
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Psychology Faculty Publications Psychology 

2019 

Citizen Health Science: Foundations of a New Data Science Arena Citizen Health Science: Foundations of a New Data Science Arena 

Theodore Adrien Walls 
University of Rhode Island, walls@uri.edu 

Shannon Forkus 
University of Rhode Island, shannonforkus@uri.edu 

Abbigayle Coria 
University of Rhode Island, abbigayle_coria@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/psy_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Walls, T.A., Forkus, S., Coria, A. (2019) Citizens Healthe Science: Foundations of a New Data Science 
Arena. IJPDS, 4(1), 1-13. https://doi.org/10.23889/ijpds.v4i1.1074 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Psychology 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/psy_facpubs
https://digitalcommons.uri.edu/psy
https://digitalcommons.uri.edu/psy_facpubs?utm_source=digitalcommons.uri.edu%2Fpsy_facpubs%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


Citizen Health Science: Foundations of a New Data Science Arena Citizen Health Science: Foundations of a New Data Science Arena 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/psy_facpubs/75 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://digitalcommons.uri.edu/psy_facpubs/75


International Journal of Population Data Science (2019) 4:1:25

International Journal of
Population Data Science
Journal Website: www.ijpds.org

Citizen Health Science: Foundations of a New Data Science Arena
Walls, TA1*, Coria, A1, and Forkus, SR1

Submission History

Submitted: 21/10/2018
Accepted: 25/04/2019
Published: 26/09/2019

1University of Rhode Island, De-
partment of Psychology, Chafee
Hall, 142 Flagg Road, Kingston,
RI 02881

Abstract

Citizen scientists with health interests have rapidly increased efforts to conduct their own health
studies on themselves and in their communities, giving rise to a new transdisciplinary field of citizen
health science. This science leverages long-standing traditions of single case or N-of-1 studies
in psychology and also finds influential roots in the history of self-experimentation in health and
medicine. These studies frequently incorporate new digital tools such as smartphone tracking and
many other mobile health or “mHealth” devices. Citizen health scientists also tend to operate in
social networks of people working to maintain or improve their health, increasing the complexity and
richness of opportunities tied to this new platform. Population data scientists are well-positioned to
seek new ways to derive scientific inferences from data generated in citizen health science projects.
This paper provides an overview of citizen health science for population data scientists, including
basic definitions, historical foundations, current challenges and opportunities, and future directions.

Keywords
Citizen health science, single-case designs, single-subject studies, idiographic research, self-
experimentation.

Introduction

In this paper, we characterize key tenets of a newly emerging
transdisciplinary field of citizen health science (CHS), with spe-
cial attention to the opportunities and challenges it presents
for population data science. We begin by briefly chronicling
what this new field involves. We then review some important
origins in the single case or N-of-1 tradition in psychology
and in relevant aspects of the practice and science of self-
experimentation. We further consider a number of approaches
and perspectives about individual and population-level infer-
ence, and opportunities to advance theory of science, research
design and inference in this arena. We conclude with a general
overview of key aspects of the growing field of citizen health
science.

Our presentation is aimed at advances in scientific ap-
proach, theory and methods, although we do mention some
empirical studies. We are health psychologists working from
diverse disciplinary backgrounds to highlight some unique and
important vantage points on population data science. It is our
intent that this article will bear relevance to and add value for
a range of population data scientists, health researchers and
citizen scientists with interests in health inquiry and citizen
engagement.

The field of Citizen Health Science

Recent societal and scientific trends have led to a new scien-
tific platform, one led by citizens, communities and scientists
working in service of health goals that people enact and pur-
sue for themselves. Other fields, such as wildlife management,
have long had a citizen scientist component, most often com-
prised of citizen enthusiasts serving as volunteers for wildlife
tracking projects or institutionally-led monitoring needs [1-3].
Health science has lagged far behind in adopting a citizen-
based approach to health. For most of history and in most
cultures, humans have viewed their health as predestined, as
dictated by divine forces, predicated by cultural presets, at the
discretion of a selected individual such as a priest or shaman,
and/or as a set of conditions to be managed by medical sci-
ence, medical care facilities and industry. The bulk of health
science and care has kept patients, and certainly participants
in scientific trials, in a relatively disempowered and passive
position. This has only lessened slightly with the broad pro-
liferation of homeopathic and natural remedies, changes in
medical education, the influence of patient-centered care, and
wider access to medical information from the internet. The
idea of citizens working in service of their own health through
genuine and integral participation in science has arrived on
the scene late and is only now starting to gain some support
among traditional health scientists.
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We are now at the brink of embracing new forms of heath
science that prominently feature the interests, roles and stakes
of citizens themselves. Several forces have led citizens to study
and take action to affect their own health and well-being.
These forces include a long tradition in self-experimentation
in medicine, the proliferation of self-tracking as a cultural fea-
ture, increased education in the general population in support
of systematic inquiry, rapid and broad expansion of ambulatory
digital sensors, processors, memory and interactive interfaces,
a broad and fast mobile grid, vast increases in cloud comput-
ing storage and processing capabilities, and increased interest
in and availability of societal networking especially in on-line
platforms. Most recently, the independent initiative of citizens
acting on their own behalf to pursue scientific inquiry for their
own benefit and/or in support of family, peers and commu-
nities has also gained momentum. These forces are now ac-
celerated both by industries seeking to develop new products
and enterprises associated with citizen health science, and by
increasing interest in the scientific community in collaborating
with citizen health scientists.

Some efforts to define the boundaries of this new space
are warranted. CHS is a new transdisciplinary arena focused
on questions raised by citizens and pursued scientifically by
citizens on behalf of themselves and their networks. This does
not preclude scientists from raising questions of concern to
a person or community, but the science features citizens who
are aware of the questions, engaged in finding answers through
tracking their own health, and ready to make use of findings
to affect their well-being or survival. CHS involves the initia-
tive of citizens with varying levels of scientific preparation to
collect data on their own health and to act of their own accord
to change outcomes.

The development of CHS challenges widely accepted as-
sumptions of measurement objectivity, runs counter to tra-
ditional approaches to achieving internal and external valid-
ity, and involves new change-ups of currently prevailing power
structures, leadership norms, funding streams, implementa-
tion, and dissemination of results. As in any new science that
challenges traditional norms, many criticisms can be levied
about threats to scientific validity. We do not strive to mount
a defense around how the field is grappling with its scientific
challenges in this paper; that is simply not our goal. In fact,
we think that many of these issues may take decades for the
field as a whole to work through. Instead, we are optimisti-
cally focused on the opportunities presented in the field and
we contemplate some of the challenges openly. We are very
excited about the collaborative space that this emerging field
offers and are interested in how some of the challenges can be
addressed.

We also strive to share relevant traditions from psychology
that are likely to help build the scientific foundations of CHS.
We follow this by laying out central themes of the emerging
field to provide some structure for population data scientists
to consider CHS studies. In any new area of science, it is im-
portant to consider foundational sources for scientific inquiry.
Some kindred activities have been pursued in psychology and
medicine for many decades. We consider briefly these foun-
dations with emphasis on data science relevant issues before
moving on to some key inferential methods and a deeper con-
sideration of the emerging CHS field.

The N-of-1 tradition in psychology
and behavioural health

Single subject research can be seen as a logical and historical
antecedent to citizen-centered research. In this section, we
focus on a) how motivations of several pioneers in early psy-
chological theory were aligned in having an N-of-1 orientation,
and b) an active recent movement toward idiographic research
that has created a new family of research and inferential tech-
niques.

Early N-of-1 orientations in psychological sci-
ence

The field of psychology leverages a long tradition of theory,
epistemology, and research in consideration of the single case.
The founder of the field, Wilhelm Wundt, used informal in-
terviews about introspection as a method of learning about
a research participant’s experience in an experiment as his
central lens on the psyche [4]. William James’s studies on
memory utilized individual cases; in one famous case, he at-
tempted to increase memory through memorization of Victor
Hugo stanzas [5]. James Baldwin’s ideas involved a single per-
son’s trajectory and an ‘inductive’ psychology that focused on
introspection [6]. Titchener saw introspection as a first-person
approach to research, whereas behaviourism became the dom-
inating form of psychology, shifting toward a third person ap-
proach to research [7]. Other intrapsychic ideas offered by
Freud, Jung and others were inherently person-specific.

With behavioirism and the availability of group experi-
ments and inferential statistics involving group means and
variances, much of the field turned to experiments on groups
of subjects. Measures of central tendency for the group as
a whole and the individual human experience were then rou-
tinely conflated, resulting in ad hoc generalizations like, ‘peo-
ple do/feel/think this. . . ’, based on a group mean. Variability
among subjects was most often set aside in an error term, used
in significance tests, and viewed as measurement error.

As the grip of behaviourism relaxed beginning in the 1980s,
the importance of individual differences again came into view
in a renewed focus on the processes and feats of a single per-
son. Several attempts to return to a person-oriented viewpoint
have arisen in recent scholarship, tying back centrally to the
work of Allport [8], who brought renewed focus to the work
of Windelband [9]. In this work, the distinction of idiographic
(single person perspective) versus nomothetic (group study
perspective) has remained in the fore of theoretical dialogue
on inference in psychology to this day [10-11]. In a word, a
fundamental need in psychology is to recognize the features
and functions of an individual—that each person’s uniqueness
must be characterized and respected, while also recognizing an
individual’s membership in the species and in specific group
contexts. Although we have made the case here that psychol-
ogy has always incorporated a single-subject orientation, it is
the renewed focus on idiographic science that underpins the
best contemporary epistemology for single subject research.
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Population data science aspects of the N-of-1
perspective

Recent theoretical scholarship on inference involving N-of-1
studies takes up several fascinating topics. Key contributions
to the methodological literature involving single subject re-
search have been consolidated periodically, through the mid-
20th century by Kratochwill [12] and by many other researchers
since then, in both qualitative and quantitative areas [13]. Our
focus is selective, with attention to some intriguing ideas for
population data science. First, Valsiner argues that instead of
generalizing from ‘sample to population,’ generalization from
the first single instance would be reaffirmed through N-of-1
replications of “single cases” [14]. The generalization then
identifies the context or experience of each single case that
will likely hold true for the next single case as well.

In complementary work, Molenaar [10] has developed a
suite of arguments around the necessity of considering intra-
individual variation prominently in psychology. His central ar-
gument is that psychological processes are non-ergodic; in-
formally, one slice of data from a person cannot simply be
substituted into a data stream of all people and vice versa.
This idea is consistent with Valsiner’s assertion that averaging
across a heterogeneous class is not sufficient [14]. In order to
obtain results from a non-ergodic process that will apply to
the individual, the analysis should be based on intra-individual
variation, rather than inter-individual variation. This concept
is similar to Valsiner’s support for a method based on the gen-
eralization from the single instance, to the single case, and
then to a generic model [14]. Molenaar [10] provides a more
detailed statement on this progression, that by conducting
subject-specific data analysis conclusions can be generalized to
the population level by obtaining parameter estimates based on
the subject-specific analysis of intra-individual variation. Then
analyses are conducted on inter-individual variation using these
parameter estimates. Hence, both Molenaar [10] and Valsiner
[14] suggest that nomothetic knowledge about idiographic pro-
cesses can be obtained from subject-specific data analysis, by
aggregating inferences from instances or slices contributed by
each person into a single analysis.

Focal consideration of these individuals may also have im-
portant implications for behavioural change efforts. Large-
scale studies generalize to a specific population from a small
sample of the population of interest. Sample-to-population
inferences based on an average score may not be the best rep-
resentation of the population as a whole. For example, in the
work by McDonald and colleagues [15], it was found that while
previous studies have suggested that average physical activity
declines for individuals after they retire, a series of N-of-1 stud-
ies in natural settings revealed that this was not true in many
of the cases. In fact, many individuals found themselves hav-
ing more free time, and were actually more physically active
as a result of retirement. To further stress the importance
of rejecting a “one size fits all” ideology when it comes to
health interventions for the elderly, McDonald and colleagues
[15] suggested that individual differences must be taken into
consideration to maximize the effectiveness of behavioural in-
terventions.

In keeping with this idea, Hamaker [16] points out that the
application of time series analysis (current observation can be
predicted from previous) involves generalizing from the single

instance to the next ‘similar’ instance. In time series analysis,
a relationship between each observation period is assumed,
and the prior is believed to predict the subsequent. This im-
plies that a form of generalization is possible from the single
instance. She reiterates that information about general laws is
not always achieved by studying large representative samples,
therefore, averaging across individuals may not be representa-
tive of the general population and general laws could be falsely
applied to the individual. She advocates for studying individu-
als over time by using intensive sampling methods over time to
observe processes in real-time and analyze the data at the level
that it occurs, a recurrent theme in our laboratory’s scholar-
ship as well [11,16-18]. She emphasizes that highly controlled
laboratory experiments do not always translate effectively to
natural settings, that aggregating single-subject data upwardly
can lead to flawed inferences, and she strenuously makes the
point that this is insufficient use of valuable single subject data
from a person-specific stance—that the information obtained
from the aggregate across individuals does not necessarily in-
form what is actually occurring. Generalizing from information
aggregated across individuals to the population may result in
assuming false conclusions. In a valuable example, Hamaker
[16] describes the relationship between the number of typos
and typing speed. At the population level there is a negative
relationship, the faster the typing speed, the fewer typos made.
However, for any given person, concluding that typing faster
will usually result in fewer typos would be false because at the
within-person level, there is most frequently a positive rela-
tionship, namely, the faster the typing speed, the more typos
made.

These ideas are compatible with Valsiner’s proposal that
we consider independent slices of time as unique, but they
are also not compatible in that any aggregation would vio-
late stronger assumptions of temporal and personal unique-
ness in his rendering [14]. For our purposes, both presenta-
tions are concerned with proper inference to be derived from
person-specific data, which is a fundamental need in CHS. In
Figure 1, below, we characterize these themes in overview,
meaning we are not attempting to depict any particular N-
of-1 methodologist’s ideas, but rather to juxtapose potential
inferential platforms for contemporary N-of-1 studies with tra-
ditional cross-sectional or cohort studies.

Note that in the left panel, N-of-1 studies are limited to
inferences about the evolution of one subject, with a selec-
tion of variables and, frequently, strong attention to individual
evolution over time. By contrast, traditional cohort studies
are usually rendered as successive cross-sections, with atten-
tion to group means or trends, typically over regularly spaced
time windows. In the right panel, consider that opportunities
in modern N-of-1 studies lie in considering new aggregates,
richer ones built from the rich within-person inferences consid-
ered in traditional N-of-1 studies; ‘multiple slices’ if you will.
Note that modern studies do not always employ the same
starting point, as shown by offset slices in the right panel.
These may be tied to recruitment, intervention points, ages,
or other time-centering variables. Methods for contemporary
person-oriented studies are considered in somewhat greater
depth below. Note that N-of-1 studies may be employed in
the formative time en route to a cohort study or randomized
controlled clinical trial. This is certainly a good use of N-of-1
study findings; however, the opportunity to harvest findings via
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Figure 1: Traditional Longitudinal Population Studies versus N-of-1

new techniques applied to aggregated N-of-1 studies suggests
that much greater opportunities could be realized.

Technology and Data Science

It is important to share that many modern N-of-1 studies rest
on robust technology platforms. Recent contributions on the
use of technology in the study of the individual have been con-
solidated nicely by Mehl and colleagues [19]. A subdiscipline
for the analysis of the rich data emerging from technology-
based studies emerged in the early 2000s with both technical
and theoretical contributions dating far back into the 20th cen-
tury [11,17-18]. This subdiscipline is now constituent to the
high dimensional or big data trends that have emerged across
technical fields, though it is distinct in its heavy focus on lon-
gitudinal measurement and inference. Practitioner guides for
deploying person-oriented studies in various areas of psychol-
ogy have emerged frequently [20-21], even with specialized in-
tensive longitudinal texts for data analysis [22-23]. An active
peer-reviewed literature for theoretical [10,14, 24], epistemo-
logical [16], substantive (peer-reviewed journal contributions),
and methodological topics in quantitative psychology journals
continues to expand, increasingly moving the N-of-1 approach
into the mainstream (See, for example, 25). Whereas software
and training in these approaches was previously available spo-
radically from diverse sources, increasingly these are available
in routine formats as workshops, as part of regular graduate-
level curricula, and in mainstream and widely available online
formats (e.g., 26). On-line communities specifically for the
study of the single case remain a bit limited, but these are
also increasing as psychological researchers interact with cit-
izens, patients, policy makers, other scientists in the diverse
and vibrant arena of self-trackers that have emerged [27]. For
population data scientists, this means that the digital record
of these studies is often preserved, providing a platform for
retrospective or prospective analysis.

The N-of-1 perspective in emerging precision
health studies

Single subject research is also becoming more relevant in
health contexts, as medical professionals are moving toward
creating more personalized treatments, as opposed to adher-
ing strictly to a traditional public health/epidemiologic format
[28-30]. According to the work of Van Ness, Murphy, and Ali
[29], this shift in healthcare, known as Complementary and
Alternative Medicine (CAM), may be due to the fact that pre-
vious health care systems have failed to recognize individual
differences and vital needs, which could cause detrimental and
tragic outcomes. One of many emerging examples of the N-
of-1 focus being beneficial for the individual is described in
the work by Xie and Yu [30], in which N-of-1 was used to
determine a “perfect” dosage of a particular drug. They were
able to optimize the personal benefits of a certain treatment
by analyzing the effects of a particular drug, which could vary
drastically between person to person, and by using the indi-
vidual as their own control in the experiment [30]. This ‘tai-
lored healthcare’ is also discussed in the work by Ricciardi and
Boccia [28] as “precision medicine”. In considering how false
conclusions can be drawn from aggregating across individuals
to populations, a more person-specific strategy is necessary in
health care contexts to ensure the efficacy of treatment.

N-of-1 and citizen science contributions could also be
applied to health care via repositories, as information ob-
tained through these methods (e.g., data collected through
wearables) could be aggregated into repositories to allow re-
searchers, practitioners, and citizen scientists access to infor-
mation to better understand the progression and/or remission
of certain health problems across diverse individuals. For in-
stance, individual case reports have been informally aggregated
(via social media) contributing to our understanding of Type 2
diabetes remission, and findings have recently been empirically
supported [31-32]. Specifically, this information has provided
valuable insight into how certain lifestyle changes (e.g., weight
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loss) may lead to diabetes remission; however, there is con-
siderable individual variability in the successfulness of these
lifestyle changes on subsequent diabetes remission, thus ac-
cess to aggregated repositories of individual data could provide
greater insight into individual differences, and could be used to
tailor interventions and personalized treatments accordingly.

Using N-of-1 and citizen science approaches can provide
valuable information, while building on previous methodologi-
cal approaches, as they make up for the limitations of previous
approaches (e.g., loss of individual information at group level,
low power of single subjects), while maximizing the benefits
(e.g., richer individual information, aggregate of single sub-
ject contributions). They could be applied to a wide variety
of health care contexts. Individually tailored approaches could
have a dramatic impact when it comes to inequality facing
the healthcare system today, as well as promoting better pub-
lic health for certain populations.

In summary, there is a substantial and growing theoreti-
cal basis for a focus on single case or N-of-1 research across
health sciences. Extensive arguments can be made for in-
creasing this focus based on technical possibilities such as:
the need to evolve a theoretical basis for the multivariate na-
ture of behaviour, the need to characterize the regulatory na-
ture of a person as potentially modeled through time series
and control systems models, and the opportunity to develop
important linkages to adaptive interventions and personalized
medicine. Efforts to advance this scholarship have been ap-
pearing in the quantitative psychological methods literature
for some time, particularly in the areas relating to health and
addiction psychology [33-35]. In addition, qualitative research
in transferring ethnographic and anthropological approaches
to person-specific analysis, has progressed especially in clini-
cal health areas [36-37]. Although we have only provided brief
overview and supplied some linkages to this work here, the
increasing size of this scholarship reflects renewed interest and
advancement of the single case approach over the last decade
or so, with particular attention to aspects that bear strongly
on emerging CHS.

Self-experimentation

Consideration in psychology of the single case has the poten-
tial for vast importance in emerging population data science
scholarship. However, there is a related approach in health
and medicine that is of equal importance. We now consider
how the self-experiment further leverages the tradition of sin-
gle subject research.

The topic of self-experimentation has been the source of
significant scholarly contributions in both the medical and
psychological sciences [38]. For a period of time, cases of
self-experimentation appeared in empirical literature and were
published in early volumes of American Journal of Psychol-
ogy and Psychological Review (e.g., 39 & 40, respectively).
In psychology, an interesting late 20th century contribution to
the idea of single-case research arose in the work on Neuringer,
in a seminal paper on the science of self-experimentation [41].
Around the same time, anecdotal self-experiments have been
reported in various idiosyncratic outlets, notably those with an
applied orientation (e.g. 42-43). This work did not success-
fully lead the field to embrace the idea of self-experimentation,

though extensive efforts by Roberts (for example, 44) in the
past decade or so were noteworthy efforts in this direction.
It is important to note that historically, isolated cases of self-
experimentation preceded the N-of-1 tradition, but its recogni-
tion as a format for new contribution to scientific inquiry did
not occur until after N-of-1 was recognized as a potentially
viable scientific approach [45].

The advantages of self-experimentation

Neuringer’s seminal paper deserves a careful review given its
prescient and still valuable early and guiding contribution [41].
He proposed that the value of self-experimentation can be
found in both the process and outcome of conducting research
on the self. Engaging in self-experimentation requires the sys-
tematic variation of behaviours in order to study the outcomes;
this variability in our rather habitual routines may help us to
discover solutions to problematic behaviours and present more
effective ways of behaving. In addition, self-experimentation
has the unique advantage of enabling assessment of covert
phenomena; access to these private events can allow for an
analysis of the relationship between the private and the public.
The ability to access covert information and witness the out-
comes of behavioural variations allows individuals to use this
information to formulate personally relevant if-then contin-
gency statements; the previously learned behavioural outcomes
imply specific outcomes of the repetition of that behaviour (44,
46). Additionally, a necessary aspect of the research process
involves maintaining a personal record of the data. Exten-
sive recordkeeping lends itself to creating a working record of
an individual’s behavioural history. Documentation of events
may have positive implications for future behaviours because
the information recorded may provide insight into behavioural
patterns and allow for behavioural modification [47-48]. Self-
experimentation places an inherent emphasis on the process
of knowledge acquisition because individuals are active partic-
ipants in the research process. As a result, there is proportion-
ately lesser focus solely on the outcomes. Focusing purely on
outcomes implies that there is a single solution to a proposed
problem. A focus on the process is more reflective of human
behaviours and acknowledges the potential solutions in that
space. Therefore, much self-experimentation gives individuals
the tools to acquire knowledge to inform action, rather than
relying only on the results of professional researchers.

In recent years, as technology has advanced, many self-
experimenters have turned to tracking their data electronically.
For example, smartphones today have a variety of features
that are beneficial for recording experimental data, including
but not limited to: text messaging, voice recording, internet
access, as well as location data from global positioning sys-
tems (GPS). These advantages, currently best consolidated
by the smartphone, have led to the creation of what is now
called mobile health (mHealth). mHealth has made track-
ing health habits more accessible than ever before, for exam-
ple, through dedicated apps, in part leading to an increase of
self-experimentation among non-scientists looking to improve
aspects of their health. In tracking these health behaviours,
longitudinal data may be second to none when it comes to
availability and salience, therefore leading to better health de-
cisions by individuals and when shared, more accurate health
information in population level analysis [17].
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In addition to being utilized for everyday data collection
of health and well-being, apps can be used on smartphones to
produce more sophisticated data, including, apps for skin can-
cer detection, electronic stethoscopes, as well as blood tester
platforms, just to name a few [49]. Analytics of mHealth
applications may also aid in testing the effectiveness of par-
ticular treatments when it comes to health psychology, with
the recording of a baseline, and over the course of treatment,
the recorded results of a proposed intervention [17,47]. These
types of applications allow the consumer to be more aware of
their own health, and health behaviours, and may encourage
users to take responsibility for their health through personal-
ized adjustments, thus allowing individuals to take their health
into their own hands. Another major benefit of these practices
is that these platforms are relatively user-friendly and inclusive,
allowing people from all walks of life the benefit of improving
their own health provided by these platforms as citizen-science
concepts.

Self-experimentation is an area undergoing rapid advances
that have been bearing on multiple areas in social science,
especially given the increased use of technology in protocols.
New communities are serving as platforms for citizen-scientists
to reflect on their own experiences and learn from the experi-
ences of others involved in self-experimentation. Specifically,
participants are convening to discuss self-relevant data and
findings, generate ideas, share methods for modification and
improvement, and highlight potential risks and benefits. They
are creating networks of trusted individuals working towards
similar goals of self-optimization, such as in the case of a
closed loop insulin pump and user community developed by
Type I diabetes patient [50-51]. While self-tracking through
self-experimentation is often associated with recent techno-
logical advances, Lupton [52] argues that these practices have
made their mark on history in the past, furthering the idea
of a human’s instinct to be critical of themselves in order to
improve their overall functioning.

Building upon this idea, as portrayed in the study by
Dolejšová and Kera [52], citizen-scientists are drawn to self-
experimentation to be in better control of their health. In this
particular study, self-scientists adopted a liquid diet, or a “soy-
lent diet”. For example, gaining complete dietary control gave
the participants better control over all body functions [53].
Similarly, Roberts [44], for example, through the creation of
his “Shangri-La Diet”, believed that if you can create the per-
fect diet through self-experimentation, then you can have a
major impact on your health, as well as many other aspects of
your life.

Additionally, online self-experimentation groups can offer
social benefits by serving as a source of peer support when it
comes to new lifestyle choices, such as abstaining from drink-
ing alcohol [46]. Through these online communities, users
may choose to share personal qualitative narratives regarding
the impact that self-experimentation had on their quality of
life [46], or even more intimate details regarding the effect on
their health, through distributing personal medical records or
self-tracked data [53].

Self-experimentation may have individual-level benefit be-
yond the exploration of a single topic (or condition). Roberts

[44] argued that self-experimental methods help individuals
to examine the benefits of long-term self-experimentation be-
cause they help to generate new ideas on ways to improve one’s
health. His decade of personally relevant self-experimentation
illustrates both the effectiveness and the value of this type
of methodology in generating new and plausible methods
of bettering oneself. Through his personal experimentation,
Roberts [44] found that self-experimentation promotes dis-
covery through a self-catalysis process, as the results of one
experiment produce a ripple effect of subsequent discoveries
generated by thought-provoking findings (i.e., unexpected re-
sults). Additional advantages to self-experimentation include
that feasibility and simplicity of the application, which allows
for greater leniency in the types of hypotheses tested (i.e., im-
plausible ideas), and due to the self-monitoring nature of this
form of methodology, there is the ability to measure the out-
come across multiple dimensions allowing for a more compre-
hensive evaluation of the effect. Over the long-term, the up-
keep of a behavioural record can foster the development of new
and plausible solutions through identification of behavioural
patterns that may have otherwise been overlooked. Overall,
Roberts [44] illustrated the significance of self-experimentation
as a creative contribution to scientific exploration as a means
to formulate worthwhile hypotheses and stimulate new scien-
tific ideas for bettering one’s health through different path-
ways.

Perhaps the field, or society as a whole, was not ready
for these ideas at the time when Neuringer and Roberts made
their contributions [43]. However, the N-of-1 movement [27],
as well as recent work on methods mentioned in our earlier
discourse here, certainly attests to greater readiness now. We
have not progressed through all of the notions Neuringer [41]
laid out and considerable challenges to the development of
N-of-1 research remain, including institutional research review
boards which may be unfamiliar with the precepts, limited
dissemination outlets, and issues of what constitutes scien-
tific validity. Frequently emerging contributions from a still
evolving (though fantastically vibrant and diverse) cadre of re-
searchers with expertise in the area continue to enrich the dia-
logue around the scientific possibilities of self-experimentation
[54].

One way to consider developing self-experimentation sci-
ence further is to consider that every manipulation within an
N-of-1 series is a time series interruption. In Figure 2 below,
we portray this possibility. Several recent papers have tried to
exploit the possibility of new research designs and inferential
possibilities tied to this idea [55].

In summary, scientists’ focus on generating knowledge,
rather than utilizing it, can lead to a large volume of some-
what underutilized information from an applied perspective.
This is especially the case when precepts from research on
groups enter into population data science, often forsaking a
focus on individual-level concerns. Experiments conducted
on and by the individual focus on applying knowledge and
thus may increase the likelihood of the results being put into
practice because of the pragmatic and personalized process
perspective. The mutual benefits of N-of-1 experiments and
self-experimentation are key parts of an emerging CHS in this
regard.
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Figure 2: Experiments with interrruptions (e.g., self-experimental manipulations)

The disadvantages, and liabilities, of self-
experimentation

Although the many advantages of the self-experimentation
component of CHS are important, the possible drawbacks of
this approach cannot be ignored. The work of Dyck and Stew-
art [38] further investigates that in the past, self-experimenters
have been unable to draw clear lines for how far is too far, and
that when subjecting one’s own body to scientific research,
boundaries may not be so clearly drawn. A human serving as
an instrument in measuring changes to itself is often far too
challenging a position, considering the dedication needed of
the participant for the most accurate results possible and the
inherent biases that one carries in relation to one’s own inter-
ests, challenges and choices [38]. Often self-experimentation
involves the assumption that the human body is machine-like;
it will react to a particular stimulant in an expected manner
in order to achieve self-optimization. This may not always
be the case as our bodies are in fact not machines and may
react differently than the body of another person undergo-
ing a similar procedure, or even react differently at a different
time [56]. This topic of self-experimentation also reinforces
the importance of informed consent, when it comes to the
use of human subjects in general. Even when engaging in
self-experimentation, it is important that the subject knows
all possible outcomes before engaging in a particular study,
even at their own hands [38]. Lupton [52] argues that self-
experimentation in the form of self-tracking may not always
be completely voluntary, and individuals may be exposed to
exploitation in order to meet a greater need of a particular
study’s political motives. Because of the high risk and re-
spect for individuals’ will in many self-experimentation cases,
the possibility of unethical treatment of human subjects in the
name of science may be higher than in other human research.
Therefore, it is increasingly important to uphold the highest
standards of research in this category now and to evolve these

standards in the future as this phenomenon grows increasingly
popular [45].

In addition to the constant threat of possible physical
or psychological harm, self-experimentation also raises ques-
tions when it comes to bringing results into mainstream
sciencei. For example, the idea that self-experimentation re-
volves around the use of one’s own body brings inherent skep-
ticism of the biases and possible motives of that individual,
or, as in the case of the soylent diet self-experimentation, the
effects of possible group bias. In addition to problems under-
lying natural biases, self-experimentation often does not rely
on a systematic schema of research methods in order to gain
results, therefore threatening internal validity [53]. On the
other hand, Roberts argues that in doing self-experimentation
he was actually producing more ecologically valid data then
could be produced in a laboratory setting with a strict adher-
ence to scientific protocol, due to the fact that these exper-
iments are often done under much more realistic conditions
than the latter [57].

In summary, self-experimentation is an important new area
for consideration in population data science, though taken
alone, it is one that carries several risks. It can be considered
an extension of the single case tradition in that it is more than
a description on variables of interest; it inherently involves ma-
nipulation or an intervention. It is a field that is deserving of
more attention within the data science community, and as an
intrinsic advance in idiographic research. If carefully enriched,
it may be a feasible option for psychological and behavioural
health research, and a key standpoint from which to advance
CHS.

An emerging citizen health science

Psychologists and non-scientists alike have accrued a long his-
tory in studying individual (N-of-1) change, and engaging in
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self-experimentation; arguably this itself is an expression of
human free will in modern life. As portrayed in the tradi-
tions of the N-of-1 experiments and in our consideration of
self-experimentation, it is clear that many people choose to
pursue their curiosity by self-tracking and experimenting to
control aspects of their health and wellbeing. In keeping, a
focus on the needs of the individual has also been growing
when it comes to tailored health science, and this is a hall-
mark feature of CHS, when citizens study themselves or try to
act on their own health concerns. However, these foundations
are only the starting point for contemporary CHS.

We believe that citizen involvement in health research has
much more bounty for health innovation than is seen in the
novelty that typically brings it to both scientific and lay outlets.
The real innovation here is in a shift of focus, from science
being in the minds and hands of the few to the minds and
hands of the many. Despite all of its potential limitations, the
opportunity for a broad-based participatory science in health is
tremendous for science, technology and citizens. What are the
key tenets of this emerging science? Based in part on work by
Den Broeder, Devilee, Van Oers, Schuit, & Wagemakers, [63],
Neuringer [41] and our foregoing analysis of both N-of-1 stud-
ies and self-experimentation, we have distilled some defining
features of the field, which we are certain will evolve further.
They are:

1. Upward Aggregation. A focus on the individual as a
starting point, moving to groups and possibly whole pop-
ulations as a later step.

2. Shared Initiation, leadership, and management. In this,
there is optimistic bias toward the citizen potentially be-
ing the source of or guide for all three.

3. Network Locus. Studies are frequently embedded in
a human network of peers and interested parties, fre-
quently virtual settings. Crowdsourcing is a related con-
cept involving how many minds strive to evolve knowl-
edge on a topic.

4. Learning Focus. Studies are frequently aimed at pro-
cess goals and patient outcomes rather than absolute
scientific discovery.

5. Expanded Scope of Research. With a large number of
participants, studies are able to cover more perspectives
than previously deployed in other studies, therefore re-
sulting in more relevant health knowledge.

6. Open science. An open sharing format for science helps
to reduce the difficulty and burden on citizens in retriev-
ing information, as well as helping them to experience a
community of science.

7. Alternative strategies to achieve validity. Openness to
new methods to derive scientific inferences that attain
internal and external validity in ways that are comple-
mentary to or widely accepted evidence-based science
strategies will support innovation.

Thus, in terms of the N-of-1 tradition and self-
experimentation, one manifestation of CHS involves the ini-
tiative of citizens with varying levels of scientific preparation

to collect data on their own health and to act of their own
accord to change outcomes. However, an expanded view in-
cludes the possibility that they can take on any and every role
in the scientific process, from investigator to collaborator to
participant. This is worth further exploration.

In considering CHS we have much to learn from other sci-
ences. Citizen science is by no means exclusive to psychology–
it has been employed routinely frequently in ecological research
for decades. For example, when the Deepwater Horizon oil spill
occurred in 2010, making it the largest single oil spill in Amer-
ican history, experts relied on the actions of citizen scientists
to relay what was truly happening in their own communities,
based on data that they collected. These citizen scientists
found themselves to be more connected to these data as they
thought they would be helping their community as a whole,
leading to very accurate information on a large scale that could
be used to clean the spill and therefore save as much of the
wildlife as possible [2]. Similarly, in a citizen health case study
that took place in Texas in 2013-2014, citizen scientists were
asked to alert scientists when they spot signs of the triatomine
bug, or the kissing bug, known for causing the parasitic dis-
ease, Chagas disease. By doing so, scientists were able to
better understand the geographical distribution and seasonal
patterns of this insect in a broader way then would have been
possible without citizen-scientists [3]. One of the major sim-
ilarities between citizen scientists in both of these examples
is that when the individual feels a personal connection to the
material being studied, they are more likely to dive into the
subject wholeheartedly and learn what they can about the sub-
ject, all while trying to better their community. Citizen science
may be orchestrated differently in health than in ecology, but
the former may benefit from technology transfer via review of
practices in the latter.

Some advantages of CHS

One of the major advantages of CHS is that it enables the
citizen participants to serve as the forerunners of their own
healthcare. A focus on the needs of the individual emerges, of-
ten in contrast to a focus on whole populations, as has guided
many health initiatives in the past. For example, according to
the work of Woolf and colleagues [64] in order for a healthy
lifestyle (diet, exercise, etc.) to be adopted by an individ-
ual, efforts for collaborations between different sectors of so-
ciety should be the main focus, particularly when it comes to
health promotion goals. Studies such as this one also suggest
an opportunity to integrate health and administrative records
with N-of-1 data for a more comprehensive study of health in
community and medical context. Another advantage of CHS
is the opportunity for collective formation of hypotheses and
study designs; with citizen concerns made central to inquiry
there is a higher probability of relevant scientific investment
for a broader cross-section of stakeholders. For these stud-
ies, we believe the relative weights of scientists and citizens
involvement need to be evaluated on three dimensions: study
initiation, leadership, and management, as shown in Figure 3.
Whereas in the past, all three of these roles were typically in
the hands of professionally trained researchers, it is necessary
to consider ways to change up role adoptions.
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Figure 3: Dimensions for role adoption for CHS studies

For example, it is possible that a citizen with adequate
knowledge, access and resources could perform a study with
no scientific professionals, although some reports indicate a
need to layer responsibilities as citizens gain scientific expe-
rience short of full scientific professional identities, preferring
the term champion rather than a citizen scientist for com-
munity participants [66]. In many areas requiring deep tech-
nical or substantive knowledge, it is perhaps somewhat un-
likely for most citizen scientists to take on full responsibility,
but for consideration it is critical to embrace this possibility
as there is a trend in this direction. In particular, note the
case of Dana Lewis’s work in a DIY pancreas system [50,51;
https://diyps.org/about/dana-lewis/] as a clear and
compeling example of a citizen taking the lead. In practice,
the weights are likely to be assigned differentially for each
study based on its history and needs. Work by Wooley and
colleagues [67] similarly emphasizes three overlapping dimen-
sions of citizen-scientist versus scientist-citizen collaborations:
engagement, participation and involvement. They sound some
warnings about risks to citizens from formal structures, espe-
cially in the case of biomedical experimentation, and consider
a “social contract” approach at length for its potential merits
in clarifying roles, responsibilities, and risks.

Work by Prainsack [68] also considers the inputs of citi-
zen science (CS), from realms ranging from crowdsourcing to
social networks, and in consideration of factors such as self-
selection or other motivations to participate. Even while these
types of citizen science have advanced mostly due to broad-
based increases in the availability of technology, it has been
suggested that different kinds of citizen science are steeped
in traditions going back generations, may operate differently,
and manifest themselves differently than others. Prainsack
and colleagues describe a range of project courses, from being
considered “top down”, with some scientifically trained indi-
viduals involved in “bottom up” research initiatives, or strictly
citizen-run initiatives without the backing of any research in-
stitution. In particular cases, gaming has even been used in
CS initiatives, as a way to tackle major problems in a crowd
source arena.This particular approach is quite distal from data
collection typically employed in population-based research. Fi-

nally, it is very possible that the definitions of how data sup-
plied from one person to another can be used for will become
more stringent, as is already notable in the European Union’s
General Data Protection Regulation (GDPR). This set of laws
limits public data uses and increases personal control of data
in highly specific ways, especially the kinds of health data that
tend to be shared in on-line archives by citizens. However, in
order for all of these types of inputs to be accepted as sci-
ence, there must be a redefining in society of what it means
for data to be considered to be scientific, and, in keeping how
this new data generated should be evaluated and assessed as
a scientific entity in its own right [67-68].

Emerging citizen health science projects are increasing in
number, breadth and type. For example, Dana Lewis’s
work on a do-it-yourself pancreas represents a citizen
biomedical technology intervention that was motivated by
the desire for greater safety and improved lifestyle for Type
I diabetes patients (see https://diyps.org/). Well-
known work by Larry Smarr demonstrated that tracking
of his own laboratory tests and medical records enabled
him to detect a downturn in his health reflecting incipi-
ent Crohn’s symptoms [70,71]. Both of these cases show
how self-tracking and trend detection can be used to drive
self-care and personalization by citizens themselves. Work
discussed in this article in the areas of medical experimen-
tation, N-of-1 science and self-tracking in general all re-
flect seminal and influential cases of practices supporting
a broader citizen health science arena.

Some potential liabilities

Although the benefits of this trend toward citizen self-science
may be numerous, the idea also raises several concerns. For
example, when a citizen is engaging in science with a personal
stake, indeed their own stake, they will likely bring with them
their own inherent biases, which in turn may impact their re-
search results. If citizen scientists report results of nonsystem-
atic inquiry, the scientific community’s credibility may become
a problem down the road [60]. This is arguably more likely
to occur at the hands of those who are not trained heavily
than at the hands of those who are (though both are en-
tirely possible). Another possible liability for citizen science is
that it relies heavily on the citizen scientist being inherently
accountable for data provided and shared with the scientific
community, bringing up a major issue privacy for that individ-
ual [65]. This problem may be even more prominent in the
world of behavioural and psychological studies, where partic-
ipants are asked to share some of the more intimate aspects
of their lives in the name of science. Another set of risks
lies in the possibility of a reductionism of individuals to their
cases—overly attending to their personal case to the exclu-
sion of well-established scientific findings and often without
sufficient scientific training guiding the thought process. For
example, opting to not administer vaccines to children based
on nonsystematic personal assessments of their risks could en-
danger public health in ways that are not consistent with the
proposed goals of CHS, which strive for increased well-being
through scientific emphasis and engagement of individuals in
study of their health concerns. Despite any challenges that
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this emerging field faces, it is also increasingly important that
society does not place overly prohibitive regulations on citizen
scientists, as in turn this could lead to a stifling of scientific
outcomes and data generation as a whole, while also disem-
powering citizens of their right to participate in the study of
their health, if not of their rights in general [68].

Discussion

In this paper, we have covered selected themes related to the
single case tradition as they inform an emerging CHS. We
touched on how early psychologists were largely working from
a single case conception, considered how important theoretical
and methodological contributions have led to renewed interest
in single subject research in psychology, and proposed that self-
experimentation has the ability to further advance the single
case tradition. In doing so, self-experimentation, along with
the long-standing tradition of N-of-1 experiments, have pro-
vided key defining precepts of CHS. We provided a summary of
Neuringer’s seminal contribution on self-experimentation and
substantial subsequent contributions by Roberts, proposing
that this work be considered both in relation to past themes
of single subject research and to contemporary movements to-
ward idiographic research [41]. Self-experimentation places an
inherent emphasis on the individual, thus allowing for the fo-
cus of psychological inquiry to return to a more idiographic
approach. Additionally, this method has been shown to be a
valuable contribution to scientific knowledge through its his-
torical applications, but with recent technological advance-
ments, the capabilities of self-experimentation could be more
advantageous than ever before—it is in this context that re-
searchers with data analytic skill sets have the potential in
increase both the quality and diversity of data science schol-
arship in CHS.

Centrally, an increased number of data science-based
demonstrations involving technology monitoring in public and
private spaces, with N-of-1 tracking, with or without self-
experimentation, will form the basis of the emerging trans-
disciplinary field of CHS. How designs and inferences around
these experiments can be refined for participants in many roles
and for dissemination in a range scientific and public access
outlets, will form precepts and norms of citizen health science.
It is in this context that technical contributions from popula-
tion data scientists will be most influential.

Conflict of Interest

The authors declare they have no conflict of interest.

References

1. Kullenberg C, Kasperowski D. What is citizen science?
– a scientometric meta-analysis. Plos One [Internet].
2016;11(1):1–16. Available from: https://doi.org/
10.1371/journal.pone.0147152

2. McCormick S. After the cap: risk assessment, citi-
zen science and disaster recovery. ecology and so-

ciety. 2012;17(4). https://doi.org/10.5751/
ES-05263-170431

3. Curtis-Robles R, Wozniak E, Auckland L, Hamer G,
Hamer S. Combining public health education and disease
ecology research: using citizen science to assess Chagas
disease entomological risk in Texas. PLOS Neglected
Tropical Diseases. 2015;9(12):e0004235.https://doi.
org/10.1371/journal.pntd.0004235

4. Danziger K. Wundt’s psychological experiment in the
light of his philosophy of science. Psychological Re-
search. 1980;42 (1-2):109-22 https://doi.org/10.
1007/BF00308696

5. James W. The principles of psychology. Read Books
Ltd.; 1890.

6. Baldwin J. Handbook of psychology. New York: Henry
Holt; 1890.

7. Titchener E. Experimental psychology: a manual of lab-
oratory practice. London: Macmillan; 1901.

8. Allport G. Personality: A psychological interpretation.
New York: Henry Holt; 1937.

9. Windelband, W. History and natural science. Theory &
Psych. 1998;8(1), 5-22. https://doi.org/10.1177/
0959354398081001

10. Molenaar P.C.M. A Manifesto on psychology as idio-
graphic science: bringing the person back into scientific
psychology, this time forever. Measurement: Interdisc
Res & Persp. 2004;2(4):201-218. https://doi.org/
10.1207/s15366359mea0204_1

11. Walls T.W. Intensive longitudinal data. In: Little, T.D.,
ed., Oxford Handbook of Quantitative Methods. 2013.

12. Kratochwill T. Single subject research: strategies for
evaluating change. University of Arizona: Academic
Press; 2013.

13. Kazdin A. Single-case research designs. New York: Ox-
ford University Press; 1982.

14. Valsiner J. Generalization is possible only from a sin-
gle case (and from a single instance): the value of a
personal diary. In: Wagoner B, Chaudhary N, Hviid P,
ed. by. Integrating experiences: body and mind mov-
ing between contexts. Charlotte, NC: Information Age
Publishers; 2018. 233-244.

15. McDonald S, O’Brien N, White M, Sniehotta F. Changes
in physical activity during the retirement transition: a
theory-based, qualitative interview study. Intl J of Beh
Nutr and Phys Act.;2015:12(1):25. https://doi.org/
10.1186/s12966-015-0186-4

16. Hamaker E. Why researchers should think “within-
person”: a paradigmatic rationale. Handbook of re-
search methods for studying daily life. 2012;43-61.

17. Smith D, Walls T. mHealth analytics. In: Marsch L,
Lord S, Dallery J, ed. by. Transforming behavioral
health care with technology: the state of the science.
New York: Oxford University Press; 2018.

10

https://doi.org/10.1371/journal.pone.0147152
https://doi.org/10.1371/journal.pone.0147152
https://doi.org/10.5751/ES-05263-170431
https://doi.org/10.5751/ES-05263-170431
https://doi.org/10.1371/journal.pntd.0004235
https://doi.org/10.1371/journal.pntd.0004235
https://doi.org/10.1007/BF00308696
https://doi.org/10.1007/BF00308696
https://doi.org/10.1177/0959354398081001
https://doi.org/10.1177/0959354398081001
https://doi.org/10.1207/s15366359mea0204_1
https://doi.org/10.1207/s15366359mea0204_1
https://doi.org/10.1186/s12966-015-0186-4
https://doi.org/10.1186/s12966-015-0186-4


Walls, TA et. al. / International Journal of Population Data Science (2019) 4:1:25

18. Walls T, Schafer J. Models for intensive longitudinal
data. Oxford: Oxford University Press; 2006.

19. Mehl M, Conner T, Csikszentmihalyi M. Handbook of
research methods for studying daily life. New York: Guil-
ford Press; 2012.

20. Hektner J, Schmidt J, Csikszentmihalyi M. Experience
sampling method: Measuring the quality of everyday
life. Sage. 2007.

21. Stone A, Shiffman S. Capturing momentary, self-report
data: A proposal for reporting guidelines. A of Beh
Med. 2002;24(3):236-243. https://doi.org/10.
1207/S15324796ABM2403_09

22. Bolger N, Laurenceau J. Intensive longitudinal methods.
New York: Guilford Press; 2013.

23. Kazdin A. Single-case research designs. New York, N.Y.:
Oxford University Press; 2011.

24. Silverstein A. An Aristotelian resolution of the id-
iographic versus nomothetic tension. Amer Psych.
1988;43(6):425-430. https://doi.org/10.1037/
0003-066x.43.6.425

25. Nesselroade J, Molenaar P. Some behavioral science
measurement concerns and proposals. Multivar Behav
Res. 2016;51(2-3):396-412. https://doi.org/10.
1080/00273171.2015.1050481

26. Martella R. Understanding and interpreting educational
research. New York, NY: The Guilford Press; 2013.

27. Quantified Self – Self-knowledge through numbers [In-
ternet]. Quantified Self. 2018 [cited 21 January 2016].
Available from: http://quantifiedself.com/

28. Ricciardi W, Boccia S. New challenges of public health:
bringing the future of personalised healthcare into fo-
cus. Eur J of Publ Health. 2017;27(suppl_4):36-39.
https://doi.org/10.1093/eurpub/ckx164

29. Van Ness P, Murphy T, Ali A. Attention to individ-
uals: mixed methods for N-of-1 health care interven-
tions. J of Mixed Meth Res. 2016;11(3):342-354.
https://doi.org/10.1177/1558689815623685

30. Xie T, Yu Z. N-of-1 design and its applications
to personalized treatment ttudies. Stat in Biosci.
2016;9(2):662-675.

31. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, Peters C,
Barnes AC, Aribisala BS, et al. Remission of hu-
man type 2 diabetes requires decrease in liver and
pancreas fat content but is dependent upon capacity
for β cell recovery. Cell Met [Internet]. 2018(Aug
2);28(4):667. Available from: https://www.ncbi.
nlm.nih.gov/pubmed/30078554 https://doi.org/
10.1016/j.cmet.2018.08.010

32. Lean ME, Leslie WS, Barnes AC, Brosnahan N,
Thom G, Mccombie L, et al. Primary care-led
weight management for remission of type 2 dia-
betes (DiRECT): an open-label, cluster-randomised

trial. The Lancet [Internet]. 2018;391(10120):541–51.
Available from: https://www.ncbi.nlm.nih.gov/
pubmed/29221645 https://doi.org/10.1016/
S0140-6736(17)33102-1

33. Nandola N, Rivera D.E. A novel model predictive con-
trol formulation for hybrid systems with application to
adaptive behavioral interventions. In proceedings of the
2010 American Control Conference. 2010;6286-6292.
https://doi.org/10.1109/ACC.2010.5531515

34. Ramsay J.O. The control of behavioral input-output sys-
tems. In: Walls T, Schafer J, ed. by. Models for in-
tensive longitudinal data. New York: Oxford University
Press; 2006. 176-194. https://doi.org/10.1093/
acprof:oso/9780195173444.003.0008

35. Strecher V, Wang C, Derry H, Wildenhaus K, John-
son C. Tailored interventions for multiple risk behav-
iors. Health Education Research. 2002;17(5):619-626.
https://doi.org/10.1093/her/17.5.619

36. Reavey P. Visual methods in psychology: using and in-
terpreting images in qualitative research. New York:
Routledge; 2012.

37. Smith J. Qualitative psychology: a practical guide to
research methods. London: Sage; 2007.

38. Dyck E, Stewart L. The uses of humans in experiment.
Leiden: Brill Rodopi; 2016.

39. Lombard W. The effect of fatigue on voluntary muscular
contractions. Amer J of Psych. 1890;3(1):24.

40. Thorndike A. Mental fatigue. Psych Rev.
1900;7(6):547.

41. Neuringer A. Self-experimentation: a call for change.
Behaviorism. 1981;9(1):79-94

42. Mahoney M. Cognitive behavior modification. Oxford:
Ballinger; 1974.

43. Roberts S, Neuringer A. Self-Experimentation. In: Latal
K, Perone M, ed. by. Handbook of research meth-
ods in human operant behavior. New York: Plenum;
1998. p. 619-655. https://doi.org/10.1007/
978-1-4899-1947-2_19

44. Roberts S. Self-experimentation as a source of new
ideas: examples about sleep, mood, health, and weight.
Behavioral and Brain Sciences. 2004;27(02):227-262.
https://doi.org/10.1017/S0140525X04000068

45. Altman L. Who goes first? Los Angeles: University of
California Press; 1987.

46. Carah N, Meurk C, Angus D. Online self-expression and
experimentation as ‘reflectivism’: Using text analytics to
examine the participatory forum Hello Sunday Morning.
Health: An interdisciplinary journal for the social study
of health, illness and medicine. 2016;21(2):119-135.
https://doi.org/10.1177/1363459315596799

11

https://doi.org/10.1207/S15324796ABM2403_09
https://doi.org/10.1207/S15324796ABM2403_09
https://doi.org/10.1037/0003-066x.43.6.425
https://doi.org/10.1037/0003-066x.43.6.425
https://doi.org/10.1080/00273171.2015.1050481
https://doi.org/10.1080/00273171.2015.1050481
http://quantifiedself.com/
https://doi.org/10.1093/eurpub/ckx164
https://doi.org/10.1177/1558689815623685
https://www.ncbi.nlm.nih.gov/pubmed/30078554
https://www.ncbi.nlm.nih.gov/pubmed/30078554
https://doi.org/10.1016/j.cmet.2018.08.010
https://doi.org/10.1016/j.cmet.2018.08.010
https://www.ncbi.nlm.nih.gov/pubmed/29221645
https://www.ncbi.nlm.nih.gov/pubmed/29221645
https://doi.org/10.1016/S0140-6736(17)33102-1
https://doi.org/10.1016/S0140-6736(17)33102-1
https://doi.org/10.1109/ACC.2010.5531515
https://doi.org/10.1093/acprof:oso/9780195173444.003.0008
https://doi.org/10.1093/acprof:oso/9780195173444.003.0008
https://doi.org/10.1093/her/17.5.619
https://doi.org/10.1007/978-1-4899-1947-2_19
https://doi.org/10.1007/978-1-4899-1947-2_19
https://doi.org/10.1017/S0140525X04000068
https://doi.org/10.1177/1363459315596799


Walls, TA et. al. / International Journal of Population Data Science (2019) 4:1:25

47. Dallery J, Cassidy R, Raiff B. Single-case experimental
designs to evaluate novel technology-based health in-
terventions. J of Med Internet Res. 2013;15(2):e22.
https://doi.org/10.2196/jmir.2227

48. Walls T, Barta W, Stawski R, Collyer C, Hofer S. Time-
scale dependent longitudinal designs. In: Laursen B,
Little T, Card N, ed. by. Handbook of developmental
research methods. New York: Guilford Press; 2011.

49. Rothstein M, Willbanks J, Brothers K. Citizen science
on your smartphone: an ELSI research agenda. J of
Law, Med, and Ethics. 2015;43(4).

50. Lewis D. We are not waiting. Presentation presented at
Quantified Self Conference, San Diego. 2015.

51. Lewis D. Opening pathways for discov-
ery, research, and innovation in health and
healthcare [Internet]. DIYPS.org. 2018
[cited 10 October 2018]. Available from:
https://diyps.org/2017/09/15/opening-pathway
s-for-discovery-research-and-innovation-in-h
ealth-and-healthcare/

52. Lupton D. The quantified self: a sociology of self-
tracking. Cambridge: Polity; 2016.

53. Dolejšová M, Kera D. Soylent Diet Self-
Experimentation: Design Challenges in Extreme Cit-
izen Science Projects. Proceedings of the 2017
ACM Conference on computer supported coopera-
tive work and social computing. CSCW ’17. 2017.
https://doi.org/10.1145/2998181.2998365

54. Karkar R, Zia J, Vilardaga R, Mishra SR, Fogarty J,
Munson SA, et al. A framework for self-experimentation
in personalized health. J of the Amer Med Inform As-
soc. [Internet]. 2015;23(3):440–8. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/26644399
https://doi.org/10.1093/jamia/ocv150

55. Lee J, Walker E, Burleson W, Kay M, Buman M,
Hekler EB. Self-experimentation for behavior change.
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems - CHI 17 [Internet].
2017; Available from: http://www.jisoolee.net/
publications/2017_CHI_Self_Experimentation.
pdf https://doi.org/10.1145/3025453.3026038

56. Ruckenstein M, Pantzar M. Beyond the Quantified Self:
thematic exploration of a dataistic paradigm. New Me-
dia & Society. 2016;19(3):401-418 https://doi.org/
10.1177/1461444815609081

57. Roberts S. The reception of my self-experimentation. J
of Bus Res. 2011;65(7):1060-1066.

58. Yetisen A. Biohacking. Trends in biotechnol-
ogy. 2018;36(8):744-747 https://doi.org/10.1016/
j.tibtech.2018.02.011

59. Pelling A. This scientist makes ears out of ap-
ples [Internet]. Ted.com. 2018 [cited 10 Octo-
ber 2018]. Available from: https://www.ted.com/

talks/andrew_pelling_this_scientist_makes_
ears_out_of_apples/up-next

60. Golinelli S, Ruivenkamp G. Do-it-yourself biology:
Action research within the life sciences. Action
Res. 2015;14(2):151-167. https://doi.org/10.
1177/1476750315586636

61. Biohackers can boost trust in biology. Na-
ture. 2017;552(7685):291-291. https://doi.org/
10.1038/d41586-017-08807-z

62. Ledford H. Biohackers gear up for genome editing. Na-
ture. 2015;524(7566):398-399. https://doi.org/
10.1038/524398a

63. Den Broeder L, Devilee J, Van Oers H, Schuit A, Wage-
makers A. Citizen science for public health. Health
Prom Intl. 2016. https://doi.org/10.1177/
1476750315586636

64. Woolf S, Dekker M, Byrne F, Miller W. Citizen-centered
health promotion building collaborations to facilitate
healthy living. Amer J of Prev Med. 2011;40(1):S38-
S47. https://doi.org/10.1016/j.amepre.2010.
09.025

65. Frankish C, Kwan B, Ratner P, Wharf Higgins J, Larsen
C. Challenges of citizen participation in regional health
authorities. Social Sci & Med. 2002;54(10):1471-
1480. https://doi.org/10.1016/S0277-9536(01)
00135-6

66. Towson, J. Protocol for implementing the concept of
citizen scientists for HealthWise Wales: A national pop-
ulation study. Intl J of Pop Data Sci. 2017;1,106.
https://doi.org/10.23889/ijpds.v1i1.125

67. Wooley JP, McGowan ML, Teare HJA, Victoria
Coathup, Fishman JR, Settersten RA, et al. Cit-
izen science or scientific citizenship? Disentangling
the uses of public engagement rhetoric in national
research initiatives. BMC Medical Ethics [Internet].
2016;17(33):1–17. Available from: https://doi.org/
10.1186/s12910-016-0117-1

68. Fiske, A., Del Savio, L., Prainsack, B., Buyx, A.
Conceptual and ethical considerations for citizen sci-
ence in biomedicine. In: N. Heyen, S. Dickel and
A. Brüninghaus, ed., Personal Health Science. [on-
line] Springer VS, Wiesbaden, pp.195-217. Avail-
able at: https://link.springer.com/chapter/10.
1007/978-3-658-16428-7_10. 2019. https://doi.
org/10.1007/978-3-658-16428-7_10

69. Ragan, S.M. Medicine ignored this insulin prob-
lem. Hackers solved it. Neo. Life. [online]
https://medium.com/neodotlife/dana-lewis-ope
n-aps-hack-artificial-pancreas-af6ef23a997f
2018.

70. Bowden, M. The man who saw inside
himself. The Atlantic. https://www.
theatlantic.com/magazine/archive/2018/03/
larry-smarr-the-man-who-saw-inside-himself/
550883/ 2018.

12

https://doi.org/10.2196/jmir.2227
https://diyps.org/2017/09/15/opening-pathways-for-discovery-research-and-innovation-in-health-and-healthcare/
https://diyps.org/2017/09/15/opening-pathways-for-discovery-research-and-innovation-in-health-and-healthcare/
https://diyps.org/2017/09/15/opening-pathways-for-discovery-research-and-innovation-in-health-and-healthcare/
https://doi.org/10.1145/2998181.2998365
https://www.ncbi.nlm.nih.gov/pubmed/26644399
https://doi.org/10.1093/jamia/ocv150
http://www.jisoolee.net/publications/2017_CHI_Self_Experimentation.pdf
http://www.jisoolee.net/publications/2017_CHI_Self_Experimentation.pdf
http://www.jisoolee.net/publications/2017_CHI_Self_Experimentation.pdf
https://doi.org/10.1145/3025453.3026038
https://doi.org/10.1177/1461444815609081
https://doi.org/10.1177/1461444815609081
https://doi.org/10.1016/j.tibtech.2018.02.011
https://doi.org/10.1016/j.tibtech.2018.02.011
https://www.ted.com/talks/andrew_pelling_this_scientist_makes_ears_out_of_apples/up-next
https://www.ted.com/talks/andrew_pelling_this_scientist_makes_ears_out_of_apples/up-next
https://www.ted.com/talks/andrew_pelling_this_scientist_makes_ears_out_of_apples/up-next
https://doi.org/10.1177/1476750315586636
https://doi.org/10.1177/1476750315586636
https://doi.org/10.1038/d41586-017-08807-z
https://doi.org/10.1038/d41586-017-08807-z
https://doi.org/10.1038/524398a
https://doi.org/10.1038/524398a
https://doi.org/10.1177/1476750315586636
https://doi.org/10.1177/1476750315586636
https://doi.org/10.1016/j.amepre.2010.09.025
https://doi.org/10.1016/j.amepre.2010.09.025
https://doi.org/10.1016/S0277-9536(01)00135-6
https://doi.org/10.1016/S0277-9536(01)00135-6
https://doi.org/10.23889/ijpds.v1i1.125
https://doi.org/10.1186/s12910-016-0117-1
https://doi.org/10.1186/s12910-016-0117-1
https://link.springer.com/chapter/10.1007/978-3-658-16428-7_10
https://link.springer.com/chapter/10.1007/978-3-658-16428-7_10
https://doi.org/10.1007/978-3-658-16428-7_10
https://doi.org/10.1007/978-3-658-16428-7_10
https://medium.com/neodotlife/dana-lewis-open-aps-hack-artificial-pancreas-af6ef23a997f
https://medium.com/neodotlife/dana-lewis-open-aps-hack-artificial-pancreas-af6ef23a997f
https://www.theatlantic.com/magazine/archive/2018/03/larry-smarr-the-man-who-saw-inside-himself/550883/
https://www.theatlantic.com/magazine/archive/2018/03/larry-smarr-the-man-who-saw-inside-himself/550883/
https://www.theatlantic.com/magazine/archive/2018/03/larry-smarr-the-man-who-saw-inside-himself/550883/
https://www.theatlantic.com/magazine/archive/2018/03/larry-smarr-the-man-who-saw-inside-himself/550883/


Walls, TA et. al. / International Journal of Population Data Science (2019) 4:1:25

71. Smarr, L. Quantifying your body: A how-to guide
from a systems biology perspective. Biotech Journal.
2012;7,980–991. 2012. https://doi.org/10.1002/
biot.201100495

Acknowledgments
Prof. Emeritus John Stevenson of the Department of Psychol-
ogy at the University of Rhode Island provided valuable review
of early versions of this paper and we thank him for his assis-
tance. Our thoughts on CHS were also enriched by dialogue at
the 2016 Quantified Self conference and student participation
in an honor’s course on the topic of self-experimentation in
citizen science.

Footnote i

Although our primary interest is more in the health behaviour
space rather than in biological experimentation, it is impor-
tant to mention a trend in ‘biohacking’ given recent notoriety
of this area. Biohackers often use unconventional methods
in order to fix or improve upon anatomical or physiological
structures of the body. As a newer way to look at biomed-
ical health science, biohacking aims to promote the highest
level of self-optimization via methods such as gene editing im-
plantable technologies, neodymium magnets, and implantable
sensors with Bluetooth capabilities, just to name a few (57).
For example, Pelling (58), found that he was able to “hack”
an apple to be the biological scaffolding for growing human
tissue in the shape of an ear. This type of work shows that
biohacking as a science has made great strides, from the early
days in which biohackers had to steal and/or obtain scien-
tific instruments from a scientific laboratory (59). Instead,
in the case of Pelling (58) and many other biohackers, these
scientists have instead turned to using creative methods with
unwanted or inexpensive materials in order to find solutions
to scientific problems, in ways that may not be traditionally
seen as conventional (59). Through his work, Pelling (58) also
sought to make his scaffolds available open source, as a way
for others to join in, another practice that is often valued by
many self-experimenters and biohackers today (57-58).

Biohacking, while innovative and exciting as a format to
pursue the idea that the human body can be changed us-
ing new technologies in order to create optimum functioning,
raises new questions in health ethics. For example, with the
invention of transplantable devices, biohackers must be weary
of safety regarding sterilization as well as cross-contamination
between users. Also, as these technologies are relatively new
and not always approved by regulatory bodies, little is known of
the long term affects that these devices may cause. In addition
to these health concerns, biohackers often create online com-
munities to discuss results–questions arise regarding privacy in
this type of “open science”, both in terms of personal data pri-
vacy and proprietary rights to a device being tested (57). Due
to the ambiguous nature of biohacking, certain states of Ger-
many have gone as far as to ultimately outlaw this behaviour,
with biohacking being punishable by prison time (60). In the
case of CRISPR, a particular tool used by many biohackers in
order to conduct particular modifications to a DNA sequence,
therefore altering the genes of anything from plant cells to
embryos, even amateur biologists are able to use these rela-
tively simplistic tools in order to conduct experiments (61).
Although many people may fear the outlandish possibilities
that may come along with practices such as these, experts
warn that many biohackers have relatively insignificant goals
in mind when they start out, for example changing the color
of a bacteria, rather than inadvertently altering outcomes for
the whole human population. For this reason, it is important
to modulate the risk to benefit balance in biohacking. Should
it be put to use in a meaningful way, it may become a central
tool in searching for cures for diseases that up until now may
have been seen as a death sentence (61). Our interest in citi-
zen health science is lesser on biological/medical interventions
and greater in the area of health behavioural practices.
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