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Dynamics of an integrable two-sublattice spin model with long-range interaction

Jian-Min Liu and Gerhard Miiller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817
(Received 8 July 1991)

The dynamics of the classical two-sublattice XYZ model with uniform intersublattice interaction and
zero intrasublattice interaction is completely integrable for arbitrary system sizes. This makes the sys-
tem amenable to an exact analysis of dynamic correlation functions. Here we present some exact results
for the case with isotropic interaction (XXX model). The dynamical properties of the two-sublattice
XYZ model are compared with those of the equivalent-neighbor XYZ model and categorized into

universality classes of dynamical behavior.

In studies of dynamic correlation functions the focus
is, in general, on their long-time asymptotic behavior or,
equivalently, on the singularity structure of the associat-
ed spectral densities. It turns out to be equally useful and
revealing, albeit for different reasons, to analyze the prop-
erties of the same spectral densities at high frequencies,
specifically their decay law, expressible as

®(w)~exp(—w?’*) (1

in terms of a characteristic exponent A. That decay law
governs the growth rate of the sequence of recurrents
which determine the relaxation function (Hilbert trans-
form of the spectral density) in the continued-fraction
representation.! The value of A contains valuable infor-
mation on the underlying dynamical processes taking
place in the system. In some sense, this information is
complementary to that inferred from the long-time
asymptotic behavior.

A detailed study of the dynamics of various quantum
and classical spin models has prompted us to adopt the
concept of universality class for a categorization of
dynamical behavior on the basis of the characteristic ex-
ponent A.! For the equivalent-neighbor XYZ model,> ™ *

1 y X ZQz
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we were able to demonstrate four different prototype
universality classes: A=0 (compact support), A=1
(Gaussian decay), A=2 (exponential decay), A=3
(stretched exponential decay). All four universality
classes have been interpreted in terms of basic notions of
classical dynamics.!

Here we present a different spin model for dynamical
analysis in this particular context: the two-sublattice
XYZ model with uniform intersublattice interaction and
zero intrasublattice interaction:

1 NA NB
= (J, S;FSi+J,SYSE+J,SiSE) (3)
N 2T g ‘
where N =N ,+Nj is the total number of spins. The
special 1/V'N scaling of the exchange constants in the
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two models (2) and (3) guarantees that the intrinsic dy-
namics, specified by Hamilton’s equation, dS,;/dt
= —S§,X0H /3S,, stays nontrivial in the limit N — oo.
Note that in a different scaling regime (1/N instead of
1/V'N ), the two models play an important role as micro-
scopic realizations for mean-field models of an XYZ fer-
romagnet and an XYZ two-sublattice antiferromagnet,
respectively.

The equations of motion for individual spins of the
two-sublattice XYZ model (3) read

Si=J,04Sf~Jz08Sy, 1=1,2,...,N,, (4a)
Si=T,04SE—Jgoh Sy, I'=1,2,...,N;,  (4b)
with afBy =c.p.(xyz). The collective-spin variables
L N4 . M
O'Azﬁgslr 03=W25r (3)

=1
represent the vectors of instantaneous sublattice magneti-
zation fluctuations. Summing Egs. (4) over all sublattice

sites and dividing by V'N yields the equations of motion
for the two sublattice spins,

5% =JYU§0€, —Jgohoty, o5 =J, 0% o —Jgoboy
(6)

with afy =c.p.(xyz). These equations describe the non-
linear rotational dynamics of an effective two-spin model:

H=— 3 J,0%0% . (7
a=xyz
The integrability of this two-body problem was first prov-
en in a quite different context, through explicit construc-
tion of a second independent integral of the motion®
I=— S JJgohok+ 3 LIi[(0%)+ ()] .

afy=c.p.(xyz) a=xyz

(8)

For given solutions o ,(¢) and o z(¢), Egs. (4) for indivi-
dual spins turn into a set of linear and decoupled vector
equations with time-dependent coefficients.

A complete set of N independent integrals of the
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motion in involution for the two-sublattice XYZ model
(3) consists of two invariants which govern the time evo-
lution of the two vectors o, and oz and of
N —2=(N,4—1)+(Ng—1) invariants which govern the
time evolution of the individual spins in arrays A and B.
The first two invariants are H and I, and the remaining
N —2 can be selected as follows:®

If= 3 88, 1=23,...,N,, ©a)
k<l

II' = 2 S["Sk', l':2>3’ e ’NB M (9b)
k'<l'

It is interesting to compare these properties of the
two-sublattice XYZ model (3) with those of the
equivalent-neighbor XYZ model (2). The latter is not
completely integrable except for N =2 or N =. Only
the fully isotropic case (J, =J, =J,, XXX model) is com-
pletely integrable for arbitrary N. For that case, a set of
N-independent integrals of the motion can be chosen as
follows:$

N
Il= 2 S]i, II=SI'(SI+SZ+ Tt +Sl—1) ’
k=1

1=23,...,N. (10

The equations of motion for individual spins of Hamil-
tonian (2) read

1

Sf=J,0,8f—Jz0,57 — v (J,SYSP—JgSPSY) (1)
with a8y =c.p.(xyz). Here the collective-spin variable
1 N
UZW > S, (12)

i=1

represents the vector oﬁnstantaneous magnetization fluc-
tuation. 1t is the 1/V'N terms in (11) which make that
model nonintegrable for finite N >2 in the presence of
anisotropy. In order to arrive at a closed set of equations
for the collective spin variables o ,, we must sum Egs. (11)
over all sites, divide by V'N and take the limit N — oo:

6,=,—Jglo,0p5 aBy=c.p.(xpz). (13)
In spite of its complete integrability, the determination
of dynamic correlation functions for the two-sublattice
XYZ model can be quite involved. Here we concentrate
on the simplest case, the fully isotropic XXX model
(Jy=J,=J,=J). We determine the T=c autocorrela-
tion functions for the sublattice spins o 4,0 5 from expli-
cit solutions of the equations of motion (6). The same
method was previously used in our study of the
equivalent-neighbor XXZ model."” In terms of the new
variables

o,=0%+o%, 17,=0%—0%, (14)

Egs. (6) turn (for this case) into two decoupled vector
equations:

=0, 7=JrXo . (15)
Both vectors have fixed length: =7} +72+72=const
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and o’=0? +a§ +o02=const. The vector 7 rotates uni-
formly about the stationary vector o with frequency Jo.
We can then evaluate the collective-spin autocorrelation
function (7,(¢)7,) by using the solution of (15) and per-
forming the ensemble average in two steps. In the ex-
pression

(1)) =1{(*—71%)cos(Jot)) +L(72) (16)

we have already carried out the time average over one
period of the dynamical variable. The ensemble average
is completed by averaging over the invariants o, 7, and
7, For that we need to know the joint probability distri-
bution P(o,7,7,). In order to determine this distribution
we use the statistical independence of the variables
0%,0%: P(0%,0%)=P(c%)P(c%). Moreover, in the
limit N ,,Ng—> o, we have

P(0%)=V3/2mexp[—2(0%)*] and 4 B, (17)

a result dictated by the central limit theorem. It follows
that for N ,,Np— oo the variables o, 7, are also statisti-
cally independent and characterized by Gaussian distri-
butions:

P(o,)=V3/4mexp(—302%) and 0,7, . (18)

Hence the distribution P(o,,7,) factorizes into the dis-
tribution P(o) of the length of vector o and the joint
probability distribution P(7,7,). The former is evidently
a Maxwellian:

P(o)=4m(3/4m)** 0% exp(—20?) (19)

and the latter is given by the expression’

I_)(T,Ta)zz’lT(3/47T)3/ZTCXp(‘%TZ)G(T—ITa‘) . (20)

The evaluation of expression (16) with these distribu-
tion functions yields the following result for the
collective-spin autocorrelation function:

(To(0)7 ) =2+ 4(1—2J%?) exp(—J?t2/3) . 1)

The autocorrelation function for the sublattice spins o 4,
op inferred from (21) and the trivial result
(o(tho,) =2, reads
(0% ()o%)=(o%(t)a$)
=2+11—-27%Y) exp(—J%%/3) . (22)
The associated spectral density
it (0% ()a%)

D% (w),= [ Tdre

, (23)
— (0%0%)

is then the sum of a § function at =0 and a Maxwellian
spectral-weight distribution:

DY), =(47/3)8(w)
+§x/4w/s(a)2/ﬁ)exp( —302/4J%) . (24)

According to our classification of dynamical behavior,
the spectral density (24) of the two-sublattice XXX model
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belongs to the universality class A=1 (Gaussian decay).
The spectral densities of the equivalent-neighbor XXX
model belong to the same universality class. But the two
models (2) and (3) part company when we reduce the ro-
tational symmetry by introducing a uniaxial anisotropy
(Jy=J,#J,). For the spectral densities of the
equivalent-neighbor XXZ model, the universality class
stays the same (A=1, Gaussian decay), whereas it
changes to A=3 (stretched exponential decay) for those
of the two-sublattice XXZ model. When we further
reduce the symmetry by introducing a biaxial anisotropy
(e.g., 0<J, <J, <J,), we find that both models belong to
the same universality class again (A=3). The remaining
two universality classes mentioned at the beginning of
this paper, A=0 (compact support) and A =2 (exponential
decay), are realized in either model for finite N.

Our evidence for these realizations of universality
classes of dynamical behavior is fairly complete in the
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case of the equivalent-neighbor XYZ model. It is based
in part on an exact analysis and in part on results from
applications of the recursion method.! For the two-
sublattice XYZ model, the evidence is still fragmentary,
based on an exact analysis that is at present incomplete
for all but the simplest case.

The point we wish to emphasize in conclusion is the
following. In both models (2) and (3), the reason for any
change in universality class of dynamical behavior is as-
sociated with a switch between finite N and infinite N or a
switch between linear dynamics and nonlinear dynamics.
This mechanism allows for four different decay laws (1) of
spectral densities, characterized by four different integer-
valued exponents A.

The work reported here was supported by the U.S. Na-
tional Science Foundation Grant No. DMR-90-07540.
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