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Integrable and nonintegrable classical spin clusters: trajectories and geometric
structure of invariants

N. Srivastava,1 C. Kaufman,1 G. Müller,1 R. Weber,2 and H. Thomas2

1 Department of Physics, University of Rhode Island, Kingston RI 02881, USA
2 Institut für Physik, Universität Basel, Switzerland

This study investigates the nonlinear dynamics of a pair of exchange-coupled spins with biaxial
exchange and single-site anisotropy. It represents a Hamiltonian system with 2 degrees of freedom
for which we have already established the (nontrivial) integrability criteria and constructed the in-
tegrals of the motion provided they exist. Here we present a comparative study of the phase-space
trajectories for two specific models with the same symmetry properties, one of which (the XY model
with exchange anisotropy) is integrable, and the other (the XY model with single-site anisotropy)
nonintegrable. In the integrable model, the integrals of the motion (analytic invariants) can be
reconstructed numerically by means of time averages of dynamical variables over all trajectories. In
the nonintegrable model, such time averages over trajectories define nonanalytic invariants, where
the nonanalyticities are associated with the presence of chaotic trajectories. A prominent feature in
the nonintegrable model is the occurrence of very long time scales caused by the presence of low-flux
cantori, which form ”sticky” coats on the boundary between chaotic regions and regular islands or
”leaky” walls between different chaotic regions. These cantori dominate the convergence properties
of time averages and presumably determine the long-time asymptotic properties of dynamic correla-
tion functions. Finally, we present a special class of integrable systems containing arbitrarily many
spins coupled by general biaxial exchange anisotropy.

I. INTRODUCTION

This is the second paper of a projected series on the dy-
namical properties of integrable and nonintegrable clas-
sical spin clusters. In the first paper [1], we examined in
detail the problem of integrability of a pair of exchange-
coupled classical spins with biaxial exchange and single-
site anisotropy. It represents the simplest autonomous
spin system for which the integrability problem is non-
trivial. We found that such a system is completely in-
tegrable only if the model parameters satisfy a certain
condition. For the integrable cases, the second integral
of the motion (in addition to the Hamiltonian), which
guarantees integrability, was determined explicitly.

Whereas [1] emphasized the integrability criteria and
the analytic structure of invariants, the focus of the
present paper is the study of the geometric structure of
invariants., i.e. of analytic invariants in integrable cases
and of nonanalytic invariants in nonintegrable cases [2].
A study of this kind must include an investigation of the
nature and the properties of phase-space trajectories for
integrable and for nonintegrable cases, given the fact that
invariants can be determined as time averages of dynam-
ical variables along trajectories. A further objective of
this paper is to prepare the ground for the third paper of
this series, which will report a study of time-dependent
correlation functions for classical spin clusters.

The results of the present study should be viewed not
only in the context of chaos in classical Hamiltonian sys-
tems, which continues to challenge researchers with im-
portant unresolved issues, but also in the context of quan-
tum chaos, which has triggered considerable excitement
recently in theoretical and experimental physics [3]. As
was pointed out in a recent conceptual study [4], the
various aspects of chaos in classical and quantum Hamil-

tonian systems can conveniently be investigated and put
in relation to one another, by studying models of N in-
teracting quantum spins, each with quantum number s,
either in the classical limit: N finite, s → ∞, or in the
thermodynamic limit: s finite, N →∞.

Finally, in a materials science context, spin clusters
feature prominently in a variety of compounds [5, 6], and
spin cluster models play a crucial role in the study of
magneto-structural correlations, i.e. in the study of the
relationship between the observed magnetic properties of
a material and its chemical and structural characteristics
[7], particularly in studies of the nature of superexchange
interactions [5].

II. INTEGRABILITY CONDITIONS FOR
CLASSICAL SPIN CLUSTERS

Consider a system of N localized classical three-
component spins Sl, l = 1, . . . , N specified by some inter-
action Hamiltonian H(S1, . . . ,SN ). Its time evolution is
governed by the equation of motion

dSl/dt = {H,Sl}, l = 1, . . . , N. (II.1)

The Poisson brackets for classical spin variables (the sym-
plectic structure for classical spin dynamics) are con-
structed via the condition that the Sl are angular mo-
mentum vectors:

{Sαl , S
β
l′} = −δll′

∑
γ

εαβγSγl . (II.2)

This guarantees that the Hamilton equation of motion
(II.1) is consistent with the Heisenberg equation of mo-
tion for quantum spin operators. If the classical spins Sl
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are expressed in terms of spherical coordinates as

Sl = S(sinϑl cosφl, sinϑl sinφl, cosϑl) (II.3)

then a set of canonical variables is given by pl =
S cosϑl, ql = φl. Therefore, a system of N classical spins
specified by an energy function H(S1, . . . ,SN ) represents
an autonomous Hamiltonian system of N degrees of free-
dom. The system is completely integrable if there exist
N distinct integrals of the motion in involution:

Ik(S1, . . . ,SN ) = const, k = 1, . . . , N (II.4)

with {Ik, Ik′} = 0 for k, k′ = 1, . . . , N .
In [1] we have studied the integrability problem for

a system of two exchange-coupled spins, specified by a
Hamiltonian of the general form

H =
∑
α=xyz

{
− JαSα1 Sα2 +

1
2
Aα
[(
Sα1
)2 +

(
Sα2
)2]} (II.5)

which includes both exchange and single-site anisotropy.
We have shown that an independent integral of the mo-
tion (in addition to H) quadratic in the spin variables
exists if and only if the model constants satisfy the equa-
tion

(Ax −Ay)(Ay −Az)(Az −Ax)

+
∑

αβγ=cycl(xyz)

J2
α(Aβ −Aγ) = 0. (II.6)

If Ax = Ay = Az, the second invariant has the form

I =−
∑

αβγ=cycl(xyz)

JαJβS
γ
1S

γ
2

+
1
2

∑
α=xyz

J2
α

[(
Sα1
)2 +

(
Sα2
)2]

. (II.7)

If not all three Aα, are equal, it is given by

I =
∑
α=xyz

gαS
α
1 S

α
2 , (II.8)

gα = Jα(Jα + Jβ + Jγ) + (Aα −Aβ)Jγ
+ (Aα −Aγ)Jβ − (Aα −Aβ)(Aα −Aγ) (II.9)

with αβγ = cycl(xyz). Moreover, we have provided nu-
merical evidence that the violation of condition (II.6) im-
plies not only the nonexistence of a quadratic invariant
but the nonexistence of a second independent analytic
invariant in general.

For the case of pure exchange anisotropy (Ax = Ay =
Az = 0), it can be readily shown that the property of
complete integrability extends to clusters of more than
2 spins, in fact, to a special class of clusters with arbi-
trarily many spins. Let us rewrite the integrable 2-spin
Hamiltonian (II.5) for Ax = Ay = Az = 0 in the form

H(2) = −S1 · J · S2, Jαβ = Jαδαβ . (II.10)

Now consider the N -spin Hamiltonian characterized by
the same type of anisotropic bilinear exchange interaction

H(N) = −TA · J ·TB = −
∑
l∈A

∑
l′∈B

Sl · J · Sl′ (II.11)

where

TA =
∑
l∈A

Sl, TB =
∑
l′∈A

Sl′ . (II.12)

It represents a model consisting of two arrays of spins,
A and B, such that all NA spins of array A interact
with each of the NB = N − NA spins of array B, but
spins belonging to the same array do not interact di-
rectly. This class includes the case of a two-sublattice
antiferromagnet with constant inter-sublattice and zero
intra-sublattice coupling. Hamiltonian (II.11) describes
an effective 2-spin system consisting of the two array-
spins TA and TB whose equations of motion read:

ṪA = TA × (J ·TB), ṪB = TB × (J ·TA). (II.13)

This system is integrable, for it is equivalent to the model
(II.5) with Ax = Ay = Az = 0 and S1 ≡ TA, S2 ≡
TB now representing spins of generally unequal length.
Explicit solutions for special cases of this model will be
discussed in Sect. III. For given solutions TA(t) and
TB(t), the time evolution of the individual spins Sl is
then governed by a set of linear and decoupled vector
equations,

Ṡl = Sl × (J ·TB(t)), l ∈ A, (II.14)

each one representing the motion of a single spin Sl of ar-
ray A in a time-dependent external field h(t) = J ·TB(t),
and correspondingly for A↔ B.

A complete set of N independent integrals of the mo-
tion in involution for this system consists of two invari-
ants which govern the time evolution of the two vectors
TA and TB and of N − 2 = (NA − 1) + (NB − 1) invari-
ants which govern the time evolution of the individual
spins in arrays A and B. The first two invariants are the
effective 2-spin Hamiltonian H(N), (II.11), and its sec-
ond invariant (II.7) with S1 and S2 replaced by TA and
TB , respectively. The remaining N −2 invariants can be
selected as follows:

IAl = Sl ·
∑
k∈A<l

Sk, l ∈ A = 2, . . . , NA (II.15)

and A ↔ B. These latter invariants ensure the fixed
length of the vectors TA and TB . In fact, all scalar
products Sl · Sl′ , of spins belonging to the same array
Aor B are conserved. Since the number of independent
scalar products is (2NA−3)+(2NB−3) = 2N −6, there
are – together with (II.11) and (II.7) – at least 2N −
4 independent invariants. This reduces the maximum
number of independent frequencies to 4, irrespective of
the size of arrays A and B.
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It is interesting to compare this result with that for an-
other class of completely integrable N -spin systems: the
“complete clusters”, where every spin is coupled to every
other spin by a uniform isotropic exchange interaction
(Kittel-Shore model)

H = −1
2

∑
l 6=l′

Sl · Sl′ . (II.16)

This model possesses 2N − 1 independent invariants [8]
and, therefore, only a single frequency in its time evo-
lution, which characterizes the precession of every spin
about the direction of the total spin, as discussed in [1].

The first column of Fig. 1 shows the spin clusters
containing up to N = 6 spins which are integrable for
general anisotropic bilinear exchange interaction. The
second column shows those spin clusters which are inte-
grable only for fully isotropic exchange interaction. The
third column, finally, shows some of the remaining types
of clusters for these values of N , which are presum-
ably nonintegrable [9]. Some noteworthy observations
are the following: The closed chain of 3 spins coupled
by isotroplc exchange interaction (integrable) and uni-
axially anisotropic exchange interaction (nonintegrable)
was previously studied in some detail [10]. It is interest-
ing to note that by breaking one of the 3 bonds the sys-
tem turns integrable even for biaxial exchange anisotropy.
This is in strong contrast to the 4-spin cluster: here the
closed chain is integrable for the most general (biaxially
anisotropic) interaction, but the open chain is noninte-
grable even for the most symmetric interaction. Consider

FIG. 1: Classical spin clusters containing up to N = 6 spins
which are integrable for arbitrary exchange anisotropy (col-
umn I), clusters which are integrable only for isotropic ex-
change interactions (II) and clusters which are presumably
nonintegrable for any type of bilinear interaction (III)

a complete cluster for arbitrary even N . It is integrable
for isotropic Heisenberg coupling but turns nonintegrable
in the presence of uniaxial or biaxial exchange anisotropy.
Integrability is restored, however, by breaking roughly
half of the bonds.

III. THE XY MODEL WITH EXCHANGE
ANISOTROPY: AN INTEGRABLE MODEL

A special case of the general classical two-spin model
(II.5) for which dynamical integrability was established in
[1] is the XY model with exchange anisotropy, described
by the Hamiltonian

Hγ = −(1 + γ)Sx1S
x
2 − (1− γ)Sy1S

y
2 . (III.1)

The two integrals of the motion which guarantee integra-
bility are the energy

E ≡ Hγ = const (III.2)

and the function

I ≡ (1 + γ)2
[
(Sx1 )2 + (Sx2 )2

]
+ (1− γ)2

[
(Sy1 )2 + (Sy2 )2

]
− 2(1− γ2)Sz1S

z
2 = const. (III.3)

For the two special cases γ = 0 (isotropic XY model) and
γ = 1 (Ising model), a second integral of the motion is
guaranteed by the conservation of the component of the
total spin along the symmetry axis:

Mz ≡
1
2

(Sz1 + Sz2 ) = const (γ = 0) (III.4)

Mx ≡
1
2

(Sx1 + Sx2 ) = const (γ = 1). (III.5)

In fact the two general invariants E and I can be com-
bined to a new second invariant,

I ′ ≡ I − 4γE

= 2γ(1 + γ)(Sx1 + Sx2 )2 − (1− γ2)(Sz1 + Sz2 )2

− 2γ(1− γ)(Sy1 − S
y
2 )2 + 2(1− γ2) = const (III.6)

which reduces to a quadratic function of Mz orMx in the
two limits γ = 0 and γ = 1, respectively. In the following,
we analyze the spin motion of this integrable spin model
for cases of increasing complexity. The results will then
be compared (in Sect. 4) with corresponding results for
the spin motion of a nonintegrable spin model which has
the same symmetry properties.

A. Trajectories for γ = 1: simple precession

The Ising limit γ = 1 is the only case for which the
equations of motion of the model Hγ , (III.1), are effec-
tively linear. We have

Ṡx1 = 0, Ṡy1 = 2Sz1S
x
2 , Ṡz1 = −2Sy1S

x
2 (III.7)
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and 1↔ 2 with the simple solution

(Sx1 , S
y
1 , S

z
1 ) = S

(
cosβ1, sinβ1 sin(ω1t+ ψ1),

sinβ1 cos(ω1t+ ψ1)
)

(III.8)

where

ω1 = 2 cosβ2 (III.9)

and 1 ↔ 2 (β1,2 and ψ1,2 are constants of integration).
Thus both spins precess uniformly about the symmetry
axis, and the precession frequency of one spin depends
on the (constant) angle of the other spin with respect
to that axis. This explicit dynamical solution is readily
generalized to an ”Ising model”

H = −
∑
ij

JijS
x
i S

x
j (III.10)

on an arbitrary lattice. The precession frequency of any
spin then depends on the (constant) angles with respect
to the symmetry axis of all spins with which this spin is
coupled. The simplicity of the dynamics of this model
is related to the fact that the time evolution of any par-
ticular spin depends only on the initial conditions of the
spins with which it is coupled, but not on their time evo-
lution. Hence, this model does not support any collective
modes.

B. Trajectories for γ = 0:
particle in a one-dimensional potential

In the isotropic limit γ = 0 of Hγ , the time evolution
of the two spins is strongly coupled. The equations of
motion can nevertheless be solved explicitly as outlined
in the following. In terms of the spherical coordinates
(II.3) we have four independent equations of motion of
the form

ϑ̇1 = sinϑ2 sin(φ1 − φ2),

φ̇1 = cotϑ1 sinϑ2 cos(φ1 − φ2) (III.11)

and 1 ↔ 2 determining the time evolution of Hγ=0. In-
troducing two new variables

z =
1
2

(cosϑ1 − cosϑ2), ζ = tan(φ1 − φ2) (III.12)

and making use of the two integrals of the motion

E = − sinϑ1 sinϑ2 cos(φ1 − φ2) = const (III.13)

Mz =
1
2

(cosϑ1 + cosϑ2) = const (III.14)

we can combine (III.11) to a closed set of two equations

ż = Eζ, ζ̇ = −2z
E

(1 +M2
z − z2) (III.15)

which in turn can be formulated as Newton’s equation of
motion

z̈ = −2z(1 +M2
z − z2) ≡ −V ′(z) (III.16)

for a fictitious particle of unit mass in a 1D anharmonic
potential

V (z) = (1 +M2
z )z2 − 1

2
z4. (III.17)

This potential, which is depicted in Fig. 2, has the form
of an inverted double well. It is useful to introduce a new
integral of the motion, the particle energy:

U(E,Mz) =
1
2
ż2 +V (z) =

1
2
[
(1−M2

z )2−E2
]
. (III.18)

The mapping to the spin problem imposes the constraints

1−M2
z ≤ |E| ≤ 1 (III.19)

on the constants E and Mz. The potential problem is
then readily solved in terms of Jacobi elliptic functions:

z(t) = z0sn
(
at,

z0

a

)
,

ζ(t) =
az0

E
cn
(
at,

z0

a

)
dn
(
at,

z0

a

)
(III.20)

where

a =
[
1 +M2

z +
√

4M2
z + E2

]1/2
(III.21)

is a constant and

z0 =
[
1 +M2

z −
√

4M2
z + E2

]1/2
(III.22)

is the maximum displacement of the fictious particle for
a given energy U(E,Mz). The function z(t) provides

FIG. 2: Anharmonic potential V (z) given by (III.17). The
maximum displacement of the particle is |z0| = 1 and its
maximum energy is U = 1/2; both values are realized for
E = Mz = 0. Shown is the curve for Mz = 1/2.
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(in conjunction with the invariant (III.14)) a complete
description of the meridional motion of the two spins. In
order to complete the description of the spin motion, we
have to supplement the function ζ(t), which characterizes
the relative azimuthal motion of the two spins, by the
overall precessional motion of the spins about the z-axis.
It is readily found that this motion can also be expressed
in terms of the solutions (III.20), namely through the
relation

Φ̇ =
d
dt

1
2

(φ1 + φ2) = −Mz

E

1−M2
z + z2(t)

1 + ζ2(t)
. (III.23)

Note that the angle Φ(t) = 1
2 (φ1 + φ2) is then a mono-

tonically increasing or monotonically decreasing function
depending on the signs of the invariants E,Mz. The mo-
tion of each spin thus consists, in general, of a nonuni-
form precession about the symmetry axis accompanied
by a periodic nutational wiggle with both meridional and
azimuthal components.

In general, the time evolution of this system is charac-
terized by two independent frequencies. The first fre-
quency is determined by the period of the functions
(III.20) as

τ1(E,Mz) = 4/aK(z0/a) = 2π/ω1(E,Mz) (III.24)

where K(x) is a complete elliptic integral, and the second
frequency by the secular term in the time integral of the
periodic function (III.23):

ω2(E,Mz) =
1
τ1

∫ τ1

0

dt Φ̇(t). (III.25)

In the following special situations the spin motion is
particularly simple: (i) U = 0 i.e. E = ±(1−M2

z ): The
fictitious particle is at rest at z = 0 implying that both
spins point to the same latitude (ϑ1 = ϑ2) and to the
same meridian (φ1 = φ2, E < 0) or to opposite meridians
(φ1 = φ2 +π,E > 0). The motion of both spins is then a
uniform precession according to (III.23) with z ≡ ζ ≡ 0.
(ii) Mz = 0 i.e. U = 1

2 (1−E2). There is no precessional
motion: Φ ≡ 0. The combined meridional and azimuthal
motion is strictly periodic as opposed to quasiperiodic in
the general case. (iii) E = 0 i.e. U = 1

2 (1 −M2
z )2: The

spin motion is purely meridional with φ1−φ2 = ±π/2 =
const and Φ̇ = 0.

Finally, we might mention the static solutions repre-
senting the two types of equilibrium states: (i) spins
parallel or antiparallel in the xy-plane (E = 0, U = 0);
(ii) spins parallel (E = 0, U = 0) or antiparallel (E =
0,Mz = 0) along the z-axis. In the (z, ż) phase plane
of the meridional motion, the solutions for E = U = 0
are represented by an elliptic fixed point at z = 0 and
the solutions for E = Mz = 0 by a pair of hyperbolic
fixed points at z = ±1. The (non-periodic) motion along
the separatrix which connects the two hyperbolic fixed
points is obtained from (III.20) for a = z0 = 1:

zsep(t) = ±tanh(t). (III.26)

C. Trajectories for arbitrary γ:
invariant tori and fixed points

For general γ, the spin motion of the integrable model
H is considerably more complex except for special initial
conditions. The equations of motion for the four angular
variables read

ϑ̇1 = sinϑ2

[
sin(φ1 − φ2) + γ sin(φ1 + φ2)

]
φ̇1 = cotϑ1 sinϑ2

[
cos(φ1 − φ2)

+ γ cos(φ1 + φ2)
]

(III.27)

and 1↔ 2, and the two integrals of the motion are

E = − sinϑ1 sinϑ2

[
cos(φ1 − φ2)

+ γ cos(φ1 + φ2)
]

= const (III.28)

I = (1 + γ2)(sin2 ϑ1 + sin2 ϑ2)

− 2(1− γ2) cosϑ1 cosϑ2 (III.29)

+ 2γ(sin2 ϑ1 cos 2φ1 + sin2 ϑ2 cos 2φ2) = const.

The increase in complexity is obviously related to the fact
that the second invariant, I, can no longer be used to dis-
entangle the meridional and the azimuthal motion as in
the limit γ = 0 [11]. Since the model Hγ is integrable, all
trajectories in the 4D phase manifold (ϑ1, ϑ2, φ1, φ2) are
confined to 2D invariant tori. Any particular 2D invari-
ant torus is obtained geometrically as the intersection in
4D phase space of two 3D hypersurfaces E = const and
I = const corresponding to particular values of the two
integrals of the motion (III.28) and (III.29). On the sur-
face of section defined by ϑ2 = π/2, which we shall use
throughout this paper, the two analytic invariants E and
I are represented by 2D surfaces and the invariant tori
by 1D objects (lines).

The existence of the two analytic invariants E and I
implies that the entire 3D reduced space (ϑ1, φ1, φ2) cor-
responding to the Poincaré cut hyperplane ϑ2 = π/2 is
foliated by two sets of smooth surfaces. The fact that the
Poincaré cut of any trajectory is confined to the intersec-
tion of two such smooth surfaces, which always results
in a set of smooth lines or a finite set of isolated points,
imposes a severe limitation on its degree of complexity.
This is in contrast to the nonintegrable model to be dis-
cussed in Sect. IV, where E = const is the only set of
smooth surfaces in (ϑ1, φ1, φ2)-space.

In the following, we study the question how the set
of phase-space trajectories changes its character as the
anisotropy parameter is varied between the two limits
γ = 0 and γ = 1 discussed previously. For an optimal
perspective of the phenomena of interest, we study se-
lected trajectories specified by the following two types of
initial conditions:

(i) ϑ
(0)
1 = ϑ

(0)
2 = π/2, −π/2 ≤ φ(0)

1 ≤ π/2.

(ii) ϑ
(0)
2 = π/2, φ

(0)
1 = −π/4, 0 ≤ ϑ(0)

1 ≤ π/2.
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The fourth angle, φ(0)
2 , is determined [12] by the value

of the energy, in this case E = −0.09957501. In Fig. 3
we present a series of graphs representing the projection

onto the (ϑ1, φ1)-plane of the Poincaré surface of section
(ϑ2 = π/2, ϑ̇2 > 0) of a number of such trajectories.

FIG. 3: Three sets of phase-space trajectories for the integrable classical 2-spin model Hγ with (a) γ = 0.01, (b) γ = 0.1 and
(c) γ = 0.5, all for the same energy E = −− 0.09957501 and with initial conditions as specified in the text. The graph of each
trajectory results from an integration over a time interval of length ∆t = 2000. Each one of the three plots shows the projection
onto the (ϑ1, φ1)-plane of the Poincaré surface of section (ϑ2 = π/2, ϑ̇2 > 0) of the tori. For all the trajectories represented in

Fig. 3, the alternative Poincaré surface of section (ϑ2 = π/2, ϑ̇2 < 0) shows exactly the same pattern but reflected at the axis
φ1 = 0. The dashed line in (c) specifies a line of initial conditions for which time averages of a dynamical variable over single
trajectories are presented in Fig. 6 (see discussion in Sect. V).

Figure 3(a) shows a set of trajectories for the case of
very weak exchange anisotropy: γ = 0.01. We observe a
pattern which is typical for integrable models: two sets
of closed curves (cuts through tori) winding around el-
liptic fixed points, confined by a separatrix (not shown)
which connects a pair of hyperbolic fixed points. Curves
with a different topology are found on the other side of
the separatrix. As γ approaches zero, the regions with
the closed curves shrink and ultimately disappear. For
γ = 0, this particular cut through the tori leads to a set
of straight horizontal lines as a result of the conservation
law cosϑ1+cosϑ2 = const. In Fig. 3(b), which shows the
corresponding picture for a somewhat stronger exchange
anisotropy (γ = 0.1), we notice that what appeared to
be a single elliptic fixed point [in Fig. 3(a)] is actually a
pair of elliptic fixed points with a hyperbolic fixed point
in between. This hyperbolic fixed point is part of an-
other separatrix which separates curves winding around
one elliptic fixed point from curves winding around both.
Further increase of the exchange anisotropy results in a
distortion of the existing pattern with the curves winding

around one of the secondary elliptic fixed points becom-
ing more and more dominant [see Fig. 3(c)] until (in the
limit γ = 1 discussed in Sect. III.1) no other types of
trajectories are left.

The equations of motion of Hγ (or, in fact, of the more
general model (II.5)) are invariant under a symmetry
group generated by the twofold rotations Cx,y,z2 about the
coordinate axes, the inversion I in spin space combined
with time reversal, and the permutation P of the two
particles. Whereas the Poincaré hyperplane ϑ2 = π/2 is
invariant under all transformations not involving a parti-
cle permutation, the direction of any trajectory through
this plane is left invariant only by two transformations:

(a) Cz2 : (Sxl , S
y
l , S

z
l )→ (−Sxl ,−S

y
l , S

z
l )

(ϑl, φl)→ (ϑl, φl ± π)
(b) ICz2 : (Sxl , S

y
l , S

z
l )→ (Sxl , S

y
l ,−S

z
l )

(ϑl, φl)→ (π − ϑl, φl)

combined with time reversal.
The Poincaré cut of any trajectory then either has the
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symmetries (a) and (b) or is transformed into the cut of a
symmetry-equivalent trajectory. These general symme-
try properties are clearly reflected in Fig. 3.

The fixed points in the Poincaré surface of section rep-
resent special kinds of periodic phase-space trajectories.
Further periodic trajectories can be found in abundance
on rational tori, which are dense in phase space. Most
of them disappear if the model is subjected to a noninte-
grable perturbation. It is interesting that some of these
fixed-point periodic trajectories can be analyzed exactly,
in fact not only for the integrable model Hγ but also for
its nonintegrable counterpart Hα to be discussed in Sect.
IV. This is due to the fact that any submanifold of the
phase space consisting of all points which are invariant
under some subgroup of the symmetry group is invariant
under the time evolution of the system. For the models
Hγ and Hα, there exist four such submanifolds of dimen-
sion 2:

(i) PCx2 : Sx1 = Sx2 , S
y
1 = −Sy2 , Sz1 = −Sz2

→ ϑ1 = π − ϑ2, φ1 = −φ2

(ii) PCy2 : Sx1 = −Sx2 , S
y
1 = Sy2 , S

z
1 = −Sz2

→ ϑ1 = π − ϑ2, φ1 = π − φ2

(iii) PCz2 : Sx1 = −Sx2 , S
y
1 = −Sy2 , Sz1 = Sz2

→ ϑ1 = ϑ2, φ1 = φ2 + π

(iv) P : Sx1 = Sx2 , S
y
1 = −Sy2 , Sz1 = Sz2

→ ϑ1 = ϑ2, φ1 = φ2.

All trajectories confined to one of these submanifolds rep-
resent the time evolution of a dynamical system with
only one degree of freedom, and the equations of motion
(III.27) can be solved explicitly. The dynamical problem
again reduces to that of the bounded motion of a ficti-
tious particle of unit mass in a 1D quartic potential, and
the most general solution is expressible in terms of Ja-
cobi elliptic functions. The two types of hyperbolic fixed
points in Fig. 3(b) correspond to periodic trajectories
of this kind with symmetries PCx2 andPCy2 , respectively
[13].

IV. THE XY MODEL WITH SINGLE-SITE
ANISOTROPY: A NONINTEGRABLE MODEL

In this section we study the dynamical properties of an-
other XY-type 2-spin model, the XY model with single-
site anisotropy, described by the Hamiltonian

Hα =− (Sx1S
x
2 + Sy1S

y
2 )

− 1
2
α
[(
Sx1
)2 − (Sy1 )2 +

(
Sx2
)2 − (Sy2 )2], (IV.1)

The equations of motion (II.1) for Hα read

Ṡx1 = −Sz1S
y
2 + αSy1S

z
1

Ṡy1 = Sz1S
x
2 + αSx1S

z
1

Ṡz1 = Sx1S
y
2 − S

y
1S

x
2 − 2αSx1S

y
1 (IV.2)

and 1↔ 2. In contrast to Hγ , the model with exchange
anisotropy discussed in Sect. III, Hα is, in general, non-
integrable. In particular, the criterion (II.6) for the exis-
tence of a second integral of the motion is only satisfied
either for α = 0, which is identical to the case γ = 0 of
Hγ discussed in Sect. III.B, or for α = ±1. The inte-
grability of Hα=±1 is not obvious from the point of view
of simple symmetry considerations. The second integral
of the motion, which guarantees integrability in the two
limits, is

Mz =
1
2

(Sz1 + Sz2 ) = const (α = 0) (IV.3)

I = −Sx1Sx2 + Sy1S
y
2 + Sz1S

z
2 = const (α = 1) (IV.4)

A. Trajectories for α = 1:
an effective one-spin model

The time evolution of the integrable 2-spin model
Hα=1 can be mapped onto that of an effective (au-
tonomous) 1-spin model. In terms of the new variables

σx ≡ Sx1 + Sx2 , σy ≡ Sy1 − S
y
2 , σz ≡ Sz1 − Sz2

τx ≡ Sx1 − Sx2 , τy ≡ Sy1 + Sy2 , τz ≡ Sz1 + Sz2 (IV.5)

the two integrals of the motion (IV.1) and IV.4) read

E = −1
2
σ2
x +

1
2
σ2
y = const (IV.6)

2(1− I) = σ2
x + σ2

y + σ2
z = const. (IV.7)

Hamiltonian Hα=1 describes an effective one-spin sys-
tem: the spin a has length

√
2(1− I) and satisfies the

equations of motion

σ̇x = σyσz, σ̇y = σxσz, σ̇z = −2σxσy (IV.8)

which are integrable since the Hamiltonian does not de-
pend explicitly on time. Once the solution σ(t) of (IV.8)
has been determined, the equations of motion for the τµ,

τ̇x = σyτz, τ̇y = σxτz, τ̇z = −σyτx − σxτy (IV.9)

describe the motion of a spin τ in a time-dependent
external field h(t) = (σx(t), σy(t), 0). The solution of
Eqs. (IV.8) is readily obtained in terms of angular coor-
dinates ϑ, φ defined by

(σx, σy, σz) =
√

2(1− I)(sinϑ cosφ, sinϑ sinφ, cosϑ)
(IV.10)

again by mapping the effective 1-spin problem onto that
of a fictitious particle of unit mass in a quartic potential
V (u):

1
2
u̇2 + V (u) = E2/(I − 1) = const (IV.11)

with

V (u) = −(1− I)(1− u2)2 (IV.12)
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where

u = cosϑ, v =
−u̇√

2(1− I)(1− u2)
= sin 2φ. (IV.13)

Again the solutions are periodic Jacobi elliptic func-
tions. The second independent fundamental frequency
in this integrable 2-spin model Hα=1 makes its appear-
ance in the solution of the linear differential Eqs. (IV.9)
with time-dependent coefficients given by the solutions
of (IV.8).

B. Trajectories for arbitrary α: fixed points, tori
and chaos

As has already been pointed out, the two models Hγ

and Hα, which are identical for α = γ = 0, have the
same symmetry for nonzero α, and for γ 6= 0,±1. In
Sect. III.3 we have studied the Poincaré surface of section
(ϑ = π/2, ϑ̇2 > 0) of selected trajectories as they change
with increasing exchange anisotropy, which constitutes
an integrable perturbation of the rotational symmetry
(see Fig. 3). It is, therefore, most interesting to inves-
tigate how a corresponding set of trajectories changes
with increasing single-site anisotropy, which constitutes
a nonintegrable perturbation with the same symmetry.

For very weak single-site anisotropy, for example α =
0.01, we obtain a picture which is virtually indistinguish-
able from Fig. 3(a) representing the case of a very weak
exchange anisotropy (γ = 0.01). Qualitative differences
such as the presence of chaotic trajectories in Hα or dif-
ferences in the pattern of fixed points become visible
only on considerably smaller scales. However, already for
α = 0.1 and γ = 0.1, the differences between the trajecto-
ries of the two models become quite prominent [compare
Figs. 4(a) and 3(b)]. In particular, there are only two
pairs of fixed points on the line ϑ = π/2 in the noninte-
grable case: one pair of elliptic fixed points and one pair
of hyperbolic ones. Again one can determine analytically
four classes of periodic trajectories corresponding to the
symmetries (i)-(iv) discussed in Sect. III.3. As in the
model Hγ , these periodic solutions can be expressed in
terms of Jacobi elliptic functions [14]. The two hyper-
bolic fixed points are connected by a relatively narrow
chaotic ‘separatrix’. No further chaotic regions are visi-
ble on this scale.

As we move further away from the integrable limit
α = 0 by increasing the value of the anisotropy parame-
ter to α = 0.5, chaos becomes more widespread in phase
space [see Fig. 4(b)]. We now observe a broad band of
chaos around the primary elliptic fixed points of sym-
metry (i) and connecting the (primary) hyperbolic fixed
points of symmetry (ii). Outside of it, regular trajecto-
ries stay predominant. The destruction of the rational
tori about the primary elliptic fixed points now features
prominently. One such rational torus has left behind two
pairs of closed trajectories with period 2 in the cut and
with tori winding around them. These secondary elliptic

FIG. 4: Four sets of phase-space trajectories for the classical
2-spin model Hα with (a) α = 0.1, (b) α = 0.5, (c) α = 0.7
and (d) α = 1.0, all for the same energy E = −0.09957501 and
with initial conditions as specified in the text (see Sect. III.3).
The graph of these trajectories result from integrations over
time intervals of length up to ∆t = 5000 (∆t = 25000
in one particular case, the chaotic itinerary which domi-
nates (c)). Each one of the four plots shows the projec-
tion onto the (ϑ1, φ1)-plane of the Poincaré surface of section

(ϑ = π/2, ϑ̇2 > 0) of the (regular and chaotic) trajectories.
The dashed lines in (b) and (c) specify lines of initial con-
ditions for which time averages of a dynamical variable over
single trajectories (itineraries) are presented in Figs. 7 and 8
(see discussion in Sect. V).

fixed points (in the cut) are accompanied by an equal
number of hyperbolic ones and surrounded by bands of
chaos. It is important to note that this second chaotic re-
gion, which is most prominent in the vicinity of the four
secondary hyperbolic fixed points and encircles the four
regular islands centered by the secondary elliptic fixed
points, is no longer separated by any intact torus from
the broad chaotic band. However, the phase flow between
the two chaotic regions is strongly obstructed by the pres-
ence of at least two low-flux cantori [15]. Further cantori
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separate this chaotic region from chaotic regions which
envelop just two of the four regular islands about the sec-
ondary elliptic fixed points as will be discussed further in
connection with Fig. 9 in Sect. V. We thus have one large
chaotic region bounded by the meandering curves on the
outside, and compartmentalized by different sets of can-
tori.

The picture changes dramatically as we increase the
amount of single-site anisotropy to α = 0.7 [see Fig. 4(c)].
Most of the invariant tori which are still present for α =
0.5 have now evaporated and are replaced by a wide sea
of chaos interspersed with small islands of tori winding
tightly around certain periodic trajectories. While chaos
has increased substantially on a global basis between α =
0.5 and α = 0.7, it begins to give way to intact tori in
the vicinity of the elliptic fixed point (at ϑ1 = π/2, φ1 '
−0.756) even before reaches the value of 0.7. More and
more tori are restored until, in the integrable limit α = 1,
shown in Fig. 4(d), a new complete foliation of the phase
manifold emerges.

Hence, as the single-site anisotropy parameter in-
creases from α = 0 to α = 1, one complete foliation
of the phase manifold by invariant tori melts away into
a sea of chaos, out of which a new foliation crystallizes,
incorporating only small fragments of the old foliation in
its own structure. This is contrasted by the model Hγ , in
which the two foliations for γ = 0 and γ = 1, respectively,
are connected by a sequence of complete foliations.

C. The elusiveness of chaotic trajectories

Before we proceed with the analysis of the geometric
structure of invariants in the nonintegrable 2-spin model
Hα, we have to comment on the two types of trajectories
which are present: regular trajectories and chaotic trajec-
tories. Regular trajectories are confined to 2D surfaces
(invariant tori) in 4D phase space, and are character-
ized by not more than 2 fundamental frequencies. Each
2D invariant torus divides the 3D energy hypersurface
on which it is located into 2 disconnected parts. Regu-
lar trajectories are insensitive to small changes in initial
conditions [16]. The inevitable inaccuracy of the numeri-
cal integration propagates only very slowly, so slowly that
the trajectory can be determined with confidence for time
intervals which are sufficiently long for the determination
of any physical property of interest. For regular trajecto-
ries there is no alternative to winding perpetually around
invariant tori in a regular pattern.

In the nonintegrable model Hα where the population
of primary invariant tori is nowhere dense in phase space,
the tori act as impenetrable limits to the range of chaotic
trajectories. Chaotic trajectories are still strictly con-
fined to move on a single 3D energy hypersurface; but
within a given connected region between intact tori on
that hypersurface, their course is seemingly very erratic,
lacking any orderly pattern. In contrast to regular trajec-
tories, analytic solutions for chaotic trajectories are out of

reach. Any quantitative description of chaotic trajecto-
ries has to rely, therefore, on the numerical integration of
the equations of motion. However, the practical numer-
ical integration of a trajectory, be it regular or chaotic,
always operates with a finite accuracy. For one thing,
the initial conditions are specified only to within a finite
accuracy [17]. Consequently, the computation does not
discriminate between individual trajectories which origi-
nate in the same phase-space volume element Ω0. If we
disregard the unavoidable additional errors introduced
at each step of the integration, the error propagation can
be estimated by the growth of the largest diameter ∆(t)
of the phase-space volume element Ω(t) which originates
from Ω0 at t = 0. The rate of growth of ∆ is qualitatively
different for regular and chaotic trajectories.

In an integrable model or in a phase-space region of
a nonintegrable model where invariant tori predominate,
∆(t) grows (roughly) linearly in time. By contrast, the
course of chaotic trajectories is extremely sensitive to
slight changes in initial conditions. A characteristic sig-
nature of this sensitivity is that the largest diameter of
the phase-space volume element Ω0, which is a measure
of the uncertainty in initial conditions, grows exponen-
tially in time initially, and ultimately fills the entire re-
gion between intact tori to which the chaotic trajectories
originating in Ω0 have access.

It is important to point out that this exponential prop-
agation of error and uncertainty occurs only tangentially
to any existing analytic invariant in phase space (the en-
ergy in the case of Hα). Nevertheless, the determina-
tion of any single chaotic trajectory of the dynamical
system requires a careful consideration of the rapid error
propagation within a given energy hypersurface. In fact,
the very notion of a “single chaotic trajectory” loses its
meaning in all contexts where one is forced to operate
with finite accuracy, which is the case in all numerical
calculations and in all applications to physical systems.

Chaotic trajectories are thus extremely elusive to any
attempt, however elaborate, of numerical determination.
This calls for an answer to the following important ques-
tion: To what extent does this elusiveness of chaotic
trajectories affect numerical studies of various physical
properties of nonintegrable dynamical models, particu-
larly quantities which are based on the numerical deter-
mination of time averages? It is not a priori clear that
such numerical studies invariably lead to meaningful re-
sults. In the following, we describe an attempt to cope
with this problem in praxis.

D. Itineraries

The classical 2-spin models studied in this paper have
two characteristic properties which facilitate the numer-
ical analysis of phase-space trajectories enormously: (i)
the equations of motion (II.1) are free of singularities;
(ii) both the spin variables themselves, and their time
derivatives are bounded from above and below.
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For simplicity, we use a 4th order Runge-Kutta
method, with fixed time step dr, RK4[dt], to integrate
numerically the equations of motion (IV.2) of the 2-spin
model Hα. For given initial conditions, this always re-
sults in a well-defined time series for arbitrarily long time
intervals. Let us call this time series an itinerary.

If the initial conditions specify a regular trajectory,
then the itinerary is, in general, a very good approximant
of that regular trajectory, provided that the time step dt
is chosen reasonably small. In fact, the deviation of the
itinerary from the trajectory is proportional to the length
of the time interval over which the itinerary is evaluated,
with a coefficient which can be made very small with lit-
tle effort. This makes it possible to compute a very close
approximant of the regular trajectory for time intervals
which are sufficiently long for a precise determination of
time averages. If, on the other hand, the initial condi-
tions specify a chaotic trajectory, the itinerary is prone
to deviate from that trajectory by a large amount within
a relatively short time interval no matter how much we
optimize the accuracy of the numerical integration pro-
cedure. This is due to the unavoidable exponential error
propagation mentioned previously.

For an illustration of this point, we evaluate the
time evolution of a chaotic itinerary of Hα a by means
of RK4[dt1]. Simultaneously, we determine another
itinerary by using the same initial conditions but inte-
grate with RK4[dt2 = 2dt1]. Naturally, in the limit
dt1 → 0 [18], which is unrealistic for all practical pur-
poses, the two itineraries converge towards each other
and towards the chaotic trajectory over a time interval
of increasing length. However, for finite dt1, no matter
how small, the two itineraries separate from each other
within a relatively short time interval, and it is reason-
able to assume that the observed rate of divergence is a
good indicator for the rate of divergence of the itineraries
from the true trajectory. Since the phase manifold of our
two-spin system is compact, the two itineraries cannot di-
verge indefinitely. We therefore terminate the itinerary
2 as soon as its separation from itinerary 1 reaches the
value 0.1. We then start a new RK4[dt2] integration us-
ing the instantaneous coordinates of the RK4[dt1] inte-
gration as initial conditions and thus reset the separation
to zero (with finite accuracy). The result of this compu-
tation is plotted in Fig. 5, which shows on a logarithmic
scale the distance between itinerary 1 and a sequence of
itineraries 2.

We observe that the separation between neighboring
itineraries is, on the average, clearly exponential in char-
acter. However, deviations from the exponential behav-
ior occur over time intervals of various sizes including
very long ones. They typically manifest themselves in
the form of a strongly suppressed rate of separation, oc-
casionally in a decrease of distance. This effect is at-
tributable mostly to the presence of “bottle-necks” in
the phase-space region traversed by the chaotic itinerary.
In Sect. V we shall discuss the role of these bottle-necks,
which have made their imprint on chaotic trajectories

FIG. 5: Logarithm of the distance [(S
(2)
1 − S

(1)
1 )2 + (S

(2)
2 −

S
(1)
2 )2]1/2 in 4D phase space between a chaotic itinerary eval-

uated with RK4[dt1 = 0.005] and a sequence of chaotic
itineraries evaluated by using RK4[dt2 = 2dt1] as a func-
tion of time over a time interval of length ∆t = 5000. The
calculation uses 16 significant digits. The two itineraries start
out with the same initial conditions. Whenever the distance
reaches the value 0.1, itinerary 2 is terminated and replaced by
a new itinerary using again RK4[dt2] and the instantaneous
coordinates of itinerary 1 as initial conditions. The time inter-
val between successive data points is 10. The present result is

for Hα=0.5 and the following initial conditions: ϑ
(0)
1 = 2.4484,

ϑ
(0)
2 = 0.7702, φ

(0)
1 = −3.1330, φ

(0)
2 = −1.8026.

even on the largest time scales analyzed in our calcula-
tions (t ∼ 106). Specifically, they are responsible for the
occurrence of long-time anomalies which slow down the
convergence of time averages immensely.

The chaotic itineraries generated by RK4[dt] repro-
duce two crucial characteristics of true chaotic trajecto-
ries.

(i) The exponential error propagation does not affect
the conservation of any existing analytic invariant
of the phase flow. In the case of the two-spin model
Hα, the error propagation in the energy can be
made very small by a reasonable choice of dt in
RK4[dt], irrespective of whether the itinerary is
regular or chaotic.

(ii) The constraints in the form of impenetrable walls
imposed by the presence of invariant tori on a
given energy hypersurface are respected by chaotic
itineraries no less than is expected of true chaotic
trajectories [19].

On the other hand, we know that the exact course of a
chaotic itinerary is extremely sensitive to the integration
procedure (for example, small change of dt in RK4[dt]),
which is a reflection of the extreme sensitivity of true
chaotic trajectories to small changes in initial conditions.
To what extent then, one is compelled to ask, can one de-
rive from chaotic itineraries dynamical properties which
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are intrinsic properties of the classical 2-spin model in
its original definition? To answer this question, we note
that even though a small change of dt in RK4[dt] causes
an uncontrollably large effect on the exact course of a
chaotic itinerary, it does not seem to have any observable
effect on its range in a given connected region marked off
by intact tori on the energy hypersurface. This suggests
that time averages of dynamical variables over chaotic
trajectories might, in fact, be well approximated by time
averages over the corresponding chaotic itineraries. In
the following we report the results of a numerical study
of such time averages, which has led to a number of in-
teresting conclusions.

V. TIME AVERAGES: ANALYTIC AND
NONANALYTIC INVARIANTS

In autonomous Hamiltonian systems with 2 degrees of
freedom, integrability depends on the existence of one
analytic invariant which is independent of the Hamilto-
nian. For the general 2-spin model (II.5), this second
integral of the motion exists only if the model parame-
ters satisfy the conditions discussed in Sect. II. On the
other hand, invariants can always be constructed numer-
ically, at least in principle: Pick any dynamical variable
X which is independent of the Hamiltonian, i.e. which
cannot be expressed as a function of H. Then determine
the time average of X over the phase-space trajectory
specified by the initial condition (S(0)

1 ,S(0)
2 ):

〈X〉 = lim
T→∞

1
T

∫ T

0

dtX(t,S(0)
1 ,S(0)

2 ). (V.1)

Since the Birkhoff theorem [20] guarantees the existence
of the time average (V.1) for almost all initial conditions,
this procedure defines a (generalized) function

〈X〉 = Ĩ(S1,S2) (V.2)

everywhere in phase space except for a set of points with
measure zero. The integrability of the phase flow gov-
erned by H is then associated with the analyticity of the
function Ĩ(S1,S2).

A. Integrable model Hγ

Let us first consider the completely integrable model
Hγ discussed in Sect. III. The two analytic invariants
which guarantee integrability are the energy E = Hγ

given in (III.1) by definition and the function I given in
(III.3) by analytic construction. The function Ĩ(S1,S2)
as obtained from time averages (V.1) over all trajectories,
which are all regular in this case, is then necessarily some
function of E and I. Hence Ĩ(S1,S2) is itself an analytic
invariant. For an illustration of this point, we present in
the following some numerical results of time averages for
the integrable model Hγ .

We determine the time averages and estimate the accu-
racy of our results as follows: We integrate the equations
of motion by using RK4[dt = 0.005] and consider the val-
ues of the itinerary at intervals τ = 0.1 for 0 < t < 1000.
Let X̄ be the average of the dynamical variable X over
these 10000 values. Next we determine ¯̄X, the average
over 10 successive values of X̄, and (σX̄)2, the mean-
square departure of X̄ from ¯̄X. If the value of σX̄ is
less than 5 · 10−5, the calculation is terminated, and the
time average and its standard deviation is determined as
follows:

〈X〉 = ¯̄X1, σ = σX̄ =

[
1
10

10∑
i=1

(
X̄i − 〈X〉

)2]1/2

.

(V.3)
Otherwise we repeat the procedure described above N
times by continuing the integration of the itinerary over
further intervals of length 10 000. The calculation is
terminated if two successive values of σX̄ are less than
5 · 10−5 and the corresponding values ¯̄X differ by less
than 5 · 10−4 or, in the absence of convergence, after
N = 10 iterations. In this case, the time averages and
their standard deviations are determined as follows:

〈X〉 =
1
N

N∑
i=1

¯̄Xi,

σ = σX̄ =

[
1
N

N∑
i=1

(
X̄i − 〈X〉

)2]1/2

. (V.4)

In (V.3) the time average is over an interval of length
10000, in (V.4) over an interval of N times that size.

In the context of our current discussion, we have evalu-
ated the quantities 〈(Sµ1 )2〉, µ = x, y of Hγ=0.5 for a set of
initial conditions which are specified by the dashed line in
Fig. 3(c). For each one of 98 different sets of initial con-
ditions on that line, we have determined the quantities
〈(Sµ1 )2〉, µ = x, y. In all cases except one we have found
convergence to within 5 parts in 104 after N ≤ 3 itera-
tions. In Fig. 6 we have plotted the quantities 〈(Sµ1 )2〉,
µ = x, y as functions of ϑ1. The data indeed indicate
a continuous, piecewise smooth, ϑ1-dependence of this
analytic invariant. Note the presence of two cusp-like
singularities in each quantity. These singularities are as-
sociated with separatrices in the phase flow, which mark
the boundaries between tori of three different types of
topology [see Fig. 3(c)] [21]. The slow convergence of
〈(Sy1 )2〉 for the data point at ϑ1 = 0.7383 is due to the
“critical slowing down” near one of the two separatrices.
This critical slowing down near separatrices and a simi-
lar phenomenon occurring near rational tori is the only
mechanism in integrable models which can give rise to
slow convergence in time averages. This type of ”long-
time anomaly” is of no serious concern and easy to cope
with in praxis. Different types of long-time anomalies,
which are much more difficult to deal with, occur in non-
integrable models.
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FIG. 6: Time averages 〈(Sx1 )2〉 (circles) and 〈(Sy1 )2〉 (squares)
over single trajectories of the integrable model Hγ=0.5 as a
function of the initial value ϑ1 for initial conditions specified
by the dashed line in Fig. 3(c), which is, in fact, the projection
of a curved line on the energy surface E = − − 0.09957501
onto the Poincaré plane of section ϑ2 = π/2. All data points
(except for one) represent averages over a time interval of
length T = 104 and an uncertainty of less than 5 parts in 104.
The one data point at ϑ1 = 0.7383 marked by a symbol with a
somewhat larger vertical width represents a time average over
T = 105; in this case the uncertainty of the result is indicated
by the width of the symbol.

B. Nonintegrable model Hα

We now turn to the analysis of time averages in the
nonintegrable model Hα discussed in Sect. IV. For 0 <
α < 1, the energy is the only integral of the motion. The
quantity Ĩ(S1,S2) as obtained from the averages (V.1) of
a dynamical variable X is no longer an analytic function
of the initial conditions even though it is well defined ev-
erywhere in phase space except for a set of measure zero.
We may call it a nonanalytic invariant. The nonana-
lyticities of Ĩ(S1,S2) are associated with the occurrence
of chaotic trajectories. Chaotic trajectories are dense in
phase space. Hence Ĩ(S1,S2) is not an (analytic) integral
of the motion; nowhere in phase space can it assume the
role of an action variable. Note that the nonanalytic na-
ture of Ĩ(S1,S2) can emerge, strictly speaking, only if the
averaging in (V.1) is done over an infinite time interval.
This underlines the fact that chaos is a long-time asymp-
totic property of dynamical systems. Nevertheless, the
numerical evaluation of time averages (necessarily over
finite time intervals) allows us to determine Ĩ(S1,S2) ap-
proximately and to study the nature of its nonanalytici-
ties. Before we proceed to discuss our numerical results,
let us summarize what one might reasonably expect:

(i) In regions on the energy hypersurface where regular
trajectories prevail, Ĩ(S1,S2) is expected to exhibit
a fairly smooth dependence on initial conditions,
qualitatively similar to the results for an integrable

model (see Fig. 6).

(ii) If it is assumed that the phase flow within a con-
nected region of chaos on the energy hypersurface
is ergodic, then Ĩ(S1,S2) is constant in this region.
Since chaotic trajectories are dense on the energy
hypersurface, even the ”smooth” parts of Ĩ(S1,S2)
in the regular regions would then consist of hori-
zontal portions albeit of very small sizes.

(iii) At the boundary between a chaotic region and a
regular region, the phase-space region sampled by
the trajectory changes abruptly. Therefore, we ex-
pect a discontinuity in the time average Ĩ(S1,S2).
These discontinuities are one manifestation of what
we have been calling nonanalyticity.

However, in view of the intricate structure of regular
islands and cantori typically present in the border region,
we have to anticipate complications not represented in
this simplified picture.

In the following we shall focus on time averages 〈(Sy1 )2〉
of Hα=0.5 and Hα=0.7. At first we consider two lines
of initial conditions on the same energy hypersurface of
Hα=0.7, illustrated in Fig. 4(c). The Poincaré surface of
section is dominated by widespread chaos interspersed
by regular islands. The line A of initial conditions starts
out (at ϑ1 = π/2) near the center of a regular island,
then traverses the wide sea of chaos before it enters (at
ϑ1 ' 0.4) a region of regular islands surrounded by chaos
which is considerably more confined.

The time averages of 〈(Sy1 )2〉 for 102 equally spaced ini-
tial conditions are shown in Fig. 7(a). We observe that in
the regular region in the vicinity of ϑ1 = π/2, the nonan-
alytic invariant Ĩ(S1,S2) = 〈(Sy1 )2〉 has a ϑ1-dependence
which is extremely smooth, very reminiscent of the re-
sults found for the integrable model Hγ (see Fig. 6). In
the region near the opposite end of line A, chaos is consid-
erably more developed than on the center island. Here,
nonanalyticities in 〈(Sy1 )2〉, in the form of small discon-
tinuities, are indeed observable. Nevertheless, conver-
gence is fairly quick even for the chaotic itineraries. Very
much slower convergence is observed, however, for the
itineraries which are located in the region of widespread
chaos. Almost all data points within that chaotic region
are consistent with a constant, which suggests that the
phase flow is indeed ergodic within that region. Note,
however, that a few of the data points have extra large
error bars indicating particularly slow convergence.

We have evidence that this slow convergence is a con-
sequence of an important phenomenon described previ-
ously for area-preserving maps [22-24]. In that context, it
was observed that the boundaries of chaotic regions tend
to appear “sticky” to chaotic trajectories in the following
sense: The ultimate wall which constrains the range of
a chaotic trajectory must be an intact torus. This out-
ermost torus of a regular island, which has been termed
“boundary cycle” [24] must be (according to arguments
discussed in [24]) a “critical torus’, i.e. a torus which is
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FIG. 7: Time average 〈(Sy1 )2〉 over single itineraries of the
nonintegrable model Hα=0.7 as a function of the initial value
ϑ1 for initial conditions specified (a) by the dashed line A
and (b) by the dashed line B in Fig. 4(c). Circles represent
time averages over a time interval T ≤ 3 · 104 which have
rapidly converged. The remaining data points represent time
averages over a time interval T = 105 which are subject to
long-time anomalies. The error bars denote the standard de-
viation a defined in (V.4). The insets show sequences of time
averages over successive time intervals ∆t = 5000 for two se-
lected itineraries which are particularly strongly affected by
long-time anomalies.

exactly at the point of losing its smoothness and at the
same time at the point where it starts to degenerate into
a Cantor set. Consequently, the boundary cycle is coated
on the side towards the chaotic region, by an infinite se-
quence of cantori which accumulate at the critical torus.
Successive cantori are separated by chains of regular is-
lands which are embedded in narrow chaotic bands. Any
trajectory which samples the large chaotic region ergodi-
cally, will sooner or later penetrate this border layer and
get trapped for some period of time in the labyrinth of
cantori and island chains, which themselves have their
own boundary layers consisting of an infinite sequence of
cantori and islet chains, and so on ad infinitum. This is
what makes the boundary cycle sticky.

This scenario for nonlinear area-preserving maps holds
essentially in its entirety for Poincaré surfaces of section
of Hamiltonian systems with 2 degrees of freedom. For
one thing, the repeated temporary pause in the expo-
nential separation of chaotic itineraries, which we have
observed in the context of our discussion of Fig. 5, can
be attributed to precisely this phenomenon. Now let us
examine the chaotic itineraries used for the determina-
tion of the time averages shown in Fig. 7(a) for the pres-
ence of sticky boundaries. We pick out for the purpose
of illustration the first data point with an extra large er-
ror bar (the point at ϑ1 = 0.4398). The itinerary which
leads to this data point starts out right in the middle
of the border area between the regular and the chaotic
region. Note that this data point is located between two
data points which have converged rapidly. Examination
of the itineraries shows that the data point to the left
belongs to a cantorus and the data point to the right
to a chain of regular islands. The itinerary belonging
to the data point in between (the one with a large er-
ror bar) thus starts out being trapped in a narrow layer
between two cantori during a fairly long time interval
(between t = 0 and tE = 15000) before it escapes into
the large chaotic region. While it sticks to the bound-
ary region, the time average of 〈(Sy1 )2〉 converges fairly
rapidly, not unlike the time average over a regular tra-
jectory. This can be seen in the inset to Fig. 7(a), which
shows time averages 〈(Sy1 )2〉 over successive intervals of
length ∆t = 5000 for that particular itinerary. Once
this itinerary has escaped into the chaotic sea, the data
points in the inset tend to converge to a different value,
but much more slowly so. This thus explains the large
error bar in the original data point which represents an
average over ∆t = 100000 encompassing both the motion
in the boundary region and the motion in the chaotic sea.
Evidently, calculations over substantially larger time in-
tervals are needed in order to average out these occasional
and temporary confinements. There are two other data
points in Fig. 7(a) whose error bars are extra large. These
data points belong to itineraries which start out in the
chaotic sea and then get trapped in the same boundary
layer for a relatively long period of time before they es-
cape back into the sea. It is interesting to note that the
other boundary cycle, the one around the center island,
is much less sticky.

Similar observations can be made on time averages
〈(Sy1 )2〉 for a different set of initial conditions: line B
in Fig. 4(c), which cuts across a regular island from one
part to another part of the same chaotic sea. The re-
sults are shown in Fig. 7(b). Again we find very rapid
convergence in the regular region resulting in a piecewise
smooth curve in accordance with our expectations. Again
the data points resulting from itineraries which sample
the chaotic sea are consistent with ergodic flow in that
region. Again some data points have particularly large
error bars, which are caused by the long time scales in-
duced by the stickiness of the boundary region [see inset
to Fig. 7(b)].
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In summary, we have numerical evidence that the
phase flow in the chaotic sea is ergodic; but the sticki-
ness of the boundary layers gives rise to dynamic patterns
with arbitrarily long time scales, which slow down the
convergence of time averages considerably. In the con-
text of the studies of area-preserving maps, these long-
time anomalies were found to be responsible to a large
extent for the slow power-law decay of time-dependent
correlation functions [23, 24].

A note of caution is in order. Strictly speaking we
have evidence of ergodicity only for itineraries, but not
for true chaotic trajectories. However, the fact that the
results of our calculations appear to be quite insensitive
to various changes in the integration procedure is clearly
in support of the conclusion that this egodicity property
applies to true chaotic trajectories as well.

Now we turn to the case α = 0.5, where the chaotic
regions are considerably more constrained than in the
previous case (α = 0.7). Let us again discuss the time
average 〈(Sy1 )2〉 for two lines of initial conditions A and B
on the same energy hypersurface, illustrated in Fig. 4(b).
Line A starts out (at ϑ1 = 0) in a regular region, then
cuts through a band of chaos, traverses a regular island
which is centered (in the cut) by a secondary elliptic fixed
point, then cuts through a narrower band of chaos and,
finally, enters the regular island centered by the primary
elliptic fixed point. The time average 〈(Sy1 )2〉 for a set
of equally spaced initial conditions is shown in Fig. 8(a).
Again we observe that the convergence is very rapid in
the regular regions, and the ϑ1-dependence of the nonan-
alytic invariant is fairly smooth. So far the results look
not unlike those for α = 0.7. However, in the chaotic
bands we find that the long-time anomalies are much
more pronounced, leading to considerably larger error
bars. In fact, the data points are now scattered to such
an extent that no conclusions about ergodicity can safely
be drawn. The same is true for time averages along line
B of initial conditions, which are displayed in Fig. 8(b).
Line B starts out in the same regular region as line A
[see Fig. 4(b)] and enters the same chaotic band, but at
a different value of φ1. It terminates near the primary
hyperbolic fixed point.

Our analysis of the long-time anomalies which cause
the extremely slow convergence in the chaotic regions re-
veals the following: The sticky boundary cycles are still
present and indeed contribute to the long-time anomalies
by trapping chaotic trajectories occasionally and tem-
porarily. However, in this case the dominant mechanism
seems to be of a different kind. As we have already
pointed out in the context of our discussion of Fig. 4(b),
the two main chaotic regions traversed by line A are,
in fact, no longer separated by intact tori. The only
separation is a series of cantori some of which have low-
flux character. Empirically we find that the switching
of chaotic itineraries between different large scale chaotic
regions is a process which requires much longer times
to average out than the occasional trapping in the sticky
boundary region. In our case this mechanism defeats any

FIG. 8: Time average 〈(Sy1 )2〉 over single itineraries of the
nonintegrable model Hα=0.5 as a function of the initial value
ϑ1 for initial conditions specified (a) by the dashed line A
and (b) by the dashed line B in Fig. 4(b). The circles rep-
resent time averages over a time interval T ≤ 3 · 104 which
have rapidly converged. The remaining data points represent
time averages over a time interval T = 105 which are subject
to long-time anomalies. The error bars denote the standard
deviation σ defined in (V.4).

reasonable effort to determine time averages with mod-
erate accuracy.

For an illustration of this mechanism, we show in Fig. 9
the Poincaré cuts of a chaotic itinerary for three succes-
sive time intervals. The itinerary starts out in the broad
band of chaos which connects the two primary hyper-
bolic fixed points [see Fig. 9(a]. At timet1 ' 20000 the
itinerary leaks through a low-flux cantorus into a more
localized chaotic band [see Fig. 9(b)], and stays there up
to time t2 ' 40000 when it crosses another low-flux can-
torus to enter a third chaotic region which wraps around
the five main regular islands individually [see Fig. 9(c)].
This particular itinerary then stays in that region up to
t = 100000. Fig. 9(d) shows time averages of 〈(Sy1 )2〉 over
successive time intervals of length ∆t = 5000. The sys-
tematic change of the mean value at t1 and t2 is clearly
visible. Note that the convergence is fairly good as long
as the itinerary does not cross any of the low-flux cantori,
but the convergence of the overall average (marked by an
arrow in Fig. 8(a)) is very poor. It is important to real-
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ize that these long-time anomalies do not show up in all
(nonconserved) dynamical variables. In computing the
results for 〈(Sy1 )2〉 shown in Fig. 8, for example, we have

also evaluated the time averages 〈(Sy1 )2〉 over the same
itineraries and found slow but fairly good convergence
throughout the chaotic regions.

FIG. 9: Poincaré cut (ϑ2 = π/2, ϑ̇2 > 0 of a chaotic itinerary on three successive time intervals: (a) 0 < t < 15000, (b)
25000 < t < 40000, (c) 40000 < t < 75000. The average 〈(Sy1 )2〉 over successive time intervals of length ∆t = 5000 for that
itinerary are shown in (d).

In summary, we have observed three types of con-
vergence in the determination of nonanalytic invariants
via the numerical evaluation of time averages along
itineraries:

(i) In regions of phase space where regular trajectories
are predominant, time averages converge well over
time intervals of manageable size. Convergence
is not significantly slower for chaotic itineraries,
which are severely constrained in these regions.

(ii) In regions of widespread chaos, the dominant mech-
anism which slows down the convergence of time
averages is the stickiness of its boundaries. The

boundary between a chaotic region and a regular
region typically consists of layers of cantori sepa-
rated by regular-island chains, in which itineraries
get trapped temporarily. We have found that the
slowing-down of convergence due to this mechanism
is considerable but not alarming, at least for the
cases investigated in this study.

(iii) A different mechanism, which is responsible for
much stronger long-time anomalies, occurs in situa-
tions where a chaotic region is tessellated by cantori
into roughly equal-sized compartments. A charac-
teristic feature of this case is that time averages ap-
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pear to converge slowly to some mean value, similar
to case (ii), but then suddenly start to converge to-
ward a different value [again slowly like in case (ii)],
followed by an irregular sequence of further abrupt
changes, each one caused whenever the itinerary
switches compartment through one of the low-flux
cantori. The time scales of this process are so large
and widespread that the overall convergence is ex-
tremely slow.

There can be no doubt that these long-time anomalies
which we have identified in simple time averages must
play a prominent role in dynamic correlation functions.
In the context of area-preserving maps it was already
found that the stickiness of the boundaries of chaotic re-
gions gives rise to time-dependent correlation functions

with slow algebraic decay [22-24]. We have preliminary
results which indicate that the same is true for correla-
tion functions of classical two-spin clusters in regions of
widespread chaos. A detailed study of dynamic corre-
lation functions of integrable and nonintegrable classical
and quantum spin clusters is currently in progress.
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