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Summary .

Results obtained in randomized trials may not easily generalize to target populations. Whereas in ran-

domized trials the treatment assignment mechanism is known, the sampling mechanism by which indi-

viduals are selected to participate in the trial is typically not known and assuming random sampling from

the target population is often dubious. We consider an inverse probability of sampling weighted (IPSW)

estimator for generalizing trial results to a target population. The IPSW estimator is shown to be consis-

tent and asymptotically normal. A consistent sandwich-type variance estimator is derived and simulation

results are presented comparing the IPSW estimator to a previously proposed stratified estimator. The

methods are then utilized to generalize results from two randomized trials of HIV treatment to all people

living with HIV in the US.

Keywords: Causal inference; External validity/Generalizability; HIV/AIDS; Inverse probability weights;

Randomized controlled trial; Target population

1. Introduction

Generalizability is a concern for many scientific studies, including those in public health and medicine

(Cole and Stuart, 2010; Hernan and VanderWeele, 2011; Stuart et al., 2011, 2015; Tipton, 2013; Kei-

ding and Louis, 2016). Using information in the study sample, it is often of interest to draw inference

about a specified target population. Therefore, it is important to consider the degree to which an

effect estimated from a study sample approximates the true effect in the target population. Unfor-

tunately, study participants often do not constitute a random sample from the target population,

bringing into question the generalizability of effect estimates based on such studies. For example,

in clinical trials of treatment for HIV-infected individuals, there is often concern that trial partici-

pants are not representative of the larger population of HIV-positive individuals. Greenblatt (2011)

highlighted the over-representation of African American and Hispanic women among HIV cases in

the United States (US) and the limited clinical trial participation of members of these groups. The

Women’s Interagency HIV Study (WIHS) is a prospective, observational, multicenter study consid-

ered to be representative of women living with HIV and women at risk for HIV infection in the US

(Bacon et al., 2005). However, a review of eligibility criteria of 20 AIDS Clinical Trial Group (ACTG)

studies found that 28% to 68% of the HIV-positive women in WIHS cohort would have been excluded

from these trials (Gandhi et al., 2005).

There exist several quantitative methods that provide a formal approach to generalize results from

a randomized trial to a specified target population. Some of these methods utilize a model of the

probability of trial participation conditional on covariates. Herein, we refer to this conditional proba-

bility as the sampling score. Generalizabilty methods employing sampling scores are akin to methods

that use treatment propensity scores to adjust for (measured) confounding (Rubin, 1980) and include

the use of inverse probability of sampling weights and stratification based on sampling scores. For
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example, Cole and Stuart (2010) estimated sampling scores using logistic regression and then em-

ployed inverse probability of sampling weighted (IPSW) methods to estimate the treatment effect in

the target population. Another approach to generalizing trial results entails an estimator based on

stratifying individuals according to their estimated sampling scores (Tipton, 2013; O’Muircheartaigh

and Hedges, 2013; Tipton et al., 2014). To date, there have been no formal studies or derivations of

the large sample statistical properties (e.g., consistency and asymptotic normality) of these general-

iziability estimators.

Following Cole and Stuart (2010) and Stuart et al. (2011), we consider an inverse weighting

approach based on sampling scores to generalize trial effect estimates to a target population. The

inverse weighted estimator is compared to the stratified estimator. In Section 2, assumptions and

notation are discussed. The IPSW estimator and the stratified estimator are described in Section 3.

Large sample properties of the IPSW estimator are derived, including a closed-form expression for

the asymptotic variance and a consistent sandwich-type estimator of the variance. The finite sample

performance of the IPSW and stratified estimators are compared in a simulation study presented in

Section 4. In Section 5, the IPSW estimator is applied to generalize results from two ACTG trials to

all people currently living with HIV in the US. Section 6 concludes with a discussion.

2. Assumptions and Notation

Suppose we are interested in drawing inference about the effect of a treatment (e.g., drug) on an

outcome (e.g., disease) in some target population. Assume each individual in the target population

has two potential outcomes Y 0 and Y 1, where Y 0 is the outcome that would have been seen if (possibly

contrary to fact) the individual received control, and Y 1 is the outcome that would have been seen

if (possibly contrary to fact) the individual received treatment. It is assumed throughout that the

stable unit treatment value assumption (SUTVA) (Rubin, 1978) holds, i.e., there are no variations of

treatment and there is no interference between individuals (the outcome of one individual is assumed

to be unaffected by treatment of other individuals). Let µ1 = E
(

Y 1
)

and µ0 = E
(

Y 0
)

denote

the mean potential outcomes in the target population. The parameter of interest is the population

average treatment effect (PATE) ∆ = µ1 − µ0.

Consider a setting where two data sets are available. A random sample (e.g., cohort study) of m

individuals is drawn from the target population. A second sample of n individuals participate in a

randomized trial. Unlike the cohort study, the trial participants are not necessarily assumed to be a

random sample from the target population but rather may be a biased sample. The following random

variables are observed for the cohort and trial participants. Let Z be a 1× p vector of covariates and

assume that information on Z is available for those in the trial and those in the cohort. Let S = 1

denote trial participation and S = 0 otherwise. For those individuals who participate in the trial,

define X as the treatment indicator, where X = 1 if assigned to treatment and X = 0 otherwise.
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Let Y = Y 1X + Y 0(1 − X) denote the observed outcome. Assume (S,Z) is observed for cohort

participants and (S,Z,X, Y ) is observed for trial participants.

Assume the trial participants are randomly assigned to receive treatment or not such that the

treatment assignment mechanism is ignorable, i.e., P (X = x|S = 1, Z, Y 0, Y 1) = P (X = x|S = 1).

Assume an ignorable trial participation mechanism conditional on Z, i.e., P (S = s|Z, Y 0, Y 1) =

P (S = s|Z). In other words, participants in the trial are no different from nonparticipants regarding

the treatment-outcome relationship conditional on Z. Trial participation and treatment positivity

(Westreich and Cole, 2010) are also assumed, i.e., P (S = 1|Z = z) > 0 for all z such that P (Z = z) > 0

and P (X = x|S = 1) > 0 for x = 0, 1. Assume participants in the trial are adherent to their treatment

assignment (i.e., there is no noncompliance).

3. Inference about the Population Average Treatment Effects

3.1. Estimators

A traditional approach to estimating treatment effects is a difference in outcome means between the

two randomized arms of the trial. Let i = 1, . . . , n+m index the trial and cohort participants. The

within-trial estimator is defined as

∆̂T =

∑

i SiYiXi
∑

i SiXi
−

∑

i SiYi(1−Xi)
∑

i Si(1−Xi)
,

where here and in the sequel
∑

i =
∑n+m

i=1 . If trial participants are assumed to constitute a random

sample from the target population, it is straightforward to show ∆̂T is a consistent and asymptotically

normal estimator of ∆. On the other hand, if we are not willing to assume trial participants are a

random sample from the target population, then ∆̂T is no longer guaranteed to be consistent.

Below we consider two estimators of ∆ that do not assume trial participants are a random sample

from the target population. Both estimators utilize sampling scores. Following Cole and Stuart

(2010), assume a logistic regression model for the sampling scores such that P (S = 1|Z = z) =

{1 + exp(−zβ)}−1 where β is a p× 1 vector of coefficient parameters. Note here and throughout we

assume the p×1 vector Z includes 1 as the first component in order to accommodate an intercept term

in the sampling score model. Let β̂ denote the weighted maximum likelihood estimator of β where each

trial participant has weight Π−1
Si

= 1 and each individual in the cohort has weight Π−1
Si

= m/(N −n),

where N is the size of the target population (Scott and Wild, 1986). Let P (S = 1|Z = z) = w(z, β),

wi = w(Zi, β), and ŵi = w(Zi, β̂). The IPSW estimator (Cole and Stuart, 2010) of the PATE is

∆̂IPW = µ̂1 − µ̂0 =

∑

i SiYiXi/ŵi
∑

i SiXi/ŵi
−

∑

i SiYi(1−Xi)/ŵi
∑

i Si(1−Xi)/ŵi
. (1)

Another approach for estimating the PATE uses stratification based on the sampling scores (Tip-

ton, 2013; O’Muircheartaigh and Hedges, 2013; Tipton et al., 2014) and is computed in the following

steps. First, β is estimated using a logistic regression model as described above and the estimated
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sampling scores ŵi are computed. These estimated sampling scores are used to form L strata. The

difference of sample means within each stratum is computed among those in the trial. The PATE

is then estimated as a weighted sum of the differences of sample means across strata. The stratum

specific weights used in computing this weighted average equal estimates of the proportion of indi-

viduals in the target population within the stratum. Specifically, let nl be the number of individuals

in the trial in stratum l and ml be the number of individuals in the cohort in stratum l. Let Sil = 1

denote trial participation for individual i in stratum l for i = 1, . . . , (nl +ml) and l = 1, . . . , L (and

Sil = 0 otherwise). If Sil = 1, then let Xil and Yil denote the treatment assignment and outcome for

individual i in stratum l; otherwise, if Sil = 0, then let Xil = Yil = 0. The sampling score stratified

estimator is defined as

∆̂S =
L
∑

l=1

ωl

(

∑nl+ml

i=1 SilXilYil
∑nl+ml

i=1 SilXil

−

∑nl+ml

i=1 Sil(1−Xil)Yil
∑nl+ml

i=1 Sil(1−Xil)

)

,

where ωl = Nl/N , Nl =
∑nl+ml

i=1 Π−1
Sil

, and ΠSil
is the weight for individual i in stratum l.

3.2. Large Sample Properties of the IPSW Estimator

Because the trial participants are not assumed to be a random sample from the target population, the

observed random variables (Si, Zi, SiXi, SiYi) for i = 1, . . . , n+m are assumed to be independent but

not necessarily identically distributed. Below, the IPSW estimator is expressed as the solution to an

unbiased estimating equation to establish asymptotic normality and provide a consistent sandwich-

type estimator of the variance.

First, consider the case when β is known. Let θ̂∗ = (µ̂1, µ̂0), θ
∗ = (µ1, µ0) and note that θ̂∗ is the

solution for θ∗ of the estimating equation

∑

i

Ψ∗

∆(Yi, Zi, Xi, Si, θ
∗) =





∑

i{SiXi(Yi − µ1)}/wi
∑

i{Si(1−Xi)(Yi − µ0)}/wi



 = 0.

Define the following matrices:

Am,n (θ
∗) = (n+m)−1

∑

i

E{
∂

∂θ∗
Ψ∗

∆(Yi, Zi, Xi, Si, θ
∗)}

Bm,n (θ
∗) = (n+m)−1

∑

i

cov{Ψ∗

∆(Yi, Zi, Xi, Si, θ
∗)}

DefineA(θ∗) = limm,n→∞Am,n (θ
∗) andB (θ∗) = limm,n→∞Bm,n (θ

∗). Note E{Ψ∗

∆(Yi, Zi, Xi, Si, θ
∗)} =

0 for i = 1, ..., n+m, implying under suitable regularity conditions that as n,m → ∞, θ̂∗ converges

in probability to θ∗ and (n+m)1/2(θ̂∗ − θ∗) converges in distribution to N(0,Σ∗

θ) where

Σ∗

θ = A (θ∗)−1B (θ∗)A (θ∗)−T (2)

(Carroll et al. 2010, Appendix A.6). By Slutsky’s theorem and the delta method, ∆̂IPW is a consistent

estimator of ∆ and (n+m)1/2(∆̂IPW −∆) converges in distribution to N(0,Σ∗

IPW ) where

Σ∗

IPW = Σ
∗(11)
θ +Σ

∗(22)
θ − 2Σ

∗(12)
θ (3)
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and in general Σ(ij) refers to the entry in the ith row and the jth column of the matrix Σ. A consistent

estimator of (3) is given in Appendix A.

Next consider the more likely case that β is unknown. Using weighted maximum likelihood, the

estimator β̂ is the solution for β of the p× 1 vector estimating equation

∑

i

ψβ(Si, Zi, β) =
∑

i

Π−1
Si

Si − wi

wi(1− wi)

∂

∂β
wi = 0

(Scott and Wild, 1986). Let θ̂ = (µ̂1, µ̂0, β̂), θ = (µ1, µ0, β) and note that θ̂ is the solution for θ of

the (p+ 2)× 1 vector estimating equation

∑

i

Ψ∆(Yi, Zi, Xi, Si, θ) =











∑

i{SiXi(Yi − µ1)}/wi
∑

i{Si(1−Xi)(Yi − µ0)}/wi
∑

i ψβ(Si, Zi, β)











= 0.

Define the following matrices:

Am,n (θ) = (n+m)−1
∑

i

E{
∂

∂θ
Ψ∆(Yi, Zi, Xi, Si, θ)}

Bm,n (θ) = (n+m)−1
∑

i

cov{Ψ∆(Yi, Zi, Xi, Si, θ)}.

Define A (θ) = limm,n→∞Am,n (θ) and B (θ) = limm,n→∞Bm,n (θ). Note E{Ψ∆(Yi, Zi, Xi, Si, θ)} = 0

for i = 1, ..., n +m, implying under suitable regularity conditions that as n,m → ∞, θ̂ converges in

probability to θ and (n+m)1/2(θ̂ − θ) converges in distribution to N(0,Σθ) where

Σθ = A (θ)−1B (θ)A (θ)−T (4)

(Carroll et al., 2010). By Slutsky’s theorem and the delta method, ∆̂IPW is a consistent estimator

of ∆ and (n+m)1/2(∆̂IPW −∆) converges in distribution to N(0,ΣIPW ) where

ΣIPW = Σ
(11)
θ +Σ

(22)
θ − 2Σ

(12)
θ . (5)

A consistent estimator of (5) is given in Appendix A. This variance estimator can be used to construct

Wald-type confidence intervals (CIs) for ∆.

Comparison of (3) and (5) shows that the variance is smaller when the sampling scores are es-

timated (see Appendix B). Therefore, even if the correct sampling scores are known, estimation of

the sampling scores is preferable due to improved efficiency. This is analogous to a well-known result

for inverse probability of treatment weighted estimators (Hirano et al., 2003; Robins et al., 1992;

Wooldridge, 2007). In general, it is common practice to compute the variance of the inverse probabil-

ity weighted estimators using standard software assuming the weights are known. This leads to valid

but conservative CIs. In the Supplementary Material, an R function is provided which computes the

IPSW estimator and the corresponding (consistent) sandwich-type estimator of the variance described

in Appendix A which does not assume β is known.
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3.3. Estimator of the Variance of the Stratified Estimator

One approach to obtain an estimator of the variance of the stratified estimator is to express ∆̂S as the

solution to an unbiased vector of estimating equations, which include an estimating equation for the

potential outcome means, the L quantiles, and each element of β. This approach can be used to show

∆̂S is asymptotically normal (Lunceford and Davidian, 2004). In practice, it is routine to approximate

the sampling variance of ∆̂S by treating the estimator as the average of L independent, within-

stratum, treatment effect estimators (Tipton, 2013; Lunceford and Davidian, 2004). Specifically, the

approximate variance of ∆̂S is

L
∑

l=1

ω2
l σ̂

2
l , (6)

where σ̂2l =
∑1

x=0 n
−1
xl s

2
xl, nxl =

∑nl+ml

i=1 SilI(Xil = x), sxl = n−1
xl

∑nl+ml

i=1 SilI(Xil = x)(Yil − Ȳxl)
2

and Ȳxl = n−1
xl

∑nl+ml

i=1 SilI(Xil = x)Yil for x = 0, 1.

4. Simulations

A simulation study was conducted to compare the performance of the IPSW and stratified estima-

tors in scenarios with a continuous or discrete covariate and a continuous outcome. The following

quantities were computed for each scenario: the bias for each estimator, the average of the estimated

standard errors, empirical standard error, and empirical coverage probability of the 95% CIs.

A total of 5,000 data sets were simulated per scenario as follows. There were N = 106 observations

in the target population with sample score wi = {1+exp(−β0−β1Z1i)}
−1. In the first two scenarios,

one binary covariate Z1i ∼ Bernoulli(0.2) was considered and, for scenarios 3 to 6, one continuous

covariate Z1i ∼ N(0, 1) was considered. The covariate Z1i was associated with trial participation and

a treatment effect modifier. A Bernoulli trial participation indicator, Si, was simulated according to

the true sampling score wi in the target population and those with Si = 1 were included in the trial.

The parameters β0 and β1 were set were set such that the sample size in the trial was approximately

n ≈ 1000. The cohort was a random sample of size m = 4,000 from the target population (less those

selected into the trial) and Si was set to zero for those in the cohort. The trial was small compared

to the size of the target, so the cohort was essentially a random sample from the target.

For those included in the randomized trial (Si = 1), Xi was generated as Bernoulli(0.5) and the

outcome Y was generated according to Yi = ν0+ν1Z1i+ξXi+αZ1iXi+ǫi, ǫi ∼ N(0, 1). For scenarios

1 to 4, (ν0, ν1, ξ, α) = (0, 1, 2, 1). For scenarios 5 to 6, (ν0, ν1, ξ, α) = (0, 1, 2, 2). Two sampling score

models were considered: Scenario 1, 3, and 5 set β = (−7, 0.4); Scenario 2, 4, and 6 set β = (−7, 0.6).

The truth was calculated for each scenario based on the distribution of Z1i in the target population.

The truth was ∆ = 2.2 for scenarios 1 and 2 and ∆ = 2 for scenarios 3 through 6. To estimate the

sampling scores, the combined trial (Si = 1) and cohort (Si = 0) data was used to fit a (weighted)

logistic regression model with Si as the outcome and the covariate Z1i as described in Section 3.1.
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Comparisons between the IPSW and stratified estimator when the sampling score model was

correctly specified are summarized in Table 1. The within-trial estimator ∆̂T was biased for all

scenarios and had low coverage (results not shown). For all scenarios, ∆̂IPW was unbiased. For

scenarios 1 to 2, ∆̂S was unbiased and standard errors were comparable to ∆̂IPW . For scenarios 3 to

6, ∆̂S was biased, possibly due to residual confounding from a continuous covariate in the sampling

score model. For the IPSW estimator, the average of the estimated standard error was approximately

equal to the empirical standard error, supporting the derivations of the sandwich-type estimator of

the variance. For all scenarios, coverage was approximately 95% for the Wald CI of ∆̂IPW . With a

continuous covariate, the Wald CI of the stratified estimator had poor coverage, particularly in the

presence of stronger effect modification (e.g., scenarios 5 and 6). Histograms of the three estimators

for scenario 4 are given in Figure 1; the IPSW was approximately unbiased and normally distributed.

Simulations were also performed with the sampling score model misspecified. A second covariate

was generated for each member of the target population and the true sampling score was wi =

{1+exp(−β0−β1Z1i−β2Z2i)}
−1. For the first two scenarios, Z2i ∼ Bernoulli(0.6), and for scenarios

3 to 6, Z2i ∼ N(0, 1). For those included in the randomized trial (Si = 1), Xi was generated as

Bernoulli(0.5) and the outcome Y was generated according to Yi = ν0 + ν1Z1i + ν2Z2i + ξXi +

α1Z1iXi + α2Z2iXi + ǫi, ǫi ∼ N(0, 1). For scenarios 1 to 4, (ν0, ν1, ν2, ξ, α1, α2) = (0, 1, 1, 2, 1, 1). For

scenarios 5 to 6, (ν0, ν1, ν2, ξ, α1, α2) = (0, 1, 1, 2, 2, 2). The estimated sampling scores were computed

using logistic regression with Z1i as the only covariate. Two sampling score models were considered:

Scenario 1, 3, and 5 set β = (−7, 0.4, 0.4); Scenario 2, 4, and 6 set β = (−7, 0.6, 0.6). Based on the

distribution of Zi = (Z1i, Z2i) in the target population, the truth was ∆ = 2.8 for scenarios 1 and 2

and ∆ = 2 for scenarios 3 through 6.

Comparisons between the IPSW and stratified estimator are summarized in Table 2 when the

sampling score model was misspecified. The bias was reduced by approximately half when either

the IPSW or the stratified estimator was employed as compared to the within-trial estimator. The

sandwich-type estimator of the variance of the IPSW estimator performed reasonably well when the

sampling score model was misspecified; however, CI coverage was below the nominal level.

5. Applications

5.1. Trials and Cohorts

In this section, the methods described in Section 3 are applied to generalize results from two different

ACTG randomized clinical trials, ACTG 320 and ACTG A5202. Two different target populations

are considered, namely all women currently living with HIV in the US and all people currently living

with HIV in the US.

The ACTG 320 trial examined the safety and efficacy of adding a protease inhibitor (PI) to an

HIV treatment regimen with two nucleoside analogues. A total of 1,156 participants were enrolled in
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ACTG 320 between January 1996 and January 1997 and were recruited from 33 AIDS clinical trial

units and 7 National Hemophilia Foundation sites in the US and Puerto Rico. These participants were

HIV-positive, highly active antiretroviral therapy (HAART) naive, and had CD4 T cell counts ≤ 200

cells/mm3 at screening. Of the 1,156 participants, 200 were women (Hammer et al., 1997). Among

ACTG 320 participants, 116 (10%) were missing the primary outcome of CD4 count at week 4, so

they are excluded from the analysis below. The baseline characteristics of the ACTG 320 participants

are shown in Supplemental Table 1.

The ACTG A5202 trial assessed equivalence of abacavir-lamivudine (ABC-3TC) or tenofovir diso-

proxil fumarate-emtricitabine (TDF-FTC) plus efavirenz or ritonavir-boosted atazanavir. A total of

1,857 participants were enrolled in ACTG A5202 between September 2005 and November 2007 and

were recruited from 59 ACTG sites in the US and Puerto Rico. These participants were HIV-positive,

antiretroviral (ART) naive, and had viral load > 1,000 copies/ml at screening. Of the 1,857 partici-

pants, 322 were women (Sax et al., 2009, 2011). Among ACTG A5202 participants, 417 (22%) were

missing the primary outcome of CD4 count at week 48, so they are excluded from the analysis below.

The baseline characteristics of the ACTG A5202 participants are shown in Supplemental Table 2.

Data from two cohort studies, WIHS and Center for AIDS Research Network of Integrated Clinical

Systems (CNICS), are used in the analysis below to generalize the ACTG 320 and A5202 trial

results. Participants in WIHS and CNICS were considered to be representative samples of the target

populations, i.e., all women living with HIV in the US and all people living with HIV in the US,

respectively. A total of 4,129 women (1,065 HIV-uninfected) were enrolled in WIHS between October

1994 and December 2012 at six US sites (Bacon et al., 2005). The CNICS captures comprehensive and

standardized clinical data from point-of-care electronic medical record systems for population-based

HIV research (Kitahata et al., 2008). The CNICS cohort includes over 27,000 HIV-infected adults

(at least 18 years of age) engaged in clinical care since January 1995 at eight CFAR sites in the US.

For generalizing results from ACTG 320, the analysis included cohort participants who were HIV-

positive, HAART naive, and had CD4 cell counts ≤ 200 cells/mm3 at the previous visit (m = 493

women and m = 6,158 men and women combined). For generalizing results from A5202, the analysis

included cohort participants who were HIV-positive, ART naive, and had viral load > 1,000 copies/ml

at the previous visit (m = 1,012 women and m = 12,302 men and women combined). Supplemental

Table 1 displays the characteristics of the women in the WIHS sample and the participants in the

CNICS sample used to generalize results from ACTG 320. Likewise, the characteristics of the women

in the WIHS sample and participants in the CNICS sample used to generalize results from ACTG

A5202 are displayed in Supplemental Table 2.
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5.2. Analysis

The IPSW and stratified estimators were employed to generalize the difference in the average change

in CD4 from baseline between treatment groups observed among women in the trials to all women

currently living with HIV in the US and among all participants in the trials to all people currently

living with HIV in the US. Based on Centers for Disease Control and Prevention (2012) estimates,

the size of the first target population was assumed to be 280,000 women and the size of the second

target population was assumed to be 1.1 million people.

The population average treatment effect was estimated using the IPSW estimator in equation (1).

To estimate the sampling scores, the data from the ACTG trial (i.e., 320 and A5202) and cohort (i.e.,

WIHS or CNICS) were analyzed together, with S = 1 for those in the ACTG trial and S = 0 for

those in the cohort. In the model to estimate the sampling scores, the outcome was trial participation

and the possible covariates for ACTG 320 included sex, race/ethnicity, age, history of injection drug

use (IDU), and baseline CD4 and for ACTG A5202 included sex, race/ethnicity, age, history of IDU,

hepatitis B/C, AIDS diagnosis, baseline CD4 and baseline log10 viral load. Variables associated with

trial participation, the outcome, or effect modifiers, as well as all pairwise interactions, were included

in the sampling score model. Sex was not included as a covariate in analyses generalizing the trial

results among women.

5.3. Results

Estimates of the mean differences based on the within-trial estimator among women and all partici-

pants are given in Table 3. Among all participants and among just women in ACTG 320, there was

a significant difference in the change in CD4 from baseline to 4 weeks between the PI and non-PI

groups. Among women in A5202 at week 48, those randomized to ABC-3TC had an average change in

CD4 cell count comparable to those randomized to a regimen with TDF-FTC. Among all participants

in A5202, those randomized to ABC-3TC had an average change in CD4 cell count slightly higher

than those randomized to a regimen with TDF-FTC, but this did not achieve statistical significance.

Table 3 also displays the results for the two ACTG trials generalized to both target populations. In

the target population of all women living with HIV in the US, the IPSW estimate was approximately

double the within-trial estimate (∆̂IPW = 46 compared to ∆̂T = 24), suggesting that the within-trial

result may underestimate the effects of PIs in all HIV-infected women in the US. The IPSW estimator

also indicated a much stronger protective effect of ABC-3TC (vs. TDF-FTC) in the target population

of all HIV-infected women in the US (∆̂IPW = 35 compared to ∆̂T = 1), providing evidence that this

particular ART combination may increase CD4 cell counts more on average than what was observed

in the trial. In the target population of all people living with HIV in the US, the IPSW estimates

were comparable to the within-trial effect estimates, suggesting that both the effect of PIs and the

effect of the ART combination ABC-3TC (vs. TDF-FTC) from the trials may be generalizable to all
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people living with HIV in the US. In summary, these results suggest the ACTG trial results are more

generalizable for US men with HIV than US women with HIV.

6. Discussion

In this paper, we considered generalizing results from a randomized trial to a specific target population

using inverse probability of sampling weights. The IPSW estimator was shown to be consistent

and asymptotically normal and a consistent sandwich-type estimator of the variance was provided.

In a simulation study, the IPSW outperformed the stratified estimator when the sampling score

was correctly specified. The IPSW was unbiased for all scenarios and the CIs exhibited coverage

approximately at the nominal level. With a continuous covariate, the stratified estimator exhibited

bias and the corresponding CI had poor coverage, particularly in the presence of stronger effect

modification.

In the illustrative example, the ACTG 320 results appear to be generalizable to all people living

with HIV in the US. On the other hand, the within-trial effect estimates of ACTG 320 and ACTG

A5202 among women were not comparable to the effect estimated in the target population of women.

For the A5202 results among women, the difference in the effect estimates was primarily due to

hepatitis, which was negatively associated with trial participation. Results from both ACTG A5202

and ACTG 320 were not sensitive to the specification of the size of the target population, although

some results were sensitive to the specification of the sampling score model (results not shown). In

the data example, a complete case analysis was performed; however, in practice, one would want to

address the possibility that the missinginess was not completely at random.

When applying these methods, the analysis is subject to the following considerations. The ig-

norable trial participation mechanism assumption, i.e., that participants’ decisions to participate

in a trial is independent of their outcomes conditional on covariates, is untestable. In trials with

non-neglible rates of non-compliance, effect estimates based on IPSW or stratification should be in-

terpreted as estimates of treatment assignment rather than treatment receipt. Future research could

entail extending these estimators to account for non-compliance. The sampling score model was

assumed to be correctly specified (e.g., correct covariate functional forms). Because some degree of

model mis-specification is inevitable, sensitivity analysis of inferences about the treatment effect in

the population to the sampling score model specification is recommended. The stratified estimator

(Tipton et al., 2014; O’Muircheartaigh and Hedges, 2013) requires that individuals sharing the same

stratum of the sampling score distribution can be identified. This estimator may be biased when

there is residual confounding within strata and, in general, is not a consistent estimator of the PATE

(Lunceford and Davidian, 2004).

In the application, the cohort study was assumed to be a random sample (i.e., representative) of

the target population. If the cohort is not representative, one possibility is weighting the cohort data
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to the distribution of covariates in a census (e.g., Centers for Disease Control and Prevention (CDC)

estimates). A limitation of this approach is that the census may not have covariate information as

rich as the cohort data. The CDC estimates used to quantify the size of the target population in the

example were for all people living with HIV. Use of surveillance studies that report on the number

of ART and HAART naive HIV patients in the US could further sharpen the information about the

target population.

Weighted logistic regression was used to estimate the sampling scores. Future research could entail

instead using machine learning methods (e.g., as in Westreich et al. (2010)) to estimate the sampling

scores. Additional research to develop an augmented estimator could improve efficiency (Zhang et al.,

2008). This method could be extended to accommodate interference or right-censored outcomes.
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Table 1: Summary of Monte Carlo results for estimators of the population average treatment

effect when the sampling score model was correctly specified with a continuous outcome for

5, 000 simulated data sets with m = 4,000 and n ≈ 1,000 per data set. Scenarios are

described in Section 4. For scenarios 1 and 2 ∆ = 2.2 and for scenarios 3 to 6 ∆ = 2.0

(T = within-trial; S = stratified; IPW = inverse probability of sampling weighted; ESE =

empirical standard error (×100); ASE = average estimated standard error (×100); ECP =

empirical coverage probability; Cov = covariate; Bin = binary; Cont= continuous)

Bias ESE ASE ECP

Scenario Cov. (β1,α) ∆̂T ∆̂S ∆̂IPW ∆̂S ∆̂IPW ∆̂S ∆̂IPW ∆̂S ∆̂IPW

1 Bin. (0.4,1) 0.07 1e-3 2e-3 6.2 7.1 7.1 7.3 0.98 0.95

2 Bin. (0.6,1) 0.11 -3e-5 -6e-4 6.3 7.1 6.6 7.1 0.96 0.95

3 Cont. (0.4,1) 0.20 0.04 1e-3 8.1 13.4 7.9 13.4 0.91 0.95

4 Cont. (0.6,1) 0.60 0.07 -1e-4 8.6 15.0 8.6 14.9 0.88 0.95

5 Cont. (0.4,2) 0.80 0.09 3e-3 9.4 17.2 8.9 17.2 0.81 0.95

6 Cont. (0.6,2) 1.20 0.14 -1e-3 10.1 19.9 9.8 19.6 0.70 0.95
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Table 2: Summary of Monte Carlo results for estimators of the population average treatment

effect when the sampling score model was misspecified with a continuous outcome for 5, 000

simulated data sets with m = 4,000 and n ≈ 1,000 per data set. Scenarios are described in

Section 4. For scenarios 1 and 2 ∆ = 2.8 and for scenarios 3 to 6 ∆ = 2.0 (T = within-trial;

S = stratified; IPW = inverse probability of sampling weighted; ESE = Empirical standard

error (×100); ASE = Average estimated standard error (×100); ECP = Empirical coverage

probability; Cov = covariate; Bin = binary; Cont= continuous)

Bias ESE ASE ECP

Scenario Cov. (β1,α) ∆̂T ∆̂S ∆̂IPW ∆̂S ∆̂IPW ∆̂S ∆̂IPW ∆̂S ∆̂IPW

1 Bin. (0.4,1) 0.16 0.09 0.09 7.03 7.67 7.73 7.61 0.80 0.77

2 Bin. (0.6,1) 0.24 0.13 0.13 6.36 6.82 6.62 6.86 0.49 0.52

3 Cont. (0.4,1) 0.80 0.45 0.40 13.12 16.53 12.88 16.57 0.07 0.32

4 Cont. (0.6,1) 1.20 0.67 0.60 13.19 17.58 12.90 17.24 <0.01 0.08

5 Cont. (0.4,2) 1.60 0.89 0.80 17.37 22.12 16.98 22.20 <0.01 0.05

6 Cont. (0.6,2) 2.39 1.34 1.20 17.49 23.79 17.04 23.32 <0.01 <0.01
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Table 3: Estimated difference in means and corresponding 95% confidence intervals (CIs)

in two target populations (all men and women combined and all women living with HIV in

the US) based on data from AIDS Clinical Trials Group (ACTG) trials. T = within trial;

S = stratified; IPW = inverse probability of sampling weighted.

Difference in Means (95% CI)

Cohort Trial ∆̂T ∆̂S ∆̂IPW

WIHS 320a 24 (7, 41) 38 (17, 59) 46 (23, 70)

WIHS A5202b 1 (-35, 37) -19 (-62, 25) 35 (-45, 115)

CNICS 320 19 (12, 25) 18 (9, 26) 17 (9, 25)

CNICS A5202 6 (-8, 20) 7 (-18, 32) -2 (-31, 28)

a For 320, the treatment contrast was PI (X = 1) vs. no PI (X = 0).

b For A5202, the treatment contrast was ABC-3TC (X = 1) vs. TDF-FTC (X = 0).
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Fig. 1: Comparison of the distributions of within-trial estimator ∆̂T , stratified estimator ∆̂S , and

inverse probability of sampling weighted estimator ∆̂IPW , based on 5,000 simulated data sets where

the sampling score model is correctly specified and ∆0 = 2 with one continuous covariate, β =

(−7, 0.6) and α = 1 (Scenario 4).
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Appendix A: Sandwich-Type Estimators of the Variance for the IPSW Estimator

The empirical sandwich-type estimator can be used to estimate the asymptotic variance of the IPSW

estimator. Define the following matrices:

Â∗ = (n+m)−1
∑

i

∂

∂θ∗
Ψ∗

∆(Yi, Zi, Xi, Si, θ
∗)
∣

∣

∣

θ∗= θ̂∗

B̂∗ = (n+m)−1
∑

i

Ψ∗

∆(Yi, Zi, Xi, Si, θ̂
∗)Ψ∗

T

∆ (Yi, Zi, Xi, Si, θ̂
∗)

Substituting these empirical estimators for their corresponding quantities in (2) yields a consistent

estimator of the asymptotic variance of θ̂∗ when β is known. That is, Σ̂∗

θ = Â∗−1B̂∗Â∗−T is a

consistent estimator of Σ∗

θ and thus a consistent estimator of the asymptotic variance of ∆̂IPW is

Σ̂∗

IPW = Σ̂
∗(11)
θ + Σ̂

∗(22)
θ − 2Σ̂

∗(12)
θ

The estimated standard error is ŝe(∆̂IPW ) =
√

(n+m)−1Σ̂∗

IPW .

Similarly, when the weights are estimated (i.e., β is not known), define the following matrices:

Â = (n+m)−1
∑

i

∂

∂θ
Ψ∆(Yi, Zi, Xi, Si, θ)

∣

∣

∣

θ=θ̂

B̂ = (n+m)−1
∑

i

Ψ∆(Yi, Zi, Xi, Si, θ̂)Ψ
T
∆(Yi, Zi, Xi, Si, θ̂)

Substituting these empirical estimators for their corresponding quantities in (4) yields a consistent

estimator of the asymptotic variance of θ̂. That is, Σ̂θ = Â−1B̂Â−T is a consistent estimator of Σθ

and thus a consistent estimator of the asymptotic variance of ∆̂IPW is

Σ̂IPW = Σ̂
(11)
θ + Σ̂

(22)
θ − 2Σ̂

(12)
θ

The estimated standard error is ŝe(∆̂IPW ) =

√

(n+m)−1Σ̂IPW .

Appendix B: Proof of Efficiency Gain When Sampling Scores are Estimated

First consider the case when β is known. The asymptotic variance of ∆̂IPW can be expressed as

Σ∗

IPW = τΣ∗

θτ
T where τ = (1,−1) and Σ∗

θ = A(θ∗)−1B(θ∗)A(θ∗)−T . Next consider the case when β

is estimated. Let di(β) = ∂w(zi, β)/∂β and define

Eββ = lim
n,m→∞

(n+m)−1
∑

i

Π−1
Si

{di(β)d
T
i (β)}/wi(1− wi)

T

G1 = lim
n,m→∞

(n+m)−1
∑

i

E[{SiXi(Yi − µ1)di(β)}/w
2
i ]

G2 = lim
n,m→∞

(n+m)−1
∑

i

E[{Si(1−Xi)(Yi − µ0)di(β)}/w
2
i ],

and let G = (G1, G2). Then, using block matrix notation note

A(θ) =





A(θ∗) −GT

0p×2 −Eββ



 and B(θ) =





B(θ∗) GT

G Eββ




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where in general 0r×c is a r × c matrix of zeros. It follows that

Σθ = A(θ)−1B(θ)A(θ)−T =





A(θ∗)−1B(θ∗)A(θ∗)−T −A(θ∗)−1GTE−1
ββGA(θ

∗)−T 02×p

E−1
ββGA(θ

∗)−T −A(θ∗)−TGE−T
ββ −E−T

ββ



 .

Therefore

ΣIPW = Σ∗

IPW −ME−1
ββM

T

where M = τA(θ∗)−1GT . It is straightforward to show E−1
ββ is positive definite, implying ΣIPW ≤

Σ∗

IPW .
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