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Abstract  

Killer immunoglobulin-like receptors (KIRs) interact with HLA class I ligands and play a key role in the 

regulation and activation of NK cells. The functional importance of KIR-HLA interactions has been 

demonstrated for a number of chronic viral infections, but to date only a few studies have been 

performed in the context of acute self-limited viral infections. During our investigation of CD8
+
 T cell 

responses to a conserved HLA-B57-restricted epitope derived from dengue virus (DENV) non-structural 

protein-1 (NS1), we observed substantial binding of the tetrameric complex to non-T/non-B 

lymphocytes in PBMC from a long-standing clinical cohort in Thailand. We confirmed binding of the 

NS1 tetramer to CD56
dim

 NK cells, which are known to express KIRs. Using depletion studies and KIR-

transfected cell lines, we further demonstrated that the NS1 tetramer bound the inhibitory receptor 

KIR3DL1. Phenotypic analysis of PBMC from HLA-B57
+
 subjects with acute DENV infection revealed 

marked activation of NS1 tetramer-binding NK cells around the time of defervescence in subjects with 

severe dengue disease. Collectively, our findings indicate that subsets of NK cells are activated 

relatively late in the course of acute DENV illness and reveal a possible role for specific KIR-HLA 

interactions in the modulation of disease outcomes. 
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Introduction  

Killer immunoglobulin-like receptors (KIRs) are expressed predominantly on natural killer (NK) 

cells and interact with specific human leukocyte antigen (HLA) class I ligands to transduce inhibitory or 

activating signals 
1
. One of the best characterized and highly polymorphic members of the KIR family is 

the inhibitory receptor KIR3DL1, which is present in >90% of the human population and has at least 62 

allotypes 
2
. Interactions between KIR3DL1 and the HLA-Bw4 motif act to maintain NK cell inhibition. 

However, the downregulation of major histocompatibility complex (MHC) class I molecules that often 

follows viral infection or cellular transformation alleviates NK cell inhibition via KIR3DL1, leading to 

proinflammatory cytokine release and cytolytic activity. A role for KIR3DL1 in the control of chronic 

viral infections has been proposed on the basis of associations with disease outcome in HIV-infected 

individuals 
3-8

. These studies suggest that both MHC class I and KIR genotypes may contribute to 

protection in the context of HLA-B57. Moreover, KIRs that interact with HLA-C have been linked 

epidemiologically to the development of liver disease in hepatitis C virus (HCV)-infected patients  and 

protection from HCV infection in a cohort of intravenous drug users 
9
. In contrast, the role of KIR-HLA 

interactions in acute self-limited viral infections remains largely unexplored. 

Dengue virus (DENV) is a member of the flavivirus family comprising at least four distinct 

serotypes. Transmitted by the mosquito Aedes aegypti, DENV is endemic in the tropics/subtropics and 

causes an acute febrile illness known as dengue fever (DF). However, a small percentage of individuals 

experience a more severe syndrome known as dengue hemorrhagic fever (DHF). The key features of 

DHF are plasma leakage and a bleeding tendency, which develop as the fever subsides with clearance of 

viremia
10, 11

. Although both viral and host-specific factors likely influence clinical outcome, prospective 

cohort studies have identified secondary infection with a heterologous DENV serotype as a major risk 

factor for DHF 
12

. At the mechanistic level, pre-existing antibodies 
13

, memory T cell responses 
12, 14

, 

and certain HLA genotypes 
15-18

 have all been linked with more severe dengue illness.  
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A number of reports describe associations between HLA class I genotypes and dengue disease 

severity 
15-18

. In one earlier study, extended HLA region haplotypes including TNF, lymphotoxin alpha 

(LTA) and lymphotoxin beta (LTB), together with specific combinations of class I and class II alleles, 

were strongly associated with DHF during secondary DENV infection. Various aspects of disease 

outcome after DENV exposure have also been linked to functionally-defined HLA class I supertypes 
19

, 

as well as the MHC class I-related chains A/B (MICA/B) 
20-22

. These latter proteins are upregulated in 

stressed cells and interact with NKG2D, an activating receptor on NK cells. More recently, two small 

genetic studies evaluated associations between KIR-ligand pairs and susceptibility to dengue in Gabon 

and Southern Brazil 
23, 24

. Petitdemange et al. found no evidence of a role for KIR genotypes in patients 

infected with DENV-2. In contrast, Beltrame et al. detected an association between certain KIR genes 

and their cognate HLA ligands in the context of infection with DENV-3. Differences in population 

origin and the infecting DENV serotype may explain these disparate results. Other studies have noted 

NK cell activation during acute DENV infection. In particular, Azeredo et al. linked early activation of 

NK cells with mild DENV disease 
25

, whereas Green et al. found increased frequencies of NK cells 

expressing CD69 in children who developed DHF compared to those with attenuated disease 
26

. The 

mechanisms by which NK cells contribute to immune protection and immunopathogenesis in DENV 

infection therefore require further elucidation 
27, 28

. 

We recently characterized antigen-specific CD8
+
 T cells directed against a highly conserved 

HLA-B57-restricted epitope derived from DENV non-structural protein-1 (NS1) 
29

. In the present study, 

we examined binding of the corresponding B57-NS126-34 tetramer (NS1 TET) to enriched NK cell 

populations from samples obtained prior to, during and up to 1 year after the critical phase of illness 

(around the time of defervescence) in HLA-B57
+
 subjects from a clinical cohort in Thailand. Using 

KIR3DL1
+
 healthy donor peripheral blood mononuclear cells (PBMC), we confirmed that the NS1 TET 

bound mostly to CD56
dim

 NK cells, which are known to express KIRs 
30

. We then demonstrated that the 
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NS1 TET bound KIR3DL1. To determine whether there was an association between NK cell activation 

and dengue disease severity, we analyzed PBMC from our HLA-B57
+
 cohort and found marked 

activation of NS1 TET
+
 NK-enriched cells at the critical phase of illness in patients who developed 

DHF. Our results define a specific interaction between the inhibitory receptor KIR3DL1 and a DENV-

derived CD8
+
 T cell epitope with potential relevance to the immunopathogenesis of dengue disease. 

  

Page 6 of 61Clinical Experimental Immunology

This article is protected by copyright. All rights reserved.



6 
 

Results 

Binding of the NS1 TET to CD8
-
 cells in PBMC from dengue patients 

 In a study of CD8
+
 T cell responses to the HLA-B57-restricted epitope NS126-34 (HTWTEQYKF) 

29
, we observed binding of the corresponding tetrameric antigen complex (NS1 TET) to CD8

-
 cells. As 

monocytes and B cells were eliminated by our gating strategy, we speculated that the NS1 TET bound a 

subset of NK cells. Furthermore, we hypothesized that the NS1 TET bound KIR3DL1 on NK cells given 

the extensive literature describing HLA-B57-restricted HIV-derived peptide ligands for this inhibitory 

receptor 
5-7, 31, 32

. Initially, we used the NS1 TET to stain PBMC obtained at a convalescent time point 

from two HLA-B57
+
 donors in our clinical cohort. The flow cytometric gating strategy is shown in 

Supplemental Figure S1A. In parallel, we used a variant B57-Gag240-249 tetramer (TW10n TET) based on 

a CD8
+
 T cell escape sequence (TSNLQEQIGW) of the wildtype HIV-derived epitope that abrogates 

HLA-B57 binding to KIR3DL1*001 
6
. We observed substantial binding of CD8

-
 cells to the NS1 TET 

with minimal binding to the TW10n TET (Figure 1A and 1B).  

 Next, we tested PBMC obtained at multiple time points during and after acute DENV infection 

from 11 HLA-B57
+
 children, two with primary and nine with secondary DENV infection (Table 1). As 

our staining panel for clinical samples was developed to phenotype CD8
+
 T cells and did not include NK 

cell-specific markers, we first confirmed that live lymphocytes excluding monocytes, T and B cells were 

predominantly NK cells. We used convalescent samples for this purpose and found that >70% of the 

CD3
-
CD8

-
CD14

-
CD19

-
 population comprised CD56

+
 NK cells in the majority of donors (Supplemental 

Figure S1B); these cells are hereafter referred to as the “NK-enriched” population. Although a 

significant proportion of NK cells can express CD8, these were excluded from our study to ensure the 

elimination of all T cells. This was considered important because CD3 downregulation during acute 

illness complicated the identification of T cells based solely on this marker. Evaluating the frequency of 

NS1 TET
+
 CD8

-
 cells in PBMC from the HLA-B57

+
 Thai cohort, we were able to detect NS1 TET

+
 NK-
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enriched cells at all time points tested in all donors (n=10; n=5 DF, n=5 DHF) (Figure 1C). The 

frequencies of these NS1 TET
+
 NK-enriched cells varied over time (Figure 1C).  

 To confirm binding of the NS1 TET to NK cells, we used a staining panel with NK lineage-

specific markers (Figure 2A, D) to analyze KIR3DL1
+
 PBMC from healthy donors and convalescent 

PBMC from Thai cohort subjects (Figure 2B, C). A fluorescence minus one control excluding the NS1 

TET, parallel staining with the TW10n TET, and KIR3DL1 antibody labeling were used to aid gate 

placement for the accurate identification of NS1 TET
+
 NK cells. We observed NS1 TET

+
 NK cell 

populations in all donors at variable frequencies and degrees of separation. Moreover, the NS1 TET 

bound mostly to CD56
dim

 NK cells, which are known to express KIRs 
30

. Given that NK cells are highly 

heterogeneous, we next determined whether NS1 TET
+
 NK cells differed phenotypically from the total 

NK cell population. We found that NS1 TET
+
 NK cells resembled typical NK cells in that they 

expressed CD161, NKp30, NKp46, and NKG2D (Figure 2D). Thus, the NS1 TET bound archetypal 

CD56
dim

 NK cells. 

 

Binding of the NS1 TET to KIR3DL1 

 We speculated that binding of the NS1 TET to NK cells was mediated via the inhibitory receptor 

KIR3DL1. To test this possibility, we used a magnetic separation protocol to deplete PBMC of 

KIR3DL1
+
 cells and compared NS1 TET binding in parallel experiments with non-depleted PBMC 

(Figure 3A, B). We found that depletion of KIR3DL1
+
 cells reduced NS1 TET binding by 66%, 

suggesting a specific interaction between these proteins on the NK cell surface. To confirm binding of 

the NS1 TET to KIR3DL1 directly, we used distinct KIR3DL1-transfected cell lines individually 

expressing the allotypes *001, *005, and *015, which represent the three major lineages of this 

inhibitory receptor 
2
. We observed significant binding of the NS1 TET to all three KIR3DL1 allotypes in 

these experiments. As expected, HLA-B57 tetramers folded with the self-peptide LF9 (LSSPVTKSF) 
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also bound all three allotypes of KIR3DL1 (Figure 3C, D, E, F) 
33

. Moreover, pretreatment with a 

KIR3DL1-specific monoclonal antibody (DX9) blocked the binding of both tetramers to KIR3DL1 

(Figure 3C, D, E, F). Collectively, these data indicate that the NS1 TET binds KIR3DL1 on the surface 

of NK cells.   

 

Peak expression of CD38 on NS1 TET
+
 NK-enriched cells occurs around fever day 0 and correlates 

with disease severity 

 To determine whether NS1 TET
+
 and total NK cells were activated during acute infection in 

HLA-B57
+
 subjects (n=2 DF 1

0
, n=3 DF 2

0
, n=5 DHF 2

0
), we assessed the expression of CD38, CD69, 

and CD71 on NK-enriched populations in PBMC samples collected prior to, during and after the critical 

phase of DENV illness. The flow cytometric gating strategy used to identify NK-enriched populations in 

these experiments is shown in Figure 4A. Representative stainings for CD69 and CD71 expression on 

PBMC obtained at an acute and convalescent time point from a subject with DHF are shown in Figure 

4B and 4C. We found that CD69 expression was mildly elevated early in disease, but remained 

relatively high at convalescent time points in patients with DF and DHF (Figure 4D). In addition, CD69 

expression on NS1 TET
+
 NK cells in individual donors was similar to the expression of CD69 on total 

NK-enriched cells. Peak CD71 expression occurred at fever day 0 on NS1 TET
+
 and total NK cells in 

many donors, but the differences were not statistically significant between patients with DF and DHF. 

Mean CD71 expression at acute time points was significantly higher in the NS1 TET
+
 NK cell 

population compared to total NK cells (p<0.01; Figure 4E).  

 Next, we examined CD38 expression on NK-enriched cell populations in this HLA-B57
+
 cohort. 

We found that CD38 expression was highly elevated on NK cells in PBMC during acute illness, but 

decreased during early convalescence and remained present on up to 40% of NK-enriched cells 1 year 

after infection (Figure 5A). More careful examination revealed that CD38 expression clearly segregated 
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into CD38
hi 

and CD38
low

 populations on NK-enriched cells at acute time points. Figure 5B shows CD38 

expression on NK-enriched cells at fever day +1 and fever day +180 in a representative donor. 

Frequencies of CD38
low 

cells followed the same pattern as CD69 expression on NK cells, with 

elevations early during infection that remained high even during convalescence (Figure 5C). However, a 

different pattern was observed for CD38
hi

 cells in both the NS1 TET
+ 

and total NK cell populations, 

with low frequencies early during acute infection becoming elevated between fever day 0 and fever day 

+1, then returning to baseline at 1 year post-infection (Figure 5D). The peak frequency of CD38
hi

 cells 

was observed on fever days 0 and +1 for both the total NK-enriched and NS1 TET
+
 NK cell populations. 

Strikingly, very high frequencies of CD38
hi

 NS1 TET
+
 and total NK cells were observed uniquely in 

patients with DHF (p=0.0571 compared to patients with DF).  

As our original gating strategy excluded CD3
-
CD8

+
 cells in the NK-enriched population, we 

further evaluated the expression of CD38, CD69, and CD71 using an inclusive approach (Supplemental 

Figure S2). Activation levels of NK-enriched populations assessed using these markers were similar in 

the presence or absence of CD3
-
CD8

+
 cells. In addition, we used a quantitative PCR to measure viremia 

levels during early clinical illness in 9 of the 11 HLA-B57
+
 subjects. As expected, plasma virus loads 

were high in all donors prior to defervesence and dropped significantly as the fever dissipated 

(Supplemental Figure S3). However, no statistically significant correlations were detected between 

viremia levels and CD38
hi

 NK cell frequencies (data not shown).  

 

Expression of KIR3DL1 on NK cells in PBMC from the HLA-B57
+
 Thai cohort 

 To extend these findings, we examined KIR3DL1 expression on NK cells in PBMC from our 

Thai cohort using the KIR3DL1-specific antibody DX9. Expression levels of KIR3DL1 are known to 

vary between donors 
4, 30, 34

, and differential expression of inhibitory KIRs can significantly impact NK 

cell function 
35

. We found substantial frequencies of KIR3DL1
+
CD56

+
 NK cells in 9 of 9 donors tested 
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(Figure 6A). The frequency of KIR3DL1 on NK cells varied from 3.5% to 15%, which is consistent with 

frequencies reported elsewhere 
34

. PBMC were not available from two subjects, but genotypic studies 

indicated that both were KIR3DL1
+
. The intensity of KIR3DL1 expression varied among donors, with 

mean fluorescence intensity (MFI) values ranging across an order of magnitude (881-7,094). However, 

the sample size was too small to draw any conclusions regarding associations between KIR3DL1 

expression, KIR3DL1 subtyping and dengue disease severity (Figure 6A and Table 1).  

Finally, we measured CD69 expression to assess NK cell activation in a limited number of 

PBMC samples obtained at fever day 0 (+/- 1 day) and fever day +180. Consistent with the results 

presented above, we found high frequencies of KIR3DL1
+
CD69

+
 NK cells during acute infection 

(Figure 6B, C). At the same time, overall KIR3DL1
+
CD56

+
 NK cell frequencies remained stable (data 

not shown). Collectively, these data indicate that NK cells are activated in HLA-B57
+
 individuals during 

the critical phase of illness. 
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Discussion 

In this study, we demonstrate binding of the NK cell-expressed inhibitory receptor KIR3DL1 to 

an HLA-B57-restricted DENV NS1-derived peptide that also serves as a CD8
+
 T cell epitope. Direct ex 

vivo staining of primary human NK cells was observed with the corresponding pMHC tetramer in 

peripheral blood samples isolated from Thai children during and after acute DENV infection. Moreover, 

NS1 TET
+
 and total NK cells were activated to express CD38 during the critical phase of DENV illness 

only in HLA-B57
+
 patients with DHF, suggesting that NK cell subsets may contribute to the 

immunopathogenesis of dengue disease. This phenotypic analysis provides the first indication of a role 

for KIR-HLA interactions in an acute self-limited viral infection and suggests that innate immune 

receptors may determine the outcome of DENV infection alongside traditional adaptive responses 
12, 14

.  

Interactions between MHC class I molecules and NK cell-expressed KIRs have been associated 

with both beneficial and detrimental outcomes in various chronic viral infections 
9
 and with the 

development of autoimmune diseases 
36

. Several studies have shown that certain KIR alleles and HLA-B 

loci strongly influence the rate of progression to AIDS in HIV-infected individuals and mechanistically 

implicate NK cells as key determinants of viremic control 
3
. The interaction between HLA-B57 and 

KIR3DL1 has been extensively studied in this context. For example, Fadda et al. showed that naturally 

occurring single amino acid escape mutations in HLA-B57-restricted HIV-derived CD8
+
 T cell epitopes 

could completely abolish KIR3DL1 binding 
6, 33

. Similarly, the interaction between B57-NS126-34 and 

KIR3DL1 may represent a novel strategy by which DENV evades NK cell-mediated immunity. 

Functional studies are in progress to address this possibility. Polyfunctional assays with HLA-B57+ NK 

sensitive targets are critical to determine whether the DENV NS1 peptide can modulate NK cell function 

and are an active area of research in the laboratory. 
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In longitudinal phenotypic analyses, we found that CD69 expression on NK-enriched cells was 

elevated early during acute infection. In contrast, CD71
+
 and CD38

hi
 NK cells were rare at this time 

point and became more prevalent later, with peak frequencies around fever day 0 in several donors. The 

emergence of abundant CD38
hi

 NK cells coincided with peak CD8
+
 T cell activation in this cohort and 

the critical period for plasma leakage and thrombocytopenia in patients with DHF 
29

. Moreover, CD38
hi

 

expression on NK-enriched cells differed substantially between patients with mild (DF) and severe 

(DHF) dengue disease. These distinct activation patterns may prelude the identification of clinically 

relevant biomarkers in acute DENV infection.  

The late activation of NK cells could be a consequence of the cytokine storm associated with 

DHF. In this scenario, NS1 TET
+
 (and therefore KIR3DL1

+
) NK cells might be driven to expand 

preferentially in HLA-B57
+
 hosts due to more efficient licensing. Alternatively, NS1 TET

+
 cells may 

represent a subset of NK cells that are restrained early in infection due to interactions between B57-

NS126-34 and KIR3DL1. As flaviviruses are known to upregulate MHC class I 
37

, we propose that the 

increased expression of HLA-B57 on target cells early in infection augments NS1 peptide presentation 

during the acute viremic phase, thus enhancing KIR3DL1 interactions and maintaining NK cell 

inhibition. As viral titers fall and MHC class I expression returns to normal during defervescence, B57-

NS126-34 levels will also wane and allow “retuned” NK cells to respond vigorously.  

Despite collection over a 15 year time period, we were only able to enroll a total of 15 HLA-

B57
+
 donors due to the low frequency of this allele in Thailand. This limitation impacted the power of 

our study and the differences in CD38
hi

 expression did not quite achieve statistical significance 

(p=0.0571). In addition, the relative rarity of HLA-B*57 may confine the clinical relevance of DENV 

NS126-34 in the Thai population. The fact that not all HLA-B57
+
 KIR3DL1

+
 individuals develop DHF 

suggests the involvement of additional regulatory loops 
38

. Given the stochastic expression of KIRs, 

different individuals will co-express different combinations of inhibitory and activating receptors within 
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the KIR3DL1
+
 NK cell subset. This constellation of receptor/ligand interactions will likely contribute to 

differential effects on NK cell function. In addition, elevated levels of cytokines known to be 

upregulated in patients with dengue will almost certainly influence the quality of NK cell and T cell 

responses. It is notable in this respect that the DENV envelope (E) protein interacts directly with the NK 

cell activating receptor NKp44 
39

. 

As with most clinical studies of dengue, the delay between initial viral infection and presentation 

to the clinic or hospital prevented a very early assessment of NK cell activation in this cohort. A rapid 

NK cell response that leads to pathogen elimination may reduce the levels of antigen available for 

presentation, thereby potentially impairing the development of memory T cell populations. Indeed, NK 

cells have been implicated in the regulation of T cell immunity during viral infections, purportedly 

acting to prevent pathological responses by attenuating T cell activation in the presence of high viral 

loads 
40-42

. In this study, we found delayed activation of NK cells in HLA-B57
+
 KIR3DL1

+
 donors, 

which could hamper the development of protective memory T cell responses to DENV. This regulatory 

activity of NK cells could explain the modest CD8
+
 T cell responses directed against this highly 

conserved NS1 epitope in secondary DENV infections 
29

.  

 In conclusion, our findings suggest that NK cell subsets play a role in the development of 

adverse immune responses associated with DHF in the context of HLA-B57. Further studies are 

warranted to identify determinative KIR-HLA interactions in other acute self-limited viral infections.  
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Materials and Methods 

Study subjects and blood samples 

The study design for patient recruitment and collection of blood samples has been reported in 

detail elsewhere 
11, 43-45

. Briefly, the enrolled subjects were Thai children aged 6 months to 15 years with 

acute febrile illnesses (<72hrs) diagnosed as DF or DHF according to WHO guidelines 
46

. Serology and 

virus isolation were used to confirm acute DENV infection, and primary and secondary infections were 

distinguished on the basis of serologic responses 
11

. For donors undergoing a secondary infection, it was 

not possible to determine the previous infecting serotype(s). Blood samples were obtained daily during 

acute illness, once during early convalescence, and at various intervals during late convalescence. 

PBMC were isolated by density gradient centrifugation, cryopreserved, and stored at 70°C. Samples 

were numbered relative to the day of defervescence (designated fever day 0). Serologic HLA class I 

typing was performed as described previously using peripheral blood from immune Thai donors at the 

Department of Transfusion Medicine, Siriraj Hospital 
15, 44

. Written informed consent was obtained from 

each subject and/or his/her parent/guardian prior to study participation. The study was approved by the 

Institutional Review Boards of the Thai Ministry of Public Health, the Office of the US Army Surgeon 

General and the University of Massachusetts Medical School (UMMS). For control purposes, PBMC 

were obtained with informed consent from healthy HLA-B57
+
 dengue-naïve volunteers aged >18 years 

under approval granted by the UMMS Institutional Review Board. 

 

Peptide-MHC tetramers 

Peptide-MHC tetramers (pMHC TETs) were either obtained from the NIAID Tetramer Core 

Facility or generated in-house as described previously 
47

. The following conjugates were used in this 

study: A2-E213-221 TET-APC, B57-LF9 TET-PE, B57-NS126-34 TET-PE, B57-NS126-34 TET-APC, B57-

TW10n TET-PE, and B57-TW10n TET-APC. 
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Flow cytometry 

 As described previously 
29

, cryopreserved PBMC from Thai subjects were thawed and washed in 

RPMI before resting in RPMI/10% FBS for 2 hours at 37°C. Cells were then washed in PBS and stained 

with 1µL of pre-diluted (1:80) LIVE/DEAD
®
 Green (Molecular Probes, Invitrogen). After washing in 

FACS buffer (PBS/2% FBS/0.1% sodium azide), cells were incubated with 0.5-2µL pMHC TET 

(1µg/µL with respect to the monomeric component) for 20 minutes at 4°C. Pre-titrated monoclonal 

antibodies specific for CD3, CD8, CD14, CD19, CD28 or CD56, CD38, CD45RA, CD57, CD69, CD71, 

and CCR7 were then added for a further 30 minutes at 4°C. Monoclonal antibodies specific for CD3, 

CD14, CD16, CD19, CD56, CD69, and KIR3DL1 were used in a separate panel to identify NK cells. 

For NS1 TET staining of PBMC from healthy individuals, 1x10
7
 cells from KIR3DL1

+
 subjects were 

washed in PBS and stained with LIVE/DEAD
®
 Green. After washing in FACS buffer, cells were 

incubated with 2µL pMHC TET or a KIR3DL1-specific monoclonal antibody for 20 minutes at 4°C. 

Pre-titrated monoclonal antibodies specific for CD3, CD14, CD16, CD19, CD56, CD161, NKp30, 

NKp46, and NKG2D were then added for a further 30 minutes at 4°C. In all experiments, cells were 

washed and fixed with BD Stabilizing Fixative™ (BD Biosciences). Data were collected using a 

FACSAria™ flow cytometer (BD Biosciences) and analyzed with FlowJo version 10 (TreeStar Inc.). 

Details of all monoclonal antibodies used in this study are presented in Supplemental Table 1. 

 

KIR3DL1
+
 NK cell depletion and NS1 tetramer staining 

 PBMC were isolated from KIR3DL1
+
 healthy subjects using standard density gradient 

centrifugation and depleted of KIR3DL1
+
 cells via magnetic bead separation (Miltenyi Biotec). 

KIR3DL1-depleted PBMC were washed in FACS buffer and incubated with NS1 TET for 50 minutes at 

4°C. After a further wash in FACS buffer, cells were fixed with 100µL of pre-diluted (1:4) BD Cytofix 
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(BD Biosciences) and kept at 4°C until acquisition. Flow cytometric data were collected and analyzed as 

described above. 

 

Binding of pMHC tetramers to KIR3DL1-transfected cell lines 

 Detailed analyses of KIR3DL1-transfected lines were performed as reported elsewhere 
33

. 

Briefly, HEK 293 cells were transfected with FLAG-tagged constructs of KIR3DL1*001, *005, or *015. 

An anti-FLAG monoclonal antibody was used to verify KIR3DL1 expression. Transfected cells were 

pre-incubated with 10µg/µL of the blocking monoclonal antibody DX9 or control IgG, then stained with 

0.25µL of the NS1 TET or the well described LF9 TET, representing a self-derived peptide complexed 

with HLA-B57 that binds KIR3DL1 
48

.  

 

Statistical analysis  

Comparisons between groups were conducted using the Mann-Whitney rank sum test for non-

normally distributed variables. All statistical analyses were performed using GraphPad Prism (GraphPad 

Software). 
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Abbreviations 
 

DENV    Dengue virus    

DF    Dengue fever  

DHF    Dengue hemorrhagic fever 

KIR   Killer immunoglobulin-like receptor  

LTA    Lymphotoxin alpha  

LTB    Lymphotoxin beta 

MICA/B    MHC class I-related chains A/B 

NS1   Non-structural protein-1   

NS1 TET    B57-NS126-34 tetramer  

pMHC TETs   Peptide-MHC tetramers  

TW10n TET   B57-Gag240-249 tetramer   
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Figure Legends 

Figure 1: Binding of the NS1 TET to non-CD8 cells in PBMC from Thai children with dengue. (A, 

B) Using flow cytometry, frequencies of NS1 TET
+
 (A) and TW10n TET

+
 (B) CD3

-
CD8

-
CD14

-
CD19

-
 

(NK-enriched) cells in PBMC from donors CHD01-018 and KPP94-041 at the 1 year time point. (C) 

Kinetics of NS1 TET
+
 frequencies among NK-enriched cells during acute dengue illness and 

convalescence. Fever day 0 indicates the day of defervescence. Symbols distinguish subjects with 

primary (n=2, grey symbols) versus secondary (n=8, black symbols) DENV infections and lines 

distinguish those with DF (n=5, black line) versus DHF (n=5, dashed line). 

 

Figure 2: Frequencies and phenotype of NS1
 
TET

+
 NK cells. (A) Gating strategy to identify CD56

+
 

and/or CD16
+
 NK cells. (B) Frequencies of NS1 TET

+
 NK cells in PBMC from healthy KIR3DL1

+
 

donors. Representative flow cytometry plots from 4 of 13 donors are shown on the top row. 

Fluorescence minus one (FMO), NS1 TET
+
 and TW10n TET

+
 NK cell frequencies in PBMC from 

healthy donor LD093 are shown on the bottom row. (C) Frequencies of NS1 TET
+
 NK cells in PBMC 

obtained from Thai study subjects 2 to 3 years after DENV infection. (D) Overlay of NS1 TET
+

 NK cells 

(red dots) on the total NK cell population (zebra plot) in PBMC from a healthy KIR3DL1
+
 donor. The 

expression pattern of CD161, NKp30, NKp46, and NKG2D was compared between NS1 TET
+
 NK cells 

and the total NK cell population. 

 

Figure 3: Binding of the NS1 TET to KIR3DL1. Using flow cytometry, (A, B) Frequency of NS1 

TET
+
 NK cells in PBMC from a KIR3DL1

+
 donor before (A) and after (B) magnetic depletion of 

KIR3DL1
+
 cells. Data represent one of three independent experiments. (C-F) HEK 293 cells were 

transfected with KIR3DL1 and stained with the NS1 TET (black) or the LF9 TET (grey). Histograms 
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show NS1 TET and LF9 TET binding (solid lines) to untransfected cells (C) or cells stably transfected 

with KIR3DL1*001 (D), KIR3DL1*005 (E), or KIR3DL1*015 (F). Binding of the NS1 TET and the 

LF9 TET in the presence of a monoclonal KIR3DL1-specific blocking antibody (DX9) is shown (dashed 

lines). 

 

Figure 4: Activation of NS1 TET
+
 and total NK cells over the course of acute dengue illness. (A) 

Gating strategy to identify NK-enriched cells in PBMC from Thai subjects. (B) Representative flow 

cytometry plot depicting CD69 expression on NK-enriched cells at fever day -1 and fever day +6 from a 

subject with DHF. (C) Representative flow cytometry plot depicting CD71 expression on NK-enriched 

cells at fever day 0 and fever day +180 from a subject with DF. (D, E) Kinetics of CD69 (D) and CD71 

(E) expression on NS1 TET
+
 and total NK cells during acute dengue illness and convalescence. The 

average frequencies of CD69
+
 and CD71

+
 total NK-enriched cells are shown using a solid red line for 

subjects with DF and a dashed red line for subjects with DHF. Symbols distinguish subjects with 

primary (n=2, grey symbols) versus secondary (n=8, black symbols) DENV infections and lines 

distinguish those with DF (n=5, black line) versus DHF (n=5, dashed line). 

 

Figure 5: CD38 expression on NS1 TET
+
 and total NK cells over the course of acute dengue illness. 

(A) Kinetics of CD38 expression on NS1 TET
+
 and total NK cells during acute dengue illness and 

convalescence. (B) Representative flow cytometry plots depicting CD38
hi

 versus CD38
low

 NK cell 

populations at fever day +1 and fever day +180 from a subject with DF. (C, D) Frequencies of CD38
low

 

(C) and CD38
hi

 (D) NK cell populations during acute dengue illness and convalescence. The average 

frequencies of CD38
hi

 and CD38
low

 total NK-enriched cells are shown using a solid red line for subjects 

with DF and a dashed red line for subjects with DHF. Symbols distinguish subjects with primary (n=2, 
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grey symbols) versus secondary (n=8, black symbols) DENV infections and lines distinguish those with 

DF (n=5, black line) versus DHF (n=5, dashed line). 

 

Figure 6: KIR3DL1 staining of NK cells in PBMC from Thai study cohort subjects. (A) 

Frequencies of KIR3DL1
+
 NK cells in PBMC obtained from Thai study subjects 2 to 3 years after 

DENV infection. PBMC were gated on CD56
+
 and/or CD16

+
 NK cells. Dot plots show CD56 versus 

KIR3DL1 staining. (B) Representative flow cytometry plots depicting CD69 versus KIR3DL1 

expression on NK cell populations at fever day 0 and fever day +180 from a subject with DHF. (C) 

Frequencies of KIR3DL1
+
CD69

+
 NK cell populations (n=9) during acute dengue illness and 

convalescence. 

  

Page 25 of 61 Clinical Experimental Immunology

This article is protected by copyright. All rights reserved.



25 
 

TABLE 1: Clinical, virological and immunogenetic profiles of HLA-B57
+
 Thai study subjects 

 

a 
Primary (P) versus secondary (S) infection as determined by IgM/IgG ratios 

11
.  

b 
Of current infection. Unknown = could not be determined. 

c
According to WHO guidelines 1997; DF = dengue fever; DHF = dengue hemorrhagic fever (grades 1-

3). 
d
 KIR3DL1 subtyping.  

 

Donor  Serologya Serotypeb  Diagnosisc  KIR3DL1d KIR3DS1 

CHD95-039 P DENV-1  DF  01502 + 

CHD06-029  P DENV-3  DF  01502, 01502 - 

CHD05-023  S DENV-1  DF  01502 + 

CHD01-018  S DENV-2  DF  020 + 

KPP94-037  S DENV-2  DF  01502,01502 - 

KPP94-041  S DENV-1  DHF-3  00501 - 

CHD02-073 S DENV-1  DHF  00501 

 

- 

CHD01-058  S DENV-2  DHF-1  01502 + 

CHD01-050  S DENV-2  DHF-3  01502 - 

CHD00-054  S unknown  DHF-2  00701 + 

CHD06-092 S DENV-4  DHF-2  00701,01502 + 
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Figure 3
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Figure 6
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Supplemental Figure S1. Frequencies of NK cells in the CD3-CD8-CD14-CD19- gate. 
(A) Gating strategy to identify CD3-CD8-CD14-CD19- cells. Cells were first selected 
within the lymphocyte gate as defined by forward and side scatter profiles. Singlets 
were then identified and live CD3-CD14-CD19- cells were selected in a dump 
(LIVE/DEAD® Green with αCD14 and αCD19) versus CD3 bivariate plot. CD8- cells 
were gated within this population. (B) Frequencies of CD56+ and/or CD16+ NK cells in 
PBMCs collected from Thai cohort subjects 2 years after acute DENV infection. Plots 
are gated on live CD3-CD8-CD14-CD19- cells. 
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Supplemental Figure 2
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Supplemental Figure S2. Activation of NS1 TET+ and total NK cells over the course of 
acute dengue illness. Kinetics of CD69 (A), CD71 (B), total CD38 (C), CD38low (D), and 
CD38hi (E) expression on NS1 TET+ and total NK cells during acute dengue illness and 
convalescence. The average frequencies of CD69+, CD71+, total CD38+, CD38low, and 
CD38hi total NK-enriched cells are shown using a solid red line for subjects with DF and 
a dashed red line for subjects with DHF. Symbols distinguish subjects with primary (n=2, 
grey symbols) versus secondary (n=8, black symbols) DENV infections and lines
distinguish those with DF (n=5, black line) versus DHF (n=5, dashed line). 
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Supplemental Figure 3
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Supplemental Figure S3. Magnitude of DENV viremia by day of illness. Levels of 
DENV genome equivalent (GE) cDNA (copies/mL) were determined in serial plasma 
samples from HLA-B57+ patients. Symbols denote individual subjects and lines
distinguish those with DF (n=4, black line) versus DHF (n=5, dashed line). 
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SUPPLEMENTAL TABLE 1: Antibodies used for flow cytometry studies 

Marker Clone Manufacturer Fluorochrome 

CD3 UCHT1 

OKT3 

BD Biosciences 
BioLegend 
BioLegend 

V500 
BV510 
BV510 

CD8 SK1 Invitrogen PE-AlexaFluor610 
CD45RA HI100 BD Pharmingen APC-H7 
CCR7 150503 BD Horizon V450 
CD69 CH/4 

FN50 
Invitrogen 
BioLegend 

PE-Cy5.5  
BV650 

CD38 HB7 eBioscience eFluor®650NC 
CD57 HCD57 BioLegend PerCP/Cy5.5 (Lightening Link) 
CD71 OKT9 

CY1G4 
eBioscience 
BioLegend 

PE-Cy7 (Lightening Link) 
APC 

CD28 CD28.2 BioLegend AlexaFluor700 
CD56 B159 BD Biosciences AlexaFluor700 
CD19 HIB19 BD Biosciences FITC 
CD14 HCD14 BioLegend FITC 
CD56 HCD56 BioLegend BV711 
CD16 3G8 BD Horizon APC-H7 
NKp30 P30-15 BioLegend APC 
NKp46 9E2 BioLegend BV421 
CD161 HP-3G10 BioLegend BV605 
NKG2D 1D11 BD Biosciences PE-CF594 
KIR3DL1 DX9 Beckman Coulter 

BioLegend 
PE 
PE 

KIR3DL1/S1 Z27 Beckman Coulter APC 
HLA-A,B,C W6/32 BD Biosciences 

BioLegend 
APC, PE, FITC 
PE 

HLA-B57 BIH0243 One Lambda PE-NeutrAvidin     
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