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Linear Magnetic Chains with Anisotroyic Coupling

JO.I. C. BONNER

Department of Physics, Roya/ Holloroay College, Euglefield Green, Surrey, England

AND

MIcHAEL E. FIsHER

lVheatstone Physics Laboratory, Eing's College, London W. C. Z, England

(Received 11 February 1964; revised manuscript received 8 April 1964)

Linear chains (and rings) of S= s spins with the anisotropic (Ising-Heisenberg) Hamiltonian

N

R= —2J Z (SpSg~p+y(SpSr+p+SpS;+re)) —gp Z H Sr

have been studied by exact machine calculations for 31=2 to 11, y=0 to 1 and for ferro- and antiferro-
magnetic coupling. The results reveal the dependence on finite size and anisotropy of the spectrum and dis-
persion laws, of the energy, entropy, and specific heat, of the magnetization and susceptibilities, and of the
pair correlations. The limiting A'~~ behavior is accurately indicated, for all y, in the region h7'/~ J( &~0.5
which includes the maxima in the specific heat and susceptibility. The behavior of thermal and magnetic
properties of infinite chains at lower temperatures is estimated by extrapolation. For infinite antiferromag-
netic chains the ground-state degeneracy, the anisotropy gap, and the magnetization, perpendicular suscepti-
bility, and pair correlations at T=0 are similarly studied. Estimates of the long-range order suggest that it
vanishes only at the Heisenberg limit y = 1 and confirm the accuracy of Walker's perturbation series in y.

1. INTRODUCTION

~ XPERJMENTAL and theoretical studies have
~ shown that in many magnetic materials, the

magnetic part of the Hamiltonian may be quite
accurately represented as a set of localized spins S, with
bilinear interactions. For certain highly anisotropic
systems, ' the coupling energy can be approximated by
the pure Ising form —2JS S,but for most systems the
anisotropy, although important, is not very large and
the pure Heisenberg coupling —2JS,' S, is more realistic,
Between these extremes is the anisotropic "inter-
mediate" coupling —2JfyS,'S,+(1—y)S;*5;*i which
reduces to the Ising case when y =0 and the Heisenberg
case when y=1.

With pure Ising interaction the partition function of
a finite or infinite chain of spins in a parallel magnetic
field, and thence the thermal and magnetic properties,
may be calculated exactly. ' For simple two-dimensional
Ising lattices exact solutions may be obtained in zero
field. ' For the Heisenberg, or intermediate y spin
Hamiltonians, however, exact closed formulas for the
6nite-temperature behavior have not been found even
for the linear chain despite much theoretical effort
(see below). Although, naturally, greatest interest
attaches to three-dimensional lattices, the properties of
linear chains with non-Ising spin coupling are of both
experimental and theoretical significance.

A. H. Cooke, D. T. Edmonds, C. B.P. Flinn, and W. P. Wolf,
Proc. Phys. Soc. (London) 74, 791 (1959);M. Ball, M. T. Hutch-
ings, M. J. M. Leask, and W. P. Wolf, Proceedings of the Eighth
International Congress on Low-Temperature Physics (to be
published); M. Ball, M. J. M. Leask, W. P. Wolf, and A. F. G.
Wyatt, J. Appl. Phys. 34, 1104 (1963).

'C. Domb, Advan. Phys. 9, 149 (1960). The perpendicular
susceptibility (in zero field) may also be calculated exactly with
Ising coupling in one and two dimensions. See Refs. 43 and 44.

A

Experimentally a number of crystals are known, ' for
example copper tetramine sulfate monohydrate, "" ' in
which the magnetic ions are arranged in chains with
strong interactions within each chain but rather weak
interactions between chains. Except at the lowest
temperatures, the chains should be almost independent
and theoretical values based on a one-dimensional
model may be confronted directly with experimental
measurements. Furthermore, the experimental evidence
on various cupric quinone complex salts" ~ indicates
the existence of independent finite chains of 10 to 20
magnetic ions. A one-dimensional model is similarly
valid for magnetically active polymeric molecular
chains of finite or indefinitely great length. '

Theoretically the linear chain Heisenberg-Ising
model is interesting as one of the simplest many-body
systems in which quantum effects play a vital part. This
is especially so for the antiferromagnetic chain where the
calculation of even the ground-state energy is not easy,
although it has been performed exactly. ' ' Accurate

e (a) T. Haseda and A. R. Miedema, Physica 27, 1102 (1961);
(b) T. Watanabe and T. Haseda, J. Chem. Phys. 28, 323 (1958);
(c) T. Haseda, A. R. Miedema, H. Kobayashi, and E. Kanda,
J.Phys. Soc. Japan 1?, Suppl. B-I, 518 (1962); (d) H. Kobayashi,
T. Haseda, E. Kanda, and S. Kanda, J. Phys. Soc. Japan 18, 349
(1963); (e) L. Berger, S. A. Friedberg, and J. T. Schriempf,
Phys. Rev. 132, 1057 (1963).

4 R. B.GrifBths, Phys. Rev. following paper 135, A659 (1964).
5 V. L. Ginsburg and V. M. Fain, Dokl. Acad. Nauk SSSR

131, 785 (1960); L. A. Blyumenfel'd, A. E. Kalmanson, and
S. P'ei-Ken, ibid. 124, 1144 (1959); L. A. Blyumenfel'd and
V. A. Benderskii, ibid 133, 1451 (19. 60) /English transls. : Soviet
Phys. —Doklady 5, 328 (1960); 4, 260 (1959); 5, 919 (1961)];
L. A. Blyumenfel'd, Biofizika 4, 515 (1959) LEnglish transl. :
Biophysics USSR 4, 3 (1959)g.' H. A, Bethe, Z. Physik 71, 205 (1931).

7 L. Hulthen, Arkiv Mat. Astron. Fysik 26A, No. 11 (1938).
8 R. L. Orbach, Phys. Rev. 112, 309 (1958).' L. R. Walker, Phys. Rev. 116, 1089 (1959).
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values for other properties would be valuable as an aid
to judging various approximate theoretical treatments
which are also applicable to more complex systems.
From the viewpoint of statistical mechanics, it is also of
interest to study how the limiting behavior for infinite
systems is approached by 6nite systems. Such insight is
useful since, with the advent of fast digital computers,
it is feasible to perform exact or Monte Carlo calcula-
tions on 6nite models of many types of physical system.

With this motivation we have undertaken a numerical
study of 6nite chains and rings of E spins with the
Hamiltonian,

N
5('.= —2J Q (S,'S,pi'+y(S, *S;+i*+S,vS~rs)}

—gP Q H S; (1.1)

for spin S=—,'. We have computed the energy levels and
eigenvectors and thence the thermal and magnetic
properties for varying anisotropy p and varying
magnetic field H for rings of size X=2—11 (and for some
open chains) for both ferro- and antiferrornagnetic
coupling (J=+ ( J~ and J= —~J(, respectively). (Our
results for the antiferromagnetic entropy in a magnetic
field for varying p have already been reported and dis-
cussed in the light of the third law of thermodynamics. ' )

Previously, Orbach" had computed the energy levels
and eigenvectors for X=2, 4, 6, 8 and (unpublished)
iV=10 for the case y=1, and for some intermediate y
values in the case of iV=8 (also unpublished), but he
did not compute the thermal or magnetic properties.
Independently of the present authors Griffiths'2 has
calculated the energy levels for X=3, 5, 7, 9, and 10 for
y=1. He evaluated the energies, entropies, specific
heats, and susceptibilities in zero field for %=2—10,
and compared them with the series expansions. We are
deeply indebted to both Dr. R. L. Orbach and Dr. R. B.
Grif6ths for sending us their own unpublished calcula-
tions and for helpful discussions and correspondence.

Theoretical work on the Hamiltonian (1.1) with
y=1 dates back to 1930 when Bloch" introduced the
concept of a spin wave and gave the exact eigenstates
for one overturned spin (Q S =PS—1) for ferro-
magnetic interactions. Using a similar approach, Bethe
obtained the exact eigenstates corresponding to interact-
ing spin waves for an arbitrary number of overturned
spins on a linear chain (y= 1).He showed how the states
may be classi6ed as "unbound" or "bound. "Hulthen,
in a comprehensive paper, 7 used Bethe's solutions to

"J.C. Bonner and M. E. Fisher, Proc. Phys. Soc. (London)
80, 508 (1962).

"R. L. Orbach, Ph.D. dissertation, University of California,
1959 (unpublished); Phys. Rev. 115, 1181 (1959).

"R.B. GrifBths, mimeographed reports, Stanford University,
1961, and La Jolla, California, 1963 (unpublished)."F.Bloch, Z. Physik 61, 206 (1930).

obtain an integral equation from which he obtained the
exact value for the antiferromagnetic ground-state
energy of the infinite linear chain. He also obtained the
exact ground states for rings of 1V=4, 6, 8, and 10 spins
and estimated the susceptibility at 7=0.

The arguments of Bethe and Hulthen were extended
by Orbachs to the full anisotropic Hamiltonian (1.1),
which had also been considered by Kasteleyn. "
Kasteleyn used a variational method which indicated a
critical anisotropy constant y, =0.483 beyond which the
zero-temperature long-range order (present when y=O)
vanished identically. The variational short-range order
and energy showed singularities in p at the same point.
With the aid of an exact integral equation Orbach
showed that these latter singularities were spurious but
he was unable to calculate the Iong-range order exactly.
Walker, ' in an important paper, obtained an analytic
solution of Orbach's integral equation which revealed
that the antiferromagnetic ground state Es(y) as a
function of p was nonanalytic at p= 1.This implies that
the Heisenberg limit (y= 1) is a special point perhaps
analogous to a critical point. " Walker also gave
perturbation series in powers of p-' for the energy and for
the short-range and long-range order. His series for the
long-range order seems to indicate that it does not
vanish for y less than about 0.9.

Perturbation calculations equivalent to those of
Walker have been presented by Boon," who also
considered two- and three-dimensional lattices. Alter-
native perturbation procedures have been proposed by
Davis, Rodriguez, Frank, Mannari, and Mills, Kenan,
and Korringa. '~ "Ruijgrok and Rodriguez" developed
a variation method which was rather accurate for the
ground state but which yielded a finite long-range order
even for y = 1.

Earlier calculations based on the spin-wave approach
have been reviewed by Van Kranendonk and Van
Vleck" One of the most striking predictions is that
for a pure Heisenberg antiferromagnet the lowest en-

ergy states should obey a dispersion law of the form

r4 P. W. Kasteleyn, Physics 18, 104 (1952)."The fact that p =1 is a mathematical singularity (nonanalytic
point) of Eo(y), follows immediately from Walker's observation
that his formula exhibits a pole in any interval, however small,
of the open segments (y~ )1.It should be noted, however, that
the singularity at y= 1 is not visible in graphs of ED(y) for 7 &~1
contrary to what might be expected. One may regard Kasteleyn's
variational transition point y, =0.48 (where the energy was non-
analytic as in any phase transition) as an approximation to the
"true transition point" at y =1.

M. H. Boon, Nuovo Cimento 21, 885 (1961).
"H. L. Davis, Phys. Rev. 120, 789 (1960). These results are

presented as a power series in p(=1 o in Davis—'s notation), but
the higher coefBcients are inexact since the perturbation Hamil-
tonian is not just the transverse part of (1.1).

is S. Rodriguez, Phys. Rev. 116, 1474 (1959);R. L. Mills, R. P.
Kenan, and J. Korringa, Physica 26, S204 (1960).

"D. Frank, Z. Physik 146, 615 (1956); I. Mannari, Progr.
Theoret. Phys. (Kyoto) 19, 201 (1958).

"T.W. Ruijgrok and S.Rodriguez, Phys. Rev. 119,596 (1960).
J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys.

30, 1 (1958).
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e(k) =E—E&
~

sink
~

." " This conclusion was tested
against the numerical spectra for finite rings of ¹ 6
and 8 spins by Mattheiss, "who found an approximately

~

sink
~

dependence, but with a modified amplitude. More
recently, des Cloizeaux and Pearson" extended the com-
putation to the lowest antiferromagnetic states for rings
of 16 and 48 spins. They were also able to derive the
limiting dispersion law e(k) =z

~
J~~sink

~

for the corre-
sponding class of states of an infinite chain.

The theoretical knowledge of the ground and lower
excited states of Heisenberg-Ising chains is not matched
by a corresponding knowledge of the thermodynamic
behavior. For example, the positions of the maxima in
the specific heat and susceptibility do not previously
seem to have been estimated with any accuracy.
(Although recently, Bulaevskii" has reported a finite
temperature Hartree-Fock calculation which reproduces
the general features quite well. )

It is interesting, however, that the spin-~~ model
obtained by deleting the parallel or Ising terms S S;+~'
from Eq. (1.1) to leave only the transverse Hamiltonian
is completely soluble. Lieb, Schultz, and Mattis"
investiagated the spectrum in detail while Katsura"
studied the thermal and magnetic properties including
the behavior in a field. Although the transverse
Harniltonian is somewhat artificial, the behavior of this
model resembles in many respects the results we have
found with the full Hamiltonian (1.1).'s

It is also possible to calculate by elementary methods
the zero-6eld free energy, correlations and susceptibility
for isotropic Heisenberg chains in the limit of infinite

spin. " The low-temperature behavior of the thermal
properties in this case is somewhat unrealistic since in
the classical limit S= ~ the specific heat necessarily
goes to a nonzero value as T ~0. The susceptibility,
however, correlates quite closely with the results we

find for the S= sr Heisenberg chains (except that a non-

physical contradiction of the third law is shown again

by a nonzero slope for small T).
The plan of this paper is as follows: In Sec. 2, the

machine computations are outlined and the possibilities
of extrapolation from finite ¹ to the limit ¹

~ ~ are
illustrated by examining the antiferromagnetic ground
state as a function of y. The thermal properties, in
particular the specific heat, are discussed in Sec. 3 for

~' P. W. Anderson, Phys. Rev. 86, 694 (1952).
"R.Kubo, Phys. Rev. 87, 568 (1952).
M T. Oguchi, Phys. Rev. 117, 117 (1960)."L.F. Mattheiss, Phys. Rev. 123, 1209 (1961)."J.des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131

(1962)."L.N. Bulaevskii, Zh. Eksperim. i Teor. Fiz. 43, 968 (1962);
see also U. L. Ginsburg and V. M. Fain, ibid 39, 1323 (19. 60);
42, 180 (1962) [English transls. : Soviet Phys. —JETP 16, 685
(1963); 12, 923 (1961);15, 131 (1962)j.

's E.Lieb, T. Schultz and D. Mattis, Ann. Phys. (N. Y.) 16, 407
(1961).

'9 S. Katsura, Phys. Rev. 127, 1508 (1962).
30 S. Katsura (preprint) has discussed the full Hamiltonian by

treating the parallel terms as a perturbation.
si M. E. Fisher, Am. J. Phys. 32, 343 (1964).

antiferromagnetic and ferromagnetic rings. The mag-
netic properties are described in Sec. 4. Attention is
given especially to the magnetization curve at T=0 and
the corresponding parallel and perpendicular suscepti-
bilities. In Sec. 5 details of the energy spectrum are
discussed and the antiferromagnetic anisotropy gap and
the asymptotic degeneracy of the ground state are
estimated. The spin-wave dispersion laws for ferro- and
antiferromagnetic chains are illustrated. The short-
range antiferromagnetic order and further pair correla-
tion functions (Ss*Si*) are described in Sec. 6. The
long-range order is estimated by extrapolation and
compared with previous approximations. Our results
are for the most part presented graphically but tables
of the thermal and magnetic properties for y=1 and
0.5 and ¹=9,10, and 11 have been prepared and will

be made available on request to the authors. (For
reasons of economy they are not reproduced in this
article. )

2. FINITE CHAIN CALCULATIONS AND THE ANTI-
FERROMAGNETIC GROUND STATE

For a finite system of N (S= rs) spins the problem of
calculating the energy levels reduces to the diagonaliza-
tion of the 2~&&2~ matrix representing the Hamiltonian.
(As basic states it is covenient to use direct products of
"Ur" and DowN single-spin states: These are, of
course, eigenstates of the Ising Hamiltonian y=O. ) By
classifying the states by the value of S', the s component
of the total spin, the matrix splits into N+1 blocks of

fN&
order 1, N, ~ ~, ~, ~,

.N, 1 (N even). A
2 )' ',Np'—

further reduction can be obtained for closed chains

(rings) of spins by using the translational invariance.
Each level is then also classified by a (total) wave
number k= 27rr/N with r=0, 1, 2, , N 1(k is only—
determined up to a multiple of 2ir).

The largest value of ¹ which can be handled numer-

ically is limited by the size of the largest block matrix
in relation to the speed and capacity of the electronic
computer available. Our calculations were performed on
the now relatively slow University of London Ferranti
"Mercury" which restricted us to ¹=11or less. To
economize on computing time many of the calculations
for intermediate values of y and magnetic field, etc. ,
were, in fact, performed with ¹=8, or 10, once the trend
with increasing ¹ was clear. ' The diagonalization,
yielding both energy levels and eigenstates, was
performed by standard subroutines and the results
checked against the other available computations. """
The calculation of the thermodynamic properties was
performed by direct evaluation of the appropriately
weighted partition sums.

The possibilities of estimating the properties of

O' For the Heisenberg limit y=1 one has a further check since
the total spin S is also conserved so that many levels from different
blocks coincide. It was not found possible to use this added
invariance to reduce the calculations.
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TABLE I. Energy of the antiferromagnetic ground state Sp(lV). -0

6
8

10
12

Even

—1.00000—0.93425—0.91277—0.90309—0.8979

—0.88629

3
5
7
9

11

Odd

—0.50000—0.74721—0.81577—0.84384—0.85799

—0.88629
-0.5

0.6

-0.6

1N 0.02 0.0l. O.O6 0.08
I I I

0.4,0
. 6

-O.T-

infinite chains from those of finite chains are revealed by
a study of the pure Heisenberg antiferromagnetic
ground state energies. The antiferromagnetic ground
state Ep is equal to —2N~ J~ 1n2+sN~ J

~

for the
Hamiltonian (1.1) with H=O and y=1 in the limit
E—+ ~. It is convenient to define normalized ground-
state energies for finite g

hp(N) =Ep(N)/Ni Ji
and these energies are tabulated numerically in Table I.
(The values for N=4, 6, 8, and 10 were given exactly
by Hulthen, ' that for N= 12 by Ledinegg and Urban. ")
In Fig. 1 the energies are plotted versus 1/N (circles)
and versus (1/N)' (squares). The values form two
sequences (N odd or even) and it is evident that the
limiting energy is approached linearly with (1/N)'.
A relation of the form

Bp(N) = Bp(~)+a/N' (2.1)

holds quite accurately even down to %=4 or 5 with

~odd — 2~even. .

o.a

-X,.O
0 Op2 O.g 0.8

-A 0
AO

Fio. 2. Antiferromagnetic ground state as a function of y for
finite and infinite rings. The exact limiting curve due to Orbach
(Ref. 8) is shown by the dashed curve.

If the limiting value had not been known, it could
have been estimated to about 0.1% accuracy by linear
extrapolation with 1/Ns. Heisenberg chains with open
ends show a slower convergence, apparently linear with
1/N. For pure Ising (y=0) rings the ground state is
exact for N even but approaches the limit as 1/N for
X odd on account of the misfit seam. " In Fig. 2 the
approach of the antiferromagnetic ground state to the
limit is shown as a function of y for %=2—11. The
limiting curve (due to Orbach') is rather well defined

by these results.
Encouraged by the relatively simple and regular

behavior of the hnite S results found here, we may go on
to examine properties for which the exact E= ~ limits
are unknown with the reasonable expectation that
careful extrapolation to large X will not be misleading.

3. THERMAL PROPERTIES

In this section we consider the thermal properties
firstly of antiferromagnetic and then of ferromagnetic
chains.

-0.5- —0.5 Antiferromagnetic Coupling

-Oo 8865~
0.'l-

-4 0-

0
/

0.1 0.2, 0.5 0.4

PIG. 1. Antiferromagnetic ground-state energies versus 1/lV
(circles) and versus (I/1V)' (squares) for pure Heisenberg rings
(7=1).

' E. Iedinegg and P. Urban, Acta Phys. 'Austriaca 6, '257
(19%).

In Fig. 3 is shown the energy per spin in zero field as
a function of temperature for antiferromagnetic pure
Ising and Heisenberg rings of X=2—11 spins. As for
the ground states, odd and even rings form two distinct
sequences. For the Ising case (y=0), where the exact
limit is known, the two sequences approach the limiting
curve monotonically from above and below. There seems
no reason to doubt that the same situation prevails at
&=1. The energy of an infinite Heisenberg chain is
thus defined to an accuracy of better than &0.5%
down to temperatures of kT/

~
J~ =0.5 by the mean of

the curves for N= 10 and 11. (These two curves and the
estimated limiting curve have been tabulated and are
available on request. ) Below this temperature the true
limiting curve is less certain, but since the value for
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U
NlJI
-0.2-

-0.6-

X.O z,o

-0.5

to be similar to that for the energy and the limit seems
well determined down to kT/( J( =0.5 by interpolation
between the curves for odd and even E. For odd X at
T=O the ground state is fourfold degenerate and the
entropy per spin thus goes to zero only as 2k ln2/Ã.

To estimate the nature of the low-temperature
behavior for S —+ ~, we may reasonably postulate a
power law for the limiting free energy per spin (or,
more 'directly, for the limiting internal energy). Thus,
suppose'4

U(T) —U(0) =HE( J((kT/( J(), (3.1)

where 2 and a are fixed (as T —+0). Then for the
specific heat we have

C/Xk= a~(kT/( J()--i (3.2)

-0.8- and for the entropy

S(T)/Ek=A ( —1) '(kT/(J() -'. (3.3)

—&.0
0 0.5 4.0 X.5

1T I@I

2.0
-1 0

2.5

Fn. 3. Zero-Geld energy as a function of temperature for Gnite
antiferromagnetic Ising and Heisenberg chains. The limiting
(N = 00) curve is shown dashed in each case.

0.6-

4.0
I

2.0
-0.6

S
Nk
0.5-

0.4-

T=O is known exactly, even a roughly estimated limit-
ing curve would be accurate to &1/q. We return to this
point shortly in considering the entropy.

The entropy for the pure antiferromagnetic Heisen-
berg chains is shown in Fig. 4. The convergence appears

By combining (3.1) and (3.3) we obtain

U(T) —U(0) = (1— ') TS(T)

so that a plot of energy U/E( J( versus TS/N( J( for
E~ ~ should be linear with slope determined by the
index a. Such a plot is shown in Fig. 5 for X=10 and
%=11 and supports the view that the limiting curve
would indeed be linear. The solid line which is drawn
from the exact (lV ~ ~) ground state with slope 0.515
should be close to any reasonable "best" 6t and yields
the estimate o.~ 2.06~0.03. This value is largely
determined by the data for temperatures in the range
kT/( J

(
=0.30—0.60. The dashed line, on the other hand,

is of slope 2 and corresponds to n=2 exactly. It seems
likely that this is the true limiting value which would
be obtained by fitting data for larger E at lower
temperatures. "

If we assumen=2, the amplitude A may be estimated
by various methods; for example, from the temperature
variation of U/ft/(J( and TS/$(J(, from plots of
U//t/( J( versus (S/Xk)' using the weighted means, "
and from the slope of the weighted entropy means at
low temperatures. We thus obtain the approximate
results

0.8- -0.5 U(T) = U(0)+0.175K(J( (kT/( J()',
S(T)=0.3RVk(kT/( J(), (y=1)

(3.5)

(3.6)

p.i-

I

'0 X.O0.5 4.6 2.0 2.5
kT I&l

Fn. 4. Entropy versus temperature for antiferromagnetic
Heisenberg chains (y =1).The dotted curve is the mean of N = 10
and N= 11 weighted as in (a) (Ref. 35), and the dashed curve is
f.he estimated limig.

valid up to kT/( J( =0.4 to 0.5."These are shown as

340ur method is a slight modiGcation of a procedure devised
by Griffiths (Ref. 12) who plotted U(T) versus S(T) and estimated
the index a by fitting J3 and P in the power law U —U(0) =BS~.

3' GriKths (Ref. 12) estimated 0,=2.1, but also suggested that
0.=2 was probably the exact value. This conclusion is supported
more closely by analyzing the trends of the weighted means (a)
[NPN+(N 1)PN—1]/(2N —1), (b)—,'PN+yPN li (c) L(N —1-)P~-
+NPnr &]/(2N —1) (where P is the thermodynamic property in
question), which converge more rapidly.

360ur conclusions regarding the amplitude A agree closely
with those of GrifBths. The spin-wave theory of the low-tempera-
ture behavior is given by R. Kubo, Phys. Rev. 87, 568 (1952);
J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys. 30,
1 (1958).
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dashed curves in Figs. 3 and 4 and seem to be the most
reasonable estimates of the low-temperature behavior.

It is interesting that the functional forms of (3.5)
and (3.6) agree with the predictions of simple antiferro-
magnetic spin-wave theory but the corresponding
amplitude" A, .„=~/6= 0.52 is too great by a factor of
about three. A T' law for the energy is exact for the
pure transverse Hamiltonian discussed by Katsura. 29

The corresponding specific heats for pure antiferro-
magnetic Heisenberg chains are shown in Fig. 6. For
temperatures above kT/

~
J

~

=0.5 the convergence again
appears to be monotonic from above and below and the
limiting curve (shown dashed) can be estimated quite
accurately through the maximum of height

C,„/Nk 0.350 (y = 1)

kT,„/i Ji 0.962 (y=1).

(3.7)

(3.8)

At lower temperatures the convergence must be more
complex since, for finite E, the speci6c heat always
vanishes exponentially fast as T —+0, owing to the
6nite energy gap between the ground and first excited
states. As N —+ ~, however, the states close up (as
1/N) and merge into a continuum, which runs from
the ground state (see below). The probable limiting
low-temperature behavior follows from (3.5) and (3.6),
which yield

C(T) =0.35Nk(kT/~ J~) (&=1), (3.9)

and this has been used in deriving the estimated curve
for the limit E= ~ shown by the dashed line in Fig. 6.

The variation of the antiferromagnetic speci6c heat
with anisotropy may be seen from Fig. 7 which shows
the specific heats for rings of 1V=8 spins. The exact
limiting curve for y=0 and the estimated limit for
y=1 are plotted as dashed lines to indicate the degree
to which the results for %=8 approach the limit. The
effect of increasing y from the Ising value y=0 is to
shift the specific heat maximum to higher temperatures,
to reduce its height and to broaden the peak. At low
temperatures (kT/~ J~ 0.1) the curves for 6nite N
(even) and 7 in the range 0.1—0.6 display anomalous
small peaks and points of inaction. These are "small
number effects" due to the finite splitting of the
degenerate Ising ground state by the transverse terms
in the Hamiltonian. For 6xed y and increasing N, this
splitting diminishes and eventually goes to zero as
N —+ ~ (see Sec. 5). Correspondingly, the anomalies
move to lower temperatures and are reduced in rnagni-
tude, finally disappearing in the limit X= ~.

For AD/1 and large but finite X, the specific heat
curves at low temperature (but above the anomalies)
vanish exponentially fast, roughly as expL —AZ~(y)/
kT), where hE~(y) is the limiting anisotropy gap
between the ground state and the first excited states.
The value of this gap is estimated in Sec. 5; itapproaches
zero as y~ 1 and the Ising value, 2~ J~, as 7~0.

0"0.8
0.,05 0.,10

-0.85- - -0.85

-0"I
0

I \ I 0 g
0.05

/~~
0.10

FIG. 5. Energy versus the product of temperature and entropy
for N =10 and N =11 Heisenberg antiferromagnetic chains. The
line of crosses is the 11/10 mean weighted as in (a) (Ref. 33).

LOwing to the existence of "bound states" of indefinitely
large groupings of adjacent "overturned spins, " the
number of states just above the gap might be of order
Ã' rather than E. Consequently, it is possible that the
true limiting specific heats might rise faster than
exp) —«g/kTj. If this were the case, AE~(y) should
be replaced by an "effective gap" AEz*(p) &&&&(p)
as happens at the Ising limit y=0 where, in fact, one
finds that «&*(0)=-,'aR&(0).1

The variation of speci6c heat with magnetic 6eld

may be studied just as for zero 6eld. The convergence
at temperatures above kT/I J~ 0.3 is found to be

0.6-

C
Nk
0.5-

1.0
I

2.0

-0.6

0.'5 -0.3

0.2-

Q f»

0
0 0.5 I

&.0
0

2.5

FIG. 6. Variation of speci6c heat with temperature for antiferro-
magnetic Heisenberg chains: Gnite N, solid lines; estimated limit
N= ~, dashed line.
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Nk
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curs, see Sec. 4), there remains only a broad low maxi-
mum at a higher temperature. The behavior is simi-

lar for other values of y as can be seen from Fig. 9,
where the specific heat for y=0.5 is plotted. The
critical field iri this case is H, =3(~J~/gP). Above the
critical 6eld the initial rise is governed by the energy gap
AErr(y)=HgP 2(1—+7) ~

Jt and it may be observed
that the maximum starts to increase in height again.

0.2-

Ferromagnetic Couyjling

We turn now to ferromagnetic chains: Values of the
energy, entropy, and specific heat for the longest chains
and y= 1 and 0.5 have been tabulated and are available
on request. The energy (per spin) is plotted versus the
temperature for Heisenberg chains of S=3, 4, ~, 10,
11 spins in Fig. 10. In contrast to the antiferromagnetic
case, the curves for finite E do not appear to bracket the
limiting curve, but rather increase monotonically

o o.z 0.& 0.6 0.5 &.0 ~.z
I T/Ijl

Fro. 7. Antiferromagnetic specific heat for rings of X=8 spins
for various anisotropies y. The dashed curves are the exact and
estimated limiting curves (N = ao ) for y =0 and y = 1, respectively.

0.& 0.4

quite rapid especially if the consecutive means for
E=2e and E=2e—1 are considered. Accordingly, in
Fig. 8, we have plotted for the pure Heisenberg case
only the mean specific heats for E= 10 and 9 at various
fields (except at H=O where the estimated limit is
shown). These means should represent the true limiting
curves to within 1 or 2%%u~ down to temperatures of
kT/

~
J

~

0.5. With increasing field the maximum shifts
to lower temperatures and falls in height. However, at
the field H, (gP/~ J~) =4, which represents a "critical
field" above which the antiferromagnet becomes fully
magnetized at zero temperature (i.e., saturation oc-

-0.2

0 0.5 4.0
0

2.5

Fn. 9. Variation of the antiferromagnetic speciGc heat with Geld
as in Fig. 8, but for y=0.5.

00.4

0.5-

0.2-

pi-

0.5

&.0

1.0

2.Q

g.O
kT l&l

0
2.5

towards it. This makes extrapolation at low tempera-
tures more difficult although the limit seems quite
accurately defined down to kT/J =0.5. (All curves, of
course, approach the exact limiting ground state
~= —s).

The curves for the entropy display a more complicated
convergence, successive curves crossing at low tempera-
tures. The ground state of the ferromagnet when y=1
has spin cVS= srlV, and hence degeneracy %+1. Conse-
quently, the zero-point entropy is (k/N) In(1V+1),
which approaches zero rather slowly. We may, nonethe-
less, attempt to estimate the low-temperature behavior
of the energy and entropy by the power law analysis
presented in Eq. (3.1) to (3.4). The corresponding U(T)
versus TS(T) plots are not very straight and their
slopes increase monotonically with E.'~ The maximum
slopes for X=9 and 10 correspond to an index in (3.1)

FIG. 8. Variation of the antiferromagnetic speciGc heat with
magnetic Geld for y = 1.Except for H =0, the curves are the means
of the values for X=9 and 10.

3'The curves are concave downwards except for very small
values of TS/N J (below 0.04), where an exponential decay sets in.
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o.6-

C
Nk

0.5-

-o.6
sharp antiferromagnetic S=—', Heisenberg specific heat
and the low broad ferromagnetic specific heat is
striking testimony to the lower stability of the isotropic
ferromagnetic coupling. Curve (d) for S= ~ continues
to rise monotonically to a maximum at T=0 of height
C/Xk= 1.

0.4-

0.5- -0.5

0.2-

Pl-

0,$ 1.0 i.5»Vl
0

2.0

FxG. 13. Comparison of specific heats for infinite chains for
(a) S=s' Ising coupling, (b) S=q Heisenberg antiferromagnetic
coupling, (c) S=q Heisenberg ferromagnetic coupling, and (d)
S= ao Heisenberg coupling (classical spins).

4. MAGNETIC PROPERTIES

Antiferromagnetic Coupling

In Fig. 14 are plotted the antiferromagnetic suscep-
tibilities for isotropic Heisenberg coupling (y=1) in
zero Geld for finite rings of X=3 4 5 - 11 spins.
(The tabulated values for 1V= 10 and 11 are available. )
The limiting curve is apparently bracketed by the
curves for odd E, which approach monotonically from
above, and those for even E, which approach mono-
tonically from below. The convergence is rather rapid
above kT/

~
J

~

=0.6, at which temperature the values for
1V=10 and 11 diRer by only 5%, and their mean
probably diGers from the true limiting curve by less
than 1%. The susceptibility displays a rounded max-
imum of height (for X~ ~ )

/(g'P'/
~

J
~ ) 0.07346, (y= 1) (4.1)

at
kT . /) J~—1.282. (y=1). (4.2)

This is shown dashed in Fig. 11; the rather broad peak
has a maximum height

C, /Sk=0. 134,

kT ./J=0. 70. (3.13) X.O 2.0
0.4

The situation at low temperatures as zero is ap-
proached is more complicated. For 6nite chains with E

(3 12) even, the antiferromagnetic ground state for all values

The nature of the variation of specific heat with
anisotropy can be gauged from Fig. 12, which (except
for y=1 where the estimated limit is plotted) shows
the results for rings of %=8 spins at intervals of
Ay=0. 1. The eRects of a magnetic field (for y= 1) are
rather similar to those due to anisotropy so that we do
not present a figure. With a field H(gP/J) =0.5, the
specific heat maximum increases sharply to a height of
about C/%k=0. 37 at (kT/J) =0.61. Further increase
of the field to H(gP/J)=1. 0 and 2.0 increases the
maximum to C/Ek=0. 42 and 0.45 and raises the
corresponding temperatures to (kT/J) =0.94 and 1.45,
respectively. These figures are derived for X=8
but should not differ significantly from the limiting
results since convergence is faster when H&0 or y~1,
since the ferromagnetic ground state is then nonde-
generate, and is separated by a finite energy gap, even
in the limit X= ~.

Finally, in Fig, 13 are compared on the same scale
the exact and estimated specific heats for infinite chains
with (a) S=—, Ising coupling, ferro-orantiferromagnetic,
(b) S=—,

' Heisenberg antiferromagnetic coupling, (c)
S= i Heisenberg ferromagnetic coupling, and (d)
S= eo (classical) Heisenberg ferro- or antiferromagnetic
coupling. st The large difference between the relatively

O.QQ-

0.06- - 0.06

0.050&b~.

0.0g-

0.02-

0-'
0 0.5 X.O X.5 2.0 2.5

0

Fzo. 14. Antiferromagnetic susceptibility versus temperature
for finite Heisenberg rings (solid curves) and the estimated limit
for infinite rings (dashed curve). The dotted curves are means of
N=9 and 10, and E=io and 11 weighted as in (a) and
(c) (Ref. 35), respectively.
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of y is characterized by total spin component S'= 0, and
there is a 6nite gap to the erst excited state of nonzero
S'. Consequently, for all chains of even 1i/ (finite), the
susceptibility parallel to the z axis approaches zero
exponentially fast as T—+ 0, at a rate governed by the
energy gap. On the other hand, for finite odd X, the
ground state, or rather degenerate ground states, have
S'=&sr. (Clearly, S'=0 is impossible. ) The suscepti-
bility for odd X thus diverges as 1/T as T approaches
zero. However, as 1V increases the (relative) amplitude
of the divergence falls in magnitude, and it sets in at a
lower temperature. These remarks may be verified
explicitly in the case y= 0 (Ising limit), where the exact
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FIG. 16. Sketch of the energy levels versus magnetic Geld for
Quite and infinite isotropic (y = 1) and anisotropic (y(1)
systems (Ref. 39). The shading indicates a continuum of levels.
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shows the parallel susceptibilities for rings of S=8 spins
for y =0.3, 0.5, and 0.7 (solid lines) and the approximate
limiting curves (broken lines) roughly estimated on the
basis of the limiting anisotropy gap. These curves
should be accurate to within 5 or 10'P& down to kT/ j J ~

=0.3. Evidently the effect of increasing y is to shift the
susceptibility peak to a higher temperature, to reduce
its height and to increase its width. The positions of the
maxima are for y=0, H,„=kT, /~ J~ = 1; for y=0.3,
8, 1.03, for y=0.5, 8, 1.07 and for y=0.7, g,
~1.14. (For small y the variation is quadratic in p.)

For the isotropic pure Heisenberg case y= 1, however,
the behavior as T —+ 0 is different. As E increases, the
gap between the ground state and the first excited
states with S*WO shrinks and approaches zero as 1/1ll. ss

In the limit Ã= ~, there is no anisotropy gap. This

FIG. 15. Variation of the parallel antiferromagnetic susceptibil-
ity with anisotropy for rings of iV=8 spins (solid curves). The
estimated limiting values are shown by broken curves. Note that
for p =0 and p = 1 only the exact and estimated limiting curves
are plotted.

result for the parallel susceptibility of a finite chain is

0.5
M

SAN

0.$-

3.
, Q 0.5

with

g2P2+
x h=O)=

4kT

1—(—tanhK) ~

1+(—tanhE) ~ (4.3)

(4 4.)

0.5-

P 2-

-0.5

In this case, as is well known, the limiting susceptibil-
ity, which is approached both for even X and odd E
(T)0), goes to zero exponentially fast (see curve for
y=O in Fig. 15).

Now for p nonzero, but less than unity, the anisotropy
gap between the ground state(s) and first excited states
persists even in the limit X—+ eo (see next section).
Consequently, the limiting behavior should be similar
to the Ising case with x„(T)—& 0 as T +0. Figure 15—

0.&-

Q
0 4.0 2.Q 4,.0 5.0 0

' For simplicity we describe only the case for E even.

FIG. 17.Magnetization curves for an isotropic antiferromagnetic
chain of N = 10 spins. The numbers on the curves give the appro-
priate values of kT/~ J~.
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0
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g/s N

0

2.0

0.3- FIG. 18. Estimation of the limiting
zero-temperature magnetization curve
from the midpoints of the steps of the
Gnite E curves Lcircles N even and
squares Ar odd]. The zero-point step
functions corresponding to V=10 and
11 are shown dotted.

Z.O

implies that the limiting susceptibility for p=1 can
approach a finite nomsero value go at X=0.

To illustrate the detailed mechanism by which this
occurs, we have sketched in Fig. 16 the relevant energy
levels for (a) y(1 and (b) y= 1 for fmite systems" and

for the corresponding infinite systems as a function of
magnetic field. The susceptibility at T=O is essentially
the curvature of the ground state Es(H) since y(H)
= (ei'/BH')Ee(H). )Similarly the magnetization is just
the slope of Es(H).] For finite X, the ground state
(marked by a bold curve) consists of a series of straight
lines and consequently (for X even) the curvature for
small H is alw'ays zero, so that Xsr (0)=0 for all p. In the
limit S—+ ~, however, the ground-state curve for y= 1

is smooth with continuous slope and defmite (in general
nonzero) curvature. When y(1, on the other hand, the
limiting curve consists of a horizontal straight line out
to a finite field strength B at which the anisotropy gap
vanishes. The curvature, and hence the susceptibility,
near H=0 remains zero.

It is worth remarking that the existence of a nonzero

yo for isotropic coupling can be demonstrated rigorously
for chains in the limiting case of infinite spin. "

To estimate roughly the value of the limiting zero-

point susceptibility po for S= 2, one may examine the
trend of the means of xN(T) for E=9and 10, and 1V= 10
and 11 in the range kT/~ J

i
=0.4 to 0.8 (see Fig. 14).

These curves suggest that xo lies between 0.045 and 0.06
(in units of g'P'E/

~

J
~
). Indeed, some time ago,

Hulthen, by means of an approximate calculation,
estimated that 7ts 0.0591g'p'X/~ J~.4' In an attempt

"Accurate graphs of all the energy levels as a function of
Geld are given in Ref. j.0 for 37=8.

4' Reference 7, p. 78.

to improve this estimate, we examined the magnetiza-
tion curve for the finite chains, which is also of interest
in its own right.

Figure 17 shows the magnetization for a chain of
Ã= 10 spins as a function of field for different tempera-
tures. For temperatures above kT/

~

J
~

= 0.3 the curves
are smooth and investigation of the convergence with
E suggests that the limiting curves are well approx-
imated. For lower temperatures the magnetization
displays oscillations and approaches a step function at
T=0, the discontinuities being DM/3f, =2/1V. This
behavior is, of course, just what follows from our
previous discussion of the ground state when A is finite.

Despite the discontinuities, one notices that the
midpoints of the vertical and horizontal parts of the
steps lie near a smooth curve which presumably
approximates the limiting (N= oo ) zero-temperature
magnetization curve. This is confirmed by Fig. 18 where
the midpoints for a number of the longer chains are
plotted. The solid line shows the estimated limiting
curve which should be accurate to within about 1% of
the saturation value. This is supported by the analytic
calculations of Griffiths. 4'

As mentioned previously, the magnetization at T=0
attains its saturation value at a finite critical field
H, =4

~

J
~
/gP. Below this critical field the magnetization

appears to follow a square root law

M/M, =1—A/1 —(H/H, )$'@ (4.5)

as H —+ H, with A =1.2—1.3=4/z = 1.2732. (For
further discussion, see below. ) This behavior is also a

4IR.. S. GriiTiths (private communication); Phys. Rev. 133,
A768 (1964).
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feature of the transverse (J~~=O) model solved rig-
orously by Katsura. ' In that case A.= 2v2/pr =0.9003.

The slope of the limiting magnetization. curve at H =0
is the zero-point susceptibility po. It seems likely that
the midpoints of the finite E magnetization steps
approach the limiting curve as fast as 1/1V. Con-
sequently, if the limiting magnetization M(H) has a
Taylor series expansion in B about JI=O, one would
expect the gradients gi )v

———',AMi )v/AHi )v of the lines
from the origin to the midpoints of the first steps (for
1V even), and similar gradients to other steps, to
approach the limiting slope gp as fast as 1/1V. Examina-
tion of the gradients g;,~ for small j and /=4 to 11 4'

does yield roughly linear plots versus 1/1V which, if
extrapolated, suggest that xp/(g'P'1V/l Jl) lies in the
range 0.0555&0.0020. This is significantly lower than
Hulthen's estimate of 0.0591.

This estimate rests on the assumption that the deriva-
tive of M(H) does not vary too rapidly near H=O.
Since this work was performed, however, Griffiths4' has
produced strong (though not quite rigorous) theoretical
arguments based on an analysis of the "unbound"
antiferromagnetic spin-wave states which show (a)
that M(H) is nonanalytic at H=O (O'M/BH' diverging
sharply to + po as H~ 0) and, (b) that

yp/(g'P'1V/
l
J

l )= 0.050661 = 1/2ir'. (4.6)

In view of Walker's results' mentioned in the Intro-
duction, which show that the point y = 1, T=0, JI=0 is
in some ways analogous to a phase transition point, "
one should not really be surprised that M(H) is non-
analytic at II=0. The divergence of O'M/BH' shows

why extrapolation of the gradients g, ~ linearly with
1/1V leads to an overestimate of gp. LEssentially y(H)
for small H, of order 1/1V, is well approximated by the

g, ,N but does not itself approximate go well unless H
is exponentially small. j It seems very probable that
1/2~' is the exact constant in (4.6) so that the estimate
from the gradients is 10% high.

Accepting (4.6) as correct we may complete the
estimation of the antiferromagnetic susceptibility for
y= 1 down to zero temperature. The result is shown in
Fig. 14 (as a dashed curve) and in Fig. 15. Above
lpT/l Jl =0.60 it should be accurate to within 1% but
in the region kT/ l

J
l

=0.05 to 0.50 the error might
perhaps rise to 5%.

The zero-temperature magnetization curve for other
values of p may be studied as for p= 1. The critical field
H, is determined by the intersection of the energy level
for total S*=ip1V (a component of the zero-field ferro-
magnetic ground state) with the lowest level for
S'=-', 1V—1 (single ferromagnetic spin wave)" both of
which are known exactly. Thus,

H. h) =2(1+&)
l Jl/gN (4 /)

4' The gradients from the origin to the midpoints of the vertical
parts of the steps are given by

g;, )v= (j 2)deaf;, 11/eF1;, ~ for E even —and
g;, i1 =jr)M;, &/aH;, & for fV odd.

0.5
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g/9N

O.g-

0.5

0.5- - 0.5
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@AH/f J[

FIG. 19. Dependence of zero-temperature magnetization
curves on anisotropy.

which suggests that when S—+ ~ we may write more
generally, as H —& H„

M/M, = 1—A (y) l
1—(H/H, )ji"

with
A h) = (4/ )L(1+&)/2vj'"

(4 g)

This argument is, of course, not rigorous but it should be
at least qualitatively correct and its accuracy is
supported by the results for finite X and by agreement
with GriKths' analysis at y= 1.~

Figure 19 shows the complete estimated limiting
magnetization curve for the Ising limit y= 0, where it is
a simple step function, and for intermediate values of y.

When y&1 we must, as mentioned, distinguish
between a perperidicular and a parallel susceptibility.

In order to study the form of the magnetization curve
near saturation, it is necessary to consider the width of
the first magnetization step away from saturation (see
Fig. 18). The position H=Hi of this step is given by
the intersection of the lowest level for 5'=-,'X—1 with
the lowest level for 5'=-,E—2 which in the limiting
case, 1V —& ~, is given by —4l Jl (1+y) l Eq. (5.4),
Sec. 5, with k= 2m.7. It is seen, however, that use of the
limiting curve again yields II„ it appears, therefore,
that the width of this step is directly determined by the
energy discrepancy AE& between the lowest lying level
for S*=—',1V—2 (finite 1V) and its limiting value. An
estimate of the lowest, finite Ã, energy level as a
function of p may be obtained, for example, by applying
second-order perturbation theory to the appropriate
submatrices of the Hamiltonian (1.1). One finds that
for large 1V, /) Ei 2y7r'l Jl/1V'. Corresponding to a
magnetization step of 6M= gf3 or AM/M, = 2/1V, we
thus find a magnetic field step AHi ——-', (H.—Hi)
=BEi/2' year'l Jl/gP1V'. On eliminating 1V weobtain

AM 8(1+1) "'(1B)"'
) H,
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- 0.5 where
xm(T) = Lg'P'&/4&T3$~(T), (4.10)

Curie's law. Quite generally we can write for the
parallel susceptibility

5 (T) = (4/&)([ 2 5"]') (4.11)

0.2- -Oj2

0.4-

O o.2 0.4

- Q.X
~ ~ ~ ~ ~

0s05 &&&

~~~+jj,~~jjII

0.6 O.S 4.0

FIG. 20. Perpendicular susceptibilities for the ground and 6rst
S'=0 excited states for finite rings (solid curves) and the geometric
means (broken curves). The dotted curve represents the probable
limit for E~ ~.

For the Ising limit we have the exact result" 4

gsp2Ar

xi(T) = ftanhE+E sech'E] (y =0), (4.9)

where Z is defined in (4.4). From this we see that
gati(0) for y= 0, is nonzero. In the limit AT-+ ~ this will

remain true for all y and in fact as' 1, y, (0,y) ~ xe.
For this reason the susceptibility in the isotropic case is
perhaps best regarded as a perpendhcular susceptibility.

For finite E the situation is again more complicated.
The lowest set of solid curves in Fig. 20 show x,iv(0,y)
for rings of AT=4, 6, 8, and 10 spins. (The derivation
requires the numerical calculation of matrix elements
with the ground-state eigenvector. ) As y-+ 1, for 1V

even and finite, )f,iv (0,7) approaches zero as the previous
arguments have shown it must. (For odd ill' it diverges
at y=1.) Furthermore, for y)0.2 the convergence for
S increasing is evidently very slow. The upper solid
curves in Fig. 20 represent the perpendicular suscepti-
bilities calculated for the lowest excited states. In the
limit S—+ ~ these are expected to approach the ground-
state results. The broken curves are the geometric
means of these two sets of values and they seem to be
converging somewhat more rapidly, at least for y&0.5.
Accepting the value (4.6) for xs, the limiting zero-point
perpendicular susceptibility x&(0,y) must resemble in

general form the dotted curve in Fig. 20. The slope of the
limiting curve at y=0 is known exactly, 4' but for 0.2&y
&0.5 the dotted curve is probably accurate only to
within 10%.

$(T)=expLJ/kT), (y=0). (4.12)

This rapid divergence finds its origin in the anisotropy
gap which ensures that all the pair correlation func-
tions (5 5 ) approach their zero-point values expo-
nentially fast. For this reason we expect the limiting
divergence for other values of y&1 will also be of the
form expgnJ/kTj with u depending on the limiting
anisotropy gap.

For pure Heisenberg coupling, however, a power law
might be expected. Indeed, in the limit S= jo (y= 1),
the susceptibility diverges as 1/T' so that ](T) 1/T
a,s T~ 0."Fig. 21 is a log-log plot of Piv(T) —1$ versus
the temperature for 6nite isotropic chains of X=3, 4,
~ ~ ~, 10, 11 spins. The curves evidently approach the

4.0

iog[C -~]

-X.O t.o

0.5- 10

S
'1

-0.5-

the angular brackets denoting the canonical average.
At high temperatures trav(T) approaches unity as 1/T.
As the temperature falls tv(T) rises monotonically
(for J)0) and, for finite E, levels off at a value deter-
mined by the properties of the ground state. For
anisotropic chains (y(1) the ferromagnetic ground
state is twofold degenerate with P 5 =&-,'llew' so that
ts (0)=K In the isotropic (y=1) case, on the other
hand, the ground state has total spin 5=—,'S and hence is
(iV+1)-fold degenerate, g 5,' taking the values sing,

—,'ill' —1, —-', AT+1, ——',1V. For finite pure Heisenberg
chains, therefore, piv(T) rises to a maximum value
t~(0) = s(&+2).

In the limit E—& ~ we see that for all y, $(T) di-
verges as T +0. For Ising—chains (y=0) this divergence
is exponentially fast since we have rigorously

Ferromagnetic Coupling

The susceptibility for ferromagnetic chains is con-
veniently discussed in terms of the deviations from

-1.0
5 -0.$ 0 0.5

1og irT/J
i.p

4j M. E. Fisher, Physica 26, 61g (1960).
'4 M. E. Fisher, J. Math Phys. 4, 124. (1963), and Ref. 29.

FIG. 21. Log-log plot of the reduced ferromagnetic susceptibility
((T)—1 for Qnite isotropic chains.
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limit monotonically from below. The convergence is
quite rapid and for kT/J)0. 3 the limiting curve is
indicated quite accurately. At high temperatures the
log-log plot becomes linear with slope unity as shown
by the broken line in Fig. 21. This simply conGrms the
1/T deviations from Curie's law. At lower temperatures
in the range kT/J =0.25—1.0, the limiting curve is again
almost linear but with slope close to 4s (see dotted line
in Fig. 21). If the curves for larger X continued this
trend it would imply a divergence of $(T) like 1/T4I'
and of y(T) like 1/T'~s as T +0. I—t is quite possible,
however, that the true asymptotic behavior sets in only
below k T/ J=0.2. Nevertheless, the qualitative behavior
is clearly rather similar to that for 5= ~.

The nature of the variation of the susceptibility
with magnetic Geld can be seen in Fig. 22 which shows
the ferromagnetic susceptibility of isotropic chains of
/= 8 spins in various fields. The convergence with S is
appreciably more rapid in a Geld than for H=0.

0.4
1.0

0.4

gpN
O.g-

0.2- -0.2

0
0 X.O f.5 , 2.0

XT/J

0
2.5

single "spin wave" of energy

FIG. 22. Ferromagnetic susceptibility for rings of %=8 spins with
isotropic coupling for different magnetic fields.

5. SPECTRUM E—Es——e(k) = 2JL1—7 coskg, (5.1)
In the following account we conGne our attention to a

discussion of the spectrum of energy levels in the
absence of an applied field, i.e., the eigenvalues of the
Hamiltonian (1.1) with II=0.

Ferromagnetic Coupling

The ferromagnetic ground state for all y is, of course,
exactly Ee= ,'NJ corre—sp—onding to P S,'=-,'lV (all
spins aligned). With one "overturned spin" we have a

8—Es ——e(kt)+ e(ks), (5.2)

but this is not exact owing to the spin-wave "interac-
tions. " For anisotropic linear chains the interaction of

k= 2rrr/E, r = 0, &1, &2,

With two overturned spins, the simple spin-wave
approximation predicts

4 i ii
0

FIG. 23. Energy levels for two
overturned spina (interacting spin
waves) for a ring of %=11 spins
and y=1. The arrows indicate the
deviations from the levels for two
independent spin waves. Note that
we are taking an "antiferromag-
netic view" of the energy levels
(J=—)J)), and each level has
been normalized by subtraction of
an energy —~~XJ.
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bound states for r overturned spins, The lowest states
seem to follow the relation

e&
"& (k) (2J/r) Pi —cosh( (5.5)

when y= 1, as illustrated in curves (c), (d), and (e) of
Fig. 23, corresponding to 3, 4, and 5 overturned spins,
respectively. For p&1 the amplitudes of the cosh term
appear to decrease as p" or more rapidly.

Antiferromagnetic Coupling
\

'~

0.6

0.5

- 2IJ]

0.5
0.2
0.|.

6 8 xo ~/N

FIG. 24. Dependence of the splitting AEo of the antiferro-
magnetic ground state on y and S.

two spin waves has been analyzed theoretically by
Orbach, ' who followed Bethe's analysis for p= 1.'

A graphic understanding of these results can be
obtained from Fig. 23, which shows energy levels for a
ring of S=11 spins for y= 1. The solid curve through
the dark circles is the single spin-wave dispersion law
(5.1).The other solid curves represent the superimposi-
tions (5.2), and their intersections are thus the spin-
wave approximations to the levels for two overturned
spins. The arrows indicate the energy shifts due to the
interactions, the exact energy levels lying at the points
of the arrowheads.

The open circles represent "missing states, "i.e., levels
predicted by (5.2) which do not occur for the true
Hamiltonian (essentially because two spins cannot be
overturned at the same site). For most combinations of
k~ and k2 the interactions are evidently repulsive and the
spin waves "scatter" and remain "unbound" (category
I states'). However, for k~ k2 —,'k, the interactions are
strongly attractive and the spin waves condense into a
bound state (category II) given by, ~

err(k) = 2JLI ——,'y'(I+cosh)$. (5.3)

This is indicated by the dotted line (b) in Fig. 23. As the
form of this dispersion relation suggests, the correspond-
ing eigenfunction relates to two closely associated
overturned spins traveling around the ring together.
The dotted line (a) in Fig. 23 is the N= ~ limit of the
enrgies of the unbound states namely, '

er '"(k)=4J(1—y cos-,'k), (5.4)

which is just the envelope of the curves (5.2).
One may in a similar way study numerically the

The approach of the antiferromagnetic ground-state
energies for finite chains to the limiting value was
discussed in Sec. 2. The question of the degeneracy of
the ground state has not, however, been considered.
When E is even4' the antiferromagnetic ground state at
the Ising limit (y=O) is twofold degenerate. This
degeneracy, however, is split by the transverse terms in
the Hamiltonian, although, as is well known, the
splitting only arises in Sth-order perturbation theory.
This suggests that in the limit X~ ~, the ground
state should again become degenerate, at least in some
sense.

To investigate this point we may examine the ground-
state splitting AEO(N) as a function of N. If AEo varies
as 1/N for N large, the levels close up, but only at a rate
characteristic of a continuum of levels in the limit of
X= ~. Conversely, if AEp vanishes more rapidly than
1/N, e.g. , as 1/N', then we may consider the levels as
asymptotically degenerate even if they lie within a
continuum. In Fig. 24, the product NAEo(N) has been
plotted versus 1/N for N=4, 6, 8, and 10, and for
values of p in the range 0 to 1. For p~&0.5 EQEp
is rapidly decreasing, and there seems little doubt that
the limit is zero. For y=0.6, 0.7, and 0.8, the decrease
is slower but the rate increases for larger g, and it
seems probable that the limit is again zero, as suggested
by the broken lines. (These lines are purely suggestive
and are not to be taken as numerical extrapolations. )
At &=0.9 the values of lVAEp at first increase slightly
with E, but for %=8 and 10 they are almost equal,
and we believe that larger values of X would again
yield a product decreasing at 6rst slowly, but eventually
rapidly. At the limit &=1, on the other hand, 373Lp
seems to be rising steadily and approaching a definite
limit at 1/N=O, consistent with a state lying in a
continuum bounded by the ground state. (Consideration
of the des Cloizeaux-Griffiths analysis"" suggests that
this limit should be ~'I JI ).

In summary, we feel that the evidence of Fig. 24
definitely suggests that for all p(1 (i.e., anisotropic
coupling) AEO decreases more rapidly than 1/N
(NDEO ~ 0), so that the limiting ground state may be
said to be (twofold) degenerate. In the isotropic limit,
however, AEO decreases only as 1/N and the anti-

' When E is odd, the Ising ground state is 2E-fold degenerate,
but for y&0, only a fourfold degeneracy corresponding to Z5;*
=~-', remains. We will not consider this case further.
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e(k) =E&'& (k) —Es——
~

J
~

s [
sink

~
(5.6)

Extrapolation of the appropriate energy differences
versus 1/N for N up to 11 yields the amplitude

~
J~ s to

within 5 to 10%%u~, which confirms the validity of extrapo-
lating the spectral properties.

Mattheiss" has given a plot of all the energy levels
versus k for X=6 and 8. The results for higher values of
E are more complex since there are more levels but
they do not difI'er much qualitatively and so we do
not present a 6gure. Mattheiss remarked that for
even X=2m, the antiferromagnetic ground state corre-
sponded to k=0 when m was even, but to k=x when m
was odd. For odd N=2m+1, we have found that the
two degenerate ground states are at k~+-,'m, and the
state at k= 0 or x is the higher according as ns is odd or

ferr'omagnetic ground state should be regarded as
nondegenerate.

For an Ising chain the 6rst excited states lie at an
energy DE&(0)=2~ J~ above the ground states, but at
the Heisenberg limit the ground state is the limit of a
continuum, and there is no anisotropy gap. (This may
be seen explicitly from the theoretical calculation of the
antiferromagnetic spin-wave states for p=1 by des
Cloizeaux and Pearson. ") To estimate the limiting
anisotropy gap BED(y) for intermediate values of y, we
have studied (a) the difference dEg(y, N) between the
"lowest excited state" E,(y,N) Lactually two degener-
ate (S'= &1) states which must be distinguished from
the higher component of the split ground state) and
the finite N ground state Es(y,N), and (b) the gap
AE~'(y, N) between E,(y,N) and the limiting ground
state N

~
J~ Bs(y, eo). At the Heisenberg limit E,(7,N)

becomes a continuum state and the fact that /)E~(1,N)
and dE~'(1,N) fall to zero like 1/N may be checked
from the values for small finite S.For other values of y
also, linear extrapolation with 1/N seems to be appro-
priate in estimating the limit. The two sets of values
form two distinct sequences but, as one would expect,
they tend to the same limiting value. In the case p=1,
the lowest excited state E,(1,N) becomes degenerate
with the continuum state (S'=0) split off the degener-
ate (y=0) ground state, and hence NAE~(1, N) =NAEs
tends to a limit Lwhich, as mentioned, is probably
~'~ J~ although NdE~'(1, N) appears to tend to a
slightly different value). Figure 25 shows the variation
with y of the gap for 6nite X and the estimated limit
AE~(y), which is probably accurate to within &0.05J.
The main feature of interest is the very slow increase in
the gap as (1—y) increases from zero to 0.3 or 0.4.

The problem of the antiferromagnetic spin-wave
spectrum has recently been studied in detail by des
Cloizeaux and Pearson, " who computed numerically
the lowest category I states for p= 1 and rings of X=6,
8, 16, and 48 spins. They showed analytically that the
limiting dispersion law is

O,5 -apl

-o.sg

0 0.& 0.$ 0.6
q

0.8
0

4.0

Fra. 25. Antiferromagnetic anisotropy gap nE&(y, ft/)
and the estimated limit DER(y).

even."As Mattheiss says, there seems to be no direct
physical interpretation of these facts.

It would be of interest to decide how well the higher
antiferromagnetic states can be represented as super-
impositions of spin waves obeying (5.6). The situation
seems appreciably more complex than for the ferro-
magnetic chains, and although the exact spectra do
display levels that lie roughly on curves

( J~m((sinki~
+

~
sinks~) with k=ki+ks, we have not been able to

discover any simple numerical correlations, and some
low-lying states (presumably "bound states") are
definitely not representable in this way.

(N) =4(S *S*)=(4/N) P (S,'S;,*) (6.1)

can be calculated from the detailed expansion of the
ground-state wave function in the basis of functions of
definite "up" and "down" spins. Numerical results for
/=4, 6, 8 and 10, and y=0.1, 0.3, , 1.0 are given in
Table II. For fixed I the convergence in the case of E
even is not regular: for y&0.3 it is monotone increasing
and for y&0.8 monotone decreasing, the curves for
different E crossing in the intermediate region. How-
ever, the convergence is quite rapid for p &0.3 for all 3,
and for /& ~S in the case of y& 0.8. In the case of E odd
the convergence for /&-,'X is monotone increasing for
all y but rather slow. (These values are not tabulated. )
The case of l=-,'S is of special interest and will be
discussed later.

Despite the relatively erratic convergence, extrapola-
tion procedures for the limit N —& ~ may be attempted
and their accuracy checked against Orbach's exact
calculation' of the limiting zero-temperature short-

4' More precisely, the ground states are at k=&7rm/E for m
even and )t = &s.(m+1)/X for m odd.

6. ANTIFERROMAGNETIC CORRELATIONS
AND ORDER

For an antiferromagnetic chain at zero temperature
the pair-correlation functions
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TAnLx II. Antiferromagnetic ground state correlation functions ca~(Ar, y). LNote that coo =—1.)

N E

10 1
2
3

5

8
2
3
4

6 1
2
3

y =0.1
—0.99001

0.98005—0.97998
0.97988—0.97989

—0.98972
0.97948—0.97936
0.97921

—0.98821
0.97645—0.97648

—0.98113
0.96225

y =0.3
—0.90791

0.81790—0.81203
0.80441—0.80475

—0.90139
0.80498—0.79910
0.79102

—0.89102
0.78410—0.78616

—0.88125
0.76249

y =0.5
—0.77658

0.56583—0.54351
0.51181—0.51510

—0.77381
0.55947—0.54364
0.51598

—0.77359
0.55640—0.56561

—0.78868
0.57735

7 =0.7
—0.67994

0.38839—0.35953
0.31041—0.31865

—0.68355
0.39250—0.37551
0.33311

—0.69291
0.40440—0.42298

—0.72542
0.45084

y= 0.9

—0.62221
0.28782—0.26199
0.20558—0.21839

—0.62819
0.29464—0.28238
0.23186

—0.64155
0.31068—0.33826

—0.68282
0.36564

—0.60206
0.25407—0.23117
0.17307—0.18781

—0.60852
0.26104—0.25194
0.19883

—0.62284
0.27735—0.30902

—0.66667
0.33333

range order rot(y). In Fig. 26 this exact result (a) is
compared with an extrapolation estimate (b) based on
sequences of means, 10/9, 9/8, 8/7, etc. , which show
monotone increasing behavior for all y. As may be seen,
the agreement is very good (to within 1%) and a similar
technique has therefore been applied to estimate the
limiting curve for the cases ~us(y) ~, ~&os(y) ~, and

~
ce4(y)

~
(see Fig. 27). However, as the value of / succes-

sively increases, the accuracy is expected to fall off
somewhat, since there are fewer points to extrapolate.

Also shown in Fig. 26 are sums of Walker's perturba-
tion series'

~r= 1—V'+-'v' —(7/2')v' —(9/2'h"
—(11/2')y"+ (13/2")y"+ . (6.2)

truncated at y" Lcurve (c)g and at y' /curve (d)]. In
the former case the error is detectable only for y&0.85
and reaches a maximum of only 6'P~ at y=1. In the
latter case, however, the deviations are significant for
y&~0. /. Curve (e) is derived from Davis's perturbation

M„(y) = llm
~

llm Q)g(y, N)
~
.

$—zoo +—+op

(6.3)

To estimate ot„(y) we have formed the minimum

expansion" and is evidently less accurate than the
extrapolations once 7&0.40 and seriously in error for
~&0.85.

An appreciation of the decay of the correlations with
distance 1 (as well as of the convergence in N) can be
gained from Fig. 28,'which shows the finite ring correla-
tions for y=0.3, 0.5, and 1.0. An alternating effect is
evident, the values of

~
&u~

~
for even / being lower relative

to those for odd l than might be expected. For /& —,'E
the correlations, of course, start increasing as the points
0 and 1 approach one another around the closed ring.
Nevertheless, it is clear for p=0.3, and reasonably so
for p=0.5, that the correlations for l&~S are decaying
to a constant level of about 0.8 and 0.5, respectively.
These values may be identified with the long-range
order ce„(y) defined by

0.2
~ s

O.!„O.6 0.8 1.0 0
L.O

0.2 0.4. 0.6 0.8 L.O

- ~s(~) -0.5

O. 'f-

-O.S

-o.|'

yo

0.5-

-o.b

-0.4

0.2 O.6

'-0.4

4.0 Q 9.5 &.0

Fzo. 26. Comparison oi (a) the exact value of &oj(y) with
(b) present extrapolations, (c) Walker's perturbation series to
y", (d) to y' and (e) Davis's perturbation series.

Fzo. 27. Variation of the pair correlations ~ca~~ with p for i=1
(exact) and 1=2, 3, 4 (estimated) and I= ~, the final estimate of
the long-range order,
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means for S even
04 c-

6 8 10
$.0

and attempted to extrapolate to the limit X= , which
should agree with (6.3). These means are taken to
reduce the alternation effects.

In this case we felt it was not advisable to use the
results for odd X in forming the estimate because, with
the above definition of long-range order, interference
effects around the chain occur near the Ising limit. (Note
that for X odd and y=0, pp~(1V) =1—21/X, 0&~l(-,'X.)
For this reason we do not expect the limiting result for
co„ to have accuracy comparable with our estimate for
cur. (An estimate for cot using results for even X only
gives a result accurate to about 2.5%.) Figure 29 shows

a plot of rp;„(Ã) versus 1/S. The points for E)4
appear reasonably collinear but care must be taken in
extrapolation since curvature is to be expected for
y(0.7. (A similar, though less marked, effect occurs in

the case of the short-range order. ) For y(0.3, the
over-all range of variation is slight and an estimate can
be made with some confidence: The limiting values
here must, in fact, lie very close to the values for S=10.
For y&0.7 a linear extrapolation would seem to be
reliable. For intermediate y some'attempt has been
made to allow for curvature effects but we would not
claim very high accuracy for our results in this range.
In fact, for 0.4&p&0.6, we have probably under-

estimated by several percent. We feel justified in con-

cluding, however, that the long-range order vanishes

only at the Heisenberg limit y=1. In view of our
conclusions regarding the asymptotic degeneracy of the
ground state (and the vanishing of the anisotropy gap
at y= 1) this is perhaps not unexpected.

To compare our estimate of the long-range order with
other approximations we must recognize that most
authors have used as an order parameter the so-called

p.5

0.&

0.6

-o.e

-o.&

0.5-

-0.4

d
0.& 0.2

~ -0.2

0

Fro. 29. Plot of e; (y,fl') versus 1/E. Extrapolation
yields an estimate of the long-range order.

"sublattice magnetization'" ' ' ~

= (2/-,'Ã)( Q S,') =2(Sp'),
j eve~

(6.5)

where

Mp(T) = lim lim (1/N)M~(T, H),
H—+0+ X—&oo

(6.6)

where the angular brackets denote the canonical
average. If this formula is interpreted literally, it is
easily shown (on the grounds of spin reversal symmetry)
that 0- always vanishes identically. Although this seems
to have given rise to some confusion in the litera-
ture, """the situation really parallels that in the
ferromagnetic case which is quite well understood. "If
the (reduced) spontaneous magnetization of a ferro-
magnet is defined simply by Mp ——(2/1V)(g, S;*),it also
vanishes identically. The correct definition is made
with the aid of a nonzero magnetic field, namely,

M~(T, H) =2 Q (S )sr=2K(Sp')~. (6.7)

0.$-

0.6-

O.g-

-O.S

-o.b

, By considering the finiteness of the susceptibility per
spin in the limit H ~ 0 )which implies the convergence
of the sum P~((Sp'Sr') —(Sp*)')j one can then see that

Mps(T) = lim (1/Ã)' Q (S'S')

0.2- ~ 0.2

=lim lim(Sp*Sp)=(p„(T), (6.8)

FIG. 28. Variation of ( cog (X) ~
with l for r =0.3, 0.5, and 1.0.

and rings of E=4, 6, 8, and 10 spins.

"W. Marshall, Proc. Roy. Soc. (London) A232, 48 (1955).
4s G. W. Pratt, Jr. , Phys. Rev. 122, 489 (1961).
4'N. Karayianis, C. A. Morrison, and D. E. Wortman, Phys.

Rev. 126, 1443 (1962).
5 See, for example, the discussion of the Ising model by G. F.

Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353 (1953).
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Lcurve (d)j." Also shown in Fig. 30 are the values
ce;„(10)Lcurve (e)$. Up to V=0.3, all approximations
agree well with the exact series but at this point Davis's
approximation (d) starts deviating seriously and
predicts a relatively large nonzero value for ce„(1).
Kasteleyn's approximation (c) falls away sharply to
zero at p.=0.483, which is surely incorrect. Our
estimated curve falls some 10%%uo below the series value
in the region y=0.45 to 0.65, although the trend is
very similar. In this region the series is probably still
converging rapidly, as suggested both by the numerical
magnitude of the terms, and by the agreement of the
exact short-range order with the corresponding series up
to v' (Fig. 26). Above v=0.7 we must expect the series
to deviate from the true value and indeed the series
for te(v) (rather than for Lo(v)$') then yields lower
values and has its zero at y=0.817 rather than at
v=0.897. As already observed our extrapolated at„(v)
does not vanish until y=1. Although we suspect this
is the true situation it would be of great interest to have
more precise information —ideally the rigorous answer—in the range above y=0.8.' At present it seems fair
to conclude that the exact series expansion provides the
best approximation up to y=0.75 and that the true
long-range order is unlikely to vanish for p&0.85 and
probably vanishes at y= 1.

In Fig. 27, therefore, we have plotted together with
cot(v) I exact] and our results for Ice2I

I
"sl and Ico4I

what we think is the best estimate so far for ce„(v).
This curve follows the series expansion up to y= 0.6, and
thereafter has the same form as our extrapolation curve
(a) in Fig. 30, approaching the latter from above and
in close agreement for y&0.8.

The excellent convergence of Walker's perturbation
series in y suggests that this approach should be
developed further for two- and three-dimensional
lattices where convergence seems to be even better. We
remark in passing that it is possible to calculate exactly
the y' correction to the energy and specific heat for all
temperatures in the case of two-dimensional lattices for
which the Ising problem has been solved, by expressing
the perturbation in terms of the multiple correlation
functions for y=0."
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FIG. 30. Comparison of diferent approximations for the long-
range order co„(y): (a) extrapolation estimates, (b) Walker's
perturbation series to v', (c) Kasteleyn's variational formula,
(d) Davis s perturbation series, (e) co; for a finite chain of
10 spins.

i.e., the long-range order is just equal to the square of
the spontaneous magnetization.

For an antiferromagnetic one must introduce a
"staggered" magnetic field B* by adding

'

to the
Hamiltonian a term

N—1

3(.*=H* P (—) S;.
j'=0

(6 9)

With the aid of the corresponding "staggered magnet-
ization" the sublattice magnetization may be defined
properly by

o.= lim lim (1/1V)Miv*(H*),
K*-+0+ N—+~

= lim
I
(Ss')„~—(5,')„*]. (6.10)

In a similar way one can then conclude that the
long-range order defined by (6.3) is related to o by"

CO =0.~. (6.11)
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Lcurve (b)7,' with Kasteleyn's variational formula
Lcurve (c)),'4 and with Davis's perturbation formula

"Strictly it may be necessary to dehne the long-range order as
an average over the two sublattices Le.g., if the limit in (6.3)
differs as l ~ aa through even or through odd integers j. "The technique is similar to that expounded in Ref. 43.

We, thus see that the two-order parameters are equiv-
alent. One may, of course, avoid the somewhat arti-
6cial introduction of a staggered 6eld by sticking to the
definition (6.3) in terms of the correlation functions
which, as argued by Ruijgrok and Rodriguez, "also has
other features to recommend it. In practice, however, it
is often easier to compute o (or 3fs) than to compute
co„directly.

With these preliminaries we may compare our
estimate of ce„(v) Lcurve (a) in Fig. 30j with Walker's
exact perturbation expansion

~(v) =1 v' 'v' :sv'+——-——(6.12)
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