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ABSTRACT 

 

This manuscript presents a strain-based procedure to screen for wave-induced 

residual pore pressures in the seabed.  The generation of residual pore pressures can 

lead to instabilities and/or liquefaction within the seabed producing undesired 

consequences in the marine environment.  Currently, techniques to predict wave-

induced liquefaction are governed from seismic-based principles; however, differences 

between these two contrasting mechanisms (earthquakes and ocean waves) creates 

uncertainties within the soil relating to: the determination of an equivalent number of 

loading cycles representing the irregular time history of ocean wave loading, the 

prediction of cyclic resistance at low levels of effective stress (i.e. in near-surface 

sediments), and pore pressure generation in silty/clayey soils. First, the strain-based 

model is described. Linear elastic finite element analyses are used to develop 

normalized charts for estimating the cyclic shear stresses in an inhomogeneous seabed. 

The model is validated from existing wave tank experiments on silt.  This comparison 

showed the generation and non-generation of excess pore pressure corresponded to 

factors of safety less than and greater than one respectively.  Lastly, a case study is 

presented to illustrate the practical implementation of the model. 
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PREFACE 

 

This thesis is written in manuscript format with the intent of future publication in a 

scholarly journal.  The manuscript is co-authored with Aaron Bradshaw and discusses 

a strain-based procedure to screen for wave-induced pore pressure generation in the 

seabed.     
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ABSTRACT 

 

This manuscript presents a strain-based procedure to screen for wave-induced 

residual pore pressures in the seabed.  The generation of residual pore pressures can 

lead to instabilities and/or liquefaction within the seabed producing undesired 

consequences in the marine environment.  Currently, techniques to predict wave-

induced liquefaction are governed from seismic-based principles; however, differences 

between these two contrasting mechanisms (earthquakes and ocean waves) creates 

uncertainties within the soil relating to: the determination of an equivalent number of 

loading cycles representing the irregular time history of ocean wave loading, the 

prediction of cyclic resistance at low levels of effective stress (i.e. in near-surface 

sediments), and pore pressure generation in silty/clayey soils.  First, the strain-based 

model is described. Linear elastic finite element analyses are used to develop 

normalized charts for estimating the cyclic shear stresses in an inhomogeneous seabed. 

The model is validated from existing wave tank experiments on silt.  This comparison 

showed the generation and non-generation of excess pore pressure corresponded to 

factors of safety less than and greater than one respectively.  Lastly, a case study is 

presented to illustrate the practical implementation of the procedure.
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INTRODUCTION 

 

 

Soil strength is governed by effective stress which is defined as the difference 

between the total vertical overburden stress (σv) and the pore pressure (u) for any 

location within the soil.  If the overburden stress remains constant, an increase in pore 

pressure will result in a decrease in the soil’s effective stress thus reducing soil 

strength.  The phenomenon known as liquefaction occurs when pore pressure 

increases to the point where the effective stresses between the individual grains in the 

soil vanish, and therefore the water-sediment mixture as a whole acts likes a fluid. 

Literature has cited several cases in the marine environment where liquefaction 

resulted in the failures of buried pipelines, large breakwater structures, and sea mines 

(Sumer and Fredsөe, 2002).   

There are two types of ocean wave-induced liquefaction: transient (or 

momentary) liquefaction and residual liquefaction.  Momentary liquefaction refers to 

the repeated and instantaneous loss of effective stress due to the upward vertical 

pressure gradient in the soil during the passage of wave troughs (Sumer and Fredsөe 

2002).  Residual liquefaction refers to the accumulation of excess pore pressures 

associated with plastic deformation under cyclic loading.  In non-plastic sands and 

silts the effective stress may be reduced to zero, a condition referred to as initial 

liquefaction.  In plastic silts and clays the effective stress does not typically reach zero 

because of cohesion, commonly referred to as “cyclic softening”. This paper focuses 

on the accumulation of excess pore water pressures from ocean wave loading.   

Seed and Rahman (1978) were the first to develop a method to predict ocean 

wave-induced liquefaction in the seabed.  Their method encompasses both generation 
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and dissipation mechanisms of pore pressure for clean sands. Pore pressure generation 

is based on laboratory derived equations that relate the pore pressure ratio, ru , defined 

as the excess pore pressure divided by the initial effective vertical stress, to the cycle 

ratio, N/Nl, where N is the number of stress cycles during a storm and Nl is the number 

of cycles to cause liquefaction.  Their method uses equations that are solved using a 

numerical analysis allowing the seabed to be discretized into layers representing 

different soil characteristics and rates of pore pressure generation.   

Finn et al. (1983) developed a computer program called STAB-W to compute 

residual pore pressures in the seabed and evaluate liquefaction potential.  Their 

analysis is a generalization of Seed and Rahman’s approach; however, it considers the 

changes to moduli and shear stress levels as excess pore pressure accumulates.  

Although the above procedures may be appropriate for projects in which 

liquefaction could result in costly and unfavorable consequences, simplified 

approaches have been proposed for evaluating sands to reduce time and expense by 

conservatively assuming undrained conditions (e.g. Nataraja and Gill 1983; Ishihara 

and Yamazaki 1984).  Nataraja and Gill’s method is based on correlations developed 

for seismic liquefaction that relate cyclic strength to Standard Penetration Test (SPT) 

blow counts. The correlations were adjusted for ocean wave loading to account for 

more severe degradation effects and higher numbers of cycles.  An analysis is 

performed by estimating the cyclic strength from SPT blow counts and comparing 

them to the cyclic shear stresses induced in the seabed for an equivalent number of 

ocean wave cycles. 
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Ishihara and Yamazaki (1984) accounted for the difference in stress path 

between ocean wave and earthquake loading by performing undrained cyclic triaxial 

torsion shear tests on loose sands.  This experimental data is used in part to derive 

charts that require deep water ocean wave design parameters.  These charts assume a 

seabed that is a homogenous elastic half-space and are used to find the near-shore 

location where the cyclic stress ratio at the mud line is equal to the cyclic stress ratio at 

failure.  

Other methods have been used to assess pore pressure generation at specific 

sites consisting of silts and clays (Lee and Focht, 1975; Clukey et al. 1983).  These 

methods have included the use of extensive laboratory cyclic testing (e.g. Lee and 

Focht, 1975) or wave tank experiments (e.g. Clukey et al., 1983). 

The seabed in the marine environment is diverse and therefore procedures to 

predict the generation of pore pressure in the seabed must be able to encompass a wide 

range of conditions.  Currently, procedures are based on experiments conducted on 

clean sands; however, the seabed is composed of stratified deposits often containing 

both plastic and non-plastic fines.  These conditions make it difficult to estimate the 

relative density of the seabed to determine an appropriate cyclic resistance ratio for 

these stress-based methods.  Moreover, obtaining undisturbed samples for laboratory 

tests in the soft or loose near-surface sediments is difficult or nearly impossible.  

Stress-based methods also require the determination of an equivalent number of 

loading cycles to cause liquefaction; however there are no well-established procedures 

for storm-wave loading for liquefaction evaluations.  
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To avoid some of the limitations and uncertainties with the simplified methods 

described above this paper presents a simple strain-based approach to screen for wave-

induced pore pressure generation.  This approach may be an improvement over current 

stress-based approaches given that shear strains are more closely related to pore 

pressure generation than shear stresses (Seed et al. 1985).  A detailed description of 

the method, a comparison of the method to wave tank experiments, and a case study 

illustrating the feasibility of the method are presented below. 
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DESCRIPTION OF STRAIN-BASED MODEL 

 

 A simple strain-based model to screen for wave-induced pore pressure 

generation in the seabed is derived after Bradshaw (2012).  Figure 1 illustrates the 

process of a seabed subjected to harmonic water-wave loading.  It can be seen that the 

differential loading due to the harmonic water-wave produces shear and normal 

stresses within the seabed.  The magnitude of these induced cyclic stresses will depend 

on the wave height (H), still water depth (d), wavelength (λ), and depth below the 

surface of the seabed (z).  The procedure presented herein uses a total stress analysis 

whereby the shear strains induced within the seabed are compared to the shear strain 

required to generate excess pore pressure (i.e. “threshold shear strain”). 

 The threshold shear strain concept was initially conceived by Dobry et al. 

(1982) for seismic soil liquefaction potential.  In their study, multiple undrained cyclic 

triaxial tests were conducted using 8 different sands, 4 sample preparation techniques, 

and a wide range of confining stresses.  These results are shown in Figure 2 which 

plots the pore pressure ratio, defined as the excess pore pressure divided by the initial 

effective confining pressure, vs. the cyclic shear strain amplitude.  Figure 2 shows that 

the threshold shear strain is independent of soil type, confining stress, and sample 

preparation method.  It can also be seen from Figure 2 that cyclic strains below the 

threshold shear strain do not generate excess pore pressure and therefore the potential 

to generate excess pore pressure be expressed as a factor of safety (FS),    

 



 tFS                                    (1)     



8 

 

 

where 
t  = the threshold shear strain and   = the cyclic shear strain induced within 

the soil.  The threshold shear strain is most often determined through experiments to 

determine seismic liquefaction potential therefore uncertainty with the application of 

the threshold shear strain to the problem of wave-induced pore pressure must be 

addressed.  For instance, the threshold shear strain is typically determined using 10 to 

30 loading cycles to be consistent with earthquakes; however, the number of wave 

loading cycles in an ocean storm event will be orders of magnitude higher than in an 

earthquake.   

 Studies suggest, however, that the number of loading cycles has little influence 

on the measured threshold shear strain (Erten and Mayer, 1995; Hsu and Vucetic, 

2006; Hazirbaba and Rathje, 2009).  Secondly, experiments are performed under much 

higher stress levels than what is experienced in the upper strata of the seabed.  The 

concept of the threshold shear strain is novel in that it is independent of confining 

stress; therefore, the uncertainty in adjusting relatively higher stress levels used for 

seismic based experiments to much lower confining stresses related to the problem of 

ocean wave-induced pore pressure (commonly known as Kσ effect) is unnecessary.  

Therefore it is assumed that the existing database of threshold shear strain values 

determined for the purposes of seismic pore pressure evaluation can be applied to the 

problem of ocean wave liquefaction. 
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Estimation of Cyclic Shear Strain 

Cyclic shear stresses induced in the seabed result from the dynamic loading of 

the seabed surface due to harmonic water-waves.  The amplitude of the pressure on the 

seafloor from linear wave theory is shown below (Finn et al. 1983), 

 

 kd

H
p w

o
cosh2


                       (2)                                  

 

where γw =unit weight of water, k=wave number (=2π/λ where λ is the wavelength), 

d=still water depth, H=wave height.  The horizontal and vertical cyclic shear stresses 

in an elastic half space is proportional to the amplitude of the bottom pressure and thus 

may be described by a shear influence factor, 

 

Ipoh                         (3) 

 

where τh = shear stress on the horizontal and vertical planes, and I = shear stress 

influence factor.  Fung (1965) derived an analytical solution of the horizontal shear 

stress for any depth within a homogenous elastic half space subjected to a sinusoidal 

loaded bottom pressure.  This solution expressed as an influence factor is as follows: 

 

 kzkzI  exp                       (4) 
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The use of a cyclic horizontal shear stress is consistent with previous stress-

based ocean wave liquefaction procedures (e.g. Seed and Rahman 1978; Clukey et al. 

1983; Nataraja and Gill 1983; Finn et al. 1983). However, the stress path of ocean 

wave loading has been shown to be more damaging than for direct simple shear due to 

the rotation of principle stresses (Ishihara and Towhata, 1983).  It is also important to 

note that seabed conditions experienced in the marine environment are most often not 

homogenous and therefore will produce uncertainty to Equation 4.  To address this 

issue, a linear elastic finite element analysis is later presented to determine influence 

factors of more realistic seabed conditions in the marine environment (i.e. layered, 

linear increasing shear modulus profiles). 

 The cyclic shear strain induced in the seabed (γ) can be expressed through the 

shear modulus of the soil, 

 

G

h                         (5) 

 

where τh = the horizontal cyclic shear stress induced in the seabed and G = the secant 

shear modulus. 

The stress-strain behavior of a soil under cyclic loading is nonlinear even 

below the threshold shear strain level and thus an equivalent linear analysis is used to 

estimate shear strains.  The secant shear modulus (G) is defined as: 

 













o

o
G

G
GG                                                                                                             (6) 
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where Go = small strain shear modulus, ]/[ oGG  = the modulus degradation factor 

which is dependent upon the level of cyclic shear strain amplitude.  By substituting 

Equation 3 and 6 into Equation 5, the shear strain induced in the seabed can be re-

written in the following general form. 

 

 



oo

o

GGG

Ip

/
                                                                                                (7) 

 

To calculate the shear modulus from Equation 7, the measurement of the small 

shear strain modulus, Go, is required and is related to shear wave velocity, 

 

2

so VG                                                           (8)    

 

where Vs = shear wave velocity,   = total density of the soil.  Numerous in-situ 

methods have been proposed to measure the shear wave velocity profile in the marine 

environment (e.g. cross-hole, down-hole, and inversion techniques).  In-situ 

techniques are most often preferred in the marine environment because of the 

difficulty or near impossibility of collecting undisturbed samples in the upper strata of 

the seabed.  Moreover, correlating the shear wave velocity to the small strain shear 

modulus is often the most accurate assessment of Go since other methods (i.e. standard 

penetration tests (SPT), cone penetration tests (CPT), etc.) are highly uncertain or 

impractical.  Non-destructive methods have been developed in recent years utilizing a 
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spectral analysis of surface waves approach (SASW) to measure the shear wave 

velocity profile in the seabed (Rosenblad, 2000).  Later, this paper uses data obtained 

from a field test where a multichannel analysis of surface waves (MASW) approach 

was used to collect the in-situ shear wave velocity profiles.  Although to the author’s 

knowledge the accuracy of MASW (or other in-situ methods) has not been studied 

under these low confining stresses for the upper strata of the seabed, the analysis will 

illustrates the application of the model by incorporating a non-destructive approach 

like MASW. 

  If in-situ measurements of the shear wave velocity cannot be obtained or if the 

properties of an underwater fill have to be estimated before it is placed the following 

empirical relationship may be considered for normally consolidated soils (Hardin and 

Black, 1968; Hardin, 1978): 

 

'
7.03.0

625
2 mao p

e
G 


                                 (9) 

 

where e = void ratio, σm
’= mean effective confining pressure, and pa = reference 

pressure in the same units as Go and σm
’.  The mean effective confining pressure can 

be given as σv
’ (1 + 2Ko) / 3; where σv

’ = the vertical effective stress and Ko = lateral 

earth pressure coefficient.  Equation 7 is derived from resonant column tests for clays 

and sands and represents an average relationship.  Moreover, it has been shown that 

for sands under low strains (less than 10-4), Go is strongly dependent on void ratio and 

confining stress and nearly independent of soil fabric (Hardin and Black, 1968). 
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Numerous modulus degradation curves have been proposed in the literature for 

the purpose of modeling site response in earthquake engineering. The authors prefer 

the degradation curve from Ishibashi and  Zhang (1993) because it is based on an 

extensive soil database and consider the effects of both mean effective confining stress 

and soil plasticity.  The equations are listed below, 

 

 

m

m

o

)'(K
G

G



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where Ip = plasticity index.  Since the modulus degradation factor depends on the level 

of cyclic shear strain, the factor must be determined iteratively.  Currently, 

degradation curves do not account for the stress path of ocean wave loading and use a 

direct simple shear condition with symmetrical loading.  Although this is consistent 

with previous assumptions made for this model, as well as, previous works from the 
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literature, there will be higher degradation in a seabed subjected to water-wave loading 

due to the continuous rotation of principle stresses.  Secondly, the degradation curves 

above do not consider the effects of pore pressure generation.  However, since the 

model presented herein mostly deals with strain levels below the threshold shear 

strain, the curves are applicable. 

   

  Estimation of Threshold Shear Strain 

In lieu of laboratory experiments on soil samples, the threshold shear strain 

may be selected from literature.  The Hsu and Vucetic (2006) study compiled a large 

amount of cyclic tests that quantified the threshold shear strain for a range of soil 

types.  These results are shown in Figure 2 and demonstrate that the threshold shear 

strain shows a strong correlation to plasticity index.  The method only deals with strain 

levels less than the threshold shear strain thus a total stress analysis is applicable.  It is 

important to note that these tests were conducted using undrained conditions; 

therefore, a selected value of the threshold shear strain to represent conditions in 

which soils are allowed sufficient time for drainage (i.e. wave-induced generated pore 

pressure) will result in conservatism.  
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SHEAR STRESS INFLUENCE FACTORS FOR INHOMOGENEOUS SEABED 

 

 A finite element (FE) analysis was performed to investigate the shear stress 

profiles in an inhomogeneous elastic half space to more closely represent soil 

conditions often experienced in the field.  This was accomplished be performing a 

linear elastic analysis to develop normalized cyclic shear stress charts for a two-

layered profile and a profile having a linear increasing shear modulus with depth.  The 

numerical simulations were performed using a commercial finite element program 

under plane strain conditions.  The development of the FE model and the results are 

described below. 

 

Development of Finite Element Models 

 The FE models had a width and a depth equal to twice the wavelength (λ) in 

order to minimize boundary effects.  This was based in part from trial and error as well 

as using Figure 4 as a basis to conclude that values of the shear stress at depths greater 

than one wavelength into the sediment bed are negligible.  To best represent 

conditions seen in the field, boundary conditions of the models were unrestrained at 

the sediment surface, fixed in the horizontal direction on both side boundaries and 

fixed in both the horizontal and vertical directions along the bottom boundary. 

 The meshes of both models consisted of approximately 200 external nodes and 

elements of 4 nodal quadrilateral shape.  The software program contained a built-in 

mesh generating function allowing for the most accurate and optimized mesh quality.  

Built-in mesh quality functions were also used for the software program to reinforce 
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an accurate mesh.  An external load representing that of water-wave loading (i.e. a 

sinusoidal shaped bottom pressure), was constructed on the free surface by using a 

triangular distribution that was discretized on the sediment surface into λ/32 segments. 

 Before constructing the layered models, a homogeneous elastic model was 

constructed and the results were compared to the analytical solutions to validate the 

model output.  Two models were then constructed to represent shear modulus profiles 

for a two-layered system and a linear increasing shear modulus with depth as shown in 

Figure 5.  The numerical analyses were performed at different spatial scales to ensure 

that the shear stress plots could be normalized.    

 To encompass a range of potential Poisson ratio values, the numerical analyses 

were performed using three values of the Poisson ratio: 0.1, 0.3, and 0.49.  A 

reasonable value of the Poisson ratio can be approximated by the level of strain or soil 

condition that best represents the problem of interest.  Soils that experience small 

strains (i.e. Go) typically range from 0.1 to 03; whereas, relatively larger strain levels 

(e.g. strains experienced near footings of shallow foundations) may range from 0.2 to 

0.4 for drained conditions.  The Poisson ratio for an undrained soil at large strains is 

theoretically 0.5.   

 

Two-Layered Shear Modulus Profile 

The case of two distinct sediment layers is often experienced in the marine and 

lacustrine environment.  For example, it is common practice to remediate hazardous 

sediments, protect buried sea cables, or mitigate habitats by placing a thick granular 
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cap over soft sediments.  This distinct difference among sediments for each layer will 

result in a different shear stress profile from the homogeneous solution. 

The two-layered elastic model was described by two parameters: the thickness 

of the top layer, T, and the ratio of the shear modulus of the top layer to the shear 

modulus of the bottom layer.  The top layer thickness (T) was modeled by 

constructing the interface between the two layers at normalized depths of λ/16, λ/8, 

λ/4, λ/2, 3λ/4.  Each of the layers was assigned homogeneous shear modulus values 

corresponding to the shear modulus ratios of 0.1, 1.0 and 10 to provide a range of 

possible values. 

 Figures 6 through 10 summarize the finite element results in the form of 

dimensionless charts.  These figures all show similar trends: however, are dependent 

on the location of the layer interface relative to the depth of the maximum shear stress 

in the homogeneous case (i.e. G1/G2 =1.0).  As the depth of the interface gets closer 

to the depth of maximum shear stress in the homogenous case, the effect on the 

calculated shear stress becomes more pronounced.  This is illustrated in Figure 7, for 

example, where the interface was close to the depth of the maximum shear stress in 

the homogeneous case.  The maximum normalized shear stress was 0.70 in the upper 

layer as compared to 0.36 in the homogeneous case.  As expected as the thickness of 

the top layer gets very thin (i.e. T0) or very thick (i.e. T∞) than the finite element 

results approach the homogeneous solution. 

 The influence of the Poisson ratio is also more pronounced when the interface 

is close to the depth of the maximum shear stress for the homogeneous case.  For 

example in Figure 7, a Poisson ratio of 0.49 corresponds to a shear stress value of 0.17 
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and a Poisson ratio of 0.1 corresponds to a shear stress value of 0.35 at a depth just 

below the interface layer. 

 

Linear Increasing Shear Modulus Profile 

When normally consolidated marine deposits are encountered in the marine 

environment the shear modulus profile is often represented as a power function in 

which the initial portion of this relationship can be approximated as linear.  For the 

purposes of this model, which deals with the upper strata of the seabed, a linear 

representation can be considered reasonable to characterize the shear modulus for 

normally consolidated to slightly overconsolidated seabed deposits.   

To model a linearly increasing modulus profile with depth, the numerical 

domain was discretized into many thin layers (Figure 5) and a constant shear modulus 

was applied in each layer.  The analysis used two parameters: Gi and Gλ —which 

represent the shear modulus located at the free surface and one wavelength 

respectively.  A range of values for the Poisson ratio were used in the numerical 

analysis; however, results showed no significant difference with varying values of the 

Poisson ratio; therefore, it was unnecessary to show a range of values for the Poisson 

ratio.   

Different ratios of Gi  / Gλ (designated as α) are plotted in Figure 11.  As 

expected, as α approaches a value of 1, the shear stress profile will approach the 

homogenous solution.  The shear stresses in the linearly increasing profile were lower 

than the homogenous case at normalized depths of less than 0.3, and higher below this 

depth.  The difference between the homogenous case and the case of a linearly 
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increasing modulus profile are relatively small.  For example, for an alpha of 0, the 

maximum shear stresses are roughly 20% less than in the homogenous case (i.e. alpha 

= 1.0). The results of this analysis allow the quick and accurate selection of the shear 

stress profile in the seabed from measured shear stress values and wave conditions.   
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ANALYSIS PROCEDURE 

 

Oceanographic data required for the analysis of wave-induced liquefaction is 

only available from deep water locations.  If the analysis of a site is located within 

coastal waters, a probabilistic design deep water wave height and wave period must be 

calculated and propagated to near-shore environments.  This process is beyond the 

scope of this paper and often requires using analyses that encompass phenomena such 

as shoaling, refraction, and diffraction for site-specific bathymetric terrain.  Once the 

oceanographic parameters are obtained (wavelength, wave number, wave height, still 

water depth) the following description is meant to serve as a general guideline to 

implement the model.  Figure 1 is a schematic of the parameters involved. 

The model is based on the comparison of the threshold shear strain to the 

induced cyclic shear strain in the seabed to determine a factor of safety against pore 

pressure generation at a specified depth below the seafloor (Equation 1).  To 

determine these factors, a site investigation is required to obtain information on soil 

types, plasticity index, and small strain shear modulus profiles for one wavelength 

depth into the seabed.   

First, the threshold shear strain is selected at the specified depth from Figure 3 

and the measured plasticity index of the soil. 

Next, the induced shear strain is calculated at the specified depth using the 

generalized Equation 7. This requires the estimation of the cyclic shear stress that is 

based on the anticipated modulus profile at the site of interest. Therefore, it is 

recommended that a Go profile be developed first to guide the selection of the 
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appropriate influence factor.  For example, if the shear modulus profile is 

approximately constant with depth than Equation 4 may be applicable. 

The calculation of induced shear strain also depends on the modulus 

degradation that is a function of shear strain. Therefore, an iterative procedure must be 

used as follows: 

1) Assume a value of [G/Go]. 

2) Calculate a shear strain from Equation 7 using [G/Go] from step 1. 

3) Calculate [G/Go] from Equation 10 using the strain calculated in step 2. 

4) Compare the assumed and calculated values of [G/Go]. 

5) Adjust the assumed value of [G/Go] and repeat the steps until the assumed and 

calculated values match. 

 The above process can be repeated for various depths in the seabed to construct 

profiles of threshold shear strain and induced shear strain. These results are then used 

to calculate a factor of safety profile with factors of safety of less than one indicating 

the potential for excess pore pressure generation. 
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VALIDATION OF THE STRAIN-BASED PROCEDURE 

 

A compilation of existing wave tank experiments was investigated to validate 

the strain-based procedure.  Only one wave tank experiment with a known shear 

modulus was found (Clukey et al. 1985) and therefore was used in comparison to the 

model.  A general description of the wave tank experiment, modeling details, and a 

comparison of the results are discussed below.  For further details on the experimental 

procedures refer to Clukey et al. (1985).   

 

Wave tank parameters 

Figure 12 displays the dimensions of the wave tank used in the experiment.  

The wave tank is 17.1 m-long, 0.76 m-wide, and 0.91 m-deep in the main section of 

the tank.  The middle of the wave tank houses a 4.57 m-long and 0.84 m-deep 

sediment basin.  Three test runs were selected from the experiment to compare to the 

model: Test 7-1, 7-2, & 7-3 (adopting the same notation of Clukey et al.).  The three 

tests ranged in wave heights from 0.9 m to 0.23 m and contained a constant water 

depth of 0.53 m.  Pore pressure transducers were embedded at various depths within 

the sediment basin to measure excess pore pressure and it was observed that minimal 

to intense liquefaction occurred for each of the sequential tests.  Table 1 summarizes 

the wave conditions and measurements of pore pressure ratios, ru, for each test - where 

the pore pressure ratio is defined as the excess pore pressure, ∆u, divided by the 

effective overburden stress, σ’v. 
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Silt Properties 

The wave tank experiment was conducted on Danby silt which can be 

characterized as a late Pleistocene glacial outwash deposited during the last ice epoch 

in a lacustrine environment (Clukey et al., 1983).  The silt was prepared in the wave 

tank by pumping slurry through a hydraulic line after which the silt was allowed to 

settle in the sediment basin.  The shear modulus of the silt was measured from results 

obtained by a simple shear test conducted on Yukon silt – which contains similar grain 

characteristics to Danby silt.  The simple shear test was conducted at an initial vertical 

effective stress of 7kPa and corresponds to approximately 0.7m of overburden – which 

falls within the range of the wave tank’s sediment basin.  Since the shear modulus was 

obtained from similar silt and overburden stress, it can be concluded with reasonable 

confidence that the measurement of the shear modulus is an accurate representation of 

the Danby silt.  

 

Modeling Procedure 

The wave lengths of the wave tank experiments were observed to be much 

greater than the depth of the silt basin and therefore the role of boundary effects was 

anticipated to be of significant influence to the shear stress profile. The shear stress 

calculation would also be influenced by the modulus profile that is anticipated to 

increase with depth. To account for these conditions, a numerical model of the wave 

tank was constructed to calculate the shear stress profile for each test (Figure 13).  

Boundary conditions of the models were unrestrained at the sediment surface, fixed in 

the horizontal direction on both side boundaries and fixed in both the horizontal and 
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vertical directions along the bottom boundary.  These boundary conditions are 

consistent with previous models constructed in this paper.   

The selection of a linear increasing shear modulus profile (with alpha value 

equal to zero) to represent the sediment basin was based on experimental 

measurements of the shear modulus for silt and sand (Figure 14).  Figure 14 

demonstrates a linear trend of the shear modulus for the filter sand and is within the 

range of confining stresses for the sediment basin.  The finite element calculations of 

the shear stress profiles for each of the wave tank experiment tests is shown in Figure 

15.  Figure 15 shows dissimilar shear stress profiles than what would be anticipated 

for a homogeneous elastic half space and further confirms that boundary effects and an 

inhomogeneous shear modulus are a significant influence for the wave tank 

experiments.  From the shear stress and shear modulus calculations above, Equation 5 

was used to determine the induced shear strain within the sediment for each test.  The 

determination of the threshold shear strain could not be found experimentally therefore 

Figure 3 was used to select an appropriate value of the threshold shear strain.  Figure 3 

shows a band of threshold shear strain values and an average line.  To best represent 

the silt used in the sediment basin, the average value of the threshold shear strain was 

selected for a non-plastic silt (i.e. PI =  0).  Although it is reasonable to select an 

average value of threshold shear strain, the selection of the lowest threshold shear 

strain could also be deemed reasonable as a conservative approach.        
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Results 

Figure 16 compares the factors of safety for the model and pore pressure ratios 

for Test 7-1.  Of the three tests, Test 7-1 contained the lowest wave height and was the 

only test which contained one measurement of no excess pore pressure in the basin.  

From Figure 16, the trend of measured excess pore pressure values and factors of 

safety from the model are similar.  For example, as the excess pore pressure dissipates 

at a depth of approximately 0.66 m, the factor of safety begins to trend above a value 

of 1.0.  Although this trend is nearly exact for the measured shear modulus value 

(solid line), a 10% range in the shear modulus (dotted line) was calculated to show the 

model’s sensitivity to G.  This range of sensitivity seems to be reasonable since it 

encompasses a relatively small band to the measured shear modulus. 

Figures 17 and 18 compare the factors of safety for the model and pore 

pressure ratios measured for Tests 7-2 & 7-3 respectively.  In these two tests, the pore 

pressure transducers all measured excess pore pressures in the sediment and Test 7-3 

contained relatively higher values than Test 7-2.  Figures 17 & 18 also reflect similar 

trends as in Figure 16 by producing factors of safety less than one in the silt.  In 

comparison of these two figures, Figure 18 shows relatively lower factors of safety 

than Figure 17 due to larger pore pressure ratios. 

 The actual value of G in the wave tank’s sediment basin may be different than 

G obtained from DSS testing and therefore may produce uncertainties relating to: the 

use of different silts, the difference in stress path between ocean wave loading and 

direct simple shear, and the level of strain used in DSS testing.  It should also be noted 

that with the exception for Test 7-1, the shear modulus would increase after each 
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successive test due to the previous wave exposure; however, since Test 7-1 was first, 

and produces more significant trends to the model’s validation, this effect is 

inconsequential.  As for the uncertainties mentioned above, they should be considered 

relatively insignificant since the value of the shear modulus for the silt was 

represented with reasonable accuracy.  This suggests that the model displays an 

excellent agreement between model and wave tank experiments.   
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CASE STUDY 

 

The strain-based procedure is used to screen for excess pore pressure in the 

seabed for a site located within the coastal waters of Rhode Island.  A hypothetical 

scenario at the site considers the placement of a cap to overlay contaminated marine 

sediment and is considered both immediately after the cap is placed (short-term) and 

after consolidation of the substrate layer (long-term).  The cap is designed to be 1.5m 

thick and contains a total unit weight of 19kN/m3, a friction angle of 32°, and void 

ratio of 0.8.  The 20 year design sea state for the shelf waters of Rhode Island has a 

significant wave height Hs = 1.2m, peak wave period Tp = 4.5s and a still water depth 

of 2m at the site. 

A field test was conducted in February 2013 in which shear wave velocity 

profiles were obtained using a multichannel analysis of surface waves (MASW) 

approach (Giard, 2013).  MASW is a non-invasive inversion technique that measures 

interface waves (Scholte waves) between the water-sediment boundary and are closely 

related to the shear wave speed and attenuation for 1-2 wavelengths in the seabed.  A 

pre-existing boring log at the location of the measured shear wave velocity profiles 

confirms that the site is composed of organic marine silt.     

Referring back to the section on the model’s implementation, a simple 

systematic approach can be used to screen for excess pore pressure at the site under 

short and long term conditions.  The calculation of the shear stress profile is 

determined by first representing the site as a two layered system.  This requires both 

the determination of the shear modulus ratio (G1/G2) and the top layer thickness, T.  

The shear modulus ratio was determined from Figure 19 which plots the small strain 
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shear modulus profiles for the cap and silt layers under short and long term scenarios.  

Equation 9 was used with the given cap properties to determine Go in the cap layer.  

The small strain shear modulus for the silt layer in the long term was calculated by 

increasing the effective stress by the amount due to the cap.  Using Figure 19, it was 

estimated that the shear modulus ratio was 0.4 for the short term and 0.32 for the long 

term by selecting an approximate average value for each of the layers respectively.  

Since both the short and long term shear modulus ratios lie between the calculated 

values seen from the non-dimensional charts (Figures 6 – 10), the shear stress profile 

must be interpolated.  Also, the non-dimensional thickness of the cap is bounded 

between Figures 6 & 7 – therefore Figure 6 was selected as conservative 

approximation of the shear stress profile due to slightly larger shear stress values 

within the substrate layer.  A Poisson ratio of 0.3 was used in the calculation of the 

shear stress profile as a reasonable representation of the soil.  From Figure 6 it can be 

seen that a higher and lower value of the Poisson ratio would result in a higher shear 

stresses for the top and lower layers respectively.  Using these higher shear stress 

profiles could be implemented into the analysis procedure in order to conduct a more 

conservative analysis.   

The shear modulus was iteratively calculated using the steps outlined to 

calculate the shear strain in the seabed.  Lastly, an average value of the threshold shear 

strain was selected from Figure 3 to compare to the shear strain.  This comparison is 

shown in Figure 20 which shows the factor of safety against excess pore pressure in 

the seabed under short and long term conditions.   
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The short term analysis shows that the factor of safety against excess pore 

pressure is less than one between depths 1.1m – 2.8m.  This range, which 

encompasses both the cap and silt layer, is consistent with two trends.  First, Figure 6 

shows that the range of depths corresponding to factors of safety less than are where 

the highest shear stresses occur.  Secondly, Figure 19 shows that the top of the silt 

layer approaches a stiffness of zero. 

The long term analysis shows factors of safety greater than one in both layers.  

This increase in safety against generation of pore pressure from the short term scenario 

was expected due to an increase of stiffness within the silt layer.  The analysis also 

shows a slight increase in safety for the cap layer even though the stiffness is keep 

identical to the short term scenario.  It is interesting to note that as a result of the 

stiffness in the silt layer increasing, it can absorb additional shear stresses and thus 

reduce the shear stress in the cap.   
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SUMMARY & CONCLUSIONS  

 

A strain-based procedure was presented in this paper and provides a means to 

screen for the generation of wave-induced pore pressure in the seabed.  The model can 

be used for a wide range of seabed conditions often experienced in the marine 

environment (i.e. normally consolidated, overconsolidated, two-layered seabed) and 

can incorporate non-invasive methods to measure the soil’s shear modulus.  The 

model was shown to strongly agree with results obtained from existing wave tank 

experiments.  These results showed that the generation and non-generation of excess 

pore pressure in the seabed corresponded to factors of safety of less than and greater 

than one respectively.  Lastly, a case study was presented to demonstrate the practical 

implementation of the strain-based procedure from field measurements of shear wave 

velocity offshore. The case study demonstrated the ability to analyze the potential for 

residual pore pressure generation for a sand cap placed on an organic silt deposit in 

both the short and long-term condition.    
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FIG. 1. Schematic of water-wave loaded seabed (Bradshaw 2012). 
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FIG. 2. Pore pressure ratios generated in a variety of sands under cyclic 

loading (Vucetic, 1994 after Dobry et al. 1982). 
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FIG. 3. Effect of plasticity index on threshold shear strain for cyclic pore-

water pressure (Hsu & Vucetic, 2006). 
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FIG. 4. Non-dimensional shear stress profile of analytical solution 

derived by Fung, 1965. 
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FIG. 5. Numerical models of two-layer (top) and linear increasing 
(bottom) shear modulus profiles. 
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FIG. 6. Shear stress profile of a two layered seabed for different stiffness 

ratios, Top layer thickness = λ / 16. 
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FIG. 7. Shear stress profile of a two layered seabed for different stiffness 

ratios,Top layer thickness = λ / 8. 
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FIG. 8. Shear stress profile of a two layered seabed for different stiffness 

ratios,Top layer thickness = λ / 4. 
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FIG. 9. Shear stress profile of a layered seabed for different stiffness 

ratios, Top layer thickness = λ / 2. 
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FIG. 10. Shear stress profile of a layered seabed for different stiffness 

ratios, Top layer thickness = 3λ / 4. 
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FIG. 11. Non-dimensional shear stress profile of linear increasing 
shear modulus. 
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FIG. 12. Wave tank facility (Clukey, et al. 1985). 
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FIG. 13. Finite element model of wave tank facility. 
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FIG. 14. Shear modulus measured in direct simple shear tests performed 
on Yukon Silt and Filter Sand under low confining stresses (data from 

Clukey et al. 1983). 
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TABLE 1. - Wave parameters and results  

          Pore-water  

Test 

number 

Wave period 

         (s) 

Wave height 

        (m) 

Wave length 

        (m) 

Depth 

   (m) 

pressure 

ratio, 

     ru 

            
7 -1   1.76 0.09 to 0.10 3.55 0.06 0.365 

    0.23 0.277 

    0.28 0.242 

    0.62 0.069 

      

7 - 2 1.79 0.15 to 0.16 3.63 0.06 0.832 

    0.23 0.606 

    0.28 0.773 

      

7 - 3 2.02 0.20 to 0.23 4.20 0.06 1.46 

    0.23 0.761 

    0.28 0.70 

    0.62 0.385 
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FIG. 15. Shear stress profiles for wave tank tests 7-1, 7-2, & 7-3. 
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FIG. 16. Modeled factor of safety and measured pore pressure ratio 

(Clukey, Test 7-1). 
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FIG. 17. Modeled factor of safety and measured pore pressure ratio 

(Clukey, Test 7-2). 
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FIG. 18. Modeled factor of safety and measured pore pressure ratio 

(Clukey, Test 7-3). 
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FIG. 19. Small strain shear modulus profiles for the cap and silt layers. 
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FIG. 20. Factor of safety against excess pore pressure in the short term 

and long term.   
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APPENDIX A.  MATLAB CODE FOR CASE STUDY 

 

 

%Anthony Julian 
%Davisville Case Study 
%4/18/13 

  
%This script uses shear wave velocity profiles obtained from a field 

test conducted in Davisville, RI on Feb. 2013 to calculate the factor 
of safety against pore pressure generation immediately after the 
placement of a hypothetical cap (short term)and after the sediment 

bed has consolidated(long term) 

  
clear all;close all;clc; 

  
%Load files needed for analysis 

  
load Davisville_SSP.mat % shear wave (Vs) profiles from field test 
load LayerL_8_5.txt % induced shear stress for two layer system 

(G1/G2=0.4, top layer thickness = wavelength/8) 
load LayerL_8_6.txt % induced shear stress for two layer system 

(G1/G2=0.32, top layer thickness = wavelength/8) 

  
% WAVE PARAMETERS 

  
% The following wave parameters are for a 20 year avearge sea state 

for Rhode Island shelf waters (John Montogmery's thesis) 

  
H=1.2; % wave height (m)  
T=4.5; % wave period (s) 
d=2.0; % still water depth (m) 
L=ldis(T,d); % wavelength (m) 
k=(2*pi/L); % wave number (rad/m) 

  
pw=10.07; % unit weight of salt water (kN/m^3) 
Po=((pw*H)/(2*cosh(k*d))); % amplitude of bottom pressure (kPa) 

  

  

  
% Determine the FS against pore pressure generation for the cap  

  
% Define cap properties 
zcap=linspace(0,1.5,13); % cap profile, (m) 
gammacap=9.19; % effective unit weight, (kN/m^3) 
phicap=32; % effective friction angle for cap, (deg) 
Kocap=1-sind(phicap); % At-rest lateral earth pressure coefficient, 

degrees 
ecap=0.8; % short term void ratio 
Pa=101.325; % Reference Pressure (kPa) 
sigvcap=(gammacap)*zcap; % Vertical effective stress in, kPa 
sigccap=(sigvcap*(1+2*Kocap))/3; % Effective confining stress, kPa 
Gocap=(625/(0.3+(0.7*ecap^2)))*sqrt(Pa*sigccap); %Small strain shear 

modulus (kPa), Hardin and Black 



56 

 

  
% Select most representative shear stress profile for short and long 

term scenarios. 

  
% For convenience a linear elastic finite element analysis for each 

the short and long term conditions was conducted to produce accurate 

shear stress profiles.  
% The txt files LayerL_8_5.txt & LayerL_8_6.txt are the results of 

the FE analysis for the short & long term conditions respectively. 

  
% thcap MUST BE COMMENTED OR UNCOMMENTED TO CALCULATE THE SHORT 
% AND LONG TERM SCENARIOS SEPERATELY 

  
thcap=Po*[LayerL_8_5(1:13,3)]'; % short term shear stress profile, 

(kPa)--(G1/G2=0.4) 
%thcap=Po*[LayerL_8_6(1:13,3)]'; % long term shear stress profile, 

(kPa)--(G1/G2=0.32) 

  
% Calculate Degradation Factor (DF - iterative approach) 

  
DFcap=0.5*ones(1,length(thcap)); 
DFinitialcap=DFcap+1; 
TOL=.00001; 
i=0; 
while ((abs(DFcap(2)-DFinitialcap(2)))>TOL) 
    DFinitialcap=DFcap; 
    i=i+1; 
    straincap=thcap./(Gocap.*DFcap);  
    K=0.5*(1+tanh(log((.000102./straincap).^0.492))); 
    m=0.272*(1-tanh(log((.000556./straincap).^0.4))); 
    DFcap=K.*(sigccap).^m; 
end 

  

  
% Cap profile's  
Gcap=(Gocap.*DFcap); % Secant Shear Modulus, kPa 
Straincap=thcap./Gcap; % Cyclic shear strain in soil, kPa 
threscap=1.55e-4; % Threshold shear strain (IP=0) 
FS=(threscap*ones(1,length(zcap)))./Straincap; % Factor of Safety in 

cap 

  

  
%--------------------------------------------------------------------

------ 
% SILT LAYER 
% Calculate the FS for the silt layer 

  
% Define Silt properties 
zsilt=linspace(0,L,187); % Silt profile, (m) 
gammasilt=5.19; % effective unit weight , (kN/m^3) 
phisilt=30; % effective friction angle for silt, (deg) 
Kosilt=1-sind(phisilt); % At-rest lateral earth pressure coefficient 
sigvsilt=(gammasilt)*zsilt; % Vertical effective stress in, (kPa) 
sigcsilt=(sigvsilt*(1+2*Kosilt))/3; % Effective confining stress, kPa 
% Jenn's Model used to determine Go profile below 
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Co=91.81; %cst 
v=0.2677; %cst 
rhosilt=1700; % bulk density, (kg/m^3) assumed 

  

  
%--------------------------------------------------------------------

------ 
%Short term analysis (must comment long term section) 
% 
thsilt=Po*[LayerL_8_5(14:end,3)]'; % Shear Stress in short term for 

silt, kPa 
Vssilt=Co*(sigvsilt/gammasilt).^v; % Vs profile, long term 
Gosilt=(rhosilt*((Vssilt).^2))/1000; % small strain shear modulus 

(kPa), long term 
Gofit=Gosilt; %Gofit is the small strain shear modulus for the 

specific time scenario 
%--------------------------------------------------------------------

------ 

  
%--------------------------------------------------------------------

------ 
% Long term analysis (must comment short term section) 
%  
% Define new silt properties for long term 
% Tcap=1.5; % cap thickness (m) 
% delta=gammacap*Tcap; % change in vertical stress due to cap (kPa), 

long term 
% sigvsiltlongterm=sigvsilt+delta; % vertical effective stress (kPa), 

long term 
% sigcsilt=(sigvsiltlongterm*(1+2*Kosilt))/3; % Effective confining 

stress, kPa 
% Vssiltlongterm=Co*(sigvsiltlongterm/gammasilt).^v; % Vs profile, 

long term 
% Gosiltlongterm=(rhosilt*((Vssiltlongterm).^2))/1000; % small strain 

shear modulus (kPa), long term 
% thsilt=Po*[LayerL_8_6(14:end,3)]'; % shear stress for long term 

(kPa) 
% Gofit=Gosiltlongterm; %Gofit is the small strain shear modulus for 

either short or long term 

                       
%--------------------------------------------------------------------

----- 

  

  

  
% Calculate Degradation Factor (DF - iterative approach) 

  
DFsilt=0.5*ones(1,length(thsilt)); 
DFinitialsilt=DFsilt+1; 
isilt=0; 
while ((abs(DFsilt(2)-DFinitialsilt(2)))>TOL) 
    DFinitialsilt=DFsilt; 
    isilt=isilt+1; 
    strainsilt=thsilt./(Gofit.*DFsilt);  
    Ksilt=0.5*(1+tanh(log((.000102./strainsilt).^0.492))); 



58 

 

    msilt=0.272*(1-tanh(log((.000556./strainsilt).^0.4))); 
    DFsilt=Ksilt.*(sigcsilt).^msilt; 
end 

  

  
% Create soil profile's  
Gsilt=(Gofit.*DFsilt); % Secant Shear Modulus, kPa 
Strainsilt=thsilt./Gsilt; % Cyclic shear strain in soil, kPa 

  
%Plot factor of safety against excess pore pressure 
threscap=1.55e-4; % Threshold shear strain (IP=0) 
FSsilt=(threscap*ones(1,length(zsilt)))./Strainsilt; 

  

  

  
%COMBINE CAP AND SILT 
%Plot FS for entire sediment profile 
FStotal=[FS FSsilt]; 
ztotal=-1*linspace(0,L,200); 
figure(1) 
plot(FStotal,ztotal,'k',ones(1,length(ztotal)),ztotal,'--k') 
xlabel('Factor of Safety') 
ylabel('Depth (m)') 
hold on 
x=0:.1:15; 
plot(x,[-1.5*ones(length(x))],'k'); 
hold off 
axis([0 10 -10 0]) 
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