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ABSTRACT 
 

 The “annual bluegrass weevil” (Listronotus maculicollis) became resistant to 

synthetic pyrethroid insecticides (bifenthrin and cyhalothrin) in several adult weevil 

populations from Connecticut, Rhode Island, and Massachusetts in 2007-09, and 

management of this insect has become increasingly complex. Annual bluegrass weevil 

continues to be a serious pest of Poa annua L. (Poaceae) and bentgrasses (Agrostis spp) 

on many golf courses in mid-Atlantic and northeastern United States and eastern Canada. 

Adults chew notches on grass blades and at the juncture of leaves and stems. However, 

adult feeding has little effect on plant vitality. Early instars feed inside plant stems and 

late instars on plant crowns. The first generation larvae, which usually become apparent 

in late May or early June, typically cause the most severe damage. During July and 

August damage caused by second generation larvae is usually less extensive, especially if 

good control of the overwintering generation was obtained.  In most cases, adequate 

control of the insect has been achieved through the use of pyrethroid applications 

targeting adult weevils as they emerge from overwintering sites and before they begin to 

lay eggs. However, if a population is resistant to pyrethroids, alternative controls are 

required to prevent damage. My research objectives were to evaluate the 

entomopathogenic fungus Beauveria bassiana for control of L. maculicollis and how 

neonicotinoid insecticides can best be used to manage this increasingly serious pest.   

While pyrethroids remain the preferred choice of many golf course 

superintendents for managing this species, resistance has forced some superintendents to 

incorporate other strategies. Some of the new strategies include: (1) the use of a 

pyrethroid or chlorpyrifos early against overwintering adults; (2) 



 
 

neonicotinoid/pyrethroid combinations (Aloft, Allectus) during peak adult emergence to 

control adults and first generation larvae; (3) primarily preventative larvicidal compounds 

(chlorantraniliprole (Acelepryn), neonicotinoids) for early instars; and (4) curative 

larvicidal compounds (trichlorfon (Dylox), spinosad (Conserve), indoxacarb (Provaunt), 

chlorpyrifos, pyrethroids) for control of fourth and fifth instars. Some locations may need 

to use one or more of these strategies to prevent turf damage and resistance development. 

It is imperative that the timing of treatments coincide with various life stages (adults, 

early or late instar larvae) to maximize chemical efficacy.  This is particularly important 

for the systemic compounds (neonicotinoids / chlorantraniliprole) to insure there is 

sufficient chemical in the xylem for maximum effectiveness. If treatment strategies 1-3 

are not effective, a curative larvicidal compound may need to be applied to prevent 

damage. Finally, since all subsequent generations come from the overwintering adults, it 

is imperative that a superintendent control those adults and any larvae that they produce 

(1st generation). 
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PREFACE 
 
 The chapters of this thesis are being submitted in manuscript format. Chapter one, 

“Laboratory Assessment of Beauveria bassiana strain GHA for Control of Listronotus 

maculicollis (Coleoptera: Curculionidae) Adults” has been accepted by the J. of 

Economic Entomology with co-authors Emily Hampton, Matthew Requintina and Steven 

R. Alm.  Chapter two, “Determining the Amounts of Clothianidin and Imidacloprid in 

Poa annua (L.) by ELISA and Their Effects With and Without Bifenthrin on Listronotus 

maculicollis (Coleoptera: Curculionidae)” will also be submitted to the J. of Economic 

Entomology with co-authors Emily Hampton, Matthew Requintina, Richard S. Cowles, 

Frank J. Byrne and Steven R. Alm.  
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by 
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ABSTRACT 
 

 Bioassays were designed to evaluate Beauveria bassiana (Balsamo) Vuillemin 

strain GHA against Listronotus maculicollis (Kirby) adults.  B. bassiana and its “inert” 

carrier oil in the product BotaniGard and the “inert” carrier oil alone provided 99 and 

96% mortality respectively in Petri dish assays 1 d after treatment when applied in 1 ml 

water.  When the same treatments were applied in 0.5 ml of carrier water mortality was 

only 1.4 and 0.7% respectively 1 d after treatment.  After 10 d in Petri dishes, B. 

bassiana and its “inert” carrier oil and the “inert” carrier oil alone applied in 0.5 ml 

water showed 77 and 9% mortality respectively.  When one-tenth the label dosage of B. 

bassiana and “inert” carrier oil was combined with neonicotinoids clothianidin, 

imidacloprid, and dinotefuran applied in 1 ml water, there were significant increases 

(34, 30, and 68% respectively) in weevil mortality over the neonicotinoids alone 1 d 

after treatment.  When one-tenth the label dosage of “inert” carrier oil alone was 

combined with neonicotinoids clothianidin, imidacloprid, and dinotefuran applied in 1 

ml water, there were also significant increases with clothianidin and dinotefuran (38 and 

24% respectively) in weevil mortality over the neonicotinoids alone 1 d after treatment.  

B. bassiana and its “inert” carrier oil provided 28, 50, and 78% mortality at the highest 

label dosage and 47, 76, and 89% mortality at 4× the highest label dosage in turf plug 

assays at 7, 10, and 14 d after treatment. Addition of 5 or 20% MycoMax (a nutrient 

source for B. bassiana) did not significantly increase mortality in turfgrass plug assays. 
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INTRODUCTION 
 

 Larvae of Listronotus maculicollis (Kirby) (Coleoptera: Curculionidae) are the 

most destructive insect pests of Poa annua L. (Poales: Poaceae) on golf courses in the 

northeastern United States (Vittum et al. 1999).  This insect species was first seen 

damaging turfgrass in Connecticut in 1931 and by the late 1950s and early 1960s was 

responsible for severe damage on golf courses in the state (Britton 1932, Tashiro 1976).  

Adult L. maculicollis chew notches on grass blades at the juncture of leaves and stems.  

Adult damage is not as severe as larval feeding.  Larval feeding can result in extensive 

turf damage and death since they feed at the plant crown.  Where larval densities exceed 

450 per 929 cm2 (1 ft2), injury to golf course greens, collars, and fairways is common 

(Watschke et al. 1994).  Instars 1-3 feed inside plant stems while 4th and 5th instars feed 

on plant crowns.   There are normally two to three generations of L. maculicollis per 

year in the northeastern U. S.   

 Fourth generation pyrethroids provided excellent control of weevils in the 1990s 

and early 2000s.  These products were principally used to target adult weevils as they 

colonized turf after overwintering in areas surrounding tees, greens, and fairways.  In 

2005, the first indications of diminished pyrethroid effectiveness were reported (Vittum 

2005).  In 2009 the first study to confirm pyrethroid resistance was published 

(Ramoutar 2009a), and two subsequent studies (Ramoutar et al. 2009b; 2010) further 

confirmed pyrethroid resistance.    

 Alternative controls are needed to manage this serious pest.  Beauveria bassiana 

(Balsamo) Vuillemin is an important biological control agent for many insect pests 
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(Fargues and Luz 2000; Furlong and Groden 2001; Quintela and McCoy 1998).  In this 

study we evaluated a commercially available formulation of B. bassiana against L. 

maculicollis adults in Petri dish assays and simulated field studies with turfgrass plugs 

both with and without neonicotinoid insecticides and a nutrient source for B. bassiana 

called MycoMax.  We concentrated on adult control because instars 1-3 are protected 

inside plant stems and can only be controlled with systemic insecticides and by the time 

4th and 5th instars emerge, the majority of damage has occurred.  Furthermore, adult 

population densities are more readily monitored than larval stages.         

METHODS 
 

 Petri Dish Assays.  Adult weevils were collected from different golf courses 

and placed on 9 cm diameter filter paper discs in 100 × 15 mm Petri dishes treated with 

various dosages of Beauveria bassiana strain GHA and its “inert” carrier oil 

(BotaniGard, Laverlam International, Butte, MT), the “inert” carrier oil alone, and 

neonicotinoid insecticides and combinations with BotaniGard and its “inert” carrier oil 

applied in 0.5 or 1 ml water.  Controls consisted of treating filter paper discs with 1 ml 

of water and adding adult weevils. Petri dishes were wrapped in parafilm to maintain 

humidity and prevent weevils from escaping.  Assays were rated for adult mortality for 

up to 10 d.  In the first set of assays, we evaluated the highest label dosage of B. 

bassiana strain GHA  (25.46 liters/ha) and the “inert” carrier oil filtered 2× (Millex HV 

0.45 µm then MillexVV 0.1µm, EMD Millipore Corp., Billerica, MA) at 25.46 liters/ha 

1, 3, 5, 7, and 10 d after treatment.  Six separate experiments with weevils from three 
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locations (Westerly, RI; Baltic and Norwich, CT) were combined for analysis (10 

weevils per replicate, 14 replicates, 140 weevils for each treatment).   

 In a second assay, we evaluated three neonicotinoid insecticides: 

imidacloprid (Bayer Environmental Science, Research Triangle Park, NC), clothianidin 

(Valent U. S. A. Corp, Walnut Creek, CA) and dinotefuran (PBI – Gordon, Kansas 

City, MO) at label dosages with and without one-tenth the label dosage of B. bassiana 

strain GHA and its “inert” carrier oil and 88.7% of one-tenth the label dosage of the 

“inert” carrier oil alone for adult mortality 1, 3, 5, and 7 d after treatment.  One 

experiment was conducted with five replicates with weevils from Westerly, RI (10 

weevils per replicate, 5 replicates, 50 weevils per treatment). 

 Turf Plug Assays.  In another series of experiments, we evaluated the 

highest label dosage of BotaniGard (25.46 liters/ha); however, mortality was not high 

enough to be able to recommend it as a control option.  Therefore, we compared the 

highest label dosage and 4× the highest label dosage (101.84 liters/ha) to explore a 

dosage response, and to determine whether mortality would be comparable to standard 

synthetic insecticides.  Controls consisted of treating 5.72 cm diameter turfgrass plugs 

with water only and adding ten weevils.  Turfgrass plugs were treated using a CO2 

powered sprayer equipped with an 8002EVS TeeJet nozzle (Spraying Systems Co., 

Wheaton, IL).  After treatment, turfgrass plugs were placed in 147 ml plastic cups 

where the weevils were added and then contained with a 1 mm mesh screen.  Three 

assays using weevils from two locations (Westerly, RI and Norwich, CT) (10 weevils 

per plug, 4 replicates, 120 weevils per treatment) were rated for adult mortality 7, 10 

and 14 d after treatment and combined for analysis.  
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 In another set of turf plug assays, adult weevils (5 per plug, 4 replicates, 20 

weevils per treatment) were collected from Westerly and Pawtucket, RI and placed on 

turfgrass plugs treated with the highest label dosage (25.46 liters/ha) of B. bassiana 

strain GHA in its “inert” carrier oil both with and without 5 and 20% MycoMax  (a 

sweet whey designed to be a nutrient source for B. bassiana obtained from Dr. Scott 

Costa, Univ. of VT) in volumes of water equal to 815 liters/ha (2 gal/1,000 ft2).  

Controls consisted of treating turfgrass plugs with water only and adding five weevils. 

 Statistical Analysis.  Percent mortalities were transformed by taking the arcsine 

of the square root of the proportion before ANOVA and mean separation via Tukey’s 

HSD test (SAS version 9.2).  Untransformed means and errors are shown in figures.    

RESULTS 
 

Petri Dish Assays.  There was significant mortality of adults in Petri dish assays 

at the highest BotaniGard label dosage and the “inert” carrier oil filtered 2× at the same 

dosage at 1 d (F = 691.70; df = 4,52; P < 0.01), 3 d (F = 494.96; df = 4,52; P < 0.01), 5 

d (F =392.62; df = 4,52; P < 0.01), 7 d (F =395.79; df = 4,52; P < 0.01), and 10 d (F 

=252.61; df = 4,52; P < 0.01)  after treatment (Fig. 1).  We also demonstrated with Petri 

dishes assays that using 0.5 versus 1.0 ml of application water with 16.19 μl BotaniGard 

or 16.19 μl  “inert” carrier oil alone per 9 cm diameter filter paper disc (= 25.46 

liters/ha) was the difference between low and excellent control, respectively (Fig. 1).   

There was significant mortality of adults in Petri dish assays with BotaniGard at 

the label dosage (25.46 liters/ha) and label dosages of clothianidin and dinotefuran with 

one-tenth the label dosage of BotaniGard (2.54 liters/ha) and 88.7% of one-tenth the 
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label dosage of “inert” carrier oil alone in Petri dish assays (F = 30.34; df =6,24; P < 

0.01; and F = 86.80; df =6,24; P < 0.01 respectively) 1 d after treatment (Figs. 2, and 4).  

There was significant mortality of adults in Petri dish assays with label dosages of 

imidacloprid with one-tenth the label dosage of BotaniGard (2.54 liters/ha) 1 d after 

treatment in Petri dish assays (F = 40.18; df =6,24; P < 0.01) (Fig. 3).    Clothianidin, 

imidacloprid and dinotefuran alone at the label dosage also caused significant mortality 

of adults 3 d after treatment (Figs. 2, 3 and 4).      

Turf Plug Assays.  When adults were placed on treated turfgrass plugs there 

was significant mortality at the highest and 4× the highest label dosage 7 (F = 23.14; df 

= 2,22; P < 0.01), 10 (F = 40.77; df = 2,22; P < 0.01) and 14 (F = 17.44; df = 2,22; P < 

0.01)  d after treatment (Fig. 5).  Four times the highest label dosage caused faster and 

greater mortality (Fig. 5).   

 Addition of 5 or 20% MycoMax (an adjuvant providing sweet whey as a 

nutrient source for B. bassiana) did not significantly increase mortality 7 d (F = 0.76; df 

= 2,14; P = 0.48), 10 d (F = 3.07; df = 2,14; P = 0.08) or  14 d (F = 2.29; df = 2,14; P = 

0.14) after treatment. 

DISCUSSION 
 

Petri dish assays at the highest label dosage (25.46 liters/ha) and the “inert” 

carrier oil filtered 2× at that dosage were very effective in causing mortality of adult 

weevils at 24 h.  This indicates that mortality within 24 h was the result of the oil and 

not infection from B. bassiana strain GHA.  When using oil formulations of 

entomopathogenic fungi there needs to be assurance that insecticidal activity is not the 
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result of the oil carrier (Goettel and Inglis 1997).  Typical infection with  

entomopathogenic fungi such as B. bassiana will normally take several days to exert 

lethal effects which we did notice beginning on day five.   

Cowles et al. (2000) used leaf dip bioassays with twospotted spider mites, 

Tetranychus urticae Koch and demonstrated the toxicity of trisiloxane surfactants, also 

considered inert ingredients.  Toxicity was influenced by the leaf dip method which 

exaggerated the degree of wetting and indicated that high toxicity from surfactants was 

likely only in extremely wetted applications with high humidity.  Although we were 

using “inert” carrier oil as a treatment and not a surfactant there was high mortality 

associated with a higher degree of wetness.  This suggests that the Petri dish assay 

treatments of BotaniGard and its carrier oil using 1 ml of water may be effectively 

drowning the weevils similar to the activity of surfactants against T. urticae reported by 

Cowles et al. (2000). 

The influence of moisture and humidity was also evident in the difference 

between treatments applied in volumes of 0.5 versus 1.0 ml of water.  The “inert” 

carrier oil was ineffective when applied with 0.5 ml of water where the Petri dish was 

not as wet.  However, when BotaniGard was applied in Petri dishes in 0.5 ml of water, 

significant mortality was evident starting at 5 d and increased at 7 and 10 d after 

treatment.  This suggests that B. bassiana did begin to infect and kill adult L. 

maculicollis and that humidity and moisture were still high enough for infection even 

with 0.5 ml of water.  This is supported by other experimental work that showed 

moisture was critical in effectiveness of B. bassiana strain GHA.   Fargues and Luz 

(2000) found that the pathogenic activity of B. bassiana to Rhodnius prolixus Ståhl was 
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highly dependent on the moisture conditions and to a lesser extent on the temperature 

conditions.  Their results showed a critical threshold of relative humidity between 95.5 

and 97%.   

One of the most encouraging results was the effect of one-tenth the label dosage 

of BotaniGard or the “inert” carrier oil with neonicotinoids (imidacloprid, clothianidin 

and dinotefuran).  We noticed in other assays that neonicotinoids have a quick 

knockdown effect on adults; however, adults normally recover within 24 hours.  

Immobilizing adults for 24 hours may allow B. bassiana to overcome the insects’ 

defense mechanisms or the “inert” carrier oil is drowning adults.  There was a 

significant difference in mortality between one-tenth the label dosage of BotaniGard 

and its “inert” carrier oil beginning on day five after treatment.  Furlong and Groden 

(2001) found that significant synergism occurred in all instances where Colorado potato 

beetle, Leptinotarsa decemlineata (Say), larvae were exposed to imidacloprid before or 

simultaneously with B. bassiana treatment.  They suggested that the synergism 

probably involves changes in the insect’s physiology that affects successful cuticular 

penetration or the initial proliferation of B. bassiana hyphal bodies within the host 

hemocoel.  Quintela and McCoy (1998) found that the addition of imidacloprid to soil 

significantly impaired movement of larval Diaprepes abbreviates (L.).  When either B. 

bassiana or Metarhizium anisopliae (Metschnikoff) Sorokin were applied with 

imidacloprid, mortality and mycosis increased significantly.  Surfactants in 

formulations of synthetic insecticides may also increase infection by B. bassiana.   

 Data on how quickly mortality of adults is achieved is important in management 

decisions since, if immediate control is needed to prevent damage, the highest label 
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dosage of BotaniGard may not act quickly enough to prevent damage.  When adults 

were placed on treated turfgrass plugs, there was significant mortality at the highest and 

4× the highest label dosage of BotaniGard 7, 10 and 14 d after treatment.  Four times 

the highest label dosage did cause significantly faster and greater mortality at 7 and 10 d 

after treatment.   Eventually at 14 d after treatment, the highest label dosage did cause 

significant mortality that was not significantly different from the 4× label dosage.  The 

addition of MycoMax, a sweet whey adjuvant designed as a nutrient source for insect 

pathogenic fungi, did not significantly increase adult mortality.        
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Figure 1: Percent mortality (mean + SE) of adults at the highest BotaniGard label 

dosage (25.46 liters/ha) and its carrier oil applied in 0.5 and 1.0 ml H2O versus a water 

control in Petri dish assays, 1, 3, 5, 7 and 10 d after treatment.  Means followed by the 

same letter are not significantly different (P = 0.05, Tukey’s HSD test on arcsine 

transformed data). 
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Figure 2: Percent mortality (mean + SE) of adult weevils to BotaniGard at one-tenth 

and the highest label dosage (2.54 and 25.4 liters/ha respectively), and label dosage of 

Arena (clothianidin) with and without one-tenth the label dosage of BotaniGard and its 

carrier oil in Petri dish assays 1,3, 5 and 7 d after treatment.  Means followed by the 

same letter are not significantly different (P = 0.05, Tukey’s HSD test on arcsine 

transformed data).  
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Figure 3: Percent mortality (mean + SE) of adult weevils to BotaniGard at one-tenth 

and the highest label dosage (2.54 and 25.4 liters/ha respectively), and label dosage of 

Merit (imidacloprid) with and without one-tenth the label dosage of BotaniGard and its 

carrier oil in Petri dish assays 1,3,5,and 7 d after treatment.  Means followed by the 

same letter are not significantly different (P = 0.05, Tukey’s HSD test on arcsine 

transformed data). 
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Figure 4: Percent mortality (mean + SE) of adult weevils to BotaniGard at one-tenth 

and the highest label dosage (2.54 and 25.4 liters/ha respectively), and label dosage of 

Zylam (dinotefuran) with and without one-tenth the label dosage of BotaniGard and its 

carrier oil in Petri dish assays 1,3, 5 and 7 d after treatment.  Means followed by the 

same letter are not significantly different (P = 0.05, Tukey’s HSD test on arcsine 

transformed data). 
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Figure 5: Percent mortality (mean + SE) of adults at the highest BotaniGard label 

dosage (25.46 liters/ha), 4× the highest label dosage (101.84 liters/ha) versus a water 

control in turfgrass plug assays 7, 10 and 14 d after treatment.  Means followed by the 

same letter are not significantly different (P = 0.05, Tukey’s HSD test on arcsine 

transformed data).    
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ABSTRACT 

   ELISA plates were used to determine the amounts of clothianidin and 

imidacloprid in Poa annua clippings from treated golf course fairways.  Amounts of 

clothianidin ranged from 71.8 to 1238.1 ng/g tissue in 2011 and 68.8 to 2045.0 ng/g 

tissue in 2012.  Amounts of imidacloprid ranged from 40.8 to 1679.2 ng/g tissue in 

2011 and 116.8 to 3722.0 ng/g tissue in 2012.   Listronotus maculicollis adults were 

caged on neonicotinoid and neonicotinoid/pyrethroid treated P. annua plugs.  

Substantial feeding on P. annua was observed; however, mortality of L. maculicollis 

adults was not significantly different from control plugs.  We were not able to 

determine concentrations of either clothianidin or imidacloprid that were effective in 

controlling larvae.  Our data help to explain the lack of control of this insecticide 

resistant pest.       

    

     

Key Words: ELISA, clothianidin, imidacloprid, bifenthrin, Listronotus maculicollis, 

Curculionidae 
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INTRODUCTION 
 

 Larvae of Listronotus maculicollis (Kirby) (Coleoptera: Curculionidae) are the 

most destructive insect pests of Poa annua L. (Poales: Poaceae) on golf courses in the 

northeastern United States (Vittum et al. 1999).  This insect species was first seen 

damaging turfgrass in Connecticut in 1931 and by the late 1950s and early 1960s it was 

responsible for severe damage on golf courses in the state (Britton 1932, Tashiro 1976).  

Adult L. maculicollis chew notches on grass blades at the juncture of leaves and stems.  

Adult damage is not as severe as larval feeding, which can result in extensive turf 

damage and death since they feed at the plant crown.  Where larval densities exceed 450 

per 929 cm2 (1 foot2), injury to golf course greens, collars, and fairways is common 

(Watschke et al. 1994).  Instars 1-3 feed inside plant stems while 4th and 5th instars feed 

on plant crowns.   There are normally two to three generations of L. maculicollis per 

year in the northeastern U. S.   

 Fourth generation pyrethroids provided excellent control of weevils in the 1990s 

and early 2000s.  In 2005, the first indications of diminished pyrethroid effectiveness 

were reported (Vittum  2005).  In 2009 the first study to confirm pyrethroid resistance 

was published (Ramoutar et al. 2009a).  Two subsequent studies (Ramoutar et al. 

2009b; 2010) further confirmed pyrethroid resistance.    

 We tested the hypothesis that treating P. annua plants early in the season would 

have enough neonicotinoid insecticide (either clothianidin or imidacloprid) in their 

tissue to control overwintering adult L. maculicollis as they feed.  A second goal was to 
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determine the concentrations of clothianidin and imidacloprid in P. annua tissue 

necessary to kill larvae and how long these toxic levels remained in plant tissue.       

METHODS 

Fairway and tee treatments, P. annua tissue sampling, and turf plug assays 

with adults 2011.  Two golf course tees and one fairway in Narragansett, RI were 

treated on 13 May 2011 with one of the following: 1.4 liters/ha Merit 2F (336 g 

imidacloprid) (Bayer Environmental Science, Research Triangle Park, NC), 4.44 

liters/ha of Allectus SC (96 g bifenthrin, 239 g imidacloprid) (Bayer Environmental 

Science) or 0.85 liters/ha Aloft SC (112 g bifenthrin, 226 g clothianidin) (Arysta 

LifeScience, Cary, NC).  P. annua clippings from treated tee and fairways were 

collected 7 d after initial treatment and periodically (normally weekly) up to 77 d and 

kept at -20oC.  Twelve turf plugs were taken 4, 7, 11, and 14 d after treatment and 

brought back to the laboratory and placed in 148  ml plastic cups.  Five to ten adult 

weevils were placed on plugs and the cups were covered with screening held in place by 

a rubber band.  Control plugs were taken from an untreated P. annua plot established on 

the University of Rhode Island turfgrass research farm.  Plugs were watered as needed 

and checked for adult mortality 7, 10, 14, 21 and 27 d after being placed on plugs.     

Four golf course fairways in Westerly, RI were treated on 3 May 2011 with one 

of the following: 0.44 or 0.89 kg/ha of Arena 50WDG (224 g or 448 g clothianidin) 

(Valent USA Corp, Walnut Creek, CA) or with 0.85 or 1.05 liters/ha of Aloft SC (112 g 

bifenthrin, 226 g clothianidin or 138 g bifenthrin, 280 g clothianidin) (Arysta 

LifeScience Cary, NC).  Two fairways which received the 0.44 kg/ha treatment of 

Arena and the 0.85 liters/ha of Aloft were treated a second time with the same rates as 
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the first applications on 20 June 2011.  P. annua clippings from treated fairways were 

collected 7-8 d after initial treatment and periodically (normally weekly) up to 77 d and 

kept at -20oC.  Sixteen turf plugs (5.72 cm diam.) were collected from treated fairways 

8 and 15 d after the initial treatments and 8 d after the second treatments and treated as 

per above.   

 Fairway treatments, tissue and larval sampling 2012.  Four replicates (37.16 

sq. m) of the following treatments: 1.05 liters/ha Aloft SC (138 g bifenthrin, 280 g 

clothianidin), 0.89 kg/ha Arena 50WDG (448 g clothianidin), 5.26 liters/ha of Allectus 

SC , and 1.87 liters/ha Merit 2F were applied on April 17, 2012 to a golf course fairway 

in Baltic, CT using CO2 sprayers and four nozzle wands equipped with 8003VS TeeJet 

nozzles (Spraying Systems Co., Wheaton, IL).  Four replicates of the same treatments 

were applied to a golf course fairway in Westerly, RI on April 19, 2012. 

Larval and P. annua tissue sampling began one week after application of 

insecticide treatments and continued weekly for 25 weeks.  A 0.94 m × 1.52 m wood 

frame was placed within each plot leaving at least 1.5 m border to the perimeter of each 

plot.  A grid pattern of strings were attached to the frame to make 230 (5.72 cm × 5.72 

cm) squares equal to the diameter (5.72 cm) of the turf plug extractor.  Flags were 

placed in squares to mark where turf plug samples would be taken and prevent 

resampling from the same location for the remainder of the season.  At both sites 

(Westerly, RI; Baltic, CT), three turf plug samples were taken from each plot weekly.  

Two turf plugs from each plot were placed in modified Berlese funnels similar to the 

method used by Diaz (2008) (Fig. 1).  Five milliliters of glycerin was used in the bottom 

collection containers to hold larvae.  Funnel containers were checked up to 14 d after 
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collection and larvae were removed and placed in vials of 70% ethyl alcohol until head 

capsule width could be measured.  Head capsule width was measured using a binocular 

microscope fitted with an eyepiece reticle at 63× magnification to determine larval 

instars.  The third plug from each plot was used for collection of grass clippings used 

for ELISA determination of neonicotinoid concentration.  At least 0.5 g (fresh weight) 

of grass clippings was cut from the turf plug then placed in a labeled plastic bag and 

stored at -20˚C until analysis. 

ELISA methods:  Individual grass clippings were weighed (0.5 g per sample) 

and added to a 15-ml centrifuge tube containing 5 ml of methanol.  The samples were 

gently shaken overnight at room temperature.  Insecticide concentrations were 

quantified using commercially available ELISA kits (QuantiPlate® kit for imidacloprid 

available from EnviroLogix, 500 Riverside Industrial Parkway, Portland, ME; Smart 

Assay ELISA for clothianidin available from Horiba, 1761 Armstrong Ave, Irvine, 

CA).  An aliquot (10 µl) of each extract was dried completely in a TurboVap® LV 

evaporator (Caliper Life Sciences, Hopkinton, MA, USA) and then reconstituted in a 

0.05% aqueous solution of Triton X-100 prior to analysis by ELISA.  The reconstituted 

samples were used directly for ELISA and were further diluted with 0.05% Triton X-

100 to bring the concentrations of insecticide within the appropriate range of the 

standard curve for each ELISA test (0.2 – 6 ng ml-1 imidacloprid and 1.5 – 15 ng ml-1 

clothianidin).  The final concentrations of insecticide were converted to ng of 

insecticide per gram of plant tissue.  A Molecular Devices SpectraMAX 250 microplate 

reader (Sunnyvale, CA) was used to read plates.    



25 
 

 Statistical Analysis. Data were analyzed by analysis of variance (ANOVA) 

followed by mean separation by Tukey’s HSD test (SAS version 9.2).   

RESULTS 

 Adult control.  L. maculicollis adults from Norwich, CT were not controlled by 

feeding on P. annua tissue for 7 or 14 d (F = 4.23; df = 3,9; P = 0.04; F = 8.00; df = 

3,9; P = 0.01, respectively) with a concentration of clothianidin of 221 ng/g or 

concentrations of imidacloprid of 1,011 or 1,910 ng/g (Fig. 2).  The lack of 

effectiveness of either clothianidin or imidacloprid for controlling adults was consistent 

over seven different trials.  Adults from Pawtucket, RI were not controlled by feeding 

on P. annua tissue for 7 or 19 d (F = 0.87; df = 3,9; P = 0.48; F = 4.68; df = 3,9; P = 

0.03, respectively) with a concentration of clothianidin of 533 ng/g or concentrations of 

imidacloprid of 593 or 854 ng/g (Fig. 3).  Adults from Pawtucket, RI were not 

controlled by feeding on P. annua tissue for 16 or 27 d (F = 1.00; df = 4,12; P = 0.44; F 

= 0.73; df = 4,12; P = 0.59, respectively) with concentrations of clothianidin of 550, 

780, 1,207 or 1,238 ng/g (Fig. 4).  Adults from Westerly, RI  were not controlled by 

feeding on P. annua tissue for 7 or 14 d (F = 0.60; df = 4,12; P = 0.67; F = 2.73; df = 

4,12; P = 0.07, respectively) with concentrations of clothianidin of 94, 100, 783, or 

1,136 ng/g (Fig. 5).  Adults from Norwich, CT were not controlled by feeding on P. 

annua tissue for 7 or 14 d (F = 1.60; df = 3,9; P = 0.25; F = 0.10; df = 3,9; P = 0.95, 

respectively) with a concentration of clothianidin of 72 ng/g or concentrations of 

imidacloprid of 1,144 or 1,524 ng/g (Fig. 6).  Adults from Narragansett, RI were not 

controlled by feeding on P. annua tissue for 7 or 12 d (F = 0.60; df = 3,9; P = 0.63; F = 

0.58; df = 3,9; P = 0.64, respectively) with a concentration of clothianidin of 403 ng/g 
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or concentrations of imidacloprid of 1,073 or 1,288 ng/g (Fig. 7).  Adults from 

Pawtucket, RI were not controlled by feeding on P. annua tissue for 10 or 21 d (F = 

0.88; df = 4,12; P = 0.50; F = 0.94; df = 4,12; P = 0.47, respectively) with 

concentrations of clothianidin of 423, 430, 739 or 814 ng/g (Fig. 8).      

 Larval control.  Clothianidin did not last long enough in plots at Baltic, CT to 

show any significant control of either 1-3, 4-5 or 1-5 instar larvae (Figs. 9, 10, 11).  

Imidacloprid lasted longer at higher levels in plant tissue at Baltic, CT, however, there 

were no significant differences in treated versus control plots of 1-3, 4-5, or 1-5 instar 

larvae (Figs. 12, 13, 14).  The same patterns were seen in plots treated in Westerly, RI 

(Figs. 15-20).        

DISCUSSION 

  Adults are not killed by the concentrations of neonicotinoids we found in P. 

annua tissue.  This does not support the hypothesis that superintendents should “arm” 

P. annua plants very early in the season with neonicotinoid insecticides to control adult 

weevils which are emerging from overwintering sites as they begin to feed.  We 

expected to see more adult mortality from the combination products that contained 

bifenthrin.  However, bifenthrin has a Koc value of 236,610 ml/g (Pesticide Properties 

Database, 2013), which means that bifenthrin is tightly adsorbed to organic matter and, 

once dried on P. annua tissue, it may not be available for control unless it is rewetted 

via irrigation and/or dew.  Bifenthrin’s estimated Henry’s constant of 7.2 X 10-3 atm-

m3/mole indicates that volatilization from moist soil surfaces may occur (Bifenthrin 

Technical Fact Sheet).  Rewetting of P. annua tissue did not occur in our turf plug 

assay.      
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 The long soil half-lives of clothianidin and imidacloprid, 545 and 191 d 

respectively (Pesticide Properties Database, 2013), also led to the hypothesis that if 

these materials were applied early in the season to control overwintering adults, the 

concentrations inside P. annua tissue would still be high enough later in the season to 

control first generation larvae.  This does not appear to be the case.  First through third 

instars feed inside P. annua stems while 4th and 5th instars feed on plant crowns.  

Koppenhofer et al. (2012) found that applications of clothianidin or imidacloprid 

between April 15 and May 3rd provided an average of 54 and 48% control respectively, 

whereas applications between May 18th and June 10 provided averages of 64 and 78% 

control respectively.  It appears that we applied these products earlier than optimal 

timing to demonstrate any significant control.  This information is important for 

managing this pest.   

 There were 4th and 5th instars present as early as 24 and 26 April (Figs. 10, 13, 

16, 19) which may have been controlled by the bifenthrin in the Aloft and Allectus 

treatments.  This is supported by the fact that larval densities were higher in the Arena 

treated plots despite the fact that the clothianidin levels were higher to begin with 

(treated with 448 g ai/hectare) versus larval densities in Aloft treated plots, which was 

treated with 280 g ai/hectare.  The levels of clothianidin were also consistently higher in 

P. annua tissue in Arena versus Aloft treated plots.  The same goes for the Merit and 

Allectus treated plots which were treated with (448 and 280 g ai/hectare respectively).  

The levels of imidacloprid were also consistently higher in P. annua tissue in Merit 

versus Allectus treated plots.      
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 In 10 of 12 analyses larval counts were lower where bifenthrin was one of the 

treatment components (Figs. 9 – 20).  Although some companies are guaranteeing 

season-long control, our data did not show any season-long control at either Baltic, CT 

(Fig. 21) or Westerly, RI (Fig. 22).  Koppenhofer et al. (2012) analyzed data from 1,064 

field experiments with various insecticides for annual bluegrass weevil control.  Of 

these, 57 were Merit applications (various formulations) with imidacloprid rates 

between 140 and 560 g ai/ha.  The majority of applications were with either 337 g ai/ha 

(32 applications) or 448 g ai/ha (14 applications).  Four of the 337 g ai/ha applications 

showed zero percent control, even though they were applied when I would expect some 

level of control of larvae.  Similarly, at total of 49 Arena applications (46 were 50 WDG 

and 3 were 0.5G formulations) with clothianidin rates between 168 and 449 g ai/ha 

were analyzed.  The majority of these applications were either 224 g ai/ha (13 

applications) or 449 g ai/ha (15 applications).  Two of the 280 g ai/ha, one 337 g ai/ha, 

and one 449 g ai/ha applications showed zero percent control, again, when we would 

expect some level of control.  Koppenhofer et al. (2012) found that several populations 

of L. maculicollis could be labeled as resistant to pyrethroids, organophosphates, 

neonicotinoids, indoxacarb, and bifenthrin / neonicotinoid combination products.  If the 

populations of L. maculicollis at Baltic, CT and Westerly, RI were among those that 

demonstrated multiple resistance, this could explain the lack of control in our 

experiments.                  
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Fig. 1.  Modified “Berlese funnel” system to collect larvae from P. annua turfgrass 

plugs. 
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Fig. 2.  Percent mortality (mean + SE) of adult weevils from Norwich, CT after feeding 

for 7 or  14 days on plugs of P. annua containing 1,011 or 1,910 ng imidacloprid or 221 

ng clothianidin / g tissue.  Means followed by the same letter are not significantly 

different (P = 0.05, Tukey’s HSD test).  DAT = days after treatment.  DOF = days of 

feeding.   
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Fig. 3.  Percent mortality (mean + SE) of adult weevils from Pawtucket, RI after feeding 

for 7 or  19 days on plugs of P. annua containing 593 or 854 ng imidacloprid or 533 ng 

clothianidin / g tissue.  Means followed by the same letter are not significantly different 

(P = 0.05, Tukey’s HSD test).  DAT = days after treatment.  DOF = days of feeding.    
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Fig. 4.  Percent mortality (mean + SE) of adult weevils from Pawtucket, RI after feeding 

for 16 or 27 days on plugs of P. annua containing 550, 780, 1,207 or 1,238 ng 

clothianidin / g tissue.  Means followed by the same letter are not significantly different 

(P = 0.05, Tukey’s HSD test).  DAT = days after treatment.  DOF = days of feeding.      
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Fig. 5.  Percent mortality (mean + SE) of adult weevils from Westerly, RI after feeding 

for 7 or  14 days on plugs of P. annua containing 94, 100, 783, or 1,136 ng clothianidin 

/ g tissue.  Means followed by the same letter are not significantly different (P = 0.05, 

Tukey’s HSD test).  DAT = days after treatment.  DOF = days of feeding.     
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Fig. 6.  Percent mortality (mean + SE) of adult weevils from Norwich, CT after feeding 

for 7 or  14 days on plugs of P. annua containing 1,144 or 1,524 ng imidacloprid or 72 

ng clothianidin / g tissue.  Means followed by the same letter are not significantly 

different (P = 0.05, Tukey’s HSD test).  DAT = days after treatment.  DOF = days of 

feeding.   
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Fig. 7.  Percent mortality (mean + SE) of adult weevils from Narragansett, RI after 

feeding for 7 or 12 days on plugs of P. annua containing 1,073 or 1,288 ng imidacloprid 

or 403 ng clothianidin / g tissue.  Means followed by the same letter are not 

significantly different (P = 0.05, Tukey’s HSD test).  DAT = days after treatment.  DOF 

= days of feeding.     
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Fig. 8.  Percent mortality (mean + SE) of adult weevils from Pawtucket, RI after feeding 

for 10 or 21 days on plugs of P. annua containing 423, 430, 739 or 814 ng clothianidin / 

g tissue.  Means followed by the same letter are not significantly different (P = 0.05, 

Tukey’s HSD test).  DAT = days after treatment.  DOF = days of feeding.     
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Fig. 9.  Mean number of 1st-3rd instar larvae per 51 cm2 of turfgrass and amounts of 

clothianidin in treatments where 0.89 kg/ha Arena 50WDG (448 g clothianidin) and 

1.05 liters/ha Aloft SC (138 g bifenthrin / 280 g clothianidin) were applied on 17 April 

2012 in Baltic, CT.  
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Fig. 10.  Mean number of 4th-5th instar larvae per 51 cm2 of turfgrass and amounts of 

clothianidin in treatments where 0.89 kg/ha Arena 50WDG (448 g clothianidin) and 

1.05 liters/ha Aloft SC (138 g bifenthrin / 280 g clothianidin) were applied on 17 April 

2012 in Baltic, CT.  
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Fig. 11.  Mean number of 1st-5th instar larvae per 51 cm2 of turfgrass and amounts of 

clothianidin in treatments where 0.89 kg/ha Arena 50WDG (448 g clothianidin) and 

1.05 liters/ha Aloft SC (138 g bifenthrin / 280 g clothianidin) were applied on 17 April 

2012 in Baltic, CT.  
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Fig. 12.  Mean number of 1st-3rd instar larvae per 51 cm2 of turfgrass and amounts of 

imidacloprid in treatments where 1.87 liters/ha Merit 2F (448 g imidacloprid) and 5.26 

liters/ha Allectus SC (112 g bifenthrin / 280 g imidacloprid) were applied on 17 April 

2012 in Baltic, CT.  
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Fig. 13.  Mean number of 4th-5th instar larvae per 51 cm2 of turfgrass and amounts of 

imidacloprid in treatments where 1.87 liters/ha Merit 2F (448 g imidacloprid) and 5.26 

liters/ha Allectus SC (112 g bifenthrin / 280 g imidacloprid) were applied on 17 April 

2012 in Baltic, CT.  
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Fig. 14.  Mean number of 1st-5th instar larvae per 51 cm2 of turfgrass and amounts of 

imidacloprid in treatments where 1.87 liters/ha Merit 2F (448 g imidacloprid) and 5.26 

liters/ha Allectus SC (112 g bifenthrin / 280 g imidacloprid) were applied on 17 April 

2012 in Baltic, CT.  
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Fig. 15.  Mean number of 1st-3rd instar larvae per 51 cm2 of turfgrass and amounts of 

clothianidin in treatments where 0.89 kg/ha Arena 50WDG (448 g clothianidin) and 

1.05 liters/ha Aloft SC (138 g bifenthrin / 280 g clothianidin) were applied on 19 April 

2012 in Westerly, RI.  
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Fig. 16.  Mean number of 4th-5th instar larvae per 51 cm2 of turfgrass and amounts of 

clothianidin in treatments where 0.89 kg/ha Arena 50WDG (448 g clothianidin) and 

1.05 liters/ha Aloft SC (138 g bifenthrin / 280 g clothianidin) were applied on 19 April 

2012 in Westerly, RI.  
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Fig. 17.  Mean number of 1st-5th instar larvae per 51 cm2 of turfgrass and amounts of 

clothianidin in treatments where 0.89 kg/ha Arena 50WDG (448 g clothianidin) and 

1.05 liters/ha Aloft SC (138 g bifenthrin / 280 g clothianidin) were applied on 19 April 

2012 in Westerly, RI.  
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Fig. 18.  Mean number of 1st-3rd instar larvae per 51 cm2 of turfgrass and amounts of 

imidacloprid in treatments where 1.87 liters/ha Merit 2F (448 g imidacloprid) and 5.26 

liters/ha Allectus SC (112 g bifenthrin / 280 g imidacloprid) were applied on 19 April 

2012 in Westerly, RI.  
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Fig. 19.  Mean number of 4th-5th instar larvae per 51 cm2 of turfgrass and amounts of 

imidacloprid in treatments where 1.87 liters/ha Merit 2F (448 g imidacloprid) and 5.26 

liters/ha Allectus SC (112 g bifenthrin / 280 g imidacloprid) were applied on 19 April 

2012 in Westerly, RI.  
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Fig. 20.  Mean number of 1st-5th instar larvae per 51 cm2 of turfgrass and amounts of 

imidacloprid in treatments where 1.87 liters/ha Merit 2F (448 g imidacloprid) and 5.26 

liters/ha Allectus SC (112 g bifenthrin / 280 g imidacloprid) were applied on 19 April 

2012 in Westerly, RI.  
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Fig. 21.  Season-long number of 1st-3rd (A), 4th-5th (B), and 1-5th (C) instar larvae per 

205 cm2 of turfgrass in Arena (448 g clothianidin / ha), Aloft (139 g bifenthrin / 280 g 

clothianidin / ha), Merit (448 g imidacloprid / ha), Allectus (112 g bifenthrin / 280 g 

imidacloprid / ha) and control treatments from Baltic, CT, 2012.   
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Fig. 22.  Season-long number of 1st-3rd (A), 4th-5th (B) and 1-5th (C) instar larvae per 

205 cm2 of turfgrass in Arena (448 g clothianidin / ha), Aloft (139 g bifenthrin / 280 g 

clothianidin / ha), Merit (448 g imidacloprid / ha), Allectus (112 g bifenthrin / 280 g 

imidacloprid / ha) and control treatments from Westerly, RI, 2012.   
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