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Quantum and classical spin clusters: disappearance of quantum numbers and
Hamiltonian chaos

Niraj Srivastava and Gerhard Müller
Department of Physics, University of Rhode Island, Kingston RI 02881, USA

We present a direct link between manifestations of classical Hamiltonian chaos and quantum
nonintegrability effects as they occur in quantum invariants. In integrable classical Hamiltonian
systems, analytic invariants (integrals of the motion) can be constructed numerically by means of
time averages of dynamical variables over phase-space trajectories, whereas in near-integrable models
such time averages yield nonanalytic invariants with qualitatively different properties. Translated
into quantum mechanics, the invariants obtained from time averages of dynamical variables in energy
eigenstates provide a topographical map of the plane of quantized actions (quantum numbers) with
properties which again depend sensitively on whether or not the classical integrability condition
is satisfied. The most conspicuous indicator of quantum chaos is the disappearance of quantum
numbers, a phenomenon directly related to the breakdown of invariant tori in the classical phase
flow. All results are for a system consisting of two exchange-coupled spins with biaxial exchange
and single-site anisotropy, a system with a nontrivial integrability condition.

I. INTRODUCTION

The concept of chaos in (mostly phenomenological)
classical dynamical systems has received widespread at-
tention and is being employed in an increasing number
of different contexts. Manifestations of chaos in classical
Hamiltonian dynamics [1-4] play a particularly impor-
tant role in physics applications. Chaos is defined by the
property of deterministic randomness. In nonintegrable
classical Hamiltonian systems, deterministic randomness
has its origin in the mixing character of the chaotic phase
flow and is describable, for example, in terms of the Kol-
mogorov entropy. Chaotic phase-space trajectories are
informationally incompressible and, therefore, (intrinsi-
cally or effectively) deterministically random. In their
specification by a sequence of coordinates, redundancy
is either absent (homoplectic situation) or irretrievable
(autoplectic situation) [5-7].

In recent years, many quantum nonintegrability effects
have been identified and studied [8-10]. The most promi-
nent among them is perhaps the striking correlation be-
tween the fluctuation properties of the energy spectrum
of a quantum model system and the (non-)integrability
of the corresponding classical model [10-12]. However,
there is at present no positive evidence for determinis-
tic randomness in any property of nonintegrable quan-
tum systems. A clearer picture of the still obscure con-
nection between deterministic randomness and quantum
mechanics is more and more urgently needed as exper-
imental evidence for chaos in microscopic physical sys-
tems accumulates: microwave ionization measurements
of highly excited hydrogen atoms [13, 14]; photoabsorp-
tion spectroscopy of highly excited hydrogen atoms in
strong static magnetic fields [15]; nonlinear dynamics of
a pair of Ba+ ions in a laser cooled trap [16].

Classical spin clusters and their well-defined quantum
counterparts lend themselves ideally to detailed studies
of quantum manifestations of Hamiltonian chaos. The
present paper is, in fact, the fourth part of our study of

the dynamics of integrable and nonintegrable spin clus-
ters. In the first three parts, the focus was, respectively,
on the following properties of classical 2-spin clusters:
integrability criteria and analytic structure of invariants
[17]; geometric structure of analytic and nonanalytic in-
variants [18]; time-dependent correlation functions and
spectral properties [19, 20].

II. THE 2-SPIN CLUSTER

We consider a system of two localized classical 3-
component spins of fixed length s,

Sl = (Sxl , S
y
l , S

z
l )

= s(sinϑl cosϕl, sinϑl sinϕl, cosϑl), (II.1)

l = 1, 2, specified by the energy function,

H =
∑

α=x,y,z

{
−JαSα1 Sα2 +

1
2
Aα
[(
Sα1
)2+

(
Sα2
)2]}

. (II.2)

The dynamics is governed by the equations of motion,

dSl
dt

= −Sl ×
∂H

∂Sl
= {H,Sl}, l = 1, 2, (II.3)

where {Sαl , S
β
l′} = −δll′

∑
γ εαβγS

γ
l are the Poisson

brackets for classical spin variables. The corresponding
quantum spin cluster is specified by the Hamiltonian

Ĥ = ~2
∑

α=x,y,z

{
− Jασ̂α1 σ̂α2 +

1
2
Aα
[(
σ̂α1
)2 +

(
σ̂α2
)2]}
(II.4)

in terms of spin operators Ŝl = ~σ̂l with spin quantum
number σ (σ = 1/2, 1, 3.2, ...), which satisfy the commu-
tation relations [σ̂αl , σ̂

β
l′ ] = iδll′

∑
γ εαβγ σ̂

γ
l . The classical

spin model is obtained from its quantum counterpart as
the limiting case [17],

~→ 0, σ →∞, ~
√
σ(σ + 1) = s. (II.5)
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The operators Ŝαl whose mutual commutators vanish in
that limit, can then be reinterpreted as the Cartesian
components of the classical vector (II.1), and the Heisen-
berg equation of motion,

dσ̂l
dt

=
i

~
[Ĥ, σ̂l], l = 1, 2, (II.6)

which governs the quantum time evolution, turns into
Hamilton’s equation of motion (II.3). Each classical spin
Sl is expressible in terms of two canonical coordinates,

pl = cosϑl, ql = ϕl. (II.7)

The classical two-spin system (II.2) thus represents an
autonomous Hamiltonian system of two degrees of free-
dom. Integrability of that system requires the exis-
tence of a 2nd integral of the motion, I(S1,S2), in ad-
dition to the energy function H(S1,S2). In a previous
study [17], we showed that with no single-site anisotropy,
Ax = Ay = Az, the 2-spin system (II.2) is always inte-
grable and the 2nd analytic invariant has the form

I =−
∑

αβγ=cycl(xyz)

JαJβS
γ
1S

γ
2

+
∑
α=xyz

1
2
J2
α

[(
Sα1
)2 +

(
Sα2
)2]

. (II.8)

Otherwise, the system is nonintegrable unless the inter-
action parameters satisfy the condition

(Ax −Ay)(Ay −Az)(Az −Ax)

+
∑

αβγ=cycl(xyz)

J2
α(Aβ −Aγ) = 0, (II.9)

in which case the 2nd integral of the motion is

I =
∑
α=xyz

gαS
α
1 S

α
2 , (II.10)

where

gα = Jα(Jα + Jβ + Jγ) + (Aα −Aβ)Jγ + (Aα −Aγ)Jβ
− (Aα −Aβ)(Aα −Aγ), αβγ = cycl(xyz).

III. CLASSICAL INVARIANTS

Integrability has far-reaching geometrical implications
for the flow in the 4-dimensional phase space (in our case
a compact manifold). Any phase point is constrained to
move simultaneously on two independent 3-dimensional
hypersurfaces,

H(S1,S2) = const, I(S1,S2) = const. (III.1)

The manifold which results from the intersection of these
two hypersurfaces has the topology of a 2-dimensional
torus (Poincaré-Hopf theorem). The phase space is

densely foliated by such invariant tori. Each torus is
specified by the values of two action variables J1, J2, de-
termined by integrals

Jl =
1

2π

2∑
k=1

∮
Cl

pkdqk, l = 1, 2 (III.2)

over two topologically independent closed paths Cl on the
torus. Consequently, the two invariants can be expressed
as functions of two action variables:

H(S1,S2) = H ′(J1, J2),
I(S1,S2) = I ′(J1, J2). (III.3)

In Ref. 18 we described a method for the numerical con-
struction of invariants, a prescription applicable to quite
general situations: Pick any dynamical variable A which
is independent of H and determine its time average over
the phase-space trajectory specified by initial condition
(S1,S2):

〈A〉 = lim
T→∞

1
T

∫ T

0

dt A(t; S1,S2) = IA(S1,S2). (III.4)

According to the Birkhoff theorem [21], the function
IA(S1,S2) is defined everywhere in phase space except for
a set of points with measure zero, irrespective of whether
the system is integrable or not. However, the properties
of (III.4) depend sensitively on whether the phase flow is
regular or chaotic.

A. Analytic invariants

For any integrable case of the 2-spin model (II.2), the
two analytic invariants which guarantee integrability are
the energy E = H(S1,S2) and the function I(S1,S2)
given in (II.8) or (II.10) by analytic construction. In
determining a function IA(S1,S2) from time averages
(III.4) over single trajectories, we have to distinguish
between rational tori (each containing a one-parameter
family of periodic trajectories) and irrational tori (on
which the phase flow is ergodic). Both sets of tori are
dense in phase space; the rational ones have zero mea-
sure. If we restrict the initial conditions to points on
irrational tori, then the invariant (III.4) is, in fact, a
function of two variables only, the two action coordinates
J1, J2 which specify individual tori. It is this function
I ′A(J1, J2) = IA(S1,S2) which can then be identified as
an analytic invariant, a valid replacement for the explic-
itly known integral of the motion (II.8) or (II.10). In
Ref. 18 we have numerically verified for specific choices
of A and an integrable 2-spin model that the function
IA(S1,S2) is a piecewise smooth function of the phase-
space variables with the singularities attributable to sep-
aratrices in the phase flow [22].

Here we take a different perspective in visualizing clas-
sical analytic invariants. The goal is to facilitate di-
rect comparison with quantum invariants. Consider the
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two analytic invariants
√
〈M2

x〉,
√
〈M2

z 〉, where Mµ =
(Sµ1 + Sµ2 )/2, as determined from tame averages over ir-
rational tori, and the energy E as a third analytic invari-
ant. Since only two invariants can be independent, there
exists an ”equation of state”, E = E(

√
〈M2

x〉,
√
〈M2

z 〉),
which is represented by a piecewise smooth surface in
(
√
〈M2

x〉,
√
〈M2

z 〉, E)-space. Every point on that surface
is the image of a point in the action plane (J1, J2).

For a demonstration of analytic invariants in this
representation consider the XY model with exchange
anisotropy,

Hγ = −(1 + γ)Sx1S
x
2 − (1− γ)Sy1S

y
2 (III.5)

as a special case of (II.2) which is integrable for arbi-
trary γ. In Fig. 1 we show the section at E = 0.2
of the invariant-surface E(

√
〈M2

x〉,
√
〈M2

z 〉) for several
values of γ. We have determined

√
〈M2

x〉 and
√
〈M2

z 〉
via time average (III.4) for initial conditions chosen ran-
domly on the energy hypersurface. All points indeed fall
onto piecewise smooth lines as expected. The cusps in
the sections for γ 6= 0 represents singularities in the (not
explicitly known) functional dependence of the invariants√
〈M2

x〉,
√
〈M2

z 〉 on J1, J2.

FIG. 1: Invariant
p
〈M2

z 〉 versus invariant
p
〈M2

x〉 at energy
E = 0.2 for the cases γ = 0, γ = 0.2, and γ = 0.7 of the
classical 2-spin model Hγ with s = l. The invariants are
determined by time averages over individual trajectories for
initial conditions randomly chosen on the energy hypersur-
face. The number of initial conditions used was 1200 for each
line. The results of a small number of time averages were
discarded because of extremely poor convergence.

B. Nonanalytic invariants

For nonintegrable cases of the 2-spin model (II.2) the
phase flow is qualitatively different: All rational tori are

destroyed and a fraction of the irrational ones as well.
That part of the phase flow is converted into new tori (is-
land chains) surrounded by chaotic phase flow. Within
the chaotic flow there exist special types of nonchaotic
trajectories: cantori (invariant Cantor sets) and a dense
set of unstable periodic trajectories. The surviving irra-
tional tori are no longer dense anywhere in phase space,
but have nonzero measure, nevertheless. If we restrict
our consideration of time averages to initial conditions
corresponding to the two types of trajectories which to-
gether exhaust the measure of phase space, intact tori
and chaotic trajectories, then we can infer the follow-
ing properties of the function IA(S1,S2), which we now
call a nonanalytic invariant: For initial conditions on in-
tact tori, the invariant IA(S1,S2) again depends on two
variables J1, J2 via the integrals (III.2), but they can no
longer be interpreted as global action coordinates. The
set of (J1, J2)-pairs for which the functions H ′(J1, J2)
and I ′A(J1, J2) are defined is no longer dense anywhere
in the action plane. Canonical equations can therefore
not be derived from H ′(J1, J2). Nevertheless, in regions
of phase space where intact tori are abundant, IA(S1,S2)
exhibits a fairly smooth dependence on initial conditions,
implying that the functions H ′(J1, J2) and I ′A(J1, J2) are
equally smooth on a coarse-grained scale. If it is assumed
that the phase flow within any connected region of chaos
is ergodic, then the function IA(S1,S2) on a line of initial
conditions at constant E consists, effectively, of horizon-
tal steps of various sizes down to infinitesimal ones, a
devil’s staircase with steps up and down occurring for
initial conditions located on intact tori [23].

For a representation of nonanalytic invariants by
means of an equation of state, we consider the X Y model
with single-site anisotropy,

Hα =− (Sx1S
x
2 + Sy1S

y
2 )

− 1
2
α
[(
Sx1
)2 − (Sy1 )2 +

(
Sx2
)2 − (Sy2 )2], (III.6)

as a special case of (II.2) which is nonintegrable for
α 6= 0,±1. Figure 2 shows the section at E = 0.2 of the
invariant-surface E(

√
〈M2

x〉,
√
〈M2

z 〉) for the integrable
cases α = 0 and α = 1, and of its remnants for the non-
integrable case α = 0.7. As in Fig. 1, the data points
represent time averages (III.4) for initial conditions ran-
domly chosen on the energy hypersurface. The letters
(a), (b), (c) label 3 different types of invariant tori.

In the integrable limit α = 0, the entire energy hyper-
surface is densely foliated by type (b) tori, giving rise to
a perfectly smooth invariant-surface as observed in Fig.
2. With e increasing from zero, type (a) tori make their
appearance on the energy hypersurface, separated from
type (b) tori by a separatrix in the form of a chaotic
band of increasing width. Type (c) tori emerge from
within that chaotic band and become quite prominent at
α = 0.7. Upon further increase of α, the chaotic band
starts to shrink again and disappears in the integrable
limit α = 1 along with the type (b) and type (c) tori,
leaving a dense foliation of type (a) tori on the energy
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FIG. 2: Invariant
p
〈M2

z 〉 versus invariant
p
〈M2

x〉 at energy
E = 0.2 for the cases α = 0, α = 0.7, and α = 0.1 of the
classical 2-spin model Hα with s = l. For better display, the
sections for α = 0 and α = 1 have been shifted horizontally
by the amounts c = 0.2 and c = −0.2, respectively. The
invariants have been determined by time averages over indi-
vidual trajectories for initial conditions randomly chosen on
the energy hypersurface. The number of initial conditions
chosen was 1200 for α = 0, 500 for α = 0.7 and 600 for α = 1.
The results of a small number of time averages were discarded
because of extremely poor convergence.

hypersurface, resulting again in a perfectly smooth in-
variant surface.

For the nonintegrable case α = 0.7, we observe that
parts of the invariant-surfaces pertaining to the inte-
grable limits α = 0 and α = 1 are still visibly present
at the top and bottom, respectively. These parts orig-
inate from phase-space regions in which, respectively,
types (b) and (a) tori are predominant. However, no
piece of invariant-surface no matter how small is per-
fectly smooth for 0 < α < 1, because of the omnipresence
of chaotic trajectories. One interruption (separating the
pieces marked (a) and (b)) occurs on a sufficiently large
scale to be prominently displayed in Fig. 2. It is caused
by the chaotic band mentioned previously, which is fairly
widespread at α = 0.7.

For initial conditions within that chaotic region, the
points (

√
〈M2

x〉,
√
〈M2

z 〉) tend to cluster at (d) near the
center of the gap between the two major remnants of
the invariant-surface. If it weren’t for the slow con-
vergence of the time averages along chaotic trajectories
due to low-flux cantori [18-20], the entire chaotic re-
gion would be represented by a single isolated point in
the constant-energy section of the invariant-surface. In
the full (

√
〈M2

x〉,
√
〈M2

z 〉, E)-space, the points associated
with chaotic regions form string-like objects. Also in the
gap between the two residual parts of invariant-surface,
some of the time averages

√
〈M2

x〉,
√
〈M2

z 〉 form a new

piece of invariant-surface at (c) which originates from
initial conditions on secondary KAM tori (island chain).
This piece of invariant-surface has no smooth counter-
part in any of the integrable limits. The characteristic
pattern of invariant-surface interrupted by gaps, and the
gaps populated with invariant-strings and new pieces of
invariant-surface repeats itself on smaller scales ad infini-
tum. We shall demonstrate that the distinction between
analytic and nonanalytic invariants, which characterizes
integrable and nonintegrable classical Hamiltonian sys-
tems, can be translated into quantum mechanics along
with many of its implications.

IV. QUANTUM INVARIANTS

Consider the general quantum 2-spin system (II.4). If
the model parameters satisfy the classical integrability
condition (II.9), the quantum spectrum Eλ is naturally
catalogued as a two-parameter family in terms of two
quantum numbers m1,m2, each representing one of two
action variables,

Jk = mk~, mk = −σ,−σ + 1, . . . , σ (IV.1)

as prescribed by semiclassical quantization. For a given
sequence of energy eigenvalues Eλ resulting from the
diagonalization of the Hamiltonian Ĥ, the correct as-
signment of quantum numbers m1,m2 requires, in prin-
ciple, that we know the function H ′(J1, J2) in (III.3).
In those integrable cases of (II.2) for which no separa-
ble canonical coordinates have been found, the implicit
two-dimensional order of the eigenvalue sequence Eλ, i.e.
its labelling in terms of two quantized action variables
m1,m2 can be recovered nevertheless: Consider the en-
ergy eigenvalues Eλ and the eigenvalues Iλ of the quan-
tum invariant Î, the quantum version of I(S1,S2). In a
diagram Iλ versus Eλ, the array of (2σ+ 1)2 points form
a regular pattern, which, however, is likely to be visually
distorted due to the generally complicated nonlinear de-
pendence of E and I on J1, J2. But we do not, in fact,
need to know the 2nd integral of the motion Î explicitly
to carry out this scheme; we can, following an idea of
Peres [24], always construct it via time averages similar
to the procedure previously employed for the classical
model [18]: Take any operator Â with [Â, Ĥ] 6= 0, which
represents a dynamical variable independent of Ĥ, and
consider the matrix elements Â(t) in the energy repre-
sentation,

〈λ|Â(t)|λ′〉 = 〈λ|Â|λ′〉ei(Eλ−Eλ′ )t/~. (IV.2)

Performing the time average eliminates all off-diagonal
elements:

〈λ|Â(t)|λ′〉 ≡ lim
T→∞

1
T

∫ T

0

dt〈λ|Â(t)|λ′〉 = 〈A〉λδλλ′ .

(IV.3)
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The 2nd integral of the motion ÎA is then represented by
the matrix

I
(σ)
A = Λσ · 〈A〉 · Λ−1

σ , (IV.4)

where Λσ is the eigenvector matrix of H(σ) for a given
spin quantum number σ. If degenerate energy levels oc-
cur, the eigenvectors in the invariant subspaces must be
chosen such that all off-diagonal elements 〈λ|Â|λ′〉 are
zero. Hence, for every operator Â which is not an invari-
ant, [Â, Ĥ] 6= 0, there exists, in any (2σ+ 1)-dimensional
representation, an operator I(σ)

A which is an invariant,
[I(σ)
A , H(σ)] = 0, and which can be constructed by (IV.2-

4). This holds true for any spin-σ case of the general
quantum spin Hamiltonian (II.4), irrespective of whether
the corresponding classical spin model is integrable or
not. However, the properties of the operator I(σ)

A depend
sensitively on whether or not the classical integrability
condition (II.9) is satisfied. In the following, we shall in-
vestigate quantum invariants for situations of increasing
complexity.

V. INTEGRABLE MODEL, SEPARABLE
COORDINATES

Consider the classical 2-spin model with uniaxially
symmetric exchange coupling,

H = −J(Sx1S
x
2 + Sy1S

y
2 )− JzSz1Sz2 . (V.1)

In this model, integrability is guaranteed by Noether’s
theorem. The time evolution is in general nonlinear and
can be determined analytically for arbitrary values of
J, Jz.

A. Action-angle variables

In terms of the canonical coordinates (II.7), the Hamil-
tonian (V.1) reads

H = −J
√
s2 − p2

1

√
s2 − p2

2 cos(q1− q2)−Jzp1p2. (V.2)

The linear point transformation

Q1 = q1 + q2, P1 = (p1 + p2)/2,
Q2 = q1 − q2, P1 = (p1 − p2)/2 (V.3)

transforms it into

H =− J
√
s4 − 2s2(P 2

1 + P 2
2 ) + (P 2

1 − P 2
2 )2 cosQ2

− Jz(P 2
1 − P 2

2 ), (V.4)

where the coordinate Q1 is cyclic. Its conjugate coordi-
nate

P1 = Mz = (Sz1 + Sz2 )/2 = const (V.5)

is the integral of the motion derived from Noether’s the-
orem. H is separable in these coordinates. The charac-
teristic function W (Q1, Q2;Mz, E), which is the solution
of the Hamilton-Jacobi equation

H

(
Q2;

∂W

∂Q1
,
∂W

∂Q2

)
= E, (V.6)

has the general form

W (Q1, Q2;Mz, E) = Q1Mz +W2(Q2;Mz, E). (V.7)

Equation (V.6) is then a 1st order ODE in one variable,

− J

√√√√s4 − 2s2
[
M2
z +

(
dW2

dQ2

)2
]

+

[
M2
z −

(
dW2

dQ2

)2
]2

× cosQ2 − Jz

[
M2
z −

(
dW2

dQ2

)2
]

= E (V.8)

and its solution thus reduced to quadrature. Given the
solution of (V.8), the two action variables are obtained
from

J ′1 =
1

2π

∮
P1dQ1 = 2Mz, (V.9a)

J ′2 =
1

2π

∮
P2(Q2;Mz, E)dQ2 = J2(Mz, E), (V.9b)

where

P1 =
∂W

∂Q1
= Mz = const,

P2 =
∂W

∂Q2
=

dW2

dQ2
= P2(Q2;Mz, E). (V.10)

Substitution of J ′1, J
′
2 for P1, P2 in the characteristic func-

tion, W̄ (Q1, Q2; J ′1J
′
2) = Q1J

′
1 + W̄2(Q2; J ′1J

′
2) yields the

angle variables,

θ′1 =
∂W̄

∂J ′1
= Q1 +

∂W̄2

∂J ′1
= θ′1(Q1, Q2; J ′1, J

′
2)

= ω1(J ′1, J
′
2)t+ θ01, (V.11)

θ′2 =
∂W̄

∂J ′2
=
∂W̄2

∂J ′2
= θ′2Q2; J ′1, J

′
2) = ω2(J ′1, J

′
2)t+ θ02,

where ωi(J ′1, J
′
2) = ∂H̄/∂J ′i , i = 1, 2 and H̄(J ′1, J

′
2) =

H(Q2;P1, P2). This completes the solution of the classi-
cal 2-spin model (V.1). A more practical path to an ex-
plicit solution uses noncanonical variables which reduce
this 2-spin model to that of a particle moving in a quar-
tic potential (see Appendix). The line integral (V.9b) is
then conveniently evaluated as a time integral

J ′2(Mz, E) =
1

2π

∫ τ2

0

dt Q̇2(t)P2(t), (V.12)

over one period, τ2(Mz, E), of the functions P22(t) =
z(t), Q2(t) = arctan ζ(t) given in the Appendix. Along
with (V.9a) this establishes the relationship between the
two integrals of the motion Mz, E and the two action
variables J1, J2 for use in semiclassical quantization.
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B. Quantum invariants Ĥ, M̂z

For the quantum version of model (V.1),

Ĥ = −~2
[
J
(
σ̂x1 σ̂

x
2 + σ̂y1 σ̂

y
2

)
+ Jzσ̂

z
1 σ̂

z
2

]
(V.13)

a natural choice for the 2nd invariant is the magnetization
operator,

M̂z = ~
(
σ̂z1 + σ̂z2

)
/2, (V.14)

which is diagonal in the energy representation. In Fig. 3
we have plotted the eigenvalues Mz

λ versus energy Eλ,
λ = 1, . . . , (2σ + 1)2, for the 441 eigenstates of (V.13)
with σ = 10. The five different diagrams represent re-
sults from a numerical diagonalization off Ĥ for exchange
constants (a) Jz = 0, J = 1, (b) Jz = 0.5, J = 1, (c)
Jz = J = 1, (d) Jz = 1, J = 0.5, (e) Jz = 1, J = 0, re-
spectively. In each case the points form a highly regular
pattern as is expected for an integrable model. In theXY
model (Jz = 0), the pattern is symmetric about the two

FIG. 3: Eigenvalue Mz
λ (magnetization) versus eigenvalue Eλ

(energy) of all (2σ + 1)2 = 441 eigenstates of the quantum
2-spin model (V.13) for σ = 10, s = 1 and parameter values
(a) Jz = 0, J = 1, (b) Jz = 0.5, J = 1, (c) Jz = J = 1, (d)
Jz = 1, J = 0.5, (e) Jz = 1, J = 0. Data from a numerical

diagonalization of Ĥ.

lines Mz = 0 and E = 0. There is no degeneracy of points
in the (E,Mz)-plane. As Jz increases from zero, the
points move collectively. The pattern changes smoothly,
maintaining the symmetry about the line Mz = 0. Un-
derlying this regular pattern and its gradual transforma-
tion is the existence of a one-to-one mapping between
each array of points shown in Fig. 3 and the points on a
perfect square lattice of size (2σ + 1) × (2σ + 1) repre-
senting the plane of quantized actions, a mapping which
depends smoothly on the interaction parameters J, Jz.
In the Heisenberg case (Jz = J), the higher rotational
symmetry of the model causes the points to line up in
strings perpendicular to the E-axis. As Jz increases be-
yond J , the movement of the points in the (E,Mz)-plane
folds over at the edges of the pattern near the high-energy
end. A twofold degeneracy of points in the plane starts
to build up; it becomes complete and exact in the Ising
limit (J = 0).

The classical time evolution of the model (V.1) is non-
linear except for Jz = J or J = 0. As described in
the Appendix, the meridional motion of the two classical
spins maps onto the motion of a fictitious particle in a
quartic potential. For 0 < Jz < J that potential is a
single well (in the form of an inverted double well). For
Jz = J it becomes harmonic, hence the linear time evolu-
tion. If Jz > J , the potential is a single well for small E
and double well for large E, precisely where the twofold
degeneracy starts to build up in the quantum spectrum
[Figs. 3 (d), (e)].

C. Quantum numbers m1,m2

According to (V.9) and (V.12), the dependence on
Mz, E of the two action variables J ′1, J2, for the model
(V.1) can be expressed as

J ′1 = 2Mz, J2,=
1

2π

∫ τ2

0

dt
zζ̇

1 + ζ2
(V.15)

with explicit expressions for z(t,Mz, E), ζ(t,Mz, E) and
τ2(Mz, E) given in the Appendix. These exact expres-
sions can now be used for the recovery of the quantum
numbers associated with the action variables J ′1, J

′
2: Take

the eigenvalues Eλ,Mz
λ of the two quantum invariants

from the numerically determined eigenstates of the quan-
tum spin-σ Hamiltonian (V.13), then evaluate the clas-
sical action integrals (V.15) for E = Eλ, Mz = Mz

λ ,
λ = 1, . . . , (2σ + 1)2. According to semiclassical quanti-
zation, the values J ′1, J2, should fall, for s = ~

√
σ(σ + 1),

onto the sites of a perfect square lattice with spacing ~.
Figure 4 depicts the nonlinear mapping (Mz, E) →

(J1, J2) for the case Jz = 0 (XY model), where the ac-
tion variables J1, J2 are related to the J ′1, J

′
2 from (V.15)

by a linear transformation. That transformation is to
be constructed by the requirement that for any partic-
ular choice of line integrals (V.9) the quantum numbers
m1,m2 can be assigned according to (IV.1) [25]. The
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FIG. 4: (a) Eigenvalue Mz
λ (magnetization) versus eigenvalue

Eλ (energy) of the (2σ+1)2 = 441 eigenstates of the quantum
2-spin XY model, (V.13) with Jz = 0, J = 1, for σ = 10 and
s = 1. Same data as in Fig. 3(a). (b) Images of these eigen-
states in the action plane (J1, J2) as provided by the transfor-
mation (V.15) followed by a linear transformation. The solid
(dashed) diagonal in the action plane corresponds to the line
E = 0 (Mz = 0) in the (E,Mz)-plane. The eight different
symbols label eight different symmetry classes of eigenstates
as explained in the text.

pattern of points in the (E,Mz)-plane shown in Fig. 4(a)
then maps onto an almost perfect square-lattice of size
(2σ + 1) × (2σ + 1) in the action plane as shown in
Fig. 4(b). The predictions of semiclassical quantiza-
tion are borne out within the expected accuracy, viz.

O(~2) i.e. O(s2/σ2). The nearest-neighbor bonds of
the square lattice [Fig. 4(b)] become the bonds drawn
in Fig. 4(a). The eight different symbols used to charac-
terize the points in Fig. 4 distinguish states belonging to
eight different symmetry classes (to be discussed in Sect.
VI).

The mapping (Mz, E) → (J1, J2) has a much simpler
structure in the two cases for which the classical dynam-
ics is linear. In the Heisenberg case (Jz = J), both spins
precess uniformly about the direction of the conserved
vector ST = S1 + S2; the precession rate is ω = |ST | for
both spins. The energy and magnetization eigenvalues
for all (2σ + 1)2 eigenstates are:

E(l,m) = ~2
[
σ(σ + 1)− l(l + 1)/2

]
Mz(l,m) = ~m/2, (V.16)

where l = 0, 1, 2, . . . , 2σ is the quantum number of the
total spin, and m = −l,−l+ 1, . . . , l its z-component. In
this case, the prescription (IV.1) of semiclassical quanti-
zation is satisfied exactly by the variables J1 = ~[σ− l+
max(m, 0)], J2 = ~[σ− l+min(m, 0)]. It immediately fol-
lows that one of the two frequencies of the time evolution,
ω1 = ∂H/∂Jk, k = 1, 2, is equal to l and the other one
is zero, in accordance with our analysis of the classical
motion [17, 18]. In the Ising case (J = 0), the situation
is even simpler; here the canonical variables (II.7) are
already action-angle variables. Setting pk = Jk = ~mk,
k = 1, 2, mk = −σ,−σ + 1, . . . , σ, the coordinates of the
eigenstates in the (E,Mz)-plane are

Em1,m2 = −~2m1m2,

Mz
m1,m2

= ~(m1 +m2)/2. (V.17)

The two frequencies are m1 and m2.

VI. INTEGRABLE MODEL, NONSEPARABLE
COORDINATES

Here we consider the XY model with exchange
anisotropy,

Ĥγ = −~2
[
(1 + γ)σ̂x1 σ̂

x
2 + (1− γ)σ̂y1 σ̂

y
2

]
, (VI.1)

the quantum version of (III.5). The integrability condi-
tion (II.9) is satisfied for arbitrary γ. Starting out with
the isotropic XY model as in Sect. V, we now add a per-
turbation which breaks the continuous rotational symme-
try. No separable canonical coordinates have been found
for an exact analysis parallel to that of Sect V.

A. Discrete symmetries

The symmetry group of the general 2-spin Hamiltonian
(II.4), of which Ĥγ is a special case, isD2 ⊗ I ⊗ S2 [26],
where I is the inversion in spin space and S2 = (E,P ) the
permutation group of the two spins. D2 contains all the
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twofold rotations about the coordinate axes. For spins
the inversion is equivalent to time reversal. Therefore,
if all irreducible representations of the group are real,
as is the case here, it is sufficient to consider the group
D2 ⊗ S2, whose characters are reproduced in Table I.
The eigenvectors of Ĥ can thus be classified according
to eight different symmetry classes with transformation
properties corresponding to the eight different irreducible
representations of D2⊗S2. The explicit incorporation of
these discrete symmetries into the calculation is pivotal
for the interpretation of quantum invariants.

D2 ⊗ S2 E Cz2 Cy2 Cx2 P PCz2 PCy2 PCx2

A1S 1 1 1 1 1 1 1 1

A1A 1 1 1 1 -1 -1 -1 -1

B1S 1 1 -1 -1 1 1 -1 -1

B1A 1 1 -1 -1 -1 -1 1 1

B2S 1 -1 1 -1 1 -1 1 -1

B2A 1 -1 1 -1 -1 1 -1 1

B3S 1 -1 -1 1 1 -1 -1 1

B3A 1 -1 -1 1 -1 1 1 -1

TABLE I: Character table of the symmetry group D2 ⊗ S2,
where D2 contains all twofold rotations Cα2 , α = x, y, z about
the coordinate axes and S2 = (E,P ) is the permutation
group. The dimensionalities of the invariant subspaces in the
(2σ+ 1)2-dimensional Hilbert space of the Hamiltonian (II.4)
for integer-valued σ are (2σ + 2)(2σ + 4)/8 for A1S states,
2σ(2σ − 2)/8 for AIA states and 2σ(2σ + 2)/8 for any of the
other six symmetry classes of states.

In Sect. V, specifically in Figs. 3 and 4(a), we have
used eigenstates which are common to the two commut-
ing operators M̂, M̂z for the determination of quantum
invariants. However, M̂z is not invariant under all trans-
formations of D2⊗S2 and the matrix elements 〈λ|M̂z|λ〉
vanish identically for all symmetry-adapted eigenvectors
of Ĥ. If we want to recover Fig. 4(a) by use of symmetry-
adapted eigenvectors, we must consider instead the ma-

trix elements
√
〈M2

z 〉λ = ±
√
〈λ|M̂2

z |λ〉 and assign the
minus sign (somewhat artificially) to four out of eight
symmetry classes. Figure 4(a) represents a particular
choice.

B. The spider’s web

For the isotropic XY model Ĥγ=0, the states of
all eight symmetry classes for a single pattern in the
(E,Mz)-plane [see Fig. 4(a)], and that pattern trans-
forms as a whole under a uniaxial perturbation (see
Fig. 3). This is no longer the case for any biaxial per-
turbation. Upon increasing the amount of exchange
anisotropy in the XY model (VI.1) from γ = 0 to
γ = 0.2, the single pattern of points in the (E,

√
〈M2

z 〉)-
plane shown in Fig. 4(a) breaks up, as depicted in Fig. 5,
into four different sheets, each containing states of two

FIG. 5: Invariant
p
〈M2

z 〉λ = ±
q
〈λ|M̂2

z |λ〉 versus eigenvalue

Eλ (energy) for the eigenstates of the quantum 2-spin XY
model (VI.1) with γ = 0.2 and for σ = 10, s = 1. The
four different plots are for states with different transformation
properties under the discrete symmetry group D2 ⊗ S2. The
points are connected to a web in the same way as in Fig. 4(a)
for the isotropic case (γ = 0).

symmetry classes. The signature of integrability is still
fully present in these patterns. In each of the four
(E,

√
〈M2

z 〉)-sheets the states can be naturally connected
to a fully intact 2d web with coordination number 4.
These webs are graphical representations of the non-
linear transformation between the two analytic invari-
ants E,

√
〈M2

z 〉 and the two action variables J1, J2. The
existence of that transformation, though not explicitly
known, is guaranteed. Each point on the (J1, J2)-plane
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and its image in the (E,
√
〈M2

z 〉)-plane represent an in-
variant torus. In the classical system, these tori densely
foliate the entire phase space, whereas, upon quantiza-
tion, each torus claims a nonzero volume, ∆Ω = ~2, in
accordance with the uncertainty principle.

Connecting the points in the (E,
√
〈M2

z 〉)-plane by
bonds until they form a complete web with 4 bonds per
vertex, amounts to assigning a pair of quantum num-
bers to each eigenstate. There is some arbitrariness in
the construction of the web. In Fig. 5 we have chosen
four webs, each consisting of two interpenetrating com-
ponents. Each component is populated by states of one
symmetry class. Alternatively, a one-component web of
smaller mesh size can be drawn through the points of
each pair of symmetry classes (to be used in subsequent
figures). In either case, we can interpret the threads of
the web as lines of constant action and the meshes along
one such line as marks of increments in units of ~ for
the other action variable. Different webs thus represent
different choices of action variables, which are related to
one another by linear transformations. This freedom of
choice in picking a pair of action variables or assigning
pairs of quantum numbers also alerts us to the fact that
the notion of “neighboring tori” is much more ambiguous
in 4d phase space than our 3d-anchored intuition might
suggest.

In order to establish the connection between this quan-
tum invariant-web and the classical invariant-surface

FIG. 6: Invariant
p
〈M2

z 〉λ =

q
〈λ|M̂2

z |λ〉 versus eigenvalue

Eλ (energy) at E > 0 for class A1A states (full circles) and
B1S states (open squares) of the integrable quantum 2-spin
XY model (VI.1) for σ = 35, s = 1 and for the value γ =
0.2 of the anisotropy parameter. The total number of states
shown is 595.

E(
√
〈M2

x〉,
√
〈M2

z 〉) discussed in Sect. III.1, we must
interpret the 4 patterns in Fig. 5 as projections onto
the (E,

√
〈M2

z 〉)-plane of 4 individual 2d webs in 3d
(E,

√
〈M2

x〉,
√
〈M2

z 〉)-space, one for each of the 4 sym-
metry classes of eigenstates. The 4 discrete functions,
E

(n)
λ (

√
〈M2

x〉λ,
√
〈M2

z 〉λ), n = 1, . . . , 4, can each be in-
terpolated by a continuous function, and the average of
these functions becomes, in the classical limit (II.5), the
function E(

√
〈M2

x〉,
√
〈M2

z 〉), which describes the classi-
cal invariant-surface.

For an illustration of this connection, we show in Fig. 6
the web for A1A and B1S states with E > 0 of Ĥγ=0.2

with σ = 35, again in a projection onto the (E,
√
〈M2

z 〉)-
plane [27]. The arrow indicates the energy at which the
corresponding classical invariant-surface is intersected for
presentation in Fig. 1. Note how the cusp singularities in
the classical invariant-surface section are represented in
the quantum invariant-web by smooth folds. These folds
become more and more pronounced as σ increases.

FIG. 7: Invariant
p
〈M2

z 〉λ =

q
〈λ|M̂2

z |λ〉 versus eigenvalue

Eλ (energy) at E 6= 0 for classes A1A and B1S states of the

integrable quantum 2-spin model Ĥγ=0.7 for σ = 90, s = 1.
The total number of states shown is 8010.

An important feature of the classical time evolution of
Hγ is the existence for γ > 0 of separatrices in phase
space. In some cases, they can be easily located in
the (E,

√
〈M2

z 〉)-web. In Fig. 6, for example, one set
of threads change from positive to negative slope going
through a point of infinite slope if the quantum states are
smoothly interpolated. Interpreting these lines as lines of
constant action, say J2 = const, it follows that one of two
fundamental frequencies of the classical time evolution,
ω1 = ∂H ′(J1, J2)/∂J1, slows down to zero at the point of
infinite slope, which signals the presence of a separatrix
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in the action plane. Our particular choice of web makes it
easy to locate one separatrix line through the web shown
in Fig. 6.

All the observations made thus far are beautifully il-
lustrated by Fig. 7, which depicts an invariant-web for
Ĥγ=0.7 in the same representation. Plotted are all 8010
A1A and B1S states at E 6= 0 for σ = 90, which form a
highly regular pattern. This pattern is highly suggestive
of a smooth surface in (E,

√
〈M2

x〉,
√
〈M2

z 〉)-space, parts
of which project two or three layers onto the (E,

√
〈M2

z 〉)-
plane. That surface, cut at E = 0.2 (see arrow), connects
well with the section of the classical invariant-surface de-
picted in Fig. 1. Note particularly that the fabric of the
web is fully intact even in the immediate vicinity of a
separatrix. In the nonintegrable model (to be discussed
next), this is the location where chaos makes its appear-
ance most conspicuously.

VII. NONINTEGRABLE MODEL

Starting out again with the isotropic XY model (as
in Sects. V and VI) we now add a perturbative term to
the Hamiltonian which breaks the continuous rotational
symmetry and destroys the integrability. Consider the
2-spin Hamiltonian

Ĥα =− ~2
{
σ̂x1 σ̂

x
2 + σ̂y1 σ̂

y
2

+
1
2
α
[(
σ̂x1
)2 − (σ̂y1)2 +

(
σ̂x2
)2 − (σ̂y2)2]}, (VII.1)

whose classical counterpart (III.6) is manifestly chaotic
for α 6= 0,±1 [18]. We shall demonstrate that the quan-
tum invariant-web is affected by the presence of chaos
in a way which is in direct relation to our observations
made in Sect. III for the classical invariant-surface.

A. The fly in the spider’s web

Figure 8(a) shows the quantum invariant-web for the
case of a relatively weak nonintegrable perturbation (α =
0.35) of this model. Plotted are the states A1A and B1S
for σ = 35. This should be compared with Fig. 6, in
which the corresponding web for a weak integrable per-
turbation (γ = 0.2) with the same symmetry is plot-
ted. In this classically nonintegrable case, the web is
fully intact as if the model were integrable. All points
(Eλ,

√
〈M2

z 〉λ) can be associated with quantized tori,
which form a coherent network seemingly unimpeded by
the dense chaotic phase flow between the intact classical
tori. As long as chaotic trajectories are confined to re-
gions of the action plane which are much smaller than
the mesh size of the invariant-web, the assignment of
quantum-number pairs to the states is as natural and
straightforward as for the integrable model Ĥγ (Fig. 6).

However, in the case of Ĥα [Fig. 8(a)], we know that
these quantum numbers do not represent global action

FIG. 8: Invariant
p
〈M2

z 〉λ = ±
q
〈λ|M̂2

z |λ〉 versus eigenvalue

Eλ (energy) at E > 0 for class A1A states (full circles) and
B1S states (opens squares) of the nonintegrable quantum 2-
spin XY model (VII.1) for σ = 35, s = 1 and for values (a)
α = 0.35, (b) α = 0.5 of the anisotropy parameter. The inset

to (a) shows the framed part of the (E,
p
〈M2

z 〉)-plane for the
same model but with σ = 90. The inset to (b) shows the
framed part of the web magnified.

variables of the classical model Hα, because the latter do
not exist. When we decrease the mesh size of the web
by increasing the value of σ, we shall see that beyond
some threshold, the fabric of the web starts to fall apart.
Knowing that the tori are nowhere dense in phase space,
we must conclude that no part of the web will stay intact
close enough to the classical limit.
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From our analysis in [18] of the classical model (III.6),
we know that a separatrix line should be present near the
edge at low values of

√
〈M2

z 〉 in the quantum invariant-
web of Ĥα=0.35 [Fig. 8(a)], similar to the one identified
forĤγ=0.2 (Fig. 6). However, in the nonintegrable case, it
is the quantum image of a narrow chaotic band in phase
space. For σ = 35, the case shown in Fig. 8(a), no ev-
idence for a separatrix line can be discerned. Unlike in
Fig. 6, none of the lines of constant action go through a
point of infinite slope upon smooth interpolation. Quan-
tum mechanics has pushed the separatrix line towards
lower values of

√
〈M2

z 〉 into the kinematically inaccessi-
ble region. But when we analyze the invariant-web of
the same model, Ĥα=0.35, closer to the classical limit, we
observe dramatic changes in the arrangement of quan-
tum states. The inset to Fig. 8(a) reproduces the framed
part of the invariant-web for a higher spin quantum num-
ber (σ = 90). Now the separatrix line has moved into
the kinematically accessible region, as in Fig. 6. But in
the nonintegrable model, nearly degenerate states (of the
same symmetry class) tend to resonate in the vicinity of
the separatrix line. In the inset to Fig. 8(a) we can clearly
identify two strong resonances and a weak one.

For the same model at still higher σ-values, more and
more such resonances are expected to make their appear-
ance in the vicinity of the separatrix line. As their num-
ber increases, these resonances begin to overlap. The
overlap of resonances was introduced by Chirikov [28] as
a criterion for widespread chaos in the context of clas-
sical perturbation theory, and quantum analogs of that
concept have since been used in a number of different
applications [29, 30].

Instead of increasing σ, we produce essentially the
same effect by increasing α to make the nonintegrable
perturbation stronger and thus generate a wider band
of chaos along the separatrix in the classical phase flow.
Figure 8(b) shows the quantum invariant-web of Ĥα=0.4

for σ = 35. Here no individual resonances can be identi-
fied any more. The fabric of the web is now destroyed be-
yond repair in the vicinity of the separatrix line. Within
the chaotic region, the quantum states tend to cluster
in short strips along lines which interpolate one set of
threads of the web across the separatrix line, leaving siz-
able areas of the (E,

√
〈M2

z 〉)-plane almost depleted of
states. The inset to Fig. 8(b) shows a close-up view of
the web in and around the chaotic region. Here we can
discern how the quantum states within one of these short
strips in the chaotic region are slightly displaced sideways
parallel to the energy axis. This is the well-known phe-
nomenon of level repulsion. In this representation, the
effect appears to be minute, but after projection of the
points onto the E-axis, these sideways displacements are,
in fact, of the same order of magnitude as the mean level
spacing [31].

B. The spider returns

Between α = 0.5 and α = 0.7, the chaotic region
around the separatrix has increased considerably in size.
Here (at α = 0.7) a new feature of major importance
makes its appearance in the quantum invariant-web, as
can be observed in Fig. 9. Shown are the quantum in-
variants Eλ,

√
〈M2

z 〉λ for all A1A and B1S eigenstates of
Ĥα=0.7 for σ = 45 (within a window of given size). The
arrow indicates the energy at which the remnant of the
corresponding classical invariant-surface is intersected for
presentation in Fig. 2.

FIG. 9: Invariant
p
〈M2

z 〉λ = ±
q
〈λ|M̂2

z |λ〉 versus eigenvalue

Eλ (energy) at E > 0 for all eigenstates of symmetry classes
A1A (full circles) and B1S (open squares) of the nonintegrable

quantum 2-spin model Ĥα=0.7 with spin quantum number
σ = 45 and s = 1. Only states within a certain window of
values for

p
〈M2

z 〉λ , and Eλ are shown.

The correspondence between classical and quantum
nonintegrability effects in this representation is indeed
quite remarkable. In the regular regions at top left and
bottom right, the quantum web is fully intact; here chaos
is confined to areas much smaller than the mesh size. Be-
tween the two regular regions extends a broad band of
chaos along a separatrix of the classical motion. Here
the quantum web is interrupted, as already observed in
Fig. 8(b) for the case α = 0.5, and the quantum states
again tend to cluster in short strips along the dashed
lines. However, superimposed onto the region populated
by the chaotic states (in the projection of Fig. 9), we
now find a new web of quantized type (c) tori, a web
which is disconnected from the primary web and which
has its classical counterpart in the secondary KAM tori
discussed in the context of Fig. 2. Note also that in the
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projection of Fig. 9, the A1A and B1S states avoid each
other in regions (a) and (b), whereas they lie on top of
one another in region (c). This further underlines the
different character of primary and secondary KAM tori.

In summary, the classical and quantum invariants as
represented in this study, provide a novel direct link be-
tween manifestations of Hamiltonian chaos and quantum
nonintegrability effects. The structure of the Hamilto-
nian phase flow has its precise image in the classical
invariant-surface and an image of finite resolution in the
quantum invariant-web. The destruction of invariant tori
is paralleled by the disappearance of quantum numbers
and the restoration of secondary KAM tori by the reap-
pearance of new quantum numbers.
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Appendix A: Exact solution of the classical 2-spin
xxz model

Here we outline the general solution for the time evo-
lution of the classical 2-spin model

H = −J(Sx1S
x
2 + Sy1S

y
2 )− JzSz1Sz2 (A.1)

studied in Sect. V. In terms of spherical coordinates
(II.1), the four equations of motion read

ϑ̇1 = sJ sinϑ2 sin(ϕ1 − ϕ2)
ϕ̇1 = sJ cotϑ1 sinϑ2 cos(ϕ1 − ϕ2)− Jzs cosϑ2 (A.2)

and 1↔ 2. Introducing two new variables

z = s(cosϑ1 − cosϑ2)/2, ζ = tan(ϕ1 − ϕ2) (A.3)

and using the two integrals of the motion

E =− Js2 sinϑ1 sinϑ2 cos(ϕ1 − ϕ2)

− Jzs2 cosϑ1 cosϑ2 (A.4)

Mz = s(cosϑ1 + cosϑ2) (A.5)

we can combine (A.2) to a set of two 1st order ODEs,

ż = ζ
[
E + Jz(M2

z − z2)
]
,

ζ̇ = −2zJ2(s2 +M2
z − z2)

E + Jz(M2
z − z2)

+ 2Jzz(1 + ζ2), (A.6)

which in turn can be formulated as Newton’s equation of
motion, z̈ = −V ′(z), for a fictitious particle of unit mass
in a 1d anharmonic potential

V (z) =
[
J2s2 − JzE + (J2 − J2

z )M2
z

]
z2 − 1

2
(J2 − J2

z )z4.

(A.7)

For J > Jz, V (z) has the shape of an inverted double-well
with a local minimum at z = 0 and maxima at z = ±zm,
where

z2
m = M2

z +
J2s2 − JzE
J2 − J2

z

, (A.8)

and the particle motion is kinematically constrained to
bounded motion. For the case of the Heisenberg model
(J = Jz), the potential becomes harmonic, V (z) =
J(s2 − E)z2. For J < Jz, the shape of V (z) under-
goes a qualitative change as a function of the parame-
ter E (energy of spin system). For low values of E, we
have z2

m < 0, and V (z) is a single-well potential with a
minimum at z = 0. As E increases, V (z) undergoes a
transition (at z2

m = 0) to a double-well potential with a
local maximum at z = 0 and minima at z = ±zm.

For an explicit solution of this simple dynamical prob-
lem, we calculate the particle energy, a conserved quan-
tity, in terms of the invariants E,Mz:

U(Mz, E) =
1
2
[
J2(s2 −M2

z )2 − (E + JzM
2
z )2
]

= const.

(A.9)
The function z(t) is then obtained from the integral

t =
∫ z

z0

dz′√
2[U − V (z′)]

(A.10)

with the turning point z0 determined from the roots of
V (z) = U . The function z(t) in conjunction with the
invariants (A.4-5) describes the meridional motion of the
two spins completely. The azimuthal motion, on the
other hand, is described by the function ζ(t), expressible
by (A.6) in terms of z(t) and ż(t), and by the integral of

Φ̇ ≡ d
dt

1
2

(ϕ1 + ϕ2)

=− 2MzJ
2(s2 −M2

z + z2)
[E + Jz(M2

z − z2)](1 + ζ2)
− 2JzMz. (A.11)

The solution used in Sect. V for the evaluation of action
variables corresponds to the situation J > Jz. Here we
have

z(t) = z0sn
(
at,

z0
a

)
,

ζ(t) =
az0 cn

(
at, z0a

)
dn
(
at, z0a

)
E + Jz

[
M2
z − z2

0 sn2
(
at, z0a

)] , (A.12)

where z2
0 = z2

m −
√
z4
m − c, a2 = z2

m +
√
z4
m − c and

c = [J2(s2 −M2
z )2 − (E + JzM

2
z )2]/(J2 − J2

z ). The two
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fundamental frequencies of this dynamical system are de-
termined by the following expressions:

τ2(Mz, E) =
4
a

K(z0/a) = 2π/ω2(Mz, E) (A.13)

ω1(Mz, E) =
1
τ2

∫ τ2

0

dt Φ̇(t) = 2π/τ1(Mz, E). (A.14)
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