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Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that
can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics
algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and
protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology.
Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene
responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions
and improve vaccine production and vaccination protocols. Computational methods have also been used for development of
immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization
modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature
and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning.

1. Introduction

While the history of vaccines is relatively short, vaccines
have contributed to dramatic improvements in public health
worldwide. Jenner’s description of smallpox prevention in
1796 [1] is the most commonly recognized “start” of vaccine
research in European historical documents, although
variolation had been practiced in Asia centuries earlier.
Critical advances in vaccine science took place in the late
19th and early 20th centuries, by scientists such as Pasteur,
Koch, von Behring, Calmette, Guérin, and Ehrlich [2].
Discoveries by these early vaccine researchers contributed
to the development of antiserums, antitoxins, and live,
attenuated bacterial vaccines. The discovery of tissue culture
methods for viral and bacterial propagation in vitro during
the period from 1930 to 1950 was a technical advance that
enabled the development of vaccines against many viruses
including measles and polio. Further advances in cell culture
techniques, carbohydrate chemistry, molecular biology,

and immunology have led to the modern era of “subunit”
vaccine development. The recombinant hepatitis B vaccine,
one of the first subunit vaccines, was licensed in 1986 [2].
This marked the beginning of the molecular biology phase of
vaccine development. At present, human vaccines are used
in the prevention of more than thirty infectious diseases.
Due to the success of the smallpox eradication campaign in
1960s and 1970s, the powerful impact of vaccines on human
health is universally recognized [3]. In addition, there exist a
large number of animal vaccines [4].

With the advent of computers and informatics, new
approaches have been devised that facilitate vaccine research
and development. Immunoinformatics targets the use of
mathematical and computational approaches to address
immunological questions. Since the 1980s, many immunoin-
formatics methods have been developed and used to predict
T-cell and B-cell immune epitopes [5]. Indeed, many
predicted T- and B-cell immune epitopes are possible epitope
vaccine targets. Experimentally verified immune epitopes are
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now stored in web-based databases which are freely available
for further analysis [6]. Immune epitope studies are crucial
to uncover basic protective immune mechanisms.

A new era of vaccine research began in 1995, when the
complete genome of Haemophilus influenzae (a pathogenic
bacterium) was published [7]. In parallel with advances
in molecular biology and sequencing technology, bioinfor-
matics analysis of microbial genome data has allowed in
silico selection of vaccine targets. Further advances in the
field of immunoinformatics have led to the development
of hundreds of new vaccine design algorithms. This novel
approach for developing vaccines has been named reverse
vaccinology [8] or immunome-derived vaccine design [9].
Reverse vaccinology was first applied to the development of
vaccines against serogroup B Neisseria meningitides (MenB)
[10]. With the availability of multiple genomes sequenced for
pathogens, it is now possible to run comparative genomics
analyses to find vaccine targets shared by many pathogenic
organisms.

In the postgenomics era, high throughput-omics techno-
logies-genomics, transcriptomics, proteomics, and large-sca-
le immunology assays enable the testing and screening of
millions of possible vaccine targets in real time. Bioinformat-
ics approaches play a critical role in analyzing large amounts
of high throughput data at differing levels, ranging from
data normalization, significant gene expression detection,
function enrichment, to pathway analysis.

Mathematical simulation methods have also been devel-
oped to model various vaccine-associated areas, ranging
from analysis of host-pathogen interactions and host-vaccine
interactions to cost cost-effectiveness analyses and simula-
tion of vaccination protocols. The mathematical modeling
approaches have contributed dramatically to the understand-
ing of fundamental protective immunity and optimization of
vaccination procedures and vaccine distribution.

Informatics is also changing postlicensure immunization
policies and programs. Computerized immunization reg-
istries or immunization information systems (IIS) are effec-
tive approaches to track vaccination history. Bioinformatics
has widely been used to improve surveillance of (1) vaccine
safety using systems such as the Vaccine Adverse Event
Reporting System (VAERS, http://vaers.hhs.gov/) [11] and
the Vaccine Safety Datalink (VSD) [12] project and (2) vac-
cine effectiveness for each of the target vaccine preventable
diseases via their respective public health surveillance sys-
tems. Computational methods have also been applied to
model the impact of alternative immunization strategies and
to detect outbreaks of vaccine preventable diseases and safety
concerns related to vaccinations as well.

With the large amounts of vaccine literature and data
becoming available, it is not only challenging but crucial to
perform vaccine literature mining, generate well-annotated
and comprehensive vaccine databases, and integrate various
vaccine data to enhance vaccine research. Computational
vaccine literature mining will allow us to efficiently find
vaccine information. To effectively organize and analyze the
huge amounts of vaccine data produced and published in
the postgenomics and information era, many vaccine-related
databases, such as the VIOLIN vaccine database and analysis

system (http://www.violinet.org/) [13] and AIDS vaccine
trials database (http://www.iavireport.org/trials-db/), have
been developed and are available on the web. However,
relational databases are not ideal for data sharing since
different databases may use different schemas and formats.
A biomedical ontology is a consensus-based controlled
vocabulary of terms and relations, with associated definitions
that are logically formulated in such a way as to promote
automated reasoning. Ontologies are able to structure com-
plex biomedical domains and relate the myriads of data accu-
mulated in such a fashion as to permit shared understanding
of vaccines among different resources. The Vaccine Ontology
(VO; http://www.violinet.org/vaccineontology/) is a novel
open-access ontology in the domain of vaccine [14]. Recent
studies show that VO can be used to support vaccine data
integration and improve vaccine literature mining [15, 16].

In summary, vaccine informatics is an emerging field of
research that focuses on the development and applications of
computational approaches to advance vaccine research and
development (R&D) and improve immunization programs.
Vaccine informatics plays an important role in every aspect
of pre- and postlicensure vaccine enterprises (Figure 1). This
paper summarizes the history of vaccine informatics devel-
opments in advancing vaccine research and development and
immunization programs.

2. Immunoinformatics and Vaccine Design

This section describes immunoinformatics and how it is used
for vaccine design and to study protective immune responses
to vaccines.

2.1. Brief History of Immunoinformatics Approaches for Vac-
cine Design. The first immunoinformatics tools for vaccine
design were developed in the 1980s by DeLisi and Berzofsky
and others [17]. Chief among vaccine design informatics
tools are epitope-mapping algorithms. Since the T-cell
epitopes are bound in a linear form to the human leukocyte
antigen (HLA), the interface between ligands and T-cells
can now be modeled with accuracy. A large number of
T-cell epitope-mapping algorithms have consequently been
developed [18, 19]. These tools now make it possible to start
with the entire proteome of a pathogen and rapidly identify
putative T-cell epitopes. Such information is immensely
valuable for the development of new vaccines, diagnostic
purposes, and for studying the pathology of infectious
diseases [5, 20–27].

Several different routes for vaccine development have
been pursued. One method, which has been used by De Gro-
ot and Martin [24, 28], is to synthesize the putative T-cell
epitopes and screen peripheral blood mononuclear cells
(PBMC) isolated from human subjects infected with the tar-
get pathogen (or have a target cancer) for immune response
to the epitopes. A T-cell in vitro response to a specific pep-
tide epitope (typically measured by ELISA or ELISpot assay)
served as an indicator that the protein from which the pep-
tide was derived was expressed, processed, and presented to
the immune system in the course of a “natural” immune
response. This approach, often considered a means of
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Figure 1: Overview of current vaccine informatics topics.

making epitope-based vaccines (see below), can also be used
to identify proteins for use in vaccine development. This app-
roach, described by De Groot and Martin’s group as “fishing
for antigens using epitopes as bait”, has been used to discover
new vaccine antigens for F. tularensis (a bioterror agent) [28],
tuberculosis [24], smallpox [29], and H. pylori [30].

The proteome of M. tuberculosis (Mtb), the etiologic age-
nt of TB, contains almost 4,000 proteins. Evaluating each
one using the straightforward but expensive and laborious
approach of synthesizing and testing overlapping peptides
could take decades. Using epitope mapping tools, it is now
possible to screen a whole proteome in silico, followed by a
finer focus on the resulting sets of peptides [5].

The ability to accurately predict T-cell epitopes from
raw genomic data is fundamental to the development of
novel vaccines, and serves as the starting point for a
number of research projects. Freeing the researchers from the
constraints of predetermined sets of “virulence genes” has
resulted in some remarkable discoveries. McMurry and De
Groot [24] found extraordinary diversity of human immune
responses to proteins in the Mtb genome that have yet
to be ascribed a function, suggesting that human immune
response is omnivorous and is not focused on recognition
of a single “immunodominant” protein. In addition, these

investigators have found a remarkable similarity between
Francisella tularensis (the etiologic agent for Tularemia) and
(human) self, at the epitope level [28]. Thus informatics,
starting at the genome, may reveal potential antigenic
relationships between human proteins and pathogens, or
even commensal organisms, which might predetermine
individual immune response, that is, prior exposure to a
given pathogen may tune immune response to a second
pathogen [31].

An alternative approach, “Reverse Vaccinology,” a term
coined by Rappuoli, starts with predicting putative vaccine
candidates by in silico genomics analysis based on yet differ-
ent criteria. The predicted vaccine candidates (e.g., bacterial
surface proteins) are thought to stimulate protective immu-
nity. Candidate proteins can be evaluated experimentally by
demonstrating an immune response that correlates with in
vivo protection [10]. The Reserve Vaccinology approach is
well discussed later on (see below).

2.2. MHC Polymorphism, Epitope Variations, and Vaccine
Design. The success rate of vaccine development decreases
with the increasing variability of the surface antigens of
pathogens and the decreasing ability of antibodies to confer
protective immunity [32]. Fortunately, vaccine informatics
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tools are being developed that increase the accuracy of
vaccine target prediction for variable pathogens and help
vaccinologists triage antigens.

T-cells are activated by direct interaction with antigen
presenting cells (APCs). On the molecular level, the initial
interaction occurs between the T-cell receptor and peptides
derived from endogenous and exogenous proteins that are
bound in the cleft of MHC class I or class II molecules. In
general, MHC class I molecules present peptides 8–10 amino
acids in length and are predominantly recognized by CD8+

cytotoxic T lymphocytes (CTLs). Class I peptides usually
contain an MHC I-allele-specific motif composed of two
conserved anchor residues [33–35]. Peptides presented by
class II molecules are longer, more variable in size, and have
more complex anchor motifs than those presented by class
I molecules [36–38]. MHC class II molecules bind peptides
consisting of 11–25 amino acids and are recognized by CD4+

T helper (Th) cells.
MHC class I molecules present peptides obtained from

proteolytic digestion of endogenously synthesized proteins.
Host- or pathogen-derived intracellular proteins are cleaved
by a complex of proteases in the proteasome. Small peptide
fragments are then typically transported by ATP-dependent
transporters associated with antigen processing (TAPs) and
also by TAP-independent means into the endoplasmic retic-
ulum (ER), where they form complexes with nascent MHC
class I heavy chains and beta-2-microglobulin. The peptide-
MHC class I complexes are transported to the cell surface for
presentation to the receptors of CD8+ T-cells [39–41].

MHC class II molecules generally bind peptides derived
from the cell membrane or from extracellular proteins that
have been internalized by APCs. The proteins are initially
processed in the MHC class II compartment (MIIC). Inside
the MIIC, MHC is initially bound to class II-associated
invariant chain peptide (CLIP) which protects the MHC
from binding to endogenous peptides. Peptides generated by
proteolytic processing within endosomes replace CLIP in a
reaction catalyzed by the protein HLA-DM [42, 43]. The class
II molecules bound to peptide fragments are transported to
the surface of APCs for presentation

To complicate matters further, HLA molecules bind dif-
ferent peptides due to the configuration of their HLA binding
pockets. This is the source of genetic diversity of immune
responses [34]. Fortunately, there is some conservation bet-
ween HLA pockets, and both DeLisi and Sette have addressed
the issue of HLA coverage for epitope predictions by demo-
nstrating that epitope-based vaccines containing epitopes
restricted by selected “supertype” Class I and Class II HLA
can provide the broadest possible coverage of the human
population [44, 45]. De Groot and Martin have constructed
an algorithm, Aggregatrix, which uses the “set cover” method
to identify the best set of peptides from a pathogen that wou-
ld yield the broadest coverage of HLA if included in a vaccine.
The Aggregatrix algorithm selects optimized epitope sets
which, in terms of immunogenicity and genetic conserva-
tion, collectively “cover” a wide variety of known circulating
strain variants of a given pathogen and a majority of the
common human HLA types [46]. The Conservatrix algo-
rithm is used to identify highly conserved peptide segments

contained within multiple isolates of variable pathogens such
as retroviruses [47]. The amino acid sequences of protein
isolates are parsed into 9 mer frames overlapping by eight
amino acids. The resulting peptide set yields a list of unique
segments and appearance frequencies. Highly conserved
sequences are thought to be important in the evolutionary
“fitness” of pathogens and thus are unlikely to change in an
attempt to evade the immune system. Conserved sequences
can be analyzed using epitope prediction software.

2.3. T-Cell Epitope Mapping. Although textbooks teach that
protective immune response is attributed to the development
of protective antibodies, the immune response to attenuated
intact viruses and subunit vaccines is to a very large degree
dependent on T-cell recognition of peptide epitopes bound
to MHC. Thus targeting antigens that contain many CD4+ T
helper epitopes may lead to the selection of good B-cell anti-
gens as well as immunogens for effective CD8 responses—
this is because CD4+ T helper cells are critically important to
the development of memory B-cell (antibody) and memory
CTL (cytotoxic T-cell) responses, in addition to being active
against pathogens on their own. T helper cells have been
called the “conductors of the immune system orchestra” [20].
CTLs generally play a role in the containment of viral and
bacterial infection [48], and the prevalence of CTLs usually
correlates with the rate of pathogen clearance. Regulatory
T-cells are also represented among CD4+ T-cells, although
some CD8+ Tregs have been described.

T-cell epitope algorithms now achieve a high degree of
prediction accuracy (in the range of 90 to 95% Positive
Predictive Value). For example, epitope mapping tools can
now be compared to other available tools, using the Immune
Epitope Database “gold standard” as described by Wang et
al. [49]. A list of epitope mapping tools, ancillary algorithms,
and their comparative features is provided in Table 1. A nu-
mber of the epitope mapping tools are available to resear-
chers via the web. These include the tool available at the
SYFPEITHI website [50] and an HLA binding prediction tool
available on at the National Institutes of Health (BIMAS)
[51]. A recently developed set of tools has now been made
available through the Immunome Epitope Database. Each of
these tools has been described and validated [49]. One such
proprietary algorithm, EpiMatrix, is in active use in the phar-
maceutical industry [52]. While none of these sites yield exa-
ctly the same predictions, all predictions are quite accurate,
especially when compared to results obtained with early
epitope mapping tools (e.g., SYFPEITHI and BIMAS) [49,
52]. In general, the newer and more actively maintained algo-
rithms tend to outperform the older more static predictive
methods.

With many machine learning techniques developed since
early 1990s for T-cell epitope predictions, it is possible
to comparatively evaluate them through prediction perfor-
mance assessments [49, 53–55]. Lin et al. compared 30
servers developed by 19 groups that can predict HLA-I
binding peptides [53]. Their benchmarking study showed
that predictions of six out of seven of HLA-I binding pep-
tides achieved excellent classification accuracy. In general,
nonlinear predictors outperform matrix-based predictors,
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Table 1: List of online tools for T-cell epitope prediction.

Tool Website Type Class Refs

ANNPRED http://www.imtech.res.in/raghava/nhlapred/neural.html ANN I [234]

Bimas http://www-bimas.cit.nih.gov/molbio/hla bind/ QM I [51]

EpiJen http://www.ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm Multi-step algorithm I [235]

EPIMHC http://imed.med.ucm.es/epimhc/ user made Profiles I, II [236]

EpiMatrix http://www.epivax.com/
Matrix-based and pocket
profile

I, II [237]

HLABIND http://atom.research.microsoft.com/hlabinding/hlabinding.aspx Adaptive Double Threading I [238]

IEDB http://tools.immuneepitope.org/analyze/html/mhc binding.html
ARB-QM, SMM-QM,
ANN-regression

I [239]

KISS http://cbio.ensmp.fr/kiss/ SVM I [240]

MHC2PRED http://www.imtech.res.in/raghava/mhc2pred/ SVM II [241]

MHC Pred http://www.jenner.ac.uk/MHCPred
Partial least-squares-based
multivariate statistical
method

I, II [242]

MULTIPRED http://antigen.i2r.a-star.edu.sg/multipred/ ANN, pHMM I, II [243]

MOTIF SCAN
http://www.hiv.lanl.gov/content/immunology/motif scan/
motif scan

Sequence Motifs I, II —

NetCTL http://www.cbs.dtu.dk/services/NetCTL/ Multi-step algorithm I, CTL [60]

NetCTLSpan http://www.cbs.dtu.dk/services/NetCTLpan/ Multi-step algorithm I, CTL [62]

NetMHC http://www.cbs.dtu.dk/services/NetMHC/ ANN I [244]

netMHCII http://www.cbs.dtu.dk/services/NetMHCII/ SMM-QM II [245]

netMHCpan http://www.cbs.dtu.dk/services/NetMHCpan/ ANN-regression I [246]

netMHCIIpan http://www.cbs.dtu.dk/services/NetMHCIIpan/ ANN-regression II [247]

PEPVAC http://imed.med.ucm.es/PEPVAC/ Profiles or PSSM I [248]

PREDEP http://margalit.huji.ac.il/Teppred/mhc-bind/index.html Threading I [249]

POPI http://iclab.life.nctu.edu.tw/POPI/ SVM I, II [250]

PROPREDI http://www.imtech.res.in/raghava/propred1/ QM I [251]

PROPRED http://www.imtech.res.in/raghava/propred/ QM II [252]

RANKPEP http://imed.med.ucm.es/Tools/rankpep.html Profiles or PSSM I, II [253]

SVMHC http://abi.inf.uni-tuebingen.de/SVMHC SVM I, II [254]

SVRMHC http://svrmhc.biolead.org/ SVM-regression I, II [255]

SYFPEITHI http://www.syfpeithi.de/ Motif matrices I, II [50]

TEPITOPE http://www.vaccinome.com/ QM II [256]

Vaxign http://www.violinet.org/vaxign/ PSSM I, II [110]

Abbreviations: ANN: artificial neural networks; PSSM: position-specific scoring matrix; QM: quantitative matrices; SMM: stabilized matrix method; SVM:
support vector machine; multistep algorithm: integrating predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity.

and most predictors can be improved by non-linear trans-
formations of their raw prediction scores [53]. While good
performance has been achieved for MHC class I predictions,
there is still limited success for prediction of epitopes for
HLA class II [54, 55]. The low prediction accuracy of HLA-II
binding peptides is due to several factors: (a) insufficient or
low-quality training data, (b) difficulty in identifying 9-mer
binding cores within longer peptides used for training and
lack of consideration of the influence of flanking residues,
and (c) relative permissiveness of the binding groove of HLA-
II molecules for peptide binding, which limits the stringency
of binding [54].

Adequate predictors are lacking for predicting epitopes
for HLA-C, HLA-DQ, and HLA-DP. However, Wang et al.

have made a significant effort in peptide binding predictions
for HLA DR, DP, and DQ molecules [56]. Their research with
a large-scale datasets of over 17,000 HLA-peptide binding
affinities for 11 HLA DP and DQ alleles found that prediction
methodologies developed for HLA DR molecules perform
equally well for DP and DQ molecules.

The generation of an MHC class-I epitope starts with
the degradation of endogenous proteins into oligomeric
fragments by cytosolic proteases, mainly the proteasome.
These oligomeric fragments may escape from the attack of
amino peptidases by entering the endoplasmic reticulum
(ER) by the transporter associated with antigen presentation
(TAP) [57]. The prediction algorithms for TAP binding and
proteasomal cleavage have been developed [58, 59]. For
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example, Peters et al. used a stabilized matrix method to
predict TAP affinity of peptides [58]. This scoring method
took advantage of the fact that binding of peptides to TAP is
mainly determined by the C terminus and three N-terminal
residues of a peptide. Predictions of the MHC class I pathway
can be improved by predictions of proteasomal cleavage,
TAP transport efficiency, and MHC class I binding affinity
[58, 60–62].

While many successes have been made in the area of T-
cell epitope prediction, the limitations of all these predictors
should be noted. Our goal is to identify good vaccine targets
that will induce productive immune responses. However,
our ability to measure is usually done indirectly: peptide-
binding assays, induction and measurement of immune
responses ex vivo, use of animal models, and so forth.
Only a small number of HLA-binding peptides are good
targets. In clinical vaccine trials, wrong peptides were often
selected using indirect methods and tested [63]. For example,
the virulence and tumor maintenance capacity of high-risk
Human Papillomavirus 16 (HPV-16) is mediated by two
viral oncoproteins, E6 and E7. Of 21 E6 and E7 peptides
computed to bind HLA-A∗0201, 10 were confirmed through
TAP-deficient T2 cell HLA stabilization assay. By testing
their physical presence among peptides eluted from HPV-
16-transformed epithelial tumor HLA-A∗0201 immunopre-
cipitates, only one epitope (E7(11–19)) highly conserved
among HPV-16 strains was detected. This 9-mer serves to
direct cytolysis by T-cell lines. However, a related 10-mer
(E7(11–20)), previously used as a vaccine candidate, was not
detected by immune-precipitation or cytolysis assays. These
data underscore the importance of precisely defining CTL
epitopes on tumor cells and offer a paradigm for T-cell-based
vaccine design [63].

2.4. B-Cell Epitope Mapping. It is important to clarify that
limited immunoinformatics tools are currently available to
identify B-cell antigens (recognized by antibodies). While
humoral, or antibody-based, response represents the first
line of defense against most viral and bacterial pathogens,
the protein target of this arm of defense is usually too com-
plex to model in silico. Antibodies that recognize B-cell
epitopes, composed of either linear peptide sequences or
conformational determinants, are present only in the three-
dimensional form of the antigens. Several B-cell epitope pre-
diction tools, including 3DEX, CEP, and Pepito, are at vari-
ous stages in development and are in the process of being
refined [64–67]. IEDB has collected a list of web predict-
ion tools for B-cell epitope prediction (http://toolsl.immu-
neepitope.org/main/html/bcell tools.htm). Unfortunately,
the computational resources and modeling complexity req-
uired to predict B-cell epitopes are enormous. This
complexity is due, in part, to the inherent flexibility in
the complementarity-determining regions (CDR) of the
antibody and, in part, attributable to posttranslational
modifications such as glycosylation, all of which can result
in modification of B-cell epitopes.

B-cell epitopes include linear and discontinuous epito-
pes. Linear epitopes comprise a single continuous stretch of
amino acids within a protein sequence. An epitope whose

residues are distantly separated in the sequence but have
physical proximity through protein folding is named a
discontinuous epitope. Although most epitopes are discon-
tinuous [68], experimental epitope detection is primarily
for linear epitopes. Tools for prediction of linear B-cell
epitopes exist but in general are not predictive [69, 70].
The benchmarking B-cell epitope prediction by Blythe and
Flower [69] found that with the best set of scales and
parameters, amino acid propensity profiles can predict linear
B-cell epitopes only marginally better than random. Such a
conclusion has been confirmed by another study where the
dismal performance of five predictors was tested against a set
of reported linear B-cell epitopes [70].

Although devising accurate B-cell epitope mapping tools
remains difficult, the selection of potent B-cell antigens can
be accelerated using T-cell epitope mapping tools. When
considering B-cell antigens as potential subunit vaccines,
it also may be important to also consider their T-cell
epitope content since the quality and kinetics of the antibody
response is dependent upon the presence of T help. B-cell
antigens that contain significant T help may outperform
B-cell antigens lacking cognate help. In some cases, an
identified T-cell epitope may also contain a B-cell epitope.
Different epitopes activate T and B-cells. Despite this obser-
vation, it has been widely reported that B-cell epitopes may
colocalize near, or overlap, Class II (Th, CD4+) epitopes
[71, 72].

2.5. Immunoinformatics-Based Vaccine Design Strategies.
Different epitope-based vaccine design strategies exist, for
example, mosaic vaccines [73], consensus [74, 75], cen-
tralized or ancestor immunogen [76, 77], or COT+ [78].
Mosaic vaccines are comprised of “mosaic” proteins that
are assembled from fragments of natural sequences via a
computational optimization method [73]. Many immuno-
gens, such as HIV envelope proteins, have high amino
acid sequence divergences. To minimize the genetic differ-
ences between vaccine strains and contemporary isolates,
immunogenic consensus sequences can be detected and
used in vaccine design [74, 75]. Computer programs can
also be developed to generate “centralized” vaccine that
consists of consensus, ancestor, or center of the tree, modeled
from phylogenetic trees. These “centralized” sequences can
decrease the genetic distances between the “centralized”
and wild-type gene immunogens [76, 77]. In an effort to
develop antigens that capture both consensus and mutation
sequences among strains, Nickle et al. reconstructed COT+

antigens by including the ancestral state sequence at the
center of phylogenic tree (COT) and extending the COT
immunogen through addition of a composite sequence that
includes high-frequency variable sites preserved in their
native contexts [78]. These epitope-based vaccine designs
have proven effective and provided vaccine researchers with
different options in rational vaccine design. It is promising
to combine various epitope methods to improve target
discovery [56, 60, 79].

Integrated systems and workflows for computational vac-
cinology are likely to be key for automation of vaccine target
discovery [80–82]. For example, Sollner et al. introduced the
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pBone/pView computational workflow that supports design
and execution of immunoinformatics workflow modules,
results visualization, and knowledge sharing and reuse [80].
Pappalardo et al. developed ImmunoGrid, an integrative
environment for large-scale simulation of the immune
system for vaccine discovery, design, and optimization
[81]. Feldhahn et al. developed FRED, an extendable, open
source software framework for T-cell eptiope detection that
integrates many prediction methods and supports imple-
mentation of custom-tailored prediction pipelines [82]. The
effectiveness of these systems has been demonstrated with
different applications.

The EpiVax vaccine design tools (EpiMatrix, ClustiMer,
VaccineCAD, EpiAssembler, BlastiMer) are available to
researchers through a portal at the Institute for Immunology
and Informatics (the iVAX toolkit) [9]. The team of De
Groot, Moise, and Martin have implemented the iVAX
toolkit to develop four vaccines, a multiepitope TB vaccine
[24], a cross-clade HIV vaccine [74], a prototype H. pylori
vaccine [83], and a tularemia vaccine [84]. In collaboration
with the TRIAD (Translational Immunology Research and
Accelerated [vaccine] Development) program at the Uni-
versity of Rhode Island, iVAX is now being used to design
additional vaccines including a multipathogen biodefense
vaccine against Tularemia and Burkholderia spp, an epitope-
based vaccine for HCV, and a vaccine derived from the
deer tick saliva to prevent the acquisition of Tick-borne-
pathogens. In addition, iVAX has recently been used to scan
the entire genome of Salmonella typhi for vaccine candidates.
This program is also accessible to researchers working on
Neglected Tropical Diseases through the immunome website
http://immunome.org/.

3. Reverse Vaccinology

3.1. Basic Principles of In Silico Antigen Prediction. Initially,
when Reverse Vaccinology (RV) was developed, prediction
of putative vaccine candidates was based solely on in silico
analysis of the genome of a single strain. Now that selection
criteria have been implemented, however, in silico analysis
remains the central step in an RV project (see Figure 2).

The first step in the process of genome interpretation,
usually referred as gene finding, consists in the prediction
and localization of genes onto the chromosome. This is
accomplished using prediction programs, which scan the
sequence in search of regions that are likely to encode pro-
teins. In prokaryotic systems, the identification of potential
coding regions or open reading frames requires implemen-
tation of a few basic rules. In the simplest formulation, open
reading frames (ORFs) are identified as segments of the same
frame comprised between one of the three standard start
codons (ATG, TTG, GTG) and one of the three standard stop
codons (TAA, TAG, TGA). It is generally accepted that there
is approximately one gene for every 1000 DNA base pairs.
This suggests that significantly long start-to-stop segments
are likely to encode for proteins.

Genome annotation procedures can be automated to
different extents. Automated methods for prokaryotic gene
finding such as GLIMMER [85], ORPHEUS [86], and

GeneMark [87] have been used in genome sequencing
projects [88–91]. GLIMMER uses interpolated Markov mod-
els, GeneMark uses hidden Markov models, and ORPHEUS
is mainly based on codon usage and ribosome binding site
statistics derived from annotated genes.

An exhaustive summary of software tools and websites
that can be used to obtain bacterial genome annotations was
presented by Stothard and Wishart [92].

The annotation procedure allows the translation of the
bacterial genome sequence into a list of all the proteins that
a bacterium virtually expresses at any time in its life cycle.
Each of these amino acid sequences is then compared to the
content of public databases of proteins or DNA sequences in
an attempt to identify related sequences. When there exist
obvious sequence similarities, it is reasonable to transfer
this information on the filed sequence to the query. The
functional annotation of a protein is sometimes sufficient for
the selection of the protein as vaccine candidate, especially
when the prediction of protein subcellular localization is
uncertain, for example, a protein annotated as fibronectin
binding protein may be a good vaccine candidate even when
localization algorithms classify it as cytoplasmic. A critical
aspect is represented by sequences that lack homologues
or contain only remote homologues filed in the databases.
ORFs having 20% or less of amino acid identity to any
amino acid sequence found in the databases are generally
considered to have unreliable homologues. These could
represent novel uncharacterized proteins or random open
reading frames misidentified as genes. Although homology
searches can identify to a limited extent ORFs that are likely
to encode functional proteins, experimental authentication
by proteomic techniques is usually a more powerful approach
for distinguishing genes from random ORFs.

The ensemble of hypothetical proteins can be processed
with software programs dedicated to deduce their possible
cellular localization. One of the basic assumptions utilized
for candidate searches is that a good antigen will be located
on the cell surface of a bacterium, where it is readily
available for antibody recognition. Several algorithms have
been developed that predict the subcellular localization of
proteins based solely on the amino acid sequence and
composition (see Table 2). The basic assumption made is
that the N-terminal sequence of the protein predicts its
cellular destination. The presence of a “leader sequence”
provides evidence that the proteins will be exported to
extra-cytoplasmic compartments. Additional signatures may
also be exploited such as the presence of a cleavage site
immediately after the leader peptide. Such sites imply that
the protein is released into the extra-cellular environment
of Gram-positive bacteria or into the periplasmic space of
Gram-negatives. Similarly, proteins that contain an LXXC
motif, where X is any amino acid, positioned at the end of the
leader peptide are often lipoproteins. Anchoring of proteins
to the Gram-positive bacterium cell wall often requires a
specific carboxy-terminal sorting sequence. This sequence
is identified by an LPXTG motif followed by approximately
20 hydrophobic amino acids and a charged tail. In Gram-
negative bacteria, additional secretion pathways exist that
promote the passage of extracellular proteins across the outer
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Figure 2: A schematic demonstration of integrative reverse vaccinology strategy towards vaccine development.

membrane. At least six distinct extracellular protein secretion
systems have been reported in Gram-negative and Gram-
positive bacterium (type I–VI, T1SS–T6SS) that can deliver
proteins through the multilayered bacterial cell membrane
and in some instances pass directly into the target host
cell [93]. The six secretion systems exist in Gram-negative
bacteria and the common Gram positive bacteria. Gram
positive bacteria contain an additional specific secretion
system (type VII) [94]. This increases the variety and
complexity of secretion signals, making the identification of
outer membrane and secreted proteins yet more challenging
[95, 96].

Several computational methods have been generated to
predict extracellular proteins in Gram-negative microorgan-
isms [97].

PSORTb is the most widely used tool for predicting
subcellular multiple localizations of organelles in Gram-
negative bacteria. This program uses biological knowledge to
elaborate “if-then” rules, combining information on amino
acid composition, similarity to proteins of known subcellular
localization, presence of signal peptides, transmembrane
helices, and motifs diagnostics of specific subcellular local-
ization. Recently, two predictive methods CELLO [98] and
Proteome Analyst [99] have been proposed for Gram-
negative bacteria. These programs are providing comparable

performances in terms of accuracy and recall with respect to
PSORTb [97].

Despite the recent progress, identification of secretion
systems components in silico and their effectors still mainly
relies on the detection of amino acid sequence [94] and
the structural [100] similarities of selected proteins. Caution
is necessary in applying these predictions, as sequence
similarities can be very weak and do not necessarily imply
any functional analogy.

In conclusion, by knowing the genome sequence it
becomes possible to select using bioinformatics tools to
generate a list of potential antigens without cultivating the
microorganism. This methodology has a huge advantage
over conventional vaccinology approaches for two major rea-
sons. First of all, in silico analysis is very fast and cheap, and
secondly, proteins not expressed in vitro are also identified.
However, this approach only provides a prediction of a pro-
tein’s subcellular localization and it cannot reveal if a protein
is expressed and under what conditions. Therefore, use of a
bioinformatics approach may need to be complemented with
other techniques, for example, a Mass Spectrometry-based
approach to aid vaccine candidate prediction. The first RV
project employed a single genome. Indeed, at that time there
was only one genome available for N. meningitidis. Nowadays
in most cases, there are more than five genomes available for
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Table 2: Tools used for reverse vaccinology.

Tool name Website URL Comment Refs

ORF prediction and genome annotation

GLIMMER http://www.cbcb.umd.edu/software/glimmer/
Interpolated Markov
models

[85]

ORPHEUS http://pedant.gsf.de/orpheus/ (not working now)
Codon usage and
ribosome binding
statistics

[86]

GeneMark http://exon.gatech.edu/GeneMark/ HMM [87]

Bacterial protein localization prediction

PSORTb http://www.psort.org/psortb/ Multicomponent [97]

Proteome Analyst http://webdocs.cs.ualberta.ca/∼bioinfo/PA/Sub/ Annotation keywords [99]

SubLoc http://www.bioinfo.tsinghua.edu.cn/SubLoc/ SVM [257]

CELLO http://cello.life.nctu.edu.tw/ SVM [98]

PSLpred http://www.imtech.res.in/raghava/pslpred/ SVM [258]

LOCtree http://cubic.bioc.columbia.edu/cgi/var/nair/loctree/query SVM [259]

SignalP http://www.cbs.dtu.dk/services/SignalP/ NN, HMM [260]

Sequence conservation

BLAST http://blast.ncbi.nlm.nih.gov/
Best reciprocal BLAST
hit

[261]

OrthoMCL http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi SVM [262]

Transmembrane domain prediction

HMMTOP http://www.enzim.hu/hmmtop/ HMM [263]

PRED-TMBB http://biophysics.biol.uoa.gr/PRED-TMBB/ HMM (β-barrel) [264]

TBBpred http://www.imtech.res.in/raghava/tbbpred/ NN, SVM (β-barrel) [265]

PROFtmb http://cubic.bioc.columbia.edu/services/proftmb/ HMM [266]

Bacterial adhesin prediction

SPAAN ftp://203.195.151.45 NN [112]

Reverse vaccinology software

NERVE
http://www.bio.unipd.it/molbinfo/ReverseVaccinology
NERVE.html

Multicomponent [113]

Vaxign http://www.violinet.org/vaxign/
Web-based,
multicomponent

[110]

Abbreviations: HMM: hidden Markov model; NN: neuron network; SVM: support vector machine.

any human pathogen. Therefore, the in silico analysis can take
advantage of comparative genomics.

3.2. Comparative Genomics and the Pangenome Concept.Tod-
ay, the number of fully sequenced microbial genomes exceeds
1000 (http://www.ncbi.nlm.nih.gov/bioproject/) (Many are
not from pathogens). It is clear that microbial diversity
has been vastly underestimated, and a single genome does
not exhaust the genomic diversity of any bacterial species
[101, 102]. In many cases, an extensive genomic plasticity
exists. For example, completion of the genome sequence of E.
coli O157:H7 revealed that it contains >1,300 strain-specific
genes compared to E. coli K12, which encode proteins that
are involved in virulence and metabolic capabilities [103,
104]. Additional reports have revealed the occurrence of an

extensive amount of genomic diversity among the strains of
a single species [105–107].

These early findings were formalized with the definition
of the bacterial pangenome, as the sum of the genes present
in each individual species. This concept was originally
introduced during study of the genome variability in eight
isolates of Streptococcus agalactiae (also known as Group B
streptococcus or GBS). It was found that each new genome
had an average of 30 genes that were not present in any
of the previously sequenced genomes. Not every bacterial
species has the same level of complexity as GBS. For instance,
the pangenome for Bacillus anthracis can be adequately
described by four genome sequences. Hence, scientists refer
to certain species as having an “open” and others a “closed”
pangenome. In species with an open pangenome, there
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are an unlimited number of new genes found for every
genome. In closed pangenomes, there are only a limited
number of strain-specific genes. The differences in the
nature of the pangenome reflect several factors: differing
lifestyles of two organisms, the number of closely related
species in the same environment and physiological state,
the ability of each species to acquire and stably incorporate
foreign DNA (an advantage in niche adaptation from the
acquisition of laterally transferred DNA), and the recent
evolutionary history of each species. It should be noted that
the imperfection of our definition of a bacterial species,
for example, B. anthracis and B. cereus, can be considered
the same species by some criteria, may render pangenome
analysis more complicated. As the definition of a pangenome
improves, the coverage of strains included in a bacterial
species will change and thus alter the analysis results.

A pangenome can be divided into three elements: (1)
a core genome that is shared by all strains (2) a set of
dispensable genes that are shared by some but not all isolates,
and (3) a set of strain-specific genes that are unique to
each isolate. For S. agalactiae, the core genome encodes
the basic aspects of S. agalactiae biology and was as such
predicted to rapidly converge to 80% of the genome in each
isolate. Conversely, dispensable and strain-specific genes,
which are largely composed of hypothetical, phage-related
and transposon-related genes [108], contribute to its genetic
diversity. The concept of the pangenome and comparative
genomics has practical applications in vaccine research.
In fact, while obviously the ideal vaccine candidate is a
conserved protein encoded by a gene present in every isolate
of the species, in the case of GBS it was shown that the design
of a universal protein-based vaccine against GBS was possible
using dispensable genes [109]. Of note, capsular-specificity
genes and other pathogenicity traits are often identified in an
accessory genome. Moving forward, bacterial taxonomy and
epidemiology must take into consideration whole genome
sequences and not just a few genetic loci, as has been the
case so far with methods such as ribosomal RNA sequences,
capsular typing, and multilocus sequence typing (MLST).
Comparison of the whole genome sequences of GBS strains
has shown that the genomic diversity does not necessarily
correlate with serotypes or MLST sequence-types. The appli-
cation of additional whole genome sequence analysis will
require that epidemiology studies have a reliable, systematic
correlation between strains and disease and permit a stan-
dardization of the classification for clinical isolates. These
observations are instrumental for developing a protective
vaccine that covers a broad range of pathogenic strains.

Comparative genomics is also important for the identifi-
cation of pathogenic factors since they potentially represent
good vaccine candidates. The level of distinction and the
function played by carrier versus virulent strains of strep-
tococci and neisseriae, for example, has been the matter of
discussion for a long time and still lacks an answer. There is,
as yet, no clear and strict correlation between the presence
of apparent virulence factors and the diseases caused by
these organisms. The epidemiological evidence is vague and
does not provide definitive clues. There may be multiple
reasons for this apparent lack of correlation. It is likely that in

species that only rarely result in disease, there exist multiple
virulence factors and toxins that are uniquely associated with
infection. Therefore, comparative genomics can be used to
identify the “pathogenicity signature” associated with the
most virulent bacterial strains or the strains that are success-
ful in colonization. Comparative genomics can also be used
to compare various strains that exhibit different virulence
levels, for example, commensal nonpathogenic strains versus
virulent ones, to find specific vaccine candidates [110]. The
advantages include making a vaccine against commensal
strains and narrowing down the pool of vaccine candidates.
It is anticipated that most virulence factors will be found in
accessory genomes, at least the ones that determine increased
pathogenicity. However, presently comparative genomics is
not able to identify expression variability that contributes
to the different manifestations of pathogenicity of bacterial
strains. Hence, functional studies are still critically needed to
shed light on the relevance of specific virulence factors.

Another potential application could be studies of certain
species of bacterial symbionts such as Mycoplasma, Rick-
ettsiae, and Chlamydiae. These species, instead of acquiring
genes during evolution, have actually lost significant levels
of their genetic information [111]. Primarily biosynthetic
pathway genes have been lost because intracellular bac-
teria have a relatively constant environment with access
to much of what they require for survival. By applying
the concept of pangenomics to these species, we would
obtain a “microgenome” representative of the set of genes
necessary to live in the intracellular niche. Comparing this
“microgenome” with the pangenome for free-living species
will likely simplify the identification of genes necessary for
the microorganism to survive in varying and unfavorable
environments. Housekeeping genes specific to the pathogen
are considered vaccine candidates.

In comparison to a half decade ago, comparative
genomics studies have become incredibly easy to perform.
For the most important human pathogens, the average
number of genomes for the different available strains is above
five. Therefore, for new RV studies, the conservation level of
selected antigens can be determined. Antigen conservation
level is important since conserved antigens can be used to
develop a broad strain protective vaccine [32].

In addition to the basic mechanisms of the RV strategy
described above, additional criteria can be added. For
example, since outer membrane proteins containing more
than one transmembrane helix are difficult to clone and
purify [10], the number of transmembrane domains of a
candidate protein is often used as an additional filtering
criterion. Bacterial adhesins play critical roles in adherence,
colonization, and invasion of microbial pathogens to host
cells [112]. Therefore, adhesins are essential for bacterial
survival and are possible targets for vaccine development.
Two RV software programs, NERVE [113] and Vaxign [110],
utilize these criteria. Since RV focuses on predicting antigens
using protein sequences, immune epitope prediction based
on amino acid sequences can also be considered as a criterion
for RV vaccine design [110].

Vaxign (http://www.violinet.org/vaxign/) is the first web-
based vaccine design program based on genome sequences
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utilizing the RV strategy. Predicted features in the Vaxign
pipeline include protein subcellular location, transmem-
brane helices, adhesin probability, conservation to human
and/or mouse proteins, sequence exclusion from genome(s)
of nonpathogenic strain(s), and epitope binding to MHC
class I and class II. Vaxign has been demonstrated to
successfully predict vaccine targets for Brucella spp. [114,
115] and uropathogenic Escherichia coli [110]. Currently,
more than 100 genomes have been precomputed using the
Vaxign pipeline and available for query in the Vaxign website.
Vaxign also performs dynamic vaccine target prediction
based on input sequences.

The availability of three-dimensional structure may
facilitate epitope prediction and antigen discovery [116, 117].
It would be ideal to also consider inclusion of analysis of high
throughput transcriptomics and proteomics data to aide in
complementary identification of vaccine candidates.

4. Transcriptomics and Proteomics Data
Analysis for Vaccine R&D

Beside genomics methods in vaccine studies (described
above), high-throughput transcriptomics and proteomics
technologies (i.e., microarray) have been used for vaccine
target design and analysis of vaccine-induced host immune
responses. These assay systems are able to measure the
expression pattern of thousands of genes in parallel, permit-
ting the generation of large amounts of gene expression data.
Bioinformatics techniques will play a critical role in analyzing
such data and in making novel discoveries. In general, bioin-
formatics analysis of transcriptomics and proteomics data
includes the following: (1) data preprocessing such as data
quality controls and normalization, (2) statistical analysis of
significantly regulated genes, (3) gene grouping and pattern
discovery analyses, and (4) inference of biological pathways
and networks [118, 119]. Depending on the specific research
goals of any given project, different informatics tools may be
applied individually or in combination.

Data processing is important in minimizing the effects
of experimental artifacts and random noise. Companies that
market microarrays usually provide their own methods for
raw data processing and data quality control. For exam-
ple, the GeneChip Operating Software (GCOS) expression
analysis software provided by Affymetrix (Santa Clara, CA)
can be used to process image data and the signals from
the Affymetrix DNA microarrays [120]. The probe sets of
Affymetrix microarray data are labeled present (P), absent
(A), or marginal (M) based on the default P values set
up in the GCOS system. Such labeling provides a useful
approach for gene filtering. Commonly used microarray
normalization methods include the Affymetrix MicroArray
Suite MAS 5.0 (implemented in GCOS), the Robust Mul-
tichip Analysis (RMA) method [121], and the method of
Li and Wong [122]. The software programs implementing
these methods can be downloaded from the BioConduc-
tor (http://www.bioconductor.org/), a repository for open
source and open development software programs developed
specifically for the analysis and comprehension of omics data
[123].

A common task in analyzing microarray data is to
identify up- or down-regulated gene lists [124]. Fold changes
of gene expression values between treatment group and
nontreated controls were first used by biologists. However,
this method may miss biologically important genes that
exhibit small fold changes but have statistical significance. It
also overemphasizes those genes with large fold changes but
have little or no statistical significance [119]. Frequently used
statistical methods for the determination of significantly
changed genes include analysis of variance (ANOVA) [125],
significance analysis of microarrays (SAM) [126], and the
BioConductor package Linear Models for Microarray Data
(LIMMA) [127]. ANOVA is a highly flexible analytical
approach and is used in various commercial and open-sou-
rce software packages [125]. SAM identifies genes with stati-
stically significant expression changes by assimilating a set of
gene-specific t-tests [126]. LIMMA uses linear models and
empirical Bayesian methods to assess differential expression
in microarray experiments [127].

Once the lists of up- or down-regulated genes are
determined, they can be grouped into expression classes
to identify patterns of gene expression and to provide
greater insight into their biological functions and relevance.
“Unsupervised and supervised” computational methods can
be used for gene clustering analysis [128]. “Unsupervised”
methods arrange genes and samples in groups or clusters
based solely on the similarities in gene expression. Examples
of unsupervised clustering methods include hierarchical
clustering [129], self-organizing maps [12], and model-based
clustering (e.g., CRCView [130]). “Supervised” methods,
for example, EASE [131] and gene set enrichment analysis
(GSEA) [132], use sample classifiers and gene expression to
identify hypothesis-driven correlations. The Gene Ontology
program (GO) is frequently used for gene enrichment
analysis by many software programs, such as DAVID [133]
and GOStat [134]. Additional GO-based microarray data
analysis approaches can be found at http://www.geneonto-
logy.org/GO.tools.microarray.shtml.

The next level of DNA and protein array data anal-
ysis is the inference of biological pathways and networks
[135, 136]. Several methods have been explored to model
gene expression data including simple correlation [137],
differential equations [138], neural networks [139], and
Bayesian networks [140, 141]. These methods have different
advantages and disadvantages [135, 136]. Simple correlation
assumes linear and typically pairwise relationships. These
limitations render it difficult for the investigator to identify
multidimensional relationships between variables [142].
While methods utilizing differential equations are accurate,
they are often “hand created” and as such are limited to
the use of a small number of variables [142]. In contrast,
neural networks make accurate predictions by mapping the
data onto a high-dimensional polynomial. This allows the
variables to influence each other in complex ways [139].
However, the use of neural networks assumes that everything
is affected by the changing variable. This renders it difficult to
identify such mechanisms. Bayesian networks (BN) represent
a powerful method for identifying causal or apparently
causal patterns in gene expression data. A key advantage
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of Bayesian networks is that they are relatively agnostic to
the complexity of the relationships predicted and can model
linear, nonlinear, combinatorial, stochastic, and other types
of relationships among variables across multiple levels of
biological organizations [143]. However, current Bayesian
network approaches are also subject to limitations. For
example, the expression levels must be discretized, leading
to varying degrees of loss of information [135].

The combined application of transcriptomics and pro-
teomics experiments in conjugation with specialized infor-
matics analyses has many applications in the field of vaccine
research and development. First, these “omics” methods can
be used to discover vaccine targets for many microorganism-
induced diseases as well as cancers [144, 145]. For example,
the sexual stages of malarial parasites are essential for
transmission of the disease by the mosquito and as such
are the targets for malaria vaccine development. To better
understand how genes participate in the sexual development
process, Young et al. utilized microarrays to profile the tran-
scriptomes of high-purity stage I-V Plasmodium falciparum
gametocytes [146]. An ontology-based pattern identification
algorithm was applied to identify a 246 gene sexual devel-
opment cluster. Some of the genes have the potential of
being used for vaccine development. Sturniolo et al. [147]
developed a matrix-based computational algorithm when
applied to DNA microarray experiments all data was used
successfully to predict human leukocyte antigen (HLA) class
II ligands and differentially expressed colon cancer genes.
A list of peptides uniquely associated with colon cancer
was identified. These are potentially immunogenic. These
peptides provide a basis for rational vaccine development
against colon cancer.

One practical problem in vaccine investigation is that
for most diseases, no immune response correlates well with
protection. To solve this issue, systems biology (Omics and
bioinformatics) approaches have also been used to detect
gene signatures induced in vaccinated hosts (e.g., humans)
that correlate and even predict protective immunity. For
example, two recently published studies examined early
gene signatures induced in humans vaccinated with the
attenuated yellow fever vaccine YF17D [148, 149]. Each
study analyzed total peripheral-blood mononuclear cells
from different cohorts of human volunteers at various time
points following vaccination with YF17D. Early effects (3 and
7 days postvaccination) on gene expression were determined
using microarrays and were analyzed using bioinformatics
approaches. Many genes involved in innate immune response
(e.g., Toll-like receptor signaling and inflammasome) were
discovered. Gaucher et al. [149] identified a group of
transcription factors, including interferon-regulatory factor
7 (IRF7), signal transducer and activator of transcription 1
(STAT2), and ETS2, as key regulators of the early immune
response to the YF17D vaccine [149]. YF17D was found
to trigger the proliferation of several leukocyte subtypes
including macrophages, dendritic cells, natural killer cells,
and lymphocytes [149]. Definition of this “baseline” innate
immunity response subsequently allowed detection of defec-
tive hyperresponse (excessive CCR5 activation) in a YF17D
vaccinee who had developed a serious viscerotopic adverse

event [150]. In another study, Querec et al. [148] discovered
gene signatures that correlate with the magnitude of antigen-
specific CD8+ T-cell responses and antibody titers [148].
EIF2AK4, a key gene in the integrated stress response, was
found among most of the predictive signatures. The actual
predictive capacity of a gene signature was verified using
the signatures for CD8+ T-cell responses from the first
trial to predict the outcome of the second trial and vice
versa. Another distinct early gene signature that included
TNFRSF17 (a receptor for B-cell-activating factor) was found
to predict the neutralizing antibody titers as late as 90 days
following vaccination [148].

Microarray-based methods have also been used to inves-
tigate vaccine safety [151]. For example, McKinney et al. used
protein microarrays to compare 108 serum cytokines and
chemokines in vaccine recipients before and one week after
smallpox vaccination [151]. Among 74 individuals studied,
22 experienced systemic adverse events. Machine-learning
and statistical analyses identified six cytokines that accurately
discriminate between individuals on the basis of their adverse
event status. A DNA microarray-based system has also been
developed to evaluate the genetic signatures of the toxicity
of many vaccines including pertussis vaccine [152] and
influenza vaccines [153].

5. Mathematical Simulations for Vaccine R&D

Integrative research, development, and uses of vaccines
follow a cyclical fashion where mathematical and compu-
tational simulations are connected with experimentation
leading to improved accuracy and reduced cost in vac-
cine R&D [154]. Many mathematic simulations have been
developed to support different areas of vaccine research
and development (R&D). These studies support various
vaccine-associated aspects including vaccine discovery and
development, vaccine production and stockpiling, vaccina-
tion protocol optimization, vaccine distribution, and vaccine
regulation. Here we introduce some striking examples.

Mathematical models have been developed to study the
dynamics of host-pathogen and host-vaccine interactions
[155]. For example, Kirschner et al. integrate information
over relevant biological and temporal scales to generate
a model for major histocompatibility complex class II-
mediated antigen presentation [156]. This multiscale math-
ematical model simulates molecular, cellular, tissue, and
organ/organism, and the interactions between different
levels. This model has been used to answer questions about
mechanisms of infection and new strategies for treatment
and vaccines. The same group has developed a multifaceted
approach to modeling tuberculosis-induced granuloma, a
self-organizing structure of immune cells forming in the lung
and lymph nodes in response to bacterial invasion [157–
159]. Many mathematical models have been developed to
understand the mechanisms and limitations of HIV control
by humoral and cell-mediated immunity [160]. These stud-
ies suggest that CD8+ T-cells do “too little too late” to prevent
the establishment of HIV infection. However, passively
administered antibody acts very early to reduce the initial
viral count and slow HIV growth [160]. Cell culture-based
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influenza vaccine manufacturing is of growing importance.
Influenza virus is able to replicate and induce apoptosis in
host cells. Combined with experiments, Schulze-Horsel et al.
have formulated a mathematical model to describe changes
in the concentration of uninfected and influenza A virus-
infected adherent cells, dynamics of virus particle release,
and the time course of the percentage composition of the cell
population [161]. This model can be used to characterize and
maximize viral titer yield in the bioreactors meant to produce
virus for use in influenza vaccines.

Cost-effectiveness analyses (CEA) of vaccination pro-
grams can be performed using mathematical modeling
[162]. For effective evaluation of cost effectiveness, a model
is generally required which considers the relevant biolog-
ical, clinical, epidemiological, and economic factors of a
vaccination program. CEA modeling methods have been
categorized based on three main attributes: static/dynamic,
stochastic/deterministic, and aggregate/individual based.
The modeling methods for CEAs of vaccination programs
can be improved in the areas of model choice, construction,
assessment, and validation [162]. CFA has been applied to
study different vaccination programs such as human papil-
lomavirus (HPV) vaccination [163], influenza vaccination
[164], and vacation with pneumococcal conjugate vaccine
[165].

Mathematical modeling can be used to simulate and
optimize vaccination protocols. The combination of in silico
and in vivo studies has the ability to reduce the time, effort,
and cost of vaccine studies by orders of magnitude [166, 167].
For example, Pappalardo et al. designed and implemented
SimTriplex, an agent-based model specifically tailored to
simulate the effects of tumor-preventive cell vaccines in
HER-2/neu transgenic mice prone to mammary carcinoma
development [168]. The SimTriplex mathematical model
combined with genetic algorithm has been used to search
for new vaccination schedules to prevent tumors in HER-
2/neu transgenic mice [166, 169, 170]. It has been found
that the computational model can be used for simulation
of immune responses (“in silico” experiments), leading
to optimization of vaccine protocols. Pennisi et al. also
developed MetastaSim, a hybrid Agent Based-ODE model for
the simulation of the Triplex cell vaccine-elicited immune
system response against lung metastases in mice [167].
MetastaSim simulates the main features of the immune
system. Both innate and adaptive immune responses are cov-
ered. This model includes different cell types and molecules,
such as dendritic cells, macrophages, cytotoxic lymphocytes,
antibodies, antigens, IL-12, and IFN-γ. Their study with
MetastaSim demonstrated that it is possible to obtain in
silico a 45% reduction in the number of vaccinations
[167].

Mathematical modeling plays an important role in postli-
censure vaccine informatics and in assessing the impact of
immunizations against target diseases. For example, Blower
et al. developed a mathematic model to predict the tradeoff
between efficacy and safety of live attenuated HIV vaccines
[171]. More details in this topic are introduced in the
following section.

6. Postlicensure Vaccine Informatics

Successful vaccine immunization induces protective immu-
nity in the individual. Equally important for most infectious
diseases, when a sufficiently high threshold of a group of
individuals is immunized, a “herd effect” is observed at the
population level where the incidence of the disease in the
remaining unimmunized members of the group is lower than
it would be otherwise [172]. Due to the large societal benefits
of immunizations, almost all governments (generally at the
state/provincial or national levels) organize formal targeted
immunization programs to maximize vaccine coverage. The
impact of the immunization programs is to reduce the
incidence of the targeted disease. For some infectious diseases
where the characteristics permit [173] (e.g., smallpox, polio,
measles, neonatal tetanus), regional or global initiatives to
eliminate or eradicate the targeted disease may be organized.
Routine or special immunization programs are incredibly
complex to initiate. Ongoing endeavors not uncommonly
require careful orchestration and planning for sustained and
repeated immunizations of millions of persons annually
in most jurisdictions. Vaccine informatics is critical to
providing accurate data and facilitates the smooth planning,
organization, implementation, and monitoring of almost
every aspect of such complex immunization programs. The
introduction of each new recommended vaccine into an
already crowded pediatric immunization schedule adds to
this complexity [174]. We describe next some of the better
known postlicensure vaccine informatic systems: tracking
immunization history in computerized immunization infor-
mation systems (IIS) or registries, informatics methods
for improving surveillance of vaccine safety and efficacy,
and modeling impact of alternative immunization strategies
against target diseases.

6.1. Computerized Immunization Information Systems (or
Immunization Registries). Accurate tracking of vaccination
history is essential to ensure proper completion of the pri-
mary immunization schedule and subsequent booster doses.
This seemingly straightforward task is nontrivial system-
wide when compounded by an increasingly mobile pop-
ulation, immunization schedules of increasing complexity,
multiple vaccine manufacturers of the same vaccine, multiple
health care providers and/or health insurance for the same
individual (a problem in the U.S.), multiple individual with
same name, and so forth. Add in small vaccine vials with
hard to read small fonts in a busy pediatric clinic serving
many crying babies simultaneously, the opportunities for
inaccurate or nonrecording of an administered vaccination
is substantial in developed and developing countries.

Computerized immunization information systems (IIS)
provide an obvious potential solution to these challenges. In
the U.S., the first large IISs were organized in Delaware in the
early 1970s [175]. This action was followed by several health
maintenance organization (HMOs) with the dual purpose
of linking the IIS to medical visits for rigorous studies of
vaccine safety [176]. The Robert Wood Johnson Foundation
funded the All Kids Count I and II programs in the 1990s
in multiple communities. This provided an important
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impetus to the field [175]. The Centers for Disease Control
and Prevention (CDC) now provide some financial and
technical assistance for public sector IIS in almost every state
(http://www.cdc.gov/vaccines/programs/iis/default.htm). Th-
is work is aided by partners such as the American Immuni-
zation Registry Association (http://immregistries.org/) and
the Public Health Informatics Institute (http://phii.org/).
Internationally, Australia [177], Canada [178], and Norway
[179] are some of the other countries with active IIS.

IISs also have the potential to provide a foundation of
child health registries [175] and electronic health records
[180]. While initially focused on routine pediatric immu-
nizations, registries in many locations have been expanded
to meet other needs, including adolescent and adult immun-
izations [181], disasters [182], targeting of at risk popula-
tions [182, 183], study vaccine refusal [184], and facilitating
accurate and timely reporting of vaccine adverse events
[185]. Substantial progress has also been attained in the pro-
tection of privacy and confidentiality; in ensuring participa-
tion of all immunization providers and recipients, to ensure
appropriate functioning of registries, and to ensure sustaina-
ble funding for registries [186]. However, challenges rem-
ain in exchanging information among different IISs, and ac-
ross state lines. The National Vaccine Advisory Commit-
tee has issued recommendations on how to overcome
these challenges (http://www.hhs.gov/nvpo/nvac/IISRecolm-
mendationsSep08.htm).

6.2. Informatics Methods for Improving Surveillance of Vaccine
Safety and Efficacy. Before a vaccine is licensed, it undergoes
rigorous testing in preclinical (laboratory and animal) and
phased human clinical trials for safety and efficacy [187].
Due mainly to cost (intensive monitoring perprotocol is
expensive) and ethical (once a vaccine is determined to
be safe and effective, it is no longer ethical to withhold it
from others in need) considerations, however, the sample
size and duration of followup in prelicensure trials are
usually limited. This means surveillance for both vaccine
safety and effectiveness [188] in larger immunized popu-
lation postlicensure and postmarketing is needed. This is
challenging because trial conditions (e.g., double-blinding,
randomization) that permit straightforward comparison
between vaccinated and unvaccinated groups no longer hold.
Substantial data collection and adjustments on possible
confounders, when possible, are needed to fully analyze and
interpret such observational studies.

Post-licensure monitoring for vaccine safety can gener-
ally be divided into hypothesis generating and hypothesis
testing. Since vaccine coverage for many vaccines can be
close to universal, by definition, anyone with a medical
adverse event will have previously been vaccinated. Spon-
taneous reporting or passive surveillance systems like the
U.S. Vaccine Adverse Event Reporting System (VAERS,
http://vaers.hhs.gov/) in the U.S. [189] and elsewhere [190],
where medical problems suspected to be caused by the
vaccination can be reported to health authorities, provide
the bulk of new vaccine safety hypotheses. Due to the
large number of reports (>20,000 annually to VAERS), data

mining techniques are beginning to be applied to triage
reports worthy of further attention [191].

Once a vaccine safety concern is provisionally identified,
based on our understanding of likely pathophysiology and
nonrandom clustering of cases in onset time after vacci-
nation, a formal study is usually needed to (1) confirm
whether the etiologic link with vaccination is real and not
coincidental, and (2) identify the magnitude of the risk (to
assist in risk-benefit determination for the immunization).
Since these safety concerns are likely to be rare (otherwise
they would have been detected pre-licensure), confirmatory
pharmacoepidemiologic studies of large vaccinated popu-
lations are usually needed to “test the hypothesis”. Large
national (e.g., Denmark) or population (e.g., Managed
Care Organization (MCO)) health care systems, where
members have unique personal identifiers and most of the
care for both vaccinations (exposure) and medical visits
(outcome) are automated, provide an efficient platform for
piggy-backing vaccine safety pharmacoepidemiologic studies
[192]. The Vaccine Safety Datalink (VSD) project in the
US, a consortium of 8 MCO’s representing ∼3% of the
population, has been used as a prototype of how such large
linked databases can be used for rigorous vaccine safety
studies [176, 193]. Examples include rotavirus vaccine and
intussusception [194], thimerosal and neurologic adverse
events [195], and vaccinations and central demyelination
[196]. Similar large-linked vaccine safety databases have been
created in England [197] and Vietnam [198].

Safety issues cannot be assessed directly and can only
be inferred from the relative absence of multiple adverse
events. Therefore, standardizing the case definitions used
to assess adverse events is needed to allow for mean-
ingful comparison of vaccine safety data in various set-
tings. Recognizing this need, the Brighton Collaboration
(https://brightoncollaboration.org/public) was formed in
1999 as a voluntary global collaboration to facilitate the
development, evaluation, and dissemination of high quality
information about the safety of human vaccines in both
pre- and post-licensure settings. To date, 28 guidelines and
case definitions have been developed and are freely available
to users. The case definitions are tiered by the level of
evidence available and will differ based on whether the
data are gathered in prospective clinical trials or passive
postmarketing surveillance and on the level of resource
availability (e.g., developed versus developing countries).
Since its inception, the Collaboration has helped to form a
critical mass of experts interested in vaccine safety that can
potentially be convened or accessed as new vaccine safety
issues arise. The Brighton Collaboration Viral Vector Vaccine
Safety Working Group is exploring using the “wiki” model of
mass collaboration for completing and maintaining standard
templates on characteristics of various viral vectors [199].

Post-licensure monitoring for vaccine effectiveness is
usually done by examining the impact on targeted diseases.
For reasonable sensitivity and specificity for monitoring
trends of the disease, this usually requires the establishment
of some type of public health surveillance system. For exam-
ple, the recent reintroduction of rotavirus vaccine in the US
has resulted in delayed onset and diminished magnitude of
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rotavirus activity [200]. A decline in invasive pneumococcal
disease was observed after the introduction of conjugate
pneumococcal vaccine [201]. Similar data was obtained in
developing countries, as was done with introduction of con-
jugate Haemophilus influenza type b vaccine in Mali [202].
When disease remains high or an outbreak occurs despite
high vaccine coverage, a special epidemiologic study to assess
vaccine effectiveness may be needed. This type of action was
undertaken after a posthoneymoon period measles outbreak
in Burundi [203], the resurgence of diphtheria in the former
Soviet Union [204], and the introduction of a monovalent
oral type 1 poliovirus vaccine in India [205].

6.3. Modeling of Impact of Immunizations against Target
Diseases. The cyclical nature of epidemics of many infectious
diseases such as plague and smallpox in humans (and
other animals) was noted by ancient historians prior to the
introduction of immunization in modern times [206]. This
periodicity was described as a mathematical relationship
between susceptible and immune individuals in a population
over time that interacted with an external infectious force
by Ronald Ross and Anderson Gray McKendrick at the
beginning of the 20th Century [207]. It was not until the
early 1980’s, however, that Anderson and May systematically
organized and effectively organized disparate works in popu-
lation biology, ecology, and epidemiology into mathematical
models of infectious diseases that linked the theory with
practical translation into public health policy (e.g., vacci-
nations) [208]. Their 1991 textbook “Infectious Diseases of
Humans: Dynamics and Control” [209] has helped to create
a cohort of mathematical modelers that have furthered our
understanding of transmission of infectious agents within
human communities and design programs for their control.
As Geographic Information Systems (GISs) that integrate
and analyze spatial information become increasingly avail-
able for linkage with public health databases [210], this
should aid continued refinements in various assumptions
used in mathematical models of infectious diseases.

Irrespective of the model or the target disease, a key
concept in any mathematical model is the basic reproductive
rate or R0 of a microorganism—the average number of
secondary infections produced when one infected individual
is introduced into a totally susceptible population. The goal
of any control program (e.g., immunizations) is to reduce
the R0 as much as possible. For disease elimination or
eradication programs, it must be <1 [211]. Another key
concept is “herd immunity”, the indirect effect of some
vaccines on reduction of disease transmission beyond the
protection in actual vaccine recipients [172]. Most mathe-
matical models attempt to describe as accurately as possible
the flow of a human population from susceptibility (usually
at birth or with the waning of maternally derived immunity),
infected (by wild disease or vaccination), and immune states
(adjusting for various variables such as mixing) transmission
coefficient, vaccine effectiveness, and duration of protection.
Each of these variables in turn can be further modeled (e.g.,
mixing can differ with age-classes or other subpopulations).

Historically, one of the more successful integrations of
mathematical modeling of vaccine-preventable diseases and

immunization program policies has been for measles [203,
211, 212] and rubella [213]. Mathematical models have also
been critical for understanding how best to (a) introduce
newly licensed vaccines like human papillomavirus vaccine
[214], (b) control new emerging public health problems,
such as pandemic influenza [215], (c) how best to optimize
control of a vaccine-preventable disease (such as impact of
pneumococcal conjugate vaccine on emergence of penicillin-
resistant strains) [216], or (d) how spatio-temporal variation
in birth rates may explain the observed patterns of rotavirus
disease after the introduction of new rotavirus vaccine [200].

7. Vaccine Literature Mining, Databases,
and Data Integration

Vaccine informatics is dedicated to the acquisition, pro-
cessing, storage, distribution, analysis, and interpretation of
vaccine-associated data by means of computing methods and
tools. Advanced DNA sequencing, molecular, cellular, and
immunological methods have provided a huge amount of
vaccine-related data. These data have been processed and
analyzed by exponentially expanded computational power
and new algorithms. To facilitate advanced vaccine research
and development, the large amounts of vaccine literature
data need to be processed and mined. Different types of
vaccine databases are also needed to store various vaccine
data. Eventually, all these data need to be integrated within
the vaccine domain and with other biomedical data for
computational reasoning and discovery of new knowledge.

7.1. Vaccine Literature Mining. The papers and authors
related to vaccine/vaccination have increased exponentially.
Only six vaccine-related papers were published and recorded
in PubMed before 1900. In the first half of the 20th century,
1,210 vaccine-related papers were published. This number
has increased almost 100-fold in the second half of the last
century. In addition, the numbers of vaccine publications
have increased exponentially (Figure 3). For example, 6,399
vaccine-related papers were published during the period of
1951–1960, and 96,938 in 2001–2010. Therefore, the number
of papers published annually in PubMed has increased more
than 15-fold during the past 50 years.

It has become increasingly challenging to retrieve useful
vaccine data for research purposes from the huge amount
of vaccine literature. Literature mining has been used to
facilitate the discovery and analysis of potential vaccine
targets. For example, cross-matching and analysis of the
literature and in silico-derived data allowed the selection of
189 putative vaccine candidates from the entire Mycobac-
terium tuberculosis genome [217]. In this study, the first
step towards the selection of vaccine candidates was to
accumulate published experimental data from a literature
scan of documented studies with a focus on global analyses.
The literature sources were then grouped based on differ-
ent categories (e.g., macrophage). This literature mining
approach detected 189 potential vaccine candidates. These
were studied further through in silico functional analysis and
immunoinformatics epitope prediction. A qualitative score
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Figure 3: Exponential growth of papers in the area of vaccine and
vaccination. The data was obtained by analysis of available papers
in PubMed.

was designed based on a total of 14 criteria and used to rank
and prioritize the gene list [217].

Literature mining can also be used to analyze vaccine-
associated host immune response networks. For example,
Ozgur et al. recently applied a literature mining and network
centrality analysis [218] to analyze the IFN-γ and vaccine-
associated gene networks [219]. Among approximately 1,000
genes found to interact with IFN-γ, 102 genes were predicted
to be vaccine-associated and 52 of them were verified by
manual curation. The production of IFN-γ is crucial for suc-
cessful immune response induced by vaccines against various
viruses and intracellular bacteria. For example, these include
HIV [220], M. tuberculosis [221], Leishmania spp. [222], and
Brucella spp. [223]. The discovery of the IFN-γ and vaccine-
mediated gene network provides a comprehensive view of the
vaccine-induced protective immune network and generates
new hypotheses for further experimental testing.

Two literature mining programs presented in the Vaccine
Investigation and Online Information Network (VIOLIN;
see next section) were developed for general vaccine litera-
ture searching and analysis [13]. Vaxpresso (http://www.viol-
inet.org/textpresso/cgi-bin/home) is a vaccine literature mi-
ning program using natural language processing (NLP) and
ontology-based literature searching [224]. For a list of sele-
cted pathogens, Vaxpresso contains all possible vaccine-
related papers extracted from PubMed (http://www.ncbi.nlm
.nih.gov/pubmed). Vaxpresso is able to retrieve and sort ar-
ticle sentences that match specific keywords and ontology-
based categories. Vaxmesh (http://www.violinet.org/litesea-
rch/meshtree/meshtree.php) is a vaccine literature browser
based on the Medical Subject Headings (MeSH). MeSH
is a controlled vocabulary of medical and scientific terms
that is used for indexing PubMed articles in a consistent
way supporting PubMed literature mining. Vaxmesh enables
users to locate articles using MeSH terms in a hierarchical
MeSH tree structure.

7.2. Web-Based Vaccine Databases and Online Resources. Ma-
ny publicly available vaccine databases and online resour-
ces exist (Table 3). For example, the USA CDC Vaccine
Information Statements (VISs) system (http://www.cdc.gov/
vaccines/pubs/vis/) provides information sheets that expl-
ain to vaccine recipients, their parents, or their legal represe-
ntatives both the benefits and risks of a vaccine. Federal
law in the US requires that VISs be handed out for all vacci-
nes before their use. The licensed vaccine information is
provided by the U.S. FDA (http://www.fda.gov/Biologics-
BloodVaccines/Vaccines/default.htm). The Vaccine Resource
Library (VRL, http://www.path.org/vaccineresources/) offers
various high quality, scientifically accurate documents and
links to specific diseases and topics in immunization.

These databases focus primarily on the clinical uses
and regulations of existing vaccines for vaccine users. To
store and analyze research data concerning commercial
vaccines and vaccines under clinical trials, or in early
stages of development, the Vaccine Investigation and Online
Information Network (VIOLIN, http://www.violinet.org/)
was developed. VIOLIN is a web-based vaccine database and
analysis system primarily targeted for vaccine researchers
[13]. The VIOLIN vaccine database currently contains more
than 2,700 vaccines, or vaccine candidates, for more than
160 pathogens through manual curation from >1500 peer-
reviewed papers or other reliable sources. The stored vaccine
data includes vaccine preparation, pathogen genes used and
gene engineering, vaccine adjuvants and vectors, vaccine-
induced host immune responses, and vaccine efficacy in
host after virulent challenge. VIOLIN curates more than
500 protective antigens (http://www.violinet.org/protegen/)
[225]. Vaccine-related pathogen and host genes are also
annotated and available for searching through customized
BLAST programs. VIOLIN also stores and processes all
possible vaccine literature through different text mining
programs [13]. Vaxign, a web-based vaccine design program
based on reverse vaccinology strategy [110], is also a program
in VIOLIN.

Besides the above databases which focused on vaccine
awareness and vaccine research, many other databases are
available that are useful for vaccine research and develop-
ment. For example, more than 65,000 antibody and T-cell
epitopes have been deposited in the Immune Epitope
Database and Analysis Resource (http://www.immuneep-
itope.org/) since the database was established in 2004 [6].
These immune epitopes cover a broad range of species
including humans, nonhuman primates, rodents, and other
animal species as related to all infectious diseases [6].
AntigenDB is an immunoinformatics database of pathogen
antigens and store sequences, structures, origins, and epi-
topes [226].

7.3. Development of a Community-Based Vaccine Ontology
(VO). Although public vaccine databases provide help with
different aspects of vaccine knowledge and research, it
remains a challenge to integrate this disparate body of
information on vaccines. Data integration is hampered
since the data are often collected using incompatible or
poorly described methods for data capture, storage, and
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Table 3: Vaccine web resources.

Resource name Website URL Comment

Vaccines and Immunization

WHO Immunization/vaccines http://www.who.int/immunization/en/ WHO vaccine site

Immunization Action Coalition http://www.immunize.org/
Vaccination Information
for Healthcare
Professionals

USA CDC Vaccine Information Statements http://www.cdc.gov/vaccines/pubs/vis/
Benefits and risks of
vaccines

USA CDC listed vaccines
http://www.cdc.gov/vaccines/vpd-
vac/vaccines-list.htm

Vaccines used in USA

US FDA licensed vaccine information
http://www.fda.gov/BiologicsBlood-
Vaccines/Vaccines/default.htm

Licensed vaccines used in
USA

Canada licensed vaccine information
http://www.phac-aspc.gc.ca/dpg-
eng.php#vaccines

Canada

DH Immunization at UK
http://www.dh.gov.uk/en/Publichealth/
Immunisation/index.htm

Official UK vaccination site

PATH Vaccine Resource Library http://www.path.org/vaccineresources/
Collection of vaccine
resources

NNii: National Network for Immunization
Information

http://www.immunizationinfo.org/
vaccines

Scientific valid information

GAVI Alliance (Global Alliance for Vaccines and
Immunisation)

http://www.gavialliance.org/ Goal: save children’s lives

Vaccine Clinical Trials

Nonhuman primate HIV/SIV vaccine trials
database

http://www.hiv.lanl.gov/content/
vaccine/home.html

Vaccine studies of HIV/SIV
using nonhuman primates

AIDS vaccine trials database
http://www.iavireport.org/trials-db/
Pages/default.aspx

AIDS vaccine clinical trials

Clinical trials database (USA NIH) http://clinicaltrials.gov/ Vaccine or other trials

Vaccine Safety

WHO Immunization Safety
http://www.who.int/immunization
safety/en/

WHO vaccination safety
site

VAERS: Vaccine Adverse Event Reporting System
(USA FDA & CDC)

http://vaers.hhs.gov/index
USA vaccine adverse event
reporting website

USA CDC-Vaccine Safety
http://www.cdc.gov/vaccinesafety/
index.html

USA official vaccine safety
site

The Brighton Collaboration
https://brightoncollaboration.org/
public

Setting standards in vaccine
safety

Vaccine Research Database

VIOLIN http://www.violinet.org/
Comprehensive vaccine
data

Vaccine Manufacturers

EVM: European Vaccine Manufacturers
http://www.efpia.org/Content/
Default.asp

Collection of European
vaccine companies

List of vaccine manufactures
http://www.ontobee.org/browser/
rdf.php?o=VO&iri=http://purl
.obolibrary.org/obo/VO 0000299

Collected in Vaccine
Ontology

dissemination. Integration is also complicated as investi-
gators use independently derived local terminologies and
data schemas. These problems can be alleviated through
the use of a common ontology, that is, a consensus-based
controlled vocabulary of terms and relations, with associated
definitions that are logically formulated in such a way as
to promote automated reasoning. Ontologies are able to

structure complex biomedical domains and relate a myriad
of data to allow for a shared understanding of vaccines.

The collaborative, community-based Vaccine Ontology
(VO; http://www.violinet.org/vaccineontology/) was recently
initiated to promote vaccine data standardization, integra-
tion, and computer-assisted reasoning. VO can be used for
different applications, including vaccine data integration and
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literature mining. Currently, VO contains more than 3,000
terms, including more than 700 vaccines and vaccine can-
didates that are represented in an appropriately structured
ontological hierarchy. These vaccines or vaccine candidates
are targeted to 70 pathogens and have been studied in
more than 20 animal species (e.g., human, mouse, cattle,
and fish). VO also stores terms related to different vaccine
components (e.g., protective antigens, vaccine adjuvants
and vectors), vaccine-induced immune responses, vaccine
adverse events, and protection efficacy. The known relations
between these terms are also listed. These representations
are readable by computer programs and support computer-
assisted reasoning. This knowledge is also exchangeable
across multiple scientific domains to facilitate hypothesis
generation and validation. This approach will undoubtedly
lead to new scientific discoveries.

VO has been used for several different applications.
For example, VO, in combination with other ontologies,
has been used to model and study vaccine protection
investigation [15]. Reported vaccine protection data from
different reports can be systematically analyzed [227]. VO
can also be used to improve vaccine literature mining. For
example, a direct PubMed search for “live attenuated Brucella
vaccine” returned 69 papers (as of August 2010). VO includes
13 live attenuated Brucella vaccines that are defined as “live”
and “attenuated”. When specific “live, attenuated” Brucella
vaccine terms are included in a PubMed search, the number
of papers found in PubMed increased by more than 10-fold
[228, 229]. The application of VO has also enhanced the dis-
covery of IFN-γ and vaccine-associated gene networks [16].

8. Discussion

In summary, vaccine informatics has been widely imple-
mented in the areas of basic vaccine research, translational
vaccine development, prolicensure vaccine immunization
registry and surveillance, and vaccine data mining and
integration.

Vaccine informatics is an emerging interdisciplinary
research, with close relationships to several similar research
fields. Vaccine informatics overlaps with immunological
bioinformatics (or immunoinformatics). The latter field
applies informatics technologies to investigate the immune
system at a systems biology level [5, 230]. Vaccine informatics
emphasizes understanding of vaccine-induced immunity.
Vaccine informatics uses information of OMICS (genomics,
transcriptomics, proteomics, and metabolomics). This is in
contrast to reverse vaccinology that primarily uses genomics,
that is, informatics analysis of genome sequences. Other
OMICS technologies may also have the potential to aid in
rational vaccine design. Recently Poland et al. defined a new
area of vaccinomics that will focus on the development of
personalized vaccines based on our increasing understanding
of genotype information [231]. Vaccine informatics is also
closely associated with clinical immunology in the areas of
post-licensure vaccine assessment and surveillance. Mathe-
matical modeling also plays an important role in vaccine
informatics by modeling various aspects of pre- and post-
licensure vaccine research and clinical investigations.

Vaccine informatics still faces many challenges. Many
infectious diseases, including HIV/AIDS, tuberculosis, and
malaria, still lack effective and safe vaccines. Although exten-
sive progress has been made towards the genetic structure
and pathogenesis of HIV and other infectious pathogens,
significant gaps in our understanding of host-pathogen inter-
actions still remain [232, 233]. These gaps are attributable to
imperfect and nonstandardized animal models, the absence
of precise immunological correlates of protection, and
the prohibitive cost of confirmatory clinical trials. The
development of vaccines against many noninfectious diseases
including cancer, autoimmune diseases, and allergy remains
a challenge. While many vaccine adverse events are likely
genetically determined (and thus predictable), it remains
challenging to predict possible vaccine adverse events with
available genotype data and possibly design personalized
vaccine. These challenges will undoubtedly be met with
improved rational vaccine design and a better understanding
of fundamental protective immunity mechanisms obtained
with improving vaccine informatics technologies.

New bioinformatics technologies are constantly being
devised and applied to address various vaccine-related ques-
tions using high throughput sequencing, gene expression
data, and experimental results from experimental and clin-
ical studies. Efforts during the 21st century vaccinology will
witness more successes of application of vaccine informatics
in vaccine research.
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“The role of the proteasome in generating cytotoxic T-cell
epitopes: insights obtained from improved predictions of
proteasomal cleavage,” Immunogenetics, vol. 57, no. 1-2, pp.
33–41, 2005.

[60] M. V. Larsen, C. Lundegaard, K. Lamberth, S. Buus, O.
Lund, and M. Nielsen, “Large-scale validation of methods for
cytotoxic T-lymphocyte epitope prediction,” BMC Bioinfor-
matics, vol. 8, article 424, 2007.

[61] S. Tenzer, B. Peters, S. Bulik et al., “Modeling the MHC
class I pathway by combining predictions of proteasomal
cleavage, TAP transport and MHC class I binding,” Cellular
and Molecular Life Sciences, vol. 62, no. 9, pp. 1025–1037,
2005.

[62] T. Stranzl, M. V. Larsen, C. Lundegaard, and M. Nielsen,
“NetCTLpan: pan-specific MHC class I pathway epitope
predictions,” Immunogenetics, vol. 62, no. 6, pp. 357–368,
2010.

[63] A. B. Riemer, D. B. Keskin, G. Zhang et al., “A conserved
E7-derived cytotoxic T lymphocyte epitope expressed on
human papillomavirus 16-transformed HLA-A2+ epithelial
cancers,” The Journal of Biological Chemistry, vol. 285, pp.
29608–29622, 2010.

[64] D. Enshell-Seijffers, D. Denisov, B. Groisman et al., “The
mapping and reconstitution of a conformational discontin-
uous B-cell epitope of HIV-1,” Journal of Molecular Biology,
vol. 334, no. 1, pp. 87–101, 2003.

[65] A. Schreiber, M. Humbert, A. Benz, and U. Dietrich, “3D-
Epitope-Explorer (3DEX): localization of conformational
epitopes within three-dimensional structures of proteins,”
Journal of Computational Chemistry, vol. 26, no. 9, pp. 879–
887, 2005.

[66] U. Kulkarni-Kale, S. Bhosle, and A. S. Kolaskar, “CEP:
a conformational epitope prediction server,” Nucleic Acids
Research, vol. 33, no. 2, pp. W168–W171, 2005.

[67] M. J. Sweredoski and P. Baldi, “PEPITO: improved discon-
tinuous B-cell epitope prediction using multiple distance
thresholds and half sphere exposure,” Bioinformatics, vol. 24,
no. 12, pp. 1459–1460, 2008.

[68] D. J. Barlow, M. S. Edwards, and J. M. Thornton, “Con-
tinuous and discontinuous protein antigenic determinants,”
Nature, vol. 322, no. 6081, pp. 747–748, 1986.

[69] M. J. Blythe and D. R. Flower, “Benchmarking B cell epitope
prediction: underperformance of existing methods,” Protein
Science, vol. 14, no. 1, pp. 246–248, 2005.

[70] U. Reimer, “Prediction of linear B-cell epitopes,” Methods in
Molecular Biology, vol. 524, pp. 335–344, 2009.

[71] E. Rajnavolgyi, N. Nagy, B. Thuresson et al., “A repetitive
sequence of Epstein-Barr virus nuclear antigen 6 comprises
overlapping T cell epitopes which induce HLA-DR-restricted



Journal of Biomedicine and Biotechnology 21

CD4(+) T lymphocytes,” International Immunology, vol. 12,
no. 3, pp. 281–293, 2000.

[72] C. M. Graham, B. C. Barnett, I. Hartlmayr et al., “The
structural requirements for class II (I-A(d))-restricted T cell
recognition of influenza hemagglutinin: b cell epitopes define
T cell epitopes,” European Journal of Immunology, vol. 19, no.
3, pp. 523–528, 1989.

[73] W. Fischer, S. Perkins, J. Theiler et al., “Polyvalent vaccines
for optimal coverage of potential T-cell epitopes in global
HIV-1 variants,” Nature Medicine, vol. 13, no. 1, pp. 100–106,
2007.

[74] A. S. De Groot, L. Marcon, E. A. Bishop et al., “HIV
vaccine development by computer assisted design: the GAIA
vaccine,” Vaccine, vol. 23, no. 17-18, pp. 2136–2148, 2005.

[75] B. Gaschen, J. Taylor, K. Yusim et al., “Diversity considera-
tions in HIV-1 vaccine selection,” Science, vol. 296, no. 5577,
pp. 2354–2360, 2002.

[76] F. Gao, B. T. Korber, E. A. Weaver, H. X. Liao, B. H. Hahn, and
B. F. Haynes, “Centralized immunogens as a vaccine strategy
to overcome HIV-1 diversity,” Expert Review of Vaccines, vol.
3, no. 4, pp. S161–S168, 2004.

[77] F. Gao, E. A. Weaver, Z. Lu et al., “Antigenicity and
immunogenicity of a synthetic human immunodeficiency
virus type 1 group M consensus envelope glycoprotein,”
Journal of Virology, vol. 79, no. 2, pp. 1154–1163, 2005.

[78] D. C. Nickle, M. Rolland, M. A. Jensen et al., “Coping with
viral diversity in HIV vaccine design,” PLoS Computational
Biology, vol. 3, no. 4, article e75, pp. 754–762, 2007.

[79] L. A. McNamara, Y. He, and Z. Yang, “Using epitope
predictions to evaluate efficacy and population coverage of
the Mtb72f vaccine for tuberculosis,” BMC Immunology, vol.
11, article 18, 2010.
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