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Dynamics of Semi-infinite Quantum Spin Chains

at T =∞

Joachim Stolze∗

Institut für Physik, Universität Dortmund

D-4600 Dortmund 50, Germany

V.S. Viswanath and Gerhard Müller

Department of Physics, The University of Rhode Island

Kingston, RI 02881-0817, U.S.A.

Time-dependent spin autocorrelation functions and their spectral densities for the

semi-infinite one-dimensional s = 1
2

XY and XXZ models at T =∞ are determined in

part by rigorous calculations in the fermion representation and in part by the recursion

method in the spin representation. Boundary effects yield valuable new insight into

the different dynamical processes which govern the transport of spin fluctuations in

the two models. The results obtained for the XXX model bear the unmistakable

signature of spin diffusion in the form of a square-root infrared divergence in the

spectral density.

∗From April 1 to September 30 , 1992 also at Institut für Physik, Universität Augsburg, D-8900 Augsburg,

Germany
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1 Introduction

Exact results for time-dependent correlation functions of interacting quantum spin

systems are scarce. With few exceptions [1], such results pertain to the one-dimensional

(1D) s = 1
2

XY model, a system which can be transformed into a model of non-

interacting fermions [2]. That model is the special case ∆ = 0 of the more general 1D

s = 1
2
XY Z model. The XY Z Hamiltonian for a semi-infinite chain reads

HXY Z = −J
∞∑
l=0

{
(1 + γ)Sxl S

x
l+1 + (1− γ)Syl S

y
l+1 + ∆Szl S

z
l+1

}
. (1.1)

The present study focuses on the boundary effects in the spin autocorrelation functions

< Sµl (t)Sµl > , µ = x, y, z, at T =∞.

What is the general behavior of spin autocorrelation functions at T = ∞ for

systems with short-range interaction? That depends on the symmetry of the spin

coupling. If the total spin component SµT =
∑
l S

µ
l is not conserved, the expecta-

tion is that the corresponding spin autocorrelation function is governed by a typical

relaxation process, characterized by an exponential decay law,

< Sµl (t)Sµl >∼ e−t/τ . (1.2)

If SµT is a conserved quantity, on the other hand, we expect the corresponding spin

autocorrelation function to exhibit a diffusive long-time tail, characterized by an al-

gebraic decay law:

< Sµl (t)Sµl >∼ t−d/2, (1.3)

where d is the dimensionality of the system. It is a fact that none of the exactly

known functions < Sµl (t)Sµl > is consistent with these expectations. There are good

reasons for non-generic dynamics in the XY model, as will be discussed, but it has also

remained unclear to what extent the T =∞ dynamical properties of the more general

XY Z model might be generic. (The T =∞ spin correlation functions of Heisenberg

chains were, for example, studied in [3] and [4] by means of short-time expansion

techniques, mainly for spins far away from the chain ends. Further important progress
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in this direction was achieved recently by Böhm and Leschke [5].) As it turns out, the

study of boundary effects is very useful for distinguishing and characterizing different

dynamical processes for the transport of spin fluctuations.

We present new exact results for the XX and XY models, as determined in part

by special methods and in part by a general method, and then we derive new results

for the XXX and XXZ models by the same general method. That general method

is the recursion method.

2 The XX Model

Consider a semi-infinite chain of localized spins ~Sl, l = 0, 1, 2, . . . with nearest neigh-

bors coupled as specified by the interaction Hamiltonian

HXX = −J
∞∑
l=0

{
Sxl S

x
l+1 + Syl S

y
l+1

}
. (2.1)

This is the XX model, the special case γ = ∆ = 0 of the more general XY Z model

(1.1). For classical three-component spins, this is a model of nonlinear dynamics

which is nonintegrable. There exists some evidence from simulation studies [6] that

the spin autocorrelation functions exhibit generic behavior as outlined in Sec. 1, at

least in the bulk limit ( l →∞ ). That is manifestly not the case for quantum spins

with s = 1
2
. The bulk spin autocorrelation functions < Sµ∞(t)Sµ∞ > at T =∞ and the

associated spectral densities

Φµµ
∞ (ω) =

∫ +∞

−∞
dteiωt < Sµ∞(t)Sµ∞ > / < Sµ∞S

µ
∞ > (2.2)

have been determined exactly many years ago. The results for µ = z,

< Sz∞(t)Sz∞ >=
1

4
[J0(Jt)]

2 (2.3a)

Φzz
∞(ω) =

2

πJ
K(

√
1− ω2

4J2
)Θ(1− ω2

4J2
) (2.3b)

were first derived by Niemeijer [7] and by Katsura, Horiguchi and Suzuki [8]. (J0

denotes a Bessel function, K(k) a complete elliptic integral of the first kind.) In
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the fermion representation of the XX model, the evaluation of these quantities is

straightforward e.g. in terms of a two-particle Green’s function for noninteracting

lattice fermions. Note that the square of the Bessel function decays more rapidly,

∼ t−1, than (1.3) with d = 1 , the prediction of spin diffusion phenomenology. Cor-

respondingly, the complete elliptic integral in (2.3b) has only a logarithmic infrared

divergence as opposed to the characteristic ω−
1
2 - divergence of 1D spin diffusion.

The fluctuations of Sz∞ in this model are obviously not governed by a diffusive pro-

cess despite the conservation law SzT = const. This is further demonstrated by the

fact that fluctuations of Szq also decay algebraically, ∼ t−
1
2 with oscillations, rather

than exponentially, ∼ exp (−Dq2t), as is expected for a diffusive process at least for

small q.

The determination of the function < Sx∞(t)Sx∞ > for that same model is far from

straightforward despite its free-fermion nature. The exact result was, in fact, first

conjectured by Sur, Jasnow and Lowe [9] on the basis of a moment analysis for finite

chains. Rigorous derivations, based on the analysis of infinite Toeplitz determinants,

were reported within one year by Brandt and Jacoby [10] and independently by Capel

and Perk [11]. The result is a pure Gaussian as is then, of course, also its spectral

density:

< Sx∞(t)Sx∞ >=< Sy∞(t)Sy∞ >=
1

4
e−

J2t2

4 (2.4a)

Φxx
∞ (ω) =

2
√
π

J
e−

ω2

J2 (2.4b)

The Gaussian decay of (2.4a) is anomalous again. A normal relaxation process would

be characterized by exponential decay. The non-generic processes that govern the

transport of spin fluctuations in this model are further indicated by the fact that all

pair correlations < Sxl (t)Sxl′ > , l 6= l′ are identically zero.

The free-particle nature of the excitation spectrum governing the correlation func-

tion < Sz∞(t)Sz∞ > is readily recognizable by the bounded support of the spectral

density Φzz
∞(ω) (2.3b). That same conclusion cannot be drawn from a mere inspection

of the results (2.4a,b). Spectral densities with unbounded support are typical for the
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dynamics of interacting degrees of freedom. In order to detect the free-particle nature

of the XX model in the xx-autocorrelation function, we must study boundary effects.

2.1 Boundary Effects in < Szl (t)Szl >

The zz-autocorrelation function was determined in closed form for all sites on the

semi-infinite chain [12], [4]:

< Szl (t)Szl >=
1

4
[J0(Jt)− (−1)l+1J2(l+1)(Jt)]

2. (2.5)

In the bulk limit l → ∞, only the first term in the square bracket survives, and the

result (2.3a) is recovered. The Fourier transforms of the Bessel functions Jn(Jt) are

nonzero only on the interval [−J, J ]. The spectral density Φzz
l (ω) associated with (2.5)

is thus confined to the interval [−2J, 2J ]. The singularity structure of Φzz
l (ω) may

be inferred from the long-time asymptotic expansion (LTAE) of the function (2.5),

which has the following general structure:

< Szl (t)Szl >∼
∞∑
n=0

alnt
−(2n+3) + {e2iJt

∞∑
n=0

bln(it)−(n+3) + c.c.}. (2.6)

The conclusion is that Φzz
l (ω) has quadratic cusp singularities at the endpoints (ω =

±2J) and exhibits quadratic behavior close to ω = 0, independent of l. The bulk

limit is subtle: the quadratic cusps at the endpoints become steeper and steeper

and, for l → ∞, transform into the discontinuities displayed by (2.3a). Likewise,

the maximum at ω = 0 grows higher and narrower and, for l → ∞, turns into a

logarithmic divergence.

These trends can be seen more clearly, when we note that the spectral density cor-

responding to the perfect square (2.5) may be written as the following self-convolution:

Φzz
l (ω) =

8

πJ

∫ 1

ν−1
dν ′

√
1− ν ′2 U2

l (ν ′)
√

1− (ν − ν ′)2 U2
l (ν − ν ′) (2.7)

( 0 ≤ ω/J ≡ ν ≤ 2 ; Φzz
l (−ω) = Φzz

l (ω) ).

Here Ul is a Tchebycheff polynomial of the second kind. The evaluation of the integral

in (2.7) leads to cumbersome expressions involving elliptic integrals, but some useful
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insight can be deduced from it, nevertheless. For increasing l, the Ul have more and

more oscillations. Convolution smears them out, but not entirely. For ω close to 2J ,

(2.7) yields

Φzz
l (ω) =

2

J
(l + 1)4(2− ω/J)2 (ω ≤ 2J). (2.8)

The l-dependent amplitude confirms the qualitative remarks made previously. The

function Φzz
l (ω) is singular at ω = 0 for any l. For example, expression (2.7) evaluated

for the simplest case, l = 0, yields

Φzz
0 (ω) =

128

3πJ
(1 + ω/2J){(1 + ω2/4J2)E(

2J − ω
2J + ω

)− ω

J
K(

2J − ω
2J + ω

)}. (2.9)

(E(k) and K(k) are complete elliptic integrals.) For small ω the leading terms are

Φzz
0 (ω) ∼ a+ (b+ c ln |ω

J
|)ω2. (2.10)

The shape of the spectral density Φzz
l (ω) for different values of l is shown in Fig. 1.

In conclusion, the free-particle nature of the underlying dynamics is equally obvious

in the spectral density Φzz
l (ω) for sites near the boundary and in the bulk limit. That

will no longer be the case when we investigate the spectral density Φxx
l (ω) for the

same model.

Figure 1: Spectral density Φzz
l (ω) for

the 1D s = 1
2 XX model at T =∞ as

determined by the Fourier transform

of expression (2.5). The four curves

represent the cases l = 0 (boundary

spin ), l = 1, 5, and l =∞ (bulk spin).
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2.2 Boundary Effects in < Sxl (t)Sxl >

Here we discuss new explicit analytic results for the xx-autocorrelation functions

< Sxl (t)Sxl > of the first few spins in a semi-infinite XX chain. A general determi-

nantal expression for < Sxl (t)Sxl > is derived in Appendix A. That derivation uses the

Jordan-Wigner transformation from spin-1/2 operators to Fermi operators and Wick’s

theorem, i.e. precisely the same techniques that were used to derive expression (2.5)

for < Szl (t)Szl >. The more complex structure of < Sxl (t)Sxl > as compared to that

of < Szl (t)Szl > is best understood in the fermion representation: the spin operator

Szl is simply mapped to a fermion number operator, but the operator Sxl turns into

a product of Fermi operators involving all of the sites between 0 and l. The function

< Szl (t)Szl > may thus be evaluated as an expectation value of a product of four Fermi

operators. The corresponding number of Fermi operators in < Sxl (t)Sxl > is 4l + 2.

Wick’s theorem must be applied for the evaluation of that function (see Appendix A

for details about these well-known techniques and references to earlier work).

The general structure of the function < Sxl (t)Sxl > is a sum of products of integer-

order Bessel functions Jn(Jt) with n = 0, 1, . . . , 2(l+ 1). Each term is the product of

exactly 2l+ 1 such functions. Explicit expressions for l = 0, 1, 2, corresponding to the

first three sites of a semi-infinite chain, are the following

< Sx0 (t)Sx0 > =
1

4
(J0 + J2), (2.11)

< Sx1 (t)Sx1 > =
1

4

{
(J0 + J2)[(J0 + J2)(J0 − J4) + (J1 + J3)

2]
}
, (2.12)

< Sx2 (t)Sx2 > =
1

4
[(J0 + J2)(J0 − J4) + (J1 + J3)

2]

{(J0 + J2)[(J0 − J4)(J0 + J6) + (J1 − J5)
2]

+(J1 + J3)[(J1 + J3)(J0 + J6) + (J1 − J5)(J2 + J4)]

+(J2 + J4)[(J1 + J3)(J1 − J5)− (J0 − J4)(J2 + J4)]}. (2.13)

Each Bessel function has the argument Jt. We have also evaluated explicit expressions

for l = 3, 4, but they are too lengthy to be reproduced here. The Fourier transform
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of any factor (Ji−j ± Ji+j+2) is proportional to

Ui(ω/J) Uj(ω/J)
√

1− ω2/J2 Θ(1− ω2/J2).

Therefore, the spectral density Φxx
l (ω) is a multiple convolution of 2l + 1 functions

with compact support on the interval [−J, J ] and square-root singularities at the end

points. The spectrum Φxx
l (ω) thus is restricted to the interval [−(2l+ 1)J, (2l+ 1)J ],

and we can expect nondivergent power-law singularities in Φxx
l (ω) at frequencies that

are multiples of J . The convolution of 2l+ 1 square-root singularities yields endpoint

singularities of the form ∼ |ω − (2l + 1)J |3l+1/2. The actual endpoint singularity

of Φxx
l (ω), however, could be (and actually is) weaker due to cancellation effects. In

order to obtain a more complete picture of the singularity structure of Φxx
l (ω), we have

analyzed the LTAE of < Sxl (t)Sxl >. It has a considerably more complex structure

than the one of < Szl (t)Szl > :

< Sxl (t)Sxl >∼
l∑

m=0

Cme
i(2m+1)Jt(it)−γ

(l)
m

∞∑
n=0

c(l)mn(it)−n + c.c. (2.14)

with γ(l)
m = 3

2
+ l(l+ 2) +m(m+ 1). The number of m-terms in (2.14) increases with

l, the distance of the spin from the boundary. Each m-term in the LTAE (2.14) gives

rise to a pair of (nondivergent) power-law singularities in Φxx
l (ω) at frequencies ωm =

±(2m + 1)J . The associated singularity exponents, γ(l)
m − 1, increase monotonically

with m and l; the exponent for the endpoint singularity is 2l2 +3l+1/2, which indeed

exceeds the value predicted by simple power-counting arguments. In the bulk limit,

l→∞, the support of that spectral density is no longer bounded and all singularities

fade away completely. The result is the Gaussian function (2.4b). In Fig. 2 we have

plotted the exact results for l = 0, 1,∞. Convergence toward the bulk result (2.4b) is

remarkably rapid.

The fact that Φxx
l (ω) has compact support for finite l is the unmistakable signature

of the free-particle nature of the underlying dynamics. That nature was not obviously

recognizable in the bulk result Φxx
∞ (ω) alone. It is interesting to compare these results

with those previously found for the function < Sx∞(t)Sx∞ > of the same model at

8



Figure 2: Spectral density Φxx
l (ω) for

the 1D s = 1
2 XX model at T = ∞.

The three curves shown represent the

cases l = 0, 1 as determined by the

Fourier transform of expressions (2.11)

and (2.12), respectively, and the case

l = ∞ given by the function (2.4b).

The spectral densities for l = 2 and

l =∞ coincide within line thickness.

T = 0 [13],[14]. The LTAE consists of an infinite number of m - terms (see Eqs.

(2.9) of [14] ) with leading exponents γ(∞)
m = 1

2
[(m2 + 1)/2], where [x] denotes the

integer part of x. The associated spectral density has unbounded support and an

infinite sequence of singularities at frequencies ωm = mJ , m = 0, 1, 2, . . .. The first

two singularities (m = 0, 1) are divergent. Boundary effects on the xx-correlation

functions (both autocorrelations and pair correlations) of an XY chain at T = 0 were

studied by Pesch and Mikeska [15].

2.3 Predictions of the Recursion Method

To what extent would it have been possible to predict the exact results presented in

Secs. 2.1 and 2.2 by the recursion method, i.e. by a general calculational technique

that does not rely on the free-particle nature of the system? We investigate this

question as a prelude to the study of the XXZ model, for which we shall employ the

same general method. No special methods have been found for that model by which

dynamic correlation functions can be determined exactly.

In the following we report a number of predictions for the spectral densities Φzz
l (ω)

and Φxx
l (ω) of the XX model that can be extracted directly from the sequences of
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continued-fraction coefficients ∆k produced by the recursion method. The formulation

of the recursion method used here and outlined in Appendix B was developed by Lee

[16] some ten years ago, but the analysis of the coefficients ∆k presented in the

following is of very recent origin [17], [18].

Consider first the spectral density Φzz
l (ω). For l = 0 the recursion method yields

the ∆k-sequence shown in Fig. 3 (main plot). Two quantitative properties of the

function Φzz
0 (ω) can be extracted directly from these computational data: (i) The ∆k

tend to converge toward the value ∆∞ = J2. The implication is that the spectral

weight is confined to the frequency interval |ω| ≤ ω0 = 2
√

∆∞ = 2J . (ii) The

convergence toward the asymptotic value ∆∞ is uniform in character. This indicates

that Φzz
0 (ω) has only endpoint singularities, ∼ (ω0 − ω)β. The exponent β of that

singularity determines the leading-order term of the large-k asymptotic expansion of

the ∆k-sequence [19]:

∆k = ∆∞[1 +
1− 4β2

4k2
+ . . . ]. (2.15)

Uniform convergence from below means β2 > 1
4
. In the inset to Fig. 3, we have plotted

the square-root of the quantity

β2
k =

1

4
− k2[

∆k

∆∞
− 1] (2.16)

Figure 3: Continued-fraction coeffi-

cients ∆k (in units of J2) vs. k, k =

1, . . . , 30, for the spectral density

Φzz
0 (ω) of the 1D s = 1

2 XX model at

T =∞. The inset shows the sequence

|βk| vs. 1/k for the same coefficients

∆k (now up to k = 50).
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versus 1/k . The sequence |βk| tends to converge to the value |β| = 2 rather convinc-

ingly. The recursion method thus would have correctly predicted the quadratic cusps

of the exact result (2.9) (see Fig. 1).

For 1 ≤ l < ∞, the recursion method yields ∆k-sequences that tend to converge

toward the same value ∆∞ = J2 , but the approach is alternating in character for k up

to l (roughly) and then crosses over to uniform approach. The emerging new pattern

indicates the buildup of an additional singularity at ω = 0 in the spectral density for

l →∞. The ∆k-sequence for the bulk case (l =∞) is shown in Fig. 4. For spectral

densities that have a power-law infrared singularity, ∼ |ω|α, the singularity exponent

α is determined by the leading alternating term of the large-k asymptotic expansion

of the ∆k-sequence [18], [19]

√
∆k =

√
∆∞[1− (−1)k

α

2k
+ . . . ]. (2.17)

In the inset to Fig. 4 we have plotted the quantity

αk = (−1)k2k[1−
√

∆k/∆∞] (2.18)

versus k−1/2. That sequence tends to converge to a negative value in the range between

α = 0 and α = −0.1, thus representing a weakly divergent singularity. This is

Figure 4: Continued-fraction coeffi-

cients ∆k (in units of J2) vs. k, k =

1, . . . , 20, for the spectral density

Φzz
∞(ω) of the 1D s = 1

2 XX model at

T =∞. The inset shows the sequence

αk vs. 1/
√
k for the same coefficients

(now up to k = 35 ).
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consistent with the logarithmic divergence of the exact spectral density (2.3b).

Now we turn to the spectral density Φxx
l (ω). For any finite l, the ∆k-sequence

tends to converge towards a finite value as k → ∞. Our computational data are

shown in Fig. 5. The dashed curves interpolate the values 1/∆
(l)
k plotted vs. 1/k for

l = 1, 2, 3, 4. The solid line represents the analytically known sequence, ∆
(∞)
k = 1

2
J2k,

for the bulk spin (l =∞) [10],[20]. Not shown is the horizontal line which corresponds

to the uniform sequence, ∆
(0)
k = 1

4
J2, for the boundary spin (l = 0) [21]. All dashed

curves start out superimposed on the solid curve up to k = l and then level off

gradually toward a finite value, ∆(l)
∞ = 1

4
J2(2l + 1)2. This is consistent with the

exactly known band edge, ω
(l)
0 = (2l+ 1)J , of the function Φxx

l (ω) (see Sec. 2.2). The

uniform convergence of the ∆
(l)
k toward their limiting values ∆(l)

∞ is consistent with

the fact that Φxx
l (ω) does not have any infrared singularity.

The exponents β(l) of the endpoint singularities, ∼ (ω
(l)
0 − ω)β

(l)
, in the functions

Figure 5: Sequences 1/∆(l)
k (in units

of J−2) plotted vs. 1/k for the spec-

tral densities Φxx
l (ω), l = 1, 2, 3, 4,

of the 1D s = 1
2 XX model at

T = ∞. The maximum value of k

is 55, 28, 22, 20, for the four cases, re-

spectively. The solid line represents

the sequence for the bulk spin case

(l =∞). The arrows indicate the lim-

iting values 1/∆(l)
∞ for l = 1, 2, 3, 4.
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Φxx
l (ω) can be determined directly from the ∆

(l)
k via (2.16), i.e. by means of extra-

polation. For l = 0, the square bracket in (2.16) vanishes identically, implying |β(0)| =
1
2

in agreement with the known square-root cusp of Φxx
0 (ω) (see Fig. 2). A simple

extrapolation procedure applied to the sequences ∆
(1)
k and ∆

(2)
k reproduces the exact

exponent values β(1) = γ
(1)
1 − 1 = 11

2
and β(2) = γ

(2)
2 − 1 = 29

2
to within one tenth of

a percent and one percent, respectively. More substantial deviations from the exact

values are found for l = 2, where fewer coefficients ∆
(l)
k are available for analysis.

There appears to be no practical means to extract any quantitative information on

the interior singularities known to exist in the spectral densities Φxx
l (ω) for 0 < l <∞.

2.4 The Functions < Sx0 (t)Sx0 > and < Sy0 (t)Sy0 > for the XY model

Consider a semi-infinite XY chain, specified by Hamiltonian (1.1) with ∆ = 0 and

γ 6= 0. This model can be mapped on to a free-fermion system with a gap at the

Fermi surface. The gap disappears for the special case γ = 0 (XX model). Dynamic

spin correlation functions can be determined exactly, at least in principle. No such

functions have ever been evaluated in closed form for T = ∞ to the best of our

knowledge. (Pesch and Mikeska [15] obtained general determinantal expressions for

T = 0.) Interestingly, the recursion method produces the exact results for the spectral

densities Φxx
0 (ω) and Φyy

0 (ω) at T = ∞ with little calculational effort. The ∆k -

sequences found for these two functions happen to exhibit a very simple pattern:

∆xx
2k−1 = ∆yy

2k =
1

4
J2(1− γ)2 (2.19a)

∆yy
2k−1 = ∆xx

2k =
1

4
J2(1 + γ)2 (2.19b)

For the exact determination of the associated spectral densities, consider a se-

quence of continued-fraction coefficients that is periodic with period two: ∆2k−1 =

∆o , ∆2k = ∆e. The continued-fraction representation of the relaxation function

c0(z) specified by those coefficients can be terminated by the function itself at level

13



two [22]:

c0(z) =
1

z +
∆o

z + ∆ec0(z)

(2.20)

(This had also been recognized by Sen [23] , who used this information for a numerical

analysis of the short-time behavior of the functions < Sx0 (t)Sx0 > and < Sy0 (t)Sy0 > .)

The solution of this quadratic equation yields, via (B.11), the following closed-form

expression for the associated spectral density:

Φ0(ω) =
1

∆e

[2(∆o + ∆e)− ω2 − (∆o −∆e)
2

ω2
]
1
2 Θ(|ω| − ωmin)Θ(ωmax − |ω|)

+
π

∆e

[|∆o −∆e| − (∆o −∆e)]δ(ω) (2.21)

with

ωmin = |
√

∆o −
√

∆e| , ωmax =
√

∆o +
√

∆e. (2.22)

Applying this result to the sequences (2.19) for γ > 0, we find that both spectral

densities Φxx
0 (ω) and Φyy

0 (ω) have a continuum part confined to the frequency intervals

ωmin < |ω| < ωmax and with square-root cusp singularities at each endpoint. The

spectral density Φxx
0 (ω) has also a δ-function contribution at ω = 0.

The implication is that the boundary-spin autocorrelation function < Sx0 (t)Sx0 >

decays algebraically to a nonzero constant asymptotically for t→∞. (This is indeed

visible but not commented on in the numerical results presented in [23].) Such be-

havior is highly anomalous for a many-body system at T = ∞, attributable to the

free-particle nature of the s = 1
2

XY model. For T = 0 Pesch and Mikeska [15]

observed that < Sxl (t)Sxm > does not decay to zero as t → ∞ for any l,m, because

the system has long-range order at T = 0. Returning to T = ∞ and setting γ = 0

(XX model), we have ∆o = ∆e = ∆; expression (2.21) reduces to

Φ0(ω) =
1

∆

√
4∆− ω2; (2.23)

the gap and the δ-function have disappeared.
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3 The XXZ Model

The XXZ Hamiltonian

HXXZ = −J
∞∑
l=0

{Sxl Sxl+1 + Syl S
y
l+1 + ∆Szl S

z
l+1} (3.1)

is obtained by adding a coupling between the z-components of neighboring spins to

the XX system (2.1). This amounts to introducing a density-density interaction

in the fermion representation. Not surprisingly, the fermion interaction increases

the complexity in the structure of dynamic correlation functions dramatically. That

manifests itself perhaps most strikingly in the boundary-spin autocorrelation function

< Sx0 (t) Sx0 > and the associated spectral density Φxx
0 (ω). A rigorous analysis is no

longer within reach, and a perturbation calculation for weak fermion interaction,

|∆| << 1, is highly impractical for this dynamical quantity. However, the application

of the recursion method (in the spin representation) to that task is straightforward

and requires only a modest amount of computational power.

We begin with the analysis of the case ∆ = 1 (XXX model). The sequence ∆
(0)
k

of continued-fraction coefficients produced by the recursion method for the boundary-

spin spectral density Φxx
0 (ω) is plotted in the inset to Fig. 6. Notice the dramatic

change from the sequence ∆
(0)
k = 1

4
J2 = const, which characterizes the same spectral

density for the XX model (∆ = 0, free fermions).

∆k-sequences as produced by the recursion method have been categorized quite

generally according to their growth rate [24], [3]. The growth rate λ is defined as the

power of k with which a given ∆k-sequence grows on average:

∆k ∼ kλ (3.2)

That quantity is known to determine the decay law of the associated spectral density

at high frequencies [19],[25]:

Φ0(ω) ∼ exp(−ω2/λ). (3.3)
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Figure 6: Spectral density Φxx
0 (ω) (in

units of J−1) for the 1D s = 1
2 XXX

model (∆ = 1) at T = ∞. The result

shown is derived from the continued-

fraction representation of c0(ε − iω)

(with ε = 0.001J) terminated at level

n = 12 by means of a Gaussian ter-

minator with parameter value ω0 =

0.76J . The ∆k that have been used

are shown (in units of J2) in the in-

set together with the regression line
1
2ω

2
0k + c, which determines the pa-

rameter value ω0 and is used for the

determination of the singularity expo-

nent α.

In the case of the XXZ model, the sequence crosses over from λ = 0 for ∆ = 0 to λ '

1 for ∆ 6= 0. The effect of the fermion interaction on the one-particle Green’s function

is a transformation of its spectral density from a function with bounded support to

one with unbounded support and (roughly) Gaussian decay at high frequencies.

It must be mentioned at this point that the sequences ∆
(l)
k (plotted in Fig. 5)

that characterize the spectral densities Φxx
l (ω) for the noninteracting case (∆ = 0)

also change from λ = 0 for finite l to λ = 1 in the bulk limit (l = ∞). In that

case, however, the transformation of the spectral density from bounded to unbounded

support is attributable to the nonlocality of the spin operator Sxl in the fermion

representation.

Switching from ∆ = 0 to ∆ = 1 also changes the rotational symmetry of HXXZ

in spin space in a way that has a drastic effect on the correlation function under

investigation. Since the total spin component SxT is conserved for ∆ = 1, we can

expect that the spin autocorrelation function < Sx0 (t)Sx0 > is governed by a diffusive

long-time tail of the form (1.3) with d = 1. As a consequence of that property, the

corresponding spectral density is expected to exhibit a strong infrared singularity,

Φxx
0 (ω) ∼ ω−

1
2 .
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Infrared singularities in spectral densities with unbounded support have their re-

flection in the ∆k-sequences too. For a prototype case with λ = 1 consider the model

spectral density [18]

Φ0(ω) =
2 π

ω0Γ(α
2
− 1

2
)
| ω
ωo
|αexp(−ω2/ω2

0) (3.4)

and the associated ∆k-sequence

∆2k−1 =
1

2
ω2

0 (2k − 1 + α) , ∆2k =
1

2
ω2

0 (2k). (3.5)

For this prototype case, the singularity exponent α is determined by the displacement

of the ∆2k−1 from the line ∆2k = ω2
0k. Under more general circumstances, i.e. for

a spectral density with a more complicated structure, the exponent α of its infrared

singularity could be determined, for example, from the average distance in vertical

displacement of the ∆2k and the ∆2k−1 from the linear regression line that was derived

for the entire sequence.

Looking at the graph ∆
(0)
k vs. k in Fig. 6 we can tell that the ∆

(0)
2k are displaced

upwardly on average with respect to the ∆
(0)
2k−1. This indicates that α is negative,

i.e. the infrared singularity is divergent. The most we can hope to extract from the

12 known coefficients ∆
(0)
k is a reasonable estimate for the singularity exponent. Our

result,

α = −0.5± 0.3 (3.6)

strongly suggests that Φxx
0 (ω) has a divergence at ω = 0, and the strength of the

singularity is consistent with that predicted by spin diffusion phenomenology.

The 12 explicitly known continued-fraction coefficients ∆
(0)
k can also be used for

the direct reconstruction of the spectral density Φxx
0 (ω) by means of a technique that

was developed in Ref. [17]. The main idea at the basis of that technique is that the

incomplete continued fraction (B.10) must be terminated by a termination function

that is consistent with some general properties (growth rate, limiting value, etc.) of

the explicitly known (finite) ∆k-sequence.

For applications to ∆k-sequences with roughly linear growth rate (λ = 1), the

Gaussian terminator is the least biased choice. In that case the reconstruction of the
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desired spectral density starts out from a Gaussian model spectral density according

to a well defined procedure. A detailed description of that procedure can be found in

Refs. [17], [18] for two applications to zero-temperature spin dynamics. In the present

application, the coefficients ∆
(0)
k shown in the inset to Fig. 6 yield the reconstructed

spectral density Φxx
0 (ω) shown in the main plot of that same figure. Its only distinctive

feature is the characteristic spin-diffusive peak at ω = 0.

Our interpretion of the spectral density shown in Fig. 6 in terms of a simple

1D spin diffusion process will be more convincing if we can demonstrate that the

sharp central peak disappears upon removal of the conservation law on which that

process hinges: SxT = const. Therefore let us analyze the anisotropic case ∆ = 0.5 of

Hamiltonian (3.1), which violates that conservation law.

We have calculated the continued-fraction coefficients ∆
(0)
k for that case up to k =

11 by means of the recursion method. It turns out that the growth rate determined

for that (finite) sequence is significantly larger than λ = 1, namely λ = 1.18 ± 0.04.

This modification calls for a generalization of both our methods (i) for estimating the

singularity exponent α and (ii) for reconstructing the spectral density Φxx
0 (ω). Both

tasks require a fair amount of developmental work, which is worthwhile to be invested.

For this one application, however, we wish to take a shorter route.

For growth rates sufficiently close to λ = 1, it can safely be argued that if one

replaces the ∆k-sequence by the sequence ∆∗k = ∆
1/λ
k and then proceeds with the ana-

lysis as in the previous application, the distortions resulting from unmatched growth

rates are minimal. The rescaled sequence ∆∗k vs. k up to k = 11 is shown in the

inset to Fig. 7. Notice that the alternating character of the deviations from the linear

regression line has virtually disappeared. A quantitative analysis of the singularity

exponent α from those deviations yields the following result:

α = −0.05 ± 0.46. (3.7)

Although this estimate has only limited predictive power, it is consistent with the

disappearance of the spin-diffusive ω−
1
2 -divergence. That conclusion is confirmed by
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Figure 7: Spectral density Φxx
0 (ω)

(in units of J−1) for the 1D s =
1
2 XXZ model (∆ = 0.5) at T =

∞. The result shown is derived from

the continued-fraction representation

of c0(ε − iω) (with ε = 0.001J) ter-

minated at level n = 10 by means of

a Gaussian terminator with parame-

ter value ω0 = 0.65J . The rescaled

coefficients ∆∗k that have been used

are shown (in appropriately rescaled

units) in the inset together with the

regression line 1
2ω

2
0k + c, which deter-

mines the parameter ω0 and is used

for the determination of the singular-

ity exponent α.

the spectral density Φxx
0 (ω) reconstructed from the first 11 coefficients ∆∗k and a

Gaussian terminator as outlined previously. That function is shown in the main plot

of Fig. 7 and is to be compared with the result shown in Fig. 6. Note that the

sharp central peak conspicuously present for ∆ = 1 has completely disappeared in

the anisotropic case, ∆ = 0.5. This is precisely what is expected if the transport of

spin fluctuations is governed by spin diffusion.
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Appendix A : Analytical Results for < Sxl (t)Sxl >

Here we derive analytical results for the xx-autocorrelation of an arbitrary spin l in

the semi-infinite spin-1/2 XX chain at infinite temperature. As already stated in [4],

the calculation involves determinants of increasing size as l grows. We derive a general

determinant expression from which the explicit results for l = 0, 1, 2 quoted in Sec.

2.2 may be obtained. (The determinant structure of < Sxl (t)Sxl > was mentioned by

Gonçalves and Cruz [12], but we are unaware of any explicit results for 0 < l <∞.

The spin ladder operators

S±l = (Sxl ± iS
y
l ) (A.1)

fulfill fermion-like anticommutator relations “on site”, however, two operators acting

on different sites commmute. This cumbersome algebraic structure is simplified by

the well-known Jordan-Wigner transformation [26]

S+
l = (−1)

∑l−1

k=0
a†
k
ak a†l . (A.2)

The al and a†l are fermion operators, a†l creates a particle at site l from the vacuum:

|l >= a†l |0 > . (A.3)

In terms of fermion operators, the XX Hamiltonian (2.1) of an N -site chain (l =

0, ..., N − 1) reads

HXX = −J
2

N−2∑
l=0

(a†lal+1 + a†l+1al). (A.4)

The normalized one-particle eigenstates |ν > of HXX are given by

< l|ν >= (
2

N + 1
)

1
2 sin(

νπ(l + 1)

N + 1
) (ν = 1, ..., N) (A.5)

and the corresponding energy eigenvalues are

εν = −J cos(
νπ

N + 1
). (A.6)

Consequently, the Hamiltonian now reads

HXX =
N∑
ν=1

ενa
†
νaν (A.7)
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where the operator a†ν creates a fermion in the state |ν > . Next we use the simple

identity (valid for fermion operators)

(−1)a
†
l
al = 1− 2a†lal = (a†l + al)(a

†
l − al) =: AlBl (A.8)

to rewrite the spin autocorrelation function as a correlation function involving the

fermionic operators Al and Bl defined by (A.8):

< Sxl (t)Sxl (0) >=
1

4
< A0(t)B0(t)A1(t)B1(t)...Al(t)A0B0A1B1...Al > . (A.9)

This looks like a complicated representation of the sign generated by the Jordan-

Wigner transformation (A.2)but it possesses an essential advantage: as Al and Bl are

linear combinations of Fermi operators, Wick’s theorem may be applied to evaluate

the expectation value. At first sight, the task looks cumbersome, because the right-

hand side of (A.9) contains a product of 4l+2 operators. However, if we write Wick’s

theorem in terms of Pfaffians [27], it is possible to keep track of the various terms:

| < C1C2 > < C1C3 > · · · < C1CN >

< C2C3 > · · · < C2CN >

< C1C2...CN > = · · · · · ·

· · ·

< CN−1CN >

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ±(det(Cij))
1
2 . (A.10)

Here, C1, ...CN are linear combinations of fermion creation and annihilation operators,

and the brackets denote equilibrium expectation values with respect to a bilinear

fermion Hamiltonian. The triangular array in (A.10) is the usual way to write the

Pfaffian, which is equal to the square root of the determinant of an antisymmetric

matrix (Cij) with an even number of rows and columns, defined by

Cij = < CiCj > (1 ≤ i < j) (A.11)

Cji = −Cij.
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Like a determinant, a Pfaffian can be expanded with respect to the elements of any

of its lines, where “line i” is the set of all elements carrying the index i, either as the

first or second index. A minor of a Pfaffian is again a Pfaffian, generated by deleting

two lines (i and j, say), and the adjoint of element (i, j) is the corresponding minor,

with sign (−1)i+j+1. For example :

| < C1C2 > < C1C3 > < C1C4 >

< C1C2C3C4 > = < C2C3 > < C2C4 >

< C3C4 >

∣∣∣∣∣∣∣∣∣∣

=< C1C2 >< C3C4 > − < C1C3 >< C2C4 > + < C1C4 >< C2C3 > . (A.12)

For the determination of the time-dependent correlation function (A.9) we thus have

to evaluate the following Pfaffian:

4 < Sxl (t)Sxl (0) > =

| < A0(t)B0(t) > < A0(t)A1(t) > · · · < A0(t)A0 > < A0(t)B0 > · · · < A0(t)Al >

< B0(t)A1(t) > · · · < B0(t)A0 > < B0(t)B0 > · · · < B0(t)Al >

· · · · · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · ·

· · · · · ·

< Bl−1Al >

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(A.13)

For the evaluation of the elements of this Pfaffian at T =∞ we use

Al(t) = (
2

N + 1
)

1
2

N∑
ν=1

sin
νπ(l + 1)

N + 1
(a†νe

iενt + aνe
−iενt), (A.14)

and

< a†νaµ >=< aνa
†
µ >=

1

2
δµν . (A.15)
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The result is

< Al(t)Am(t′) >=
1

N + 1

N∑
ν=1

(cos
νπ

N + 1
(l−m)− cos

νπ

N + 1
(l+m+ 2)) cos εν(t− t′).

(A.16)

For N →∞ the sum becomes an integral which is readily evaluated to yield

< Al(t)Am(t′) >=

 0 for l −m odd

(−1)
l−m

2 flm(t− t′) for l −m even
. (A.17)

Here we have introduced the shorthand notation

flm(t) := Jl−m(Jt)− (−1)(m+1)Jl+m+2(Jt), (A.18)

and the Jn are Bessel functions. It is important to note that flm vanishes for t = 0,

except for l = m. The following relations hold:

< Al(t)Am(t′) >=< Am(t)Al(t
′) >= − < Bl(t)Bm(t′) > . (A.19)

In an analogous manner we obtain

< Al(t)Bm(t′) >=

 i(−1)
l−m−1

2 flm(t− t′) for l −m odd

0 for l −m even
. (A.20)

and

< Al(t)Bm(t′) >= − < Bl(t)Am(t′) >=< Am(t)Bl(t
′) > . (A.21)

Hence, all elements of (A.13) with two equal time arguments vanish, which is a ma-

jority. All nonzero elements are located in the “upper right quadrant” of the Pfaffian.

They form a (2l + 1)× (2l + 1) square matrix which may be conveniently written in

terms of 2× 2 blocks:

f00σ
z f01σ

y −f02σ
z −f03σ

y · · ·

f01σ
y f11σ

z f12σ
y −f13σ

z · · ·

−f02σ
z f12σ

y f22σ
z f23σ

y · · ·

−f03σ
y −f13σ

z f23σ
y f33σ

z · · ·
...

...
...

...
. . .


(A.22)

23



In this expression we have omitted the common time argument t from the functions

flm ; σy and σz are Pauli matrices. Considering the relation (A.10) between the

Pfaffian and the determinant of an antisymmetric (4l+ 2)× (4l+ 2) matrix, it is easy

to see that a Pfaffian of the type described above is (apart from the sign) equal to

the determinant of the (2l + 1)× (2l + 1) matrix (A.22).

Appendix B : Formulation of the Recursion Method for

Quantum Spin Dynamics

For a given quantum spin Hamiltonian H( ~S1, ...., ~SN), the time evolution of any dy-

namical variable A( ~S1...., ...., ~SN), here assumed to be a Hermitian operator, is deter-

mined by the Heisenberg equation of motion (with h̄ ≡ 1)

dA

dt
= i[H,A] = iLA, (B.1)

where L = [H, ] is the quantum Liouville operator expressed as a commutator. That

commutator is well defined in terms of the fundamental commutators of the spin

algebra:

[Sαl , S
β
l′ ] = iδll′

∑
γ

εαβγS
γ
l . (B.2)

The recursion method for the calculation of the autocorrelation function< A(t)A(0) >

is based on an orthogonal expansion of the associated dynamical variable:

A(t) =
∞∑
k=0

Ck(t)fk. (B.3)

The orthogonal vectors fk (Hermitian operators) are generated recursively via the

Gram-Schmidt orthogonalization procedure with L as the generator of new directions:

fk+1 = iLfk + ∆kfk−1 , k = 1, 2, ... (B.4)

∆k = (fk, fk)/(fk−1, fk−1) (B.5)

with initial condition f0 = A, f−1 ≡ 0. The scalar product in (B.5) is defined as the

symmetrized canonical average,

(A,B) =
1

2
< AB +BA >=

1

Z
Tr[e−βH(AB +BA)] (B.6)

24



The sequence of non-negative numbers ∆k thus determined contains all the informa-

tion necessary for the reconstruction of the function < A(t)A(0) >. Upon insertion

of the orthogonal expansion (B.3) into the equation of motion (B.1) we obtain a set

of linear differential equations for the functions Ck(t) :

Ċk(t) = Ck−1(t)−∆k+1Ck+1(t) , k = 0, 1, 2, ..... (B.7)

with C−1(t) ≡ 0, Ck(0) = δk,0, and where

C0(t) =
(A(t), A(0))

(A(0), A(0))
=

1

2

< A(t)A(0) > + < A(0)A(t) >

< A(0)A(0) >
(B.8)

is the symmetrized and normalized autocorrelation function we wish to determine. It

is the real part of < A(t)A(0) > / < A2 >; the imaginary part contains no additional

information and can be determined from the relation

< A(−t)A(0) >=< A(t− iβ)A(0) >=< A(t)A(0) >∗ .

Equations (B.7), converted by Laplace transform into a set of algebraic equations,

zck(z)− δk,o = ck−1(z)−∆k+1ck+1(z) , k = 0, 1, 2, ..... (B.9)

with c−1(z) ≡ 0, can be solved for the relaxation function in the continued-fraction

representation:

c0(z) ≡
∫ ∞
0

dte−ztC0(t) =
1

z +
∆1

z +
∆2

z + · · ·

. (B.10)

The spectral density is obtained from (B.10) via the relation

Φ0(ω) ≡
∫ +∞

−∞
dt eiωt C0(t) = 2 lim

ε→0
Re[c0(ε− iω)]. (B.11)

We have designed a FORTRAN program which calculates high-precision numerical

values of the ∆n for the spin autocorrelation functions < Sαl (t)Sαl > of the 1D s = 1
2

XYZ model (1.1) at T = ∞. Owing to the property (Sαl )2 = 1
4

of spin-1
2

operators,

the vectors fn produced by the orthogonalization scheme (B.4,B.5) have the following

general structure (for f0 ≡ Sα0 ) :

fn =
M(n)∑
m=1

am(n)
n∏
l=0

∏
α=xyz

Sαl . (B.12)
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Since the Sαl have zero trace, the evaluation of the norms is greatly simplified:

(fn, fn) =
M(n)∑
m=1

[am(n)]2. (B.13)

For most applications of interest, only a limited number of continued-fraction

coefficients ∆k can be determined in practice. If the number of known coefficients

∆k is not too small, valuable information on the structure of the associated spectral

density can safely be predicted directly from that set of numbers. Examples are

discussed in Secs. 2 and 3. That information can then be used for the reconstruction

of the detailed shape of Φ0(ω) by a special method of terminating continued fractions,

a method that was introduced in ([17], [18]).
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