it can accurately model.

The behavior of the IFD-PE is discussed in section 2.2.

The IFD-PE is most simply formulated with a single fluid medium, bounded

by two pressure release horizontal interfaces at the top and bottom of the sound

channel. The pressure release interface is a reflective boundary condition that is

most appropriate for the air/sea interface. The interface between the sea and sea

floor is only loosely approximated by this treatment in some long range propa-

gation problems [4]. Since the interface treatment is not included in the general

formulation of the Parabolic Equation, the proper treatment of the bottom inter-
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face is an important design decision for realistic solutions of the PE. This design

choice is described in section 2.2.1.

2.1 The adjoint method

The adjoint method was introduced to ocean acoustics by Hursky et al. in

2004 [12]. This method of computing the derivatives of cost functions had been

used before this in the field of meteorology [11], geophysical inversion [13] and

others. The adjoint method is part of a larger group of methods which compute

Fréchet derivatives. The Fréchet derivative is the derivative of a function which

maps one normed vector space to another, in this case sound speed to complex

pressure amplitude [12]. The Fréchet derivative has been used extensively in ocean

acoustic problems, where it is often called the Born- Fréchet kernel or the sensitivity

kernel. Examples of it’s use appear in travel time tomography [14], and angle of

arrival tomography [15].

2.2 Implicit finite difference parabolic equation

The implicit finite difference parabolic equation (IFD-PE) was introduced by

Lee et al. in 1981 [16]. This two– dimensional solution to the parabolic equation

is based on the discretization of the propagation field into a grid of equally spaced

depth and range steps. The spacing of the depth and range steps do not need to be

equal to each other, however, and the range step is generally larger than the step

in depth. In all cases the step size is a fraction of the wavelength of the acoustic

signal, which for the case of the 400 Hz signal is approximately 3.8 meters.

This grid size is generally much smaller than the oceanographic features that

are of interest in acoustic propagation. However, the computational cost due to

this increase in model resolution compared with the earlier split step solution to

the PE is offset in environments with significant range dependent features. This is

8



because the split step approach requires the solution of a number of locally range

independent sections, and becomes computationally inefficient which dealing with

strong discontinuities in environmental parameters [4]. The IFD-PE handles these

continuities gradually, with no increased computational cost.

Additionally, the angular restriction inherent to all parabolic equations can

be relaxed in the IFD-PE using either the Claerbout or Greene square root ap-

proximation. The wide angle capability and good performance in range dependent

environments made the IFD-PE a popular ocean acoustic propagation model in

the 1980’s, until it was eclipsed by the wide angle split step solution of Collins [17].

While Collins’ solution correctly models wider angles of acoustic propagation and

uses significantly larger range step sizes, it does not use a linear algebra operator

for its solution. For this reason the IFD-PE remains a reasonable choice for the

adjoint inversion method, when angular and computational restrictions are not of

critical concern.

2.2.1 Interface treatment in the Parabolic Equation

When the IFD-PE was introduced by Lee et al. in 1981 [16], the treatment of

the sound speed and density interface in bottom sediment layer was not addressed.

Since this paper, several different treatments of this interface have been introduced,

each possessing relative merits and restrictions.

The first distinction between interface treatments of the IFD-PE is between

local and non–local bottom boundary conditions (NLBC). The local bottom in-

terface treatment, first introduced for horizontal interfaces by McDaniel and Lee

[1], requires the numerical grid to extend into the bottom. Special treatment is

given to the PE solver at the numerical mesh point on the bottom interface. This

is a very simple treatment, but requires that the numerical grid containing the

bottom to be at least the same size as the waveguide. Secondly, it requires that an

9



artificial absorbing layer with high attenuation values be introduced at the bottom

of this grid to prevent energy reflections caused by numerical effects of terminat-

ing this grid. Both of these effects require special attention when setting up the

propagation environment, and also significantly increase computation cost.

Non–local boundary conditions, first introduced to the IFD by Papadakis et

al. [2], introduces an impedance condition to the termination of the computa-

tional grid of the IFD. This impedance condition replaces the perfect pressure

release boundary condition implied in the basic IFD formulation. The non–local

impedance condition is computed to account for all of the sediment layers beneath

the waveguide. This impedance condition is a more general treatment of the bot-

tom effects than the local treatment, as it allows for the inclusion of shear effects

in the sediment. Additionally, this treatment of the sediment interface was shown

by Meyer and Hermand to have an analytic adjoint operator [18].

The fluid/fluid interface treatment required by the local boundary condition

is an appropriate solution for low shear speed bottoms. This treatment was found

by Tindle and Zhang to be valid for sheer speeds up to 200 m/s with small correc-

tion terms to the sound speed and density of the bottom [19]. This computational

study will consider the effect of low sheer speed bottom, and so the local bound-

ary conditions were considered sufficient to assess the performance of the adjoint

method.

2.2.2 Range Dependent interface treatment

The treatment of range dependent bathymetric features in the PE has a long

and involved history. The PE is attractive for range dependent features because

they can be simply approximated by a stair step bottom. This approximation is

simply implemented because the parabolic equation is a one–way equation. The

depth of the interface can simply be changed at range indices that are designated

10



as having a step.

This approximation was determined to produce erroneous results with bottoms

with only mildly sloping bottoms when the Acoustic Society of America benchmark

problem Wedge II was introduced by Jensen [3]. This was a deep to shallow wedge

with an bottom which approximated sand, and had a rising slope angle of about

2.86◦. The stair step solution of the PE was found to agree with the one–way

coupled mode solution, but diverged significantly from the full two–way solution.

The mechanism causing the difference in the two solutions was not backscattered

sound, as expected. Instead, Porter et al. [20] demonstrated that the stair step

treatment violated energy conservation with sloping bottoms.

The energy conservation issue arose from the vertical interfaces necessitated by

the stair step approximation. While the horizontal interface treatment of McDaniel

and Lee [1] and others could be shown to conserve energy, the vertical interface

could not satisfy this condition in a one–way wave solution. The IFD-PE could be

shown to match pressure at this interface, but not particle velocity. The split step

PE solution could be shown to match reduced pressure,
√
p at the interface. By

testing a few possible matching schemes, Porter et al. [20] demonstrated that the

simplest and most accurate matching scheme was to match p/
√
ρc at the interface.

Changes in the direction of development of the PE towards the split-step

PE with Padé coefficients of Collins [17] mean the implementation of the p/
√
ρc

matching was not widely discussed in PE literature. As a result, the simple pressure

matching stair step implementation was used in this study. The implementation of

an energy conserving stair step treatment of the irregular bottom is left for future

work.
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CHAPTER 3

Methodology

3.1 Parabolic Equation

The parabolic equation (PE) has found widespread use in the field of ocean

acoustics over the past thirty years [4]. It’s popularity stems from its ability to

simply model propagation in range dependent environments. It is derived from

a one–way wave approximation of the Helmholtz equation, and so it is has a few

restrictions on it’s use. Three major limitations are generally cited in literature.

These are:

1. the solution is limited to far field propagation,

2. that the range dependence of the problem is “weak”,

3. in most solutions the angles of acoustic propagation have a limited aperture.

The first two limitation are covered in section 3.1.1, and the third is covered in

section 3.1.2. Finally the IFD-PE solution of the PE is discussed in section 3.1.3.

3.1.1 Derivation

Linear acoustic propagation, which covers most problems of interest in ocean

acoustics, is governed in general by the wave equation, a four dimensional equation.

The four independent variables are the three space dimensions, r = (x, y, z) and

the time dimension, t. It is possible to reduce the dimension of this equation

by modeling the acoustic source as a harmonic point source. This leads to the

frequency domain wave equation, the Helmholtz equation,

[
∇2 + k2(r)

]
φ(r, ω) = f(r, ω). (1)
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symbol parameter

p(r, z) complex pressure field
c(r, z) sound speed field
γ(r, z) index of refraction squared (IORS)
f frequency of acoustic signal
pn range n pressure
un range n IORS
N final range
m experimental pressure
H measurement operator

Table 1. Common variables

Table 1 is a list of definitions of the most commonly used variables.

In cartisian coordinates the operator ∇ is defined as

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
.

In equation 1 the variable k is the wavenumber at the radial frequency ω,

k(r) =
ω

c(r)
. (2)

The frequency dependency of the Helmholtz equation can be removed by only

solving for a single frequency at a time. The adjoint inversion performed in this

study is only investigated at a single frequency. This approach is suggested in

Hursky et al. [12], who found that wide band sources had little effect on the

accuracy of the inversion result. For a single frequency, the ideal source is a

pressure injection at a single point, modeled as a Dirac delta function, δ(rs − r).

The treatment of the acoustic source will be detailed later in this paper, and for

simplicity only the homogeneous version of equation 1 will be considered. The

inclusion of acoustic sources requires only minor modification of the derived result.

In many cases it is possible to reduce the dimensionality Helmholtz equation
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further by assuming that the acoustic propagation is only effected by the environ-

ment between the source and receivers. In many real ocean environments there

are no significant cross path features which can refract sound from one plane of

propagation to another, and this assumption is often used. In two–dimensional

problems there are is a choice between two common coordinate systems, cylindri-

cal and cartesian. In this discussion the cylindrical coordinate system is used, and

all spatial variables are designated in (r, z). This choice of coordinates assumes a

point acoustic source, and that the problem is radially symmetric.

Using the cylindrical coordinate representation of ∇2, the homogeneous form

of equation 1 is,

[
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+ k2(r, z)

]
φ(r, z) = 0. (3)

To derive the one-way parabolic equation first express the acoustic pressure,

φ(r, z) as two functions,

φ(r, z) = p(r, z)v(r). (4)

The second function v(r) contains the range dependent spreading of acoustic pres-

sure common to all ocean acoustic problems. When acoustic pressure is contained

by the top and bottom boundaries acoustic pressure spreads cylindrical from the

source, leading to an acoustic pressure reduction related to 1/
√
r. The function

p(r, z) is the complex pressure field that contains pressure modifications specific

to an acoustic environment.

Substitute this definition of φ(r, z) into equation 3 to get a separable differ-

ential equation,

p

[
vrr +

1

r
vr

]
+ v

[
prr + pzz +

(
1

r
+

2

v
vr

)
pr + k2p

]
= 0. (5)
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The reference wave number squared, k20, is used as the separation constant to

solve equation 5. The left hand bracketed term leads to the expression of v(r) as

v(r) = H
(1)
0 (k0r), or a zeroth order Hankel function of the first kind. This function

represents the range dependent pressure reduction due to cylindrical spreading

[21].

The far field approximation of the Hankel function is defined in equation 6,

and this formulation has a simply defined derivative.

v(r) ≈
√

2

πk0r
exp

[
i
(
k0r −

π

4

)]
. (6)

This approximation allows for the simplification of the term (1/r + (2/v)vr)

to 2ik0. This approximation makes the parabolic equation unsuitable for near field

solutions.

prr + pzz + 2ik0pr + k20
[
n2(r, z)− 1

]
p = 0 (7)

The far field approximation of the Helmholtz equation shown in equation 7 is

a full two wave equation. This is an elliptical boundary equation, which requires a

boundary condition both at the starting range and a radiation condition at the final

range of propagation. The next major approximation of the parabolic equation is

to reduce the full two–way Helmholtz equation to a one–way equation. The one–

way equation requires a starting field at the starting range, and this is stepped

forward in range to the final propagation range.

The two way Helmholtz equation is reduced to a one way equation by factoring

equation 7. Representing equation 7 using differential operators,

P =
∂

∂r
,Q =

√
n2 +

1

k20

∂2

∂z2
, (8)

equation 7 becomes
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[P 2 + 2ik0P + k20(Q2 − 1)]p = 0. (9)

Equation 9 may be factored into a forward and backward propagating wave

components if the following identity holds,

[PQ−QP ]p = 0. (10)

This is the communicator of the operators P and Q. This identity holds

exactly in the case of a range independent sound speed field, n ≡ n(z). The

parabolic equation assumes that the range dependence of the sound speed field

is small enough that the non–zero communicator term is negligible. Using the

identity of equation 10 and keeping only the outgoing wave term, equation 7 is

factored as

[P = ik0 (Q− 1)]p. (11)

Equation 11 is an exact solution to the Helmholtz equation in the far field, for

environments with no backscattering and range independent sound speed fields.

The backscattering and range independent requirements are violated frequently in

practice, and relaxed to a requirement of “weak” range dependence [4].

3.1.2 Wide Angle Parabolic Equation

The final step of the derivation of the parabolic equation is to introduce an

approximation of the differential operator, Q. This is commonly done by rewriting

equation 11 to include the operator q, with Q =
√

1 + q. The one way parabolic

equation is first rewritten to explicitly include the square root operator,

∂p

∂r
= ik0

(√
1 + q − 1

)
p. (12)
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This formulation allows for several different approximations of this operator.

Possible forms of these approximations are the Taylor series, a general rational

function approximation, or a Padé series approximation. The choice of approxi-

mation limits the angle of acoustic propagation of the model.

The most basic approximation of Q is the first order Taylor series expansion

√
1 + q ≈ 1 + 0.5q. This is the original Trappert formulation of the parabolic

equation. A conservative error analysis restricts the Trappert formulation to an

effective angle of propagation of 10◦ [4].

The angle restriction of the standard parabolic equation is acceptable in many

ocean acoustic propagation problems of interest, which are mainly concerned with

long–range propagation. The limited aperture angle leads to errors in some situa-

tions, most notably in environments with range dependent bottoms. The derivation

of wide angle parabolic equations require the selection of a solution technique of

equation 11 at this point. Recently the most common technique for the solution

of this equation is the split-step Padé solution of Collins [17], implemented in the

computer program RAM. The finite difference approximation of Lee et al., better

suited for the adjoint method, and is investigated in this paper.

A higher order Taylor expansion requires the computation of higher order q

terms, which can lead to computational issues [4]. Instead, other approximations

based on the first order of q are used. The most basic of these is the rational

function approximation.

√
1 + q ≈ a0 + a1q

b0 + b1q
. (13)

This ration function approximation leads to the following wide angle parabolic

equation,
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∂p

∂r
= ik0

(
A+Bq

C +Dq
− 1

)
p. (14)

With the appropriate choice of coefficients this approximation is equivalent to

the Trappert approximation, but other choices lead to more accurate approxima-

tions of the square root operator. The Claerbout approximation is common, with

values a0 = 1, a1 = 0.75, b0 = 1, b1 = 0.25. This is also the coefficients of the first

order Padé approximation. The same conservative angle error analysis used for

the Trappert equation estimates the effective propagation angle of the Claerbout

approximation at 25◦.

3.1.3 Implicit Finite Difference Parabolic Equation

The wide angle parabolic equation in 14 requires a definition of the inverse

operator (b0 + b1q)
−1. This can be done using a finite difference scheme. Lee and

McDaniel [21] showed that an implicit finite difference scheme is necessary for the

parabolic equation to be stable. The stability of a numerical solution states “the

difference between the theoretical and numerical solutions remain bounded as the

range step n increases, provided the range increment ∆r remain fixed for all space

steps.” [21]. The proof of the stability of the implicit finite difference scheme also

showed that simpler explicit solutions of the parabolic equation based on a first

order Taylor expansion were not stable.

The implicit finite difference scheme is based on a Crank-Nicolson scheme,

pn+1 − pn

∆r
= ik0(

√
1 + q − 1)

pn+1 + pn

2
. (15)

The form of the PE shown in equation 15 is found using the central difference

approximation of both the second derivative in depth and of the first derivative in

range.
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Factoring equation 15 to separate the pressure vectors by range step leads to

the implicit equation

[
1− ik0∆r

2
(
√

1 + q − 1)

]
pn+1 =

[
1 +

ik0∆r

2
(
√

1 + q − 1)

]
pn. (16)

Equation 16 forms the basis for the derivation of the IFD-PE. The range stepping

nature of the parabolic equation is clearly shown in this form. The pressure at

each range step is dependent only on two factors. The first is the pressure at the

range step before it. The second is the depth dependence of the index of refraction

at the range step, incorporated into the operator q.

A more in–depth derivation of the implicit finite difference PE is discussed

in section 3.3.2. In essence, the wide angle approximation of the operator
√

1 + q

shown in equation 13 is substituted into the Crank-Nicolson scheme, equation 16.

This equation is then simplified algebraically.

To reach the final form of the IFD-PE requires the assumption that the oper-

ator q is constant over a range step. This is assumption means that the index of

refraction can not vary with range with scales less than ∆r. This is a less restric-

tive assumption than the “weak” range dependence already required by the PE.

This requirement is reasonable because the size of the oceanographic features of

interest are at least on the scale of the acoustic wavelength, λ, and the range step,

∆r, is a fraction of λ.

The complete form of the IFD-PE is quite long due to the number of points

needed to construct a difference equation. This complete form is found in section

3.3.2, however, for much of our discussion a general matrix form of the IFD-PE is

sufficient for understanding. This matrix form is shown in equation 17,

Bnpn+1 = Cnpn. (17)
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The main diagonal of matrix B and C contain the index of refraction informa-

tion. These matrices are also used to compute the second order depth derivative

contained in the operator q. The matrices B and C are similar to each other, like

the terms on both side of equation 16. The main diagonal is proportional to γ(r, z),

the index of refraction squared (IORS). The conversion between sound speed and

IORS is simply

γ(r, z) =

(
c0

c(r, z)

)2

, (18)

with a reference sound speed value, c0, of 1525 m/s.

Both the matrix B and C are tridiagonal, an important property for matrix

inversion. The inverse of a tridiagonal matrix always exists, and there are efficient

methods to compute it. This makes the solution of IFD-PE a computationally

tractable problem.

The existence of the inverse of matrix B means that the IFD-PE can be written

in explicit form,

pn+1 = Fnpn, (19)

with Fn = B−1n Cn.

The parabolic equation is performed on a grid with constantly spaced range

and depth vectors, r ∈ Rr and z ∈ Rz, respectively. The distance between grid

points, ∆r and ∆z, is measured in meters, and is different for both the range

and depth vectors. A vertical grid spacing of λ 4 and horizontal spacing of λ/2

was found to provide the limit of resolution of the result. The IORS field is then

discretized to a grid γ ∈ Rr×z for input in the parabolic equation.
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3.2 Formulation of the Adjoint Method

The IFD-PE is simply defined as a vector matrix product which steps for-

ward the acoustic pressure to the next range step with each multiplication. This

formulation makes it simple to create a tangent linear model between changes in

the index of refraction and the measured pressure. The tangent linear model is

then the first derivative of measured pressure with respect of index of refraction

squared. The derivation of the tangent linear model is addressed in section 3.2.1.

The adjoint method then finds the gradient of a cost function with respect to the

index of refraction squared using this tangent linear information. This result is

the gradient of the function minimized in the acoustic inversion. The formulation

of this gradient is covered in section 3.2.2.

3.2.1 Tangent Linear Model

While the pressure field is only measured at one range, pR, changes in γi,j at

any point in the modeled area will effect this measurement. It will be necessary

to have a linear model of this effect for all i and j before finding the cost function

gradient using the adjoint method. Before addressing this non-linear problem,

consider the linear case when the field γ is known, and the pressure field at all

points in the PE grid is allowed to vary. The pressure at range pi would be defined

as

pi = p̄i + δpi. (20)

Using this definition with equation 19, results in

p̄i+1 + δpi+1 = Fnp̄i + Fnδpi

δpi+1 = Fnδpi.

(21)
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The propagation of the perturbation in pressure at range i to range R is given

in equation 22.

δpR = FR−1 . . .Fi+1Fiδpi

= F(R− 1 : i)δpi

(22)

The second form of this equation introduces the notation F(R − 1 : i) =

FR−1 . . .Fi+1Fi. The value F(R− 1 : R− 1) is interpreted FR−1.

The linear perturbation analysis shown in equation 22 is exact if the matrix F

is known for all ranges. This formulation does not match the reality of the experi-

ment, however. First, there is only one source of pressure field in this experiment,

and it is considered known. Second, the provision that Fn is known for all n is

equivalent to knowing γ, and thus eliminates the need to solve for the sound speed.

Perturbation analysis of equation 17 will show that perturbations in the IORS

field lead to perturbations in the pressure field, and explain the sources of the pres-

sure field perturbation seen in equation 21. This effect is non-linear, and requires

a local tangent linear approximation. As a preliminary step, the range stepping

form of the parabolic equation means it is convenient to work with perturbations

in γ at each range step. This is accomplished by denoting the perturbation in γ

at range step n as un ∈ Rz, where z is the number of depth bins used in the PE

mesh and introducing a perturbation in un of the first order in ε.

un = un + εũn

pn = pn + εp̃n + . . .

(23)

Introducing this definition into equation 17 yields

(Bn + εB̃n)(pn+1 + εp̃n+1) = (Cn + εC̃n)(pn + εp̃n). (24)
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Both B̃n and C̃n are diagonal matrices with the ith diagonal element equal

to (k20/2)ũn(zi), though they have opposite sign.

Carry the multiplication in equation 24 through and rearrange the first order

terms in a range stepping form,

Bnp̃n+1 = Cnp̃n − B̃npn+1 + C̃npn (25)

Two of the terms in equation 25 depend on p, and require running the forward

parabolic equation with unperturbed γ before IORS perturbations of order ε are

introduced. The values of the unperturbed pressure field, p, are recalculated using

the PE every time the value of γ is updated to re-linearize the tangent linear model

of equation 25. This step is important in gradient-based minimization routines,

which take multiple small steps towards the minima.

First, explicitly introduce the first order approximation of equation 25,

δpn+1 ≈ p̃n+1. Second, rearrange equation 25, and exchange terms between the

diagonal matrices and the vectors they multiply to give the final form of the per-

turbation propagation equation,

δpn+1 = Fnδpn −Gnδun. (26)

The resulting matrix G is the product of B−1n D, where D is a diagonal matrix made

from the vector (k20/2)(pn+1 + pn). The matrices Bn and Fn were introduced in

equation 17 and equation 19.

The matrix G is constructed from the complex pressure information for the

zeroth order sound speed field. This means that each run of the forward model

has two effects. This first is to calculate the pressure mismatch between the model

and the measured data, which is used to determine a cost using equation 29. The

second is to redefine the matrix G. This constant re–linearization of the gradient
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allows the optimization to handle small non–linearities in the cost function [12].

The perturbation analysis of equation 26 leads to a form that is very similar

to the measurement sensitivity to a pressure field perturbation, shown in equation

22. This is most simply illustrated for the first range step. The starter field is

assumed to be known exactly in this analysis, and so δp0 = 0. With no pressure

perturbation, δp1 = −G0δu0. There is a similar relationship between every per-

turbation δun with the perturbation of pressure at the next range step, δpn+1. The

error propagation presented in equation 22 can then be written in terms of δui,

δpR = F(R− 1 : i+ 1)Giδui. (27)

These effects are cumulative because of the linearity of pressure perturbation

propagation defined in equation 21,

δpR =
R−2∑
i=0

F(R− 1 : i+ 1)Giδui + GR−1δuR−1. (28)

In this form, the sensitivity of pR to δγ is expressed as a sum of the sensitivity

of pR to every δu. This solution is a linear solution for the sensitivity, and is

applicable for small perturbations of δu.

3.2.2 Evaluation of cost function gradient

The least squares cost function is given in equation 29,

J(γ) =
1

2

M∑
i=1

(mi − pi)∗(mi − pi). (29)

Each value mi is a complex pressure field measurement taken at the ith hy-

drophone. The value pi is the pressure measurement predicted by the forward

model for a given set of environmental parameters at the same index. The adjoint

method will calculate the gradient of J with respect to γ. This method is based on
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properties of the inner product. The inner product is written 〈x,y〉, which should

be interpreted as xHy. The notation xH is used to denote the conjugate transpose

of x, (x∗)> (The notation x∗ is the complex conjugate of x and x> is the transpose

operator).

In the following discussion it is assumed that the hydrophones are ideal sen-

sors, and the forward model is exact. In this case, the observation vector m ∈ Rm

is simply a sampling of the pressure vector p ∈ Rn at m discrete points at range

of measurement, R. When determining the vector m, the pressure vector pR is

considered to be the result of the forward model, equation 19, for an unknown γr.

A linear measurement model, H ∈ Rm×n is used to convert pR obtained from

forward model runs to the values of pi used in equation 29. The value of m is fixed

by the experimental setup, where m is the number of hydrophones. Introduce the

vector i ∈ Rm as the indices of the pR that have a hydrophone. H has m non-zero

values of 1 at the indices (k, i), k = [1, 2, . . . ,M − 1,M ]>.

With these definitions equation 29 may be expressed as an inner product,

J(γ) =
1

2
〈[HpR −m], [HpR −m]〉. (30)

The following properties of the inner product will be used in the adjoint

method. First, the adjoint operator of A is defined as AH. The following identity

can be shown to be a property of the inner product,

〈x,Ay〉 = 〈AHx,y〉. (31)

Secondly, for small perturbations δu, the perturbation of J is related to the

gradient of J with respect to u, ∇uJ ,

δJ = 〈δu,∇uJ〉. (32)
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This is the form of the first variation, which is the core of the adjoint method.

If δJ can be manipulated so that δu is one vector of the inner product, the other

vector must be ∇uJ . The order of the vectors is not important, since both vectors

in equation 32 are real and 〈a,x〉 = 〈x, a〉. From the definition of J ,

δJ = 〈(HpR −mR),HδpR〉. (33)

Substituting the definition of δpR from equation 28 leads to

δJ =

〈
(HpR −mR),H

(
R−2∑
i=0

F(R− 1 : i+ 1)Giδui + GR−1δuR−1

)〉
. (34)

The adjoint operator introduced in equation 31 can be used to move matrices

from one side of the inner product to the other. Additionally, the distributive

property of inner products, 〈x1 + x2,y〉 = 〈x1,y〉+ 〈x2,y〉, can be used to remove

the summation from inside of the inner product.

δJ =
R−2∑
i=0

〈
HH(HpR −mR),F(R− 1 : i+ 1)Giδui

〉
+
〈
HH(HpR −mR),GR−1δuR−1

〉
=

R−2∑
i=0

〈
GH
i FH(R− 1 : i+ 1)HH(HpR −mR), δui

〉
+
〈
GH
R−1H

H(HpR −mR), δuR−1
〉

(35)

Using basic inner product algebra the IORS perturbation at each range, δui, is

isolated to one side of every term of equation 35. Every inner product is therefore in

the form first variation form of equation 32, and the left hand side of each product

is therefore ∇uJ . The effect of each δui on the cost function J is cumulative, and

adding the terms of equation 35 gives the gradient of J to changes anywhere in

the IORS field, δγ.

Introducing a few definitions simplifies the form of equation 35. First, all

further discussion is concerned with the IORS perturbation, and not its starting
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value, which means δui can be replaced with ui. Second, denote the left hand side

of each inner product as ∇i
uJ , meaning the gradient of J with respect to u at the

range step i. Finally, remove the summation in equation 35 by placing each term

of the summation into one of two super vectors, δγ and ∇γJ ∈ Rrz,

δγ =


u1

u2
...

uR

 , ∇γJ =


GH

0 FH(R− 1 : 1)HH(HpR −mR)
GH

1 FH(R− 1 : 2)HH(HpR −mR)
...

GH
R−1H

H(HpR −mR)

 =


∇1

uJ
∇2

uJ
...
∇R

uJ

 . (36)

With these definitions, equation 34 is concisely written

δJ = 〈δγ,∇γJ〉. (37)

This formulation clearly shows the large dimensionality of ∇γJ , which has rz

degrees of freedom.

The great number of independent variables in equation 37 make this result

too general for use in the inverse problem for two reasons. Most importantly, this

situation has no realistic constraint on the resulting sound speed field, and leads to

physically impossible answers. Second, the computational time of the minimiza-

tion routine depends on the number of degrees of freedom (DOF) in the search

space, and this case would be computationally intractable. Therefore, additional

information on which solutions of the inverse problem are physically plausible is

necessary. Gliders are used to collect range dependent sound speed information

close to the acoustic propagation track for this study. These measurements are

used to create mean and covariance estimates of this range dependent sound speed

information.

Finally, the adjoint method requires efficient computation of the gradient

shown in equation 37. The term FH(R − 1 : i + 1)HH(HpR −mR) in this equa-

tion is efficiently solved by introducing an intermediate variable, λ, than by direct
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calculation. Defined recursively in equation 38, λi is solved by range stepping

backwards through the data model mismatch from index R,

λi =


HH(HpR −mR) if i = R,

FH
i λi+1 if R− 1 > i ≥ 1.

(38)

With this definition, the cost function gradient of equation 36 is rewritten,

∇γJ =


GH

0 λ1
GH

1 λ2
...

GH
R−1λR

 . (39)

The form of the gradient in equation 39 is amenable to numerical calculation.

First run the forward model to define λR. Secondly, recursively define all values of

λ until λ1. Once the value of λi is defined, the gradient is defined for this range

step i by multiplying GH
i λi.

3.3 Acoustic Environment
3.3.1 Ocean sound speed measurements

Oceanographic observations along a 5 km acoustic transmission line was col-

lected by a Slocum glider during the field experiment Rapid Environmental Picture

2011 (REP11) carried out by the NATO Undersea Research Centre (NURC) in a

marine region off-shore the western coast of the Gulf of Taranto, Italy, during

October 3rd to October 10th, 2011. The location of this experiment is shown in

figure 1. Each transect is constituted by around 25 profiles, representing a spatial

resolution of 200 m. In the current study the glider profiles were assumed vertical.

The transformation of measurements from the real diagonal track to a vertical pro-

file is common in glider work. The first step in the glider data processing was to

determine a common number of profiles taken on every transit. An interpolation

grid of 5 profiles was found sufficient to encode the oceanographic variability along
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Figure 1. Testing environment of the REP11 experiment in the Gulf of Taranto.

the transect.

While generally consistent, the exact location of each profile was variable. An

important consideration while constructing a consistent grid of 5 profile measure-

ments is that gliders may diverge from the straight-line track as they travel between

two way-points due to ocean currents. The location of each glider measurement

is shown in figure 2. Azimuthal symmetry was assumed in order to incorporate

measurements taken at small variations from the straight-line track. This assump-

tion means that gliders are considered to move in a straight line, either increasing

or decreasing range from the acoustic source. Once glider position is transformed

into a one-dimensional domain, each measurement is interpolated to the nearest

of the 5 regularly spaced profile locations. This information is then averaged at

each profile bin. The final result of this procedure is a set of 15 full transects

constituted by 5 regularly spaced sound speed profiles between 0 and 170 m depth,

which represent the sound speed environment between acoustic source and receiver.

Spatio-temporal variability is mostly concentrated in the surface layers and it can

be described as a slight deepening of the thermocline and a reduction of the sound

speed above it due to environmental warming.
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Figure 2. Location of the glider measurement plotted with 100 meter bathymetric
contour. Area shown in figure is the same as that of the blue box in figure 1

3.3.2 Bottom interface treatment

The sediment along the ocean bottom has a complicated effect on acoustic

propagation, especially for low frequency propagation problems. The acoustic

impedance, ρc, of the sediment in the ocean bottom is much closer to that of the

ocean, which means that acoustic energy in one medium may penetrate into the

other. This is in contrast to the air-ocean interface, which has a mismatch in

acoustic impedance at least 4 orders of magnitude, virtually ensuring no energy

transfer between interfaces.

Since acoustic energy propagates into the ocean bottom, the simplest way to

model the bottom interaction is to extend the computational grid from the ocean

into the sediment layer. An artificial attenuation layer is added at the bottom of

this computational grid to ensure that no energy reflects from the artificial pressure

release interface created by the termination of the computational grid. With this

groundwork in place, the next step is to correctly model the acoustic propagation

at the density and sound speed interface of the sea floor.
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The simplest model of sea bottom is as a fluid, which does not support shear

wave propagation. This approximation is applicable in many practical environ-

ments, and can be used for sediments that support shear sound propagation up to

about 200 m/s using the equivalent fluid approximation of Tindle and Zhang [19].

In the case of a fluid-fluid interface, there are two conditions which are required at

the interface: the continuity of pressure, equation 40 and the continuity of particle

velocity, equation 41.

p1(r, zB) = p2(r, zB) (40)

(p1)z(r, zB)

ρ1
=

(p2)z(r, zB)

ρ2
(41)

In equation 41 the subscript pz is used to indicate the derivative of p with

respect to z, ∂p/∂z. The customary way to begin this derivation of a wide angle

PE which achieves both these boundary conditions is to begin with the far field

Helmholtz equation, 7. The derivation of the one–way Helmholtz equation differs

at this point from the previous discussion because the acoustic environment is

discretized into a grid of computational points at this point. The computational

grid schematic is shown in figure 3.

An important feature of the finite difference grid introduced in figure 3 is that

there are grid points which sit directly on the interface. These grid points, which

are shown at the depth index m, are unique in having two distinct densities and

two different sound speeds. These values in medium 1 are denoted ρ1, c1 and ρ2, c2

for the values in medium 2. There are also two separate pressures in each medium,

p1 and p2, though they will be equated according to equation 40.

Following the derivation of the horizontal interface from Computational Ocean

Acoustics [4], solve for the first depth derivative, pz by taking a Taylor series
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Figure 3. Schematic diagram of the finite difference grid at an horizontal interface.
In this diagram u is the acoustic pressure (p in this paper). Figure taken from
McDaniel and Lee, [1].

expansion of pnm−1 upon pnm. For brevity of notation, the pressure values without

explicit grid indices are used to denote pnm. Instead, the notation p1 is used to

indicate the pressure in medium 1. Using these definitions, the expansion is,

pnm−1 = p1 −∆z
∂p1
∂z

+
(∆z)2

2

∂2p1
∂z2

. (42)

Solving for the second derivative, and substituting this result into 7 yields the

derivative pz in the first medium,

∂p1
∂z

= −∆z

2

[
∂2p1
∂r2

+ 2ik0
∂p1
∂r

+ k0(n
2
1 − 1)p1 −

2

(2∆z)2
(p1 − pnm−1)

]
. (43)

This result is used to satisfy equation 41. The derivation for pz in medium

2 yields an equivalent result. These results are then used to construct a partial

differential equation for the acoustic pressure at an interface node. This is done

by first equating p1 = p2 = p in equation 43 and it’s equivalent in medium 2.

After this substitution, the two derivative expressions are multiplied by their re-

spective ρ−1 and then equated. This leads to the representation of the far field

Helmholtz equation 7 shown in equation 44, using the operator G to contain the

finite difference terms.
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prr + 2ik0pr +Gp = 0 (44)

The operator G is defined using the following definitions,

Γzzp =
2

∆z2
ρ2

ρ1 + ρ2

(
pnm−1 −

ρ1 + ρ2
ρ2

pnm +
ρ1
ρ2
pnm+1

)
, (45)

η =
ρ2

ρ1 + ρ2

(
n2
1 +

ρ1
ρ2
n2
2

)
− 1. (46)

The operator G is then simply,

G = k20η + Γzz. (47)

This is a general formulation for the IFD-PE, valid both at interfaces and at

non-interface grid points when ρ1 = ρ2 = ρ and n1 = n2 = n. In this form the

interface treatment is analogous to the two–way Helmholtz equation of 9. This

equation is the factored into a one–way equation using the same assumption that

the operators pr and G commute.

The difference between the finite difference formulation and the general formu-

lation of the PE is that the rational–function operator approximation of equation

13 may be directly substituted into the equation. First, approximate the range

derivative ∂p/∂r with the Crank–Nicolson scheme, shown in equation 15. Sub-

stitution of the rational function into this scheme and factorization leads to the

following formulation for the PE at a depth index shown in equation 48. The

interested reader is referred to either reference [4] or [21] for a complete derivation.

[
1 u 1

] unm−1unm
unm+1

 =
[
1 û 1

] un+1
m−1
un+1
m

un+1
m+1

 , (48)

with
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u =
ρ1 + ρ2
ρ1

[
k20(∆z)2

2

(
w∗1
w∗2

)
− 1

]
+
ρ2k

2
0(∆z)2

2ρ1

[
(n2

1 − 1) +
ρ1
ρ2

(n2
2 − 1)

]
, (49)

and

û =
ρ1 + ρ2
ρ1

[
k20(∆z)2

2

(
w1

w2

)
− 1

]
+
ρ2k

2
0(∆z)2

2ρ1

[
(n2

1 − 1) +
ρ1
ρ2

(n2
2 − 1)

]
. (50)

The terms of w are related to the rational function approximation of equation

13 as follows,

w1 ± b0 +
ik0∆r

2
(a0 − b0), and w2 ± b1 +

ik0∆r

2
(a1 − b1). (51)

In equation 51 the w terms defined with the minus sign are denoted by a

star, ∗. This equation for pressure at one depth may be generalized to a matrix

form to propagate pressure at all depths. The matrix form of this equation is then

equivalent to the matrix form of equation 17.

The introduction of the horizontal interface to equation 25 is relatively simple.

While the matrices B and C remain the same, the perturbation matrices are

slightly different. It is important to note here that the bottom’s density and sound

speed are assumed known, and are not included in the inversion. With this in mind,

a perturbation to the sound speed only on one side of the interface of equation 50

for a given index of refraction change is

B̃b =
k20
4

ũn(zb), (52)

where b is the index at the bottom. The bottom index of C̃ is also the same.

Also, while the gradient of the cost function with respect to sound speed in also

calculated for the bottom, it is simply set to 0 in this case, because this property

is assumed to be known.
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3.3.3 Dimensional reduction

Sometimes, phenomena which appear complex are actually be governed by

a few simple variables. The fundamental assumption that justifies the dimension

reduction is that the sample actually lies, at least approximately, on a space of

smaller dimension than the data space. The goal of dimension reduction is to

obtain a low-dimensional, compact representation of the data. This focuses efforts

on the most representative portion of the dynamics, simplifying computations and,

in general, increasing the accuracy of the results [22] by removing dynamics that

are not observed from the search space.

Much of the expected uncertainty in the problem under consideration is associ-

ated with the lack of an accurate characterization of the environmental variability.

In this work, the variability of the sound speed is considered as resulting from a

weakly stationary or second order Gaussian process defined by a covariance ma-

trix. This covariance matrix can be estimated from the set of glider observations

using the Maximum Likelihood Estimator (MLE).

The first step in defining the covariance matrix of the sound speed of the

environment is to determine a measurable representation of this field. The mea-

surements taken by a glider have a limited spatial sampling period, and a specific

number of profile measurements are expected for a given experimental range. Each

measurement of the sound speed field is then represented by a N sound speed pro-

files, ui, arranged in increasing range from the acoustic source. The full sound

speed field used in the PE, γ is created using an interpolation routine, F .

γ = F (


u1

u2

· · ·
uN

) = F (v) (53)

The dimensionality of v is Nz, or more simply v. An interpolation routine,
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F : Rv → Rrz is necessary because a measurement is not available for every value

of γ. A simple linear interpolation is used in this study, but other interpolation

methods may be substituted in F . The form of the function F is is not important

to the minimization routine, which operates in the domain of the EOF bases, and

not γ. For a given F , the knowledge of v is equivalent to knowing γ, and the

vector v may also be referred to as the sound speed field.

The definition of the sound speed field in equation 53 is valid when considering

either the direct sound speed measurement, or its perturbation, ũ. For clarity

in the discussion of the covariance estimation, the complete sound speed profile

defined in equation 23 is used. To calculate the covariance first define the sound

speed detrended measurement matrix, M ∈ Rv×n for n complete glider tracks, vi.

Using the spatial mean of the measurements, v̄ ∈ Rv to de–trend the measurement

matrix.

M =
[
v1 − v̄, v2 − v̄, · · · , vN − v̄

]
. (54)

The MLE of the covariance matrix of M is then given by

C =
1

N
MM>. (55)

An eigenvalue decomposition of the covariance matrix in equation 55 yields

a number of orthonormal eigenvectors in the matrix V ∈ Rv×v, arranged in order

of their relevance to the sound speed statistics. Additionally the decomposition

will provide a diagonal matrix of eigenvalues, or magnitudes of the eigenvectors,

D ∈ Rv×v.

All of the measured sound speed profiles may then be represented as a sum-

mation of the scaled orthonormal vectors of V. When used in this manner, the

vectors contained in V are termed the empirical orthogonal function (EOF) bases
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represented in equation 56. The magnitude of each base is αi, and the base vector

is ei ∈ Rv.

v =

q∑
i=1

αiei + v̄ (56)

The magnitudes of the bases follow the statistics of D, with the magnitude αi

having a standard deviation of
√

Di. It is possible to simulate profiles which have

the same statistics as and the measured values using equation 56. Given a random

vector r ∼ N (0, diag(D)), a random profile is created by substituting αi = r[i]

into equation 56.

While equation 56 may be used to exactly recreate each measured profile, vi,

these profiles may be estimated accurately using only a few principal EOF bases.

For discussion assume both the matrix D and V are sorted in decreasing magni-

tude of D. This behavior means that each succeeding EOF base is less significant

than the the one before it in determining the final shape of the sound speed profile.

If the EOF bases are constructed from highly correlated data many vectors are of

such small magnitudes that they may be considered numerical artifacts. The de-

composition of the covariance matrix into its eigenvectors therefore provides a way

to reduce the dimensionality of the initial problem by removing these numerical ar-

tifacts from equation 56 and projecting the dynamics onto the most representative

EOFs.

It remains a problem, however, to determine which EOFs should be considered

important. For a EOF to be considered significant in estimating the full shape of

v it must achieve a reasonably large percentage of cumulative energy content.

This requirement can be made into a qualitative test by comparing the eigenvalues

of the matrix D with those created by a white Gaussian noise (WGN) process.

A Bootstrap method with a null hypothesis given by WGN has been employed
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Figure 4. Results of null hypothesis test. The null hypothesis calculated from
white Gaussian noise is plotted as red circles, and the covariance eigenvalues from
glider surveys are plotted as blue asterisks.

to select those q-EOFs which are not likely explained using the null hypothesis.

Therefore only the selected EOFs are considered representative of the variability

generated by the underlying ocean dynamics while the discarded ones describe the

contributions of noisy processes.

The null hypothesis is computed by creating a matrix Z ∈ Rv×n of normalized

WGN, Z[i, j] ∼ N (0, 1) for all values of [i, j]. The dimension of Z is the same

as that of M. The covariance matrix C of the matrix Z is then calculated us-

ing equation 55, and finally the matrices V and D are computed using an Eigen

decomposition. This procedure is repeated a number of times to compute a sta-

tistically stable estimate of the mean of D. The results of this test are presented

in figure 4, where the values of the hypothesis are the mean value of D computed

over 1000 trials.

When the number of EOF bases, q, has been determined, any glider track,

v ∈ Rv, may be approximated in the new space of the EOFs. To do this, construct

a matrix, E ∈ Rv×q, which contains each of the selected EOF bases as a column,

E = [e1, e2, . . . , eq]. The vector a, a ∈ Rq, contains all values of αi in a column
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vector,

a = E>v. (57)

This projection of v onto the vector a reveals the efficiency of using EOFs

to estimate a complete sound speed track measurement. The EOF bases reduce

the dimensionality of the problem from v to q, generally a significantly smaller

value. Reducing the number of degrees of freedom increases the numerical efficiency

of minimization routines and also prevents searches in directions that are not

numerically relevant.

After reducing the description of the sound speed field to a few principal

components in the EOF approximation, the dimensionality of the gradient of the

cost function may also be reduced. Introduce the chain rule of a gradient,

∇αJ = J>αJ>c ∇γJ. (58)

The gradient ∇αJ ∈ Rq relates changes in the magnitude of the EOF bases

to changes in the cost function, J , equation 29. This is the final form of the

gradient used in the adjoint inversion method. The matrix Jα ∈ Rnz×q is the

Jacobian matrix, which relates a change in the magnitude the EOF bases to δc.

The Jacobian Jc relates changes in γ to changes in sound speed. This second

Jacobian is necessary because the adjoint method solves for the gradient of the

cost function with respect to γ, where as the EOF decomposition is performed on

sound speed.

The relationship between the IORS and sound speed was introduced in equa-

tion 18. The matrix Jc is composed at the derivative of the sound speed at every

index (r, z) with respect to the IORS at every index (r, z) as well. While this def-

inition requires a nz × nz Jacobian matrix, there is a direct relationship between
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sound speed and IORS, and so the Jacobian only has nz non zero values.

The Jacobian Jc is therefore a sparse diagonal matrix, and so J>c ∇γJ =

diag(Jc) ◦ ∇γJ , where ◦ denotes an element wise multiplication. The value of

diag(Jc) is the derivative of the IORS with respect to the sound speed at each

range, stacked vertically with the nearest range first. This derivative is found from

equation 18,

∂γ

∂c
(r, z) = −2

c20
c(r, z)3

; (59)

Once the gradient result of the adjoint method has been transformed into a

gradient of the cost function with respect to sound speed, it can be projected onto

the EOF bases. Since each EOF base ei is normalized and has a magnitude of 1,

define

∂c

∂αi
= F (ei). (60)

The matrix Jα contains all ∂c/∂αi vectors as columns. The function F in

equation 60 is the same interpolation used in equation 53 to change the regularly

spaced sound speed measurements taken with the gliders into a complete sound

speed field measurement.

There are a number of gradient-based numerical optimization packages which

will attempt to minimize the cost function, equation 29 using the gradient in-

formation in equation 58. The MATLAB package minFunc [10] was selected to

perform this minimization, which allows the comparisons of a number of differ-

ent methods. Ultimately, however, understanding the mechanics of these methods

was not essential to the adjoint inversion, and so the default method was used

(the limited memory Broyden–Fletcher–Goldfarb–Shanno method). Optimization

methods perform well if the starting point is within the basin of attraction of the
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Figure 5. Adjoint inversion result for a single sound speed field for a 2 km transmis-
sion. The y axis is ocean depth in meters and the x axis is sound speed perturbation
from mean profile, in m/s.

global minimum. An example of such a case is shown in figure 5.

3.3.4 Error of EOF cutoff

The estimation of the total IORS field using EOF bases introduces a rep-

resentation error component of the observation due to unresolved scales. This

means that the uncertainty associated with an acoustic pressure measurement at

sea may be larger than the error of the sensor. The present study is incapable of

deterministically characterizing all the spatio-temporal scales of the environmental

variability and it is therefore important to consider this representation error when

finding an appropriate cost functions for well-conditioned inversion problems. The

representation error expected on the sampled pressure field can be estimated given

the dimensional reduction of the IORS field. This study illustrates the importance

of this error term as an extreme case and assumes that there is no measurement

noise at all. The variance caused by the EOF cutoff is the only source of noise and

accounts for the maximum pressure resolution of the inversion model.

A Monte Carlo simulation of 100 trials is used to determine the maximum
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resolution of the inversion allowed by the EOF cutoff. First, create n = 100

profiles using full covariance matrix C, introduced in equation 55. Arrange these

profiles in the matrix K ∈ Rv×n, where each column in K is a simulated profile.

Second, project these profiles onto the restricted EOF space, E. The magnitudes

of these projections are stored in the matrix A ∈ Rn×q, where q was previously

defined as the restricted number of EOF bases,

A = K> × E. (61)

The measured pressure at the m hydrophones is calculated by comparing

the forward PE results for the full profiles, K and the profiles constructed from

the EOF projection, A × E>. The measured pressures are simulated using the

measurement matrix by multiplying HpR for each forward model run. For each

of the n simulations the two forward model results are subtracted to form the

pressure mismatch matrix Z ∈ Rn×m.

The covariance statistics, CZ ∈ Rm×m are then calculated using the MLE

estimation presented in equation 55. The first diagonal of this matrix is the mea-

surement variance statistics. Assuming that the variance on each measurement

device should be equal, the maximum value of the measurement variance is cho-

sen as the representative variance, σ2
m. The normalized pressure mismatch is then

written in equation 62,

J(a) =
1

2σ2
mm
〈[HpR −m], [HpR −m]〉. (62)

Pressure variance results are presented in table 2 for different numbers of EOF

bases. As expected, the pressure variance decreases with additional bases.
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Number of EOFs 3 4 5
σ2
m 6e−4 1.2e−4 7e−5

Table 2. Measured pressure variance between IORS fields constructed using com-
plete covariance statistics and their projection onto EOF bases.

3.4 Numerical Simulation of Adjoint Method

Numerical simulation is an useful method to determine the expected perfor-

mance of the adjoint method in various situations.

The first step of a numerical simulation of an inversion is to simulate a possible

sound speed field. This is done using the complete EOF basis measured by the

gliders. The IFD-PE is then used with the simulated sound speed field to calculate

the simulated measured pressure. This is the vector m used in the least squares

cost function, equation 29.

The reference solution of EOF magnitudes is found by projecting the EOF

bases onto the simulated sound speed field. These EOF magnitudes are denoted

αref , with

αref = J>α csim(r, z). (63)

The result of the adjoint inversion can be directly compared with these refer-

ence solutions to determine its effectiveness. To measure the performance across

many simulations, however, a single characterization of the inversion result is more

useful. The root mean square error of the mismatch between the reference and in-

version solution is used for statistical analysis of the adjoint inversion performance

for different test setups.

An important consideration when computing the RMSE of the EOF magni-

tude mismatch is the magnitude normalization. First, it is important that the

EOF bases containing more energy are weighted heavier than those with less im-

portance. This makes EOF magnitudes normalized to their variance unsuitable for
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this measurement. Secondly, the result should have an intuitively understandable

interpretation, and for this reason the energy percentage of each EOF base was

used. After the EOF bases have been normalized, the RMSE is

RMSE =
√

E(αref − α)2. (64)

3.4.1 Irregular interface

The final development in the handling of the sea-floor acoustic properties in

the parabolic equation is the treatment of the irregular interface. The parabolic

equation is often used to model acoustic propagation over bottoms which have

significant bathymetric features, such as a sea mounts or a wedge shaped sloping

bottoms [20]. The importance of the wide angle PE is in part because of the

importance of higher angle modes in problems with significant bottom interaction

[4]. This interaction of wide–angle acoustic energy is expected to be significant in

the environments considered in this study because of the relatively shallow bottom

and the high critical reflection angle of sandy bottoms (∼ 22.5◦).

The most common way of modeling the acoustic propagation over a sloping

bottom is to approximate the bottom slope with a stair-step interface. This ap-

proximation simply moves the interface depth at regular intervals either up or

down. It is important to keep the number of interfaces relatively high to prevent

large jumps in the interface depth at each stair-step, and it is generally necessary

to decrease the range and depth steps, ∆r and ∆z when modeling propagation

over sloping bottoms.

44



CHAPTER 4

Results

There are two sections of results. Section 4.1 investigates the accuracy of the

bottom interface treatment implemented in the PE by comparing the results of

several benchmark problems with reference solutions. Secondly, section 4.2 investi-

gates the performance of the adjoint method in several different test configurations

using numerical simulations.

4.1 Bottom interface treatment in the parabolic equation

The accuracy of the bottom interface treatment is measured by comparing

the results of two benchmark solutions with solutions from reference models. The

benchmark solutions are separated into range independent and range dependent

bottoms. A range independent bottom is a horizontal interface, and this test

setup is simply solved exactly using wave number integration techniques. The

wave number solution treats the bottom as a infinite half-space and is a solution

to the full two–way Helmholtz equation. This bottom treatment is covered in

section 4.1.1.

The range dependent interface allows for bottom slopes, which are relevant

in acoustic propagation across coastal shelves and over sea–mounts. The standard

approach to sloping bottom solutions is to split the interface into a number of

locally flat bottoms, which is known as a stair–step approximation. This solution

requires careful treatment of the horizontal interface between these stair–steps.

A commonly used reference solution in these situations is the model COUPLE,

which solves for the coupled mode equation solution. The results of the stair

step interface are compared with that of COUPLE in section 4.1.2. The range

dependent interface is not used in the adjoint inversions because the issue of energy
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depth sound speed (m/s) density (g/cm2) attenuation (dB/λ)
0 1500 1.0 0.0
120 1498 1.0 0.0
240 1500 1.0 0.0
>240 1505 2.1 0.0

Table 3. Range Independent bottom interface test setup

conservation remains unresolved.

An issue that arose in the forward model comparison was that the source

level showed a consistent offset between the transmission loss (TL) results of the

reference models and the PE. This offset is due to different source normalizations

between models. This mean offset was different in each of the three models used.

This allowed for simple comparison, and this mean offset is not expected to change

the adjoint inversion results, when both the “measured” pressure and the inversion

results are simulated using the same acoustic propagation model.

4.1.1 Range independent enviornment

The first environment chosen to test the accuracy of bottom interface treat-

ments is a range independent environment. This simplification allows for relatively

simple interface treatments, and the open source OASES wave number integration

code was used as a reference solution. OASES, developed by Henrik Schmidt, treats

the lower medium as semi-infinite, the theoretically correct interface treatment for

the reference solution [23].

The test case chosen for the range independent environment was taken from

Lee and McDaniel [21]. The 240 m deep waveguide is made up of two piece wise

linear sound speed profiles, with a minimum sound speed of 1498 m/s at 120 meters

depth. The bottom interface has a constant density of 2.1 g/cm2 and a sound speed

of 1505 m/s. The enviornmental setup is formulated in table 3.

The test setup in table 3 was solved using the Claerbout wide angle parabolic
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Figure 6. Compairson of transmission loss results between the IFD–PE with a
local horizontal interface and the full halfspace model OASES. A mean offset of
1.9 dB was removed from PE result.

equation approximation using a 40◦ Greene’s source. A 100 Hz acoustic source was

placed at 30 m depth, and the acoustic transmission loss was calculated out to 20

km at a depth of 90 m. In this test case the wide angle approximation made an

unappreciable change in the forward model result, but requires the bottom grid to

be extended further for the result to converge with the reference solution.

Figure 6 shows the transmission loss as a function of range for a source. The

reference solution and the IFD-PE solution show very good agreement, with the

largest error at about 1 dB. While closer agreement is demonstrated in IFD-PE

literature [1], this result is considered to be close enough the demonstrate the effect

of a horizontal bottom interface on adjoint inversions.
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data analysis, where modeling accuracy of a few decibels is 
often sufficient but where fast computations are essential. 
However, by pushing the numerical model to the extreme in 
terms of accuracy, bugs in the implementation might show 
up, which otherwise would not have been detected. Actual- 
ly, we found errors in two of our codes during the generation 
of accurate benchmark solutions. The errors were small and 
unimportant for practical modeling work, but they could 
conceivably have distorted the solution significantly under 
different propagation situations. As a result of having 
further debugged our codes, we have now increased confi- 
dence in their performance. 

The organization of this paper is as follows: In Sec. I, we 
describe the selected range-dependent benchmark problems, 
three associated with a wedge-shaped waveguide, and one 
with a plane-parallel waveguide. Section II deals with the 
three numerical models used to solve the benchmark prob- 
lems, including theoretical foundation, numerical imple- 
mentation, and procedures for obtaining stable numerical 
results. The benchmark solutions are presented in Secs. III- 
VI, and the paper ends with a summary and conclusions. 

I. THE BENCHMARK PROBLEMS 

Range-dependent ocean scenarios generally include 
changes in both water depth and sound-speed profile with 
range. The ASA benchmark problems 4 were selected so as to 
study these two range-dependent features separately. First, 
we consider propagation upslope in a wedge-shaped homo- 
geneous waveguide, and, second, propagation in a plane-par- 
allel waveguide with range-varying sound-speed structure. 

A. Wedge-shaped waveguide 
The geometry for the wedge problem is given in Table I 

and graphically illustrated in Fig. 1. The environment con- 
sists of a homogeneous water column (c = 1500 m/s, p = 1 
g?cm 3) limited above by a pressure-release flat sea surface 

TABLE I. Benchmark problems associated with a wedge-shaped wave- 
guide. 

1. BENCHMARK WEDGE PROBEMS 

Accurate solutions are invited for upslope acoustic propagation in a wedge 
with the geometry described below. The parameters of the problem are list- 
ed below, including three choices of bottom boundary condition (pressure 
release, case I and two penetrable bottoms, cases II and III). The wedge 
geometry is shown in Fig. 1. 
Parameters common to all three cases. 

wedge angle 0o = 2.86 ø 
frequency f= 25 Hz 
isovelocity sound speed in water column c• = 1500 m/s 
source depth = 100 m 
source range from the wedge apex = 4 km 
water depth at source position = 200 m 
pressure-release surface 
Case I: pressure-release bottom. 
This problem should be done for a line source parallel to the apex i.e., 2-D 
geometry. 

Case II: penetrable bottom with zero loss. 
sound speed in the bottom c2 = 1700 m/s 
density ratio P2/P• = 1.5 
bottom attenuation - 0 dB/A 

This problem should be done for a point source in cylindrical geometry. 
Case III: penetrable lossy bottom. 
As in case II except with bottom loss = 0.5 dB/A 
OUTPUT 

Plots should be presented on overhead transparencies of propagation loss 
versus range measured from the source to the apex. The scaling should be as 
shown. It is important to conform to this format for the purpose of compari- 
son. The dB scale of propagation loss should cover exactly 50 dB. The start 
and end points of this 50-dB scale should be chosen to ensure that the results 
are entirely contained in the plot. Propagation loss is defined for the present 
purpose as 

(Intensity at a field point) PL = -- 10 1Oglo 
(Intensity at one meter away from source) 

Receiver depths 
Case I: 30 m 
Cases II and III: 30 and 150 m 

0.0km 

100 m ci = 1.5 k / s 
25 150 m Pi = 1 g 

I I 
I ............ •r.... • .......... pressure receivers 

200 m T :•' ........ .¾2L.. -2 - 

FREE SURFACE 
4.0km 

FIG. 1. Wedge geometry for test prob- 
lems 1, 2, and 3. 
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Figure 7. ASA wedge geometry. Jensen and Ferla, [3]

parameter value
wedge angle θ0 = 2.86◦

frequency 25 Hz
water sound speed 1500 m/s
source depth 100 m
max range 4 km
start water depth 200 m
bottom sound speed 1700 m/s
bottom density 1.5 g/cm3

bottom attenuation 0.5 dB/λ

Table 4. Enviornmental parameters of ASA wedge case III

4.1.2 Range dependent interface treatment

The Acoustical Society of America benchmark wedge problem case III [3] was

used as the study case for the range dependent PE. The test case has two horizontal

pressure receivers at 30 and 50 meters of depth. The environmental parameters

are shown in figure 7 and presented in table 4.

The transmission loss for a reciever depth of 30 meters of the stair step IFD-PE

is shown along with both the one–way and two–way COUPLE solution in figure 8.

As was the case with the range dependent propagation test, a mean offset between

the two solutions was removed to account for different source normalizations be-

tween the models. While the one–way solution agrees well with the IFD-PE, there

is a significant divergence with the two–way solution. The range dependent inter-
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Figure 8. Range dependent transmission loss results. Both 1 way and 2 way
results are provided by COUPLE. A mean offset between the 1 way term and the
PE result was removed in this figure.

face was not used for this reason, but should be valid when an energy conservation

term is developed.

4.2 The effect of the enviornment on adjoint inversions

While the adjoint method can be expected to work in some acoustic environ-

ments, such as the one investigated by Hursky et al. [12], there need be limits

on what conditions it works under. The limits of environmental conditions under

which the adjoint method can be expected to converge to the correct result are

explored in this section. The adjoint method was found to be highly sensitive to

the range of the acoustic propagation.

When the adjoint method was introduced to problems of ocean acoustics by

Hursky et al. [12], a very simple test setup was used to confirm that the method

could correctly invert for the range dependent sound speed field. A 120–meter deep

sound channel was bounded on both the top and bottom by a pressure release

boundary condition. The transmission from a 400 Hz source was received at a

distance 2 km away by a 32–element array that spanned the entire water column.

The basic test setup used in most computer simulations is shown in figure

49



0 2 4 6

0

20

40

60

80

100

120

Distance from source, km

D
e

p
th

, 
m

Figure 9. Basic numerical simulation setup. The source is deployed at range 0 and
a depth of 100 m, shown as a red dot. The location of each sound speed profile is
designated by a triangle along the top horizontal axis. Each circle at the range of
4 and 6 km designates an element in a 32 element array

9. Slightly larger range values were used to investigate divergent behavior in the

adjoint method.

Modeling the bottom interface as a fluid/fluid interface with both a sound

speed and density discontinuity increased the realism of the test setup. The first

test with this new bottom interface treatment was to investigate its performance

in a test case where the pressure release bottom treatment could correctly invert

for the sound speed field. A 2 km inversion experiment was run with 5 EOF bases

to compare the two treatments directly. The first 11 inversion runs used the sound

speed fields measured by the gliders to simulate measured pressure. The rest of the

inversions were performed on sound speed fields that had the same statistics of the

measured fields, explained in section 3.3.3. The RMSE error, shown in equation

64, was used to compare the two results. This is shown in figure 10.

The performance of the adjoint method is comparable between the two bottom

treatments. In general the pressure release bottom has slightly less RMSE than

the results obtained using a sandy bottom, but both methods performed well in

this simple test environment. There were no obviously divergent answers in this
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Figure 10. Comparison of inversion results with two bottom treatments for a 2
km transmission. The first 11 inversions recreated the sound speed fields taken by
glider measurements, the final 19 were simulated.

test scenario, with the largest error of a little more than 0.2. Compared to the

mean RMSE value of about 0.1, this can be considered to be an acceptable answer.

The next set of experiments tested the range limit for which the adjoint

method could be expected to converge to the correct result. A series of tests was

run by expanding the range spacing between the five sound speed profiles shown

in figure 9. The fields between these profiles were generated using an expanded

linear interpolation routine.

There is a shift towards lower RMSE values in the 4 km results when compared

with the 2 km results shown in figure 10. This is mostly because 9 EOF bases were

used in this simulation study, instead of the 5 suggested by the null hypothesis

test. This is discussed later in this section. Finally, a sandy bottom was used in

both these tests. The result of range test is shown in figure 11.

Figure 11 demonstrates the strong dependence of the performance of the ad-

joint inversion on range. In the 4 km case the RMSE error of the all inversions

was comparable to the mean RMSE of these inversions. In the 6 km transmis-

sion case there are several very significant outliers, in some cases reaching 1 σ
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Figure 11. Comparison of inversion results with increasing range.

of scaled RMSE. The four cases where the RMSE is significantly larger than the

mean RMSE value can be identified as outliers by inspection. This heuristic error

criteria implies that 6 km is at the limit of the viability of the adjoint inversion

method.

Finally, the RMSE criterion provides another insight into proper selection of

the number of EOF bases to use in an inversion. The null hypothesis test showed

that 4 EOF bases met a hard cutoff, and 5 could be used if this was stretched

slightly. Increasing the number of EOF bases beyond this number continued to

lower the RMSE value, however. Trial and error testing with increased numbers of

EOF bases suggested that 9 EOF bases yielded a lower mean RMSE value over the

suggested 5. Increasing the number of bases beyond 9 did not significantly change

the results further. Finally, despite a mean decrease in RMSE value, the inversion

results with more EOF bases still diverge on the same runs as the baseline case.

A comparison between inversion results with different numbers of EOFs is

shown in figure 12.

The RMSE criterion for investigating inversion results is useful for observing

the relative effects of environmental parameters. However, it cannot be viewed as

an absolute test of the inversion performance. A more rigorous error analysis would
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Figure 12. Comparision of results of adjoint inversion with a different number of
EOF bases. A 6 km transmission range was used in both tests.

provide a measure of the improvement to environmental understanding resulting

from using the adjoint method. Identifying a specific application of the inversion

results would provide a more objective rubric of performance. This would allow

for the consideration of the penalty of divergent results, when the adjoint method

converges to a minimum in the cost function that is unrelated to the minimum

associated with the actual environmental parameters. In these cases the mean

profile may be a better estimate of the environment than the adjoint result.

The performance of the adjoint method was shown to be largely unaffected

by the introduction of bottom boundary conditions. This is an important step

towards application of this method on experimental data. Secondly, simulation

studies of the adjoint method using the RMSE error criterion show that the range

of the environment strictly limits the adjoint method. Other possible parameter

changes such as source depth, water depth and bottom type were investigated

but did not show a significant effect on inversion performance. Within the proper

operating conditions the result of the adjoint method is a consistent estimate of

the actual sound speed environment, which is a useful measure of oceanographic

properties and may improve the performance of other acoustic systems.
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CHAPTER 5

Conclusions

The effects of a fluid/fluid interface were successfully included in the adjoint

method. This addition to the method had minimal effects to the overall perfor-

mance of the adjoint inversions. However, by including the bottom interface in the

inverse method the adjoint method becomes applicable in more realistic propaga-

tion environments.

The adjoint method was shown to perform consistently in short–range en-

vironments with small range dependent variations in the sound speed field. It

became unstable at longer ranges. In small propagation ranges it was seen to be

relatively insensitive to the parameters of the test setup.

The experimental setup used to verify the adjoint method used a simulation

study in which environmental statistics collected by gliders were used to simulate

range dependent environments. This test setup was used to verify the basic viabil-

ity of the adjoint method, and some of it’s sensitivities to the environmental setup

of the experiment.

However, the glider surveys should be considered very rough measurements

of the sound speed field because of the limited spatial and temporal sampling fre-

quency of these devices. A more desirable setup for testing the viability of realistic

inversions based on glider surveys would use environmental statistics measured

by much higher resolution techniques, such as a ship towed profiling device. The

glider based adjoint inversions could be considered successful if the sound speed

measurements taken by gliders were sufficient to resolve the more finely sampled

data to the expected resolution.

The root–mean squared error criterion used in this study could show the
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relative performance of the adjoint inversions in different test setups. However,

this error criterion does not provide a measure of the inversion performance that is

relevant to any specific application. This heuristic criterion means that it is difficult

to accurately say when the adjoint method becomes impractical or unproductive.

A more descriptive error measurement that could describe the cost of false results,

perhaps designed for a specific application of the result, would provide a more

rigorous error analysis.
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