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Abstract 17 

Dengue vaccine development has made significant strides, but a better understanding of how 18 

vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, 19 

testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic 20 

immunology knowledge and techniques have already improved our understanding of cell-mediated 21 

immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is 22 

adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of 23 

dengue vaccines, although further research to identify useful correlates of protective immunity is 24 

needed. 25 

  26 



Introduction 27 

The immunological basis of the efficacy of many of the most well-established vaccines is poorly 28 

understood, and, where studies to better understand vaccine efficacy have been done, they have almost 29 

always relied on tests of pathogen-specific antibodies rather than on measures of cell-mediated 30 

immunity (CMI) [1]. Several reasons likely explain this bias; serum is more easily obtained than viable 31 

lymphocytes, antibodies can be studied in isolation, and assays of antibody concentration and function 32 

are technically more straightforward and reproducible than cellular assays. Fortunately, in many cases 33 

detection of antibodies at or above a defined concentration using specific assays has proven to serve as 34 

a useful correlate of protective immunity. However, there has been ample evidence in the case of 35 

established vaccines that the information provided by assays of antibody responses is often incomplete, 36 

and that protective immunity (sometimes only partially protective) was present in some individuals 37 

without protective antibody levels. 38 

A consultation was organized by the WHO in 2007 to “review the state of the art of dengue CMI 39 

and to discuss the potential role of CMI in advancing dengue vaccine candidates towards licensure” [2]. 40 

The participants concluded that “precise function of CMI in protection or disease pathology remains ill-41 

defined and, at present, there is no evidence to suggest that CMI can be utilized as a correlate of 42 

protection.” Recent data from dengue vaccine trials has renewed interest in addressing this issue, 43 

however. In the pivotal phase III trials of the Sanofi Pasteur chimeric dengue virus (DENV) – yellow fever 44 

virus (YFV) vaccine, plaque reduction neutralization titers (PRNT) only weakly correlated with protection, 45 

and breakthrough infections occurred in some individuals with high PRNT values [3, 4]. While efforts 46 

continue to refine assays of DENV-specific antibodies in order to discriminate effective/protective from 47 

ineffective/non-protective antibodies (assuming that this is possible), these findings re-emphasize the 48 

need to consider the role of DENV-specific T lymphocyte responses in vaccine efficacy. This review seeks 49 



to summarize the current state of knowledge regarding DENV-specific CMI and propose potential 50 

contributions of CMI measurements to dengue vaccine development and testing. 51 

An appraisal of the literature on DENV-specific T cell responses merits a brief review of current 52 

paradigms in T cell biology and relevant technologies. One area highlighted by recent work is the 53 

complexity of effector T cell subsets. Extending the paradigm of Th1 versus Th2 responses among CD4 T 54 

cells, at least 7 different phenotypes have now been described [5, 6]. Table 1 summarizes key proteins 55 

expressed by each subset. Cytokines and other signals produced by antigen-presenting cells during the 56 

initial T cell activation (not listed in the table) determine which pathway is taken by an individual T cell 57 

through the induction of the transcription factors listed, and this in turn controls the profile of 58 

chemokine receptors and cytokines produced. The characteristic cytokines produced by each subset are 59 

the major determinant of its role in immunity and also tend to reinforce cell polarization. The profile of 60 

chemokine receptors expressed by each cell subset determines that subset’s predominant anatomical 61 

distribution, such as peripheral versus mucosal versus secondary lymphatic sites, which also contributes 62 

to its function in the response to different pathogens. Cytolytic activity, not traditionally considered an 63 

important effector function of CD4 T cells, has been increasingly recognized, mainly among cells 64 

expressing Th1 cytokines [7]. In contrast, while cytolysis has long been seen as the main function of CD8 65 

T cells, there has been a growing recognition of more diverse subsets within this population. CD8 T cell 66 

subsets with cytokine profiles similar to several of the CD4 subsets listed in Table 1 have been described, 67 

although there is comparably less known about them. Based on studies in mice, T cell polarization has 68 

often appeared to be a fixed characteristic of the cell determined during its initial activation. However, 69 

studies in humans suggest more plasticity in T cell phenotype [8]. 70 

Another area of active research in T cell biology is the developmental relationships between 71 

naïve, effector, and memory T cells [9-11]. This topic entails significant debate, as, unlike the case with B 72 

lymphocytes, there are no universally accepted standards for defining a memory T cell; several different 73 



schemas have been proposed to define the phenotypes of effector versus memory T cells, but it is clear 74 

that these are imperfect. From a functional standpoint, it is recognized that, among antigen-experienced 75 

T cells, there is a subset of short-lived effector cells that are destined to undergo apoptosis whereas 76 

other cells demonstrate the capacity for long-term persistence and even self-renewal. Within the long-77 

lived memory cell population, heterogeneity in function and protein expression led to a distinction of 78 

central memory T cells (TCM) and effector memory T cells (TEM). Recent data have revealed further 79 

complexity, and led to the classification of several additional subsets such as tissue-resident memory T 80 

cells (TRM) and stem memory T cells. Rather than fixed cell fates, however, there is evidence that these 81 

phenotypes retain some degree of plasticity. The timing and determinants of the transitions between 82 

states are not fully understood, and remain an important area of investigation. Several markers have 83 

been clearly identified as strongly associated with a cell’s capacity for long-term survival, such as high 84 

expression of IL-7R and low expression of KLRG1. 85 

 86 

Assay methods 87 

Persisting antibody following vaccination is recognized as the first line of defense against 88 

subsequent infection and is regarded as a distinguishing characteristic of an effective vaccine [12].  All 89 

currently licensed anti-viral vaccines elicit a robust antibody response that correlates with the level of 90 

protection provided by the vaccine [13]. If the same should prove to be true for dengue, then the search 91 

for a CMI “correlate of protection” for dengue would be unnecessary. However, dengue is one of several 92 

globally important infectious diseases, along with HIV, malaria, and tuberculosis, for which a vaccine is 93 

highly desirable yet no validated animal model or correlate of immune protection is known. While 94 

empirical testing of candidate vaccines has been successful in the past, the era of molecular biology has 95 

led to an explosion of tools and methodologies for creating new vaccine antigens and vector delivery 96 

systems. The contribution of CMI, particularly T cells, to a successful dengue vaccine is highly likely 97 



whether it be as direct effector cells, provision of help for antibody development or creating a 98 

generalized anti-viral environment. Together with the antigenic complexity of candidate dengue 99 

vaccines (Table 2), assessing T cell responses presents a logistical problem for both vaccine developers 100 

and clinical testing laboratories – how to test or screen for all possible T cell functions when the most 101 

relevant function(s) are unknown. 102 

Fortunately, T cell-based immunoassay development has also proceeded at a remarkable rate 103 

[14, 15]. A list of assays together with their advantages and disadvantages is presented in Table 3. 104 

Recently the focus of immune-monitoring has been upon assays that provide “minimal manipulation.” 105 

Relatively high-throughput assays such as ELISPOT and intracellular cytokine staining (ICS), which utilize 106 

in vitro stimulation times of less than 24 hours (or no stimulation in the case of direct ex vivo flow 107 

cytometry), are the assays of choice as a screening tool. When well qualified, both platforms are 108 

quantitative and specific for the antigen. While validation of ELISPOT and ICS assays is not trivial, it is 109 

possible, and if a T cell-based correlate of protection for dengue is defined one of these platforms would 110 

most likely be the basis of such an assay [16, 17]. The general disadvantage of ELISPOT assays is that 111 

some a priori knowledge of the relevant functions is required. IFN- has been used extensively in vaccine 112 

development as a marker of vaccine take and as a function that is necessary, but perhaps not sufficient, 113 

for protection. ICS expands upon the functional profile of ELISPOT assays, bringing the concept of 114 

polyfunctionality of T cells to the fore. Again, some a priori knowledge of the relevant functional profile 115 

is required to fully interpret the results of this assay. Furthermore, ELISPOT and ICS assays are best 116 

suited for measuring and quantifying the direct effector capacity of T cells (IFN-, TNF, and cytolytic 117 

potential), but are significantly less sensitive at measuring T cell helper capacity. Mass cytometry and 118 

advanced polychromatic flow cytometry are technologies that permit the analysis of as many as 36 119 

parameters simultaneously on a single cell. These parameters may include both phenotypic and 120 

functional markers. While these methods will facilitate high-dimensional, quantitative analysis of 121 



biomolecules on cell populations at single-cell resolution, their application to dengue research has so far 122 

been limited [18, 19]. 123 

The most sensitive assays are generally those that involve proliferation of a small number of 124 

antigen-specific precursor cells. Dye-dilution based T cell proliferation, when appropriately calibrated, 125 

can identify the phenotype of proliferating T cells as well as quantify the precursor frequency [20]. In 126 

addition, cytokines associated with helper (e.g., IL-4, IL-5, IL-13, IL-21) or regulatory (e.g., IL-10, TGF-) 127 

capacity can be studied in supernatants collected from proliferation assays. This approach does however 128 

digress from the minimal manipulation concept, is less reproducible and is prone to in vitro variation 129 

artifact. 130 

Microfluidics-based technologies have led to the possibility of extensive transcriptional profiling 131 

of T cells at the single-cell level and a description of the population dynamics of T cell responses. While 132 

better suited to a research-based environment, these methodologies provide a discovery platform that 133 

will deliver the best opportunity to uncover a correlate of protection [21, 22]. Ultimately a thorough 134 

profiling of the entire “immune space” that is occupied by a dengue vaccine will be required to compare 135 

and contrast different vaccine modalities and vaccination strategies [23]. Describing the quality, quantity 136 

and durability of immune responses elicited will involve a standardized approach incorporating many of 137 

assay procedures listed above and probably new technologies as they become deployable. 138 

Should a CMI correlate of protection from dengue infection be identified, a significant effort will 139 

be required to qualify and validate assays platforms that will reliably detect and/or measure the 140 

correlate or function. As described earlier, validation of ELISpot or ICS format assays has proved 141 

possible; however, the further challenge will be applying these assays to meet the needs of the global 142 

dengue vaccine research community. The field would benefit from the establishment of centralized 143 

laboratory(s) that implement External Quality Assurance (EQA) Programs for overseeing the 144 

development of external proficiency testing programs for flow cytometry, ELISpot and other CMI-based 145 



assays [24-27]. EQA programs serve three purposes and are run according to Good Clinical Laboratory 146 

Practice (GCLP) guidance: 1) provide a means for laboratories to ensure that the data generated are 147 

accurate, timely and clinically relevant; 2) provide assurance to sponsors that the data is reliable and 148 

high quality; and 3) ensure the appropriate and accurate use of human specimens obtained from clinical 149 

trials. In addition to EQA programs, the establishment of biorepositories of standardized qualified 150 

reagents and antigens (e.g. PBMCs, peptide sets, viral isolates) for use in helping laboratories validate 151 

assays would be invaluable [28-30]. Such programs have proved successful for the field of HIV vaccine 152 

testing, with the EQAPOL program run by the NIH Division of AIDS, and the field of cancer T cell therapy, 153 

with the immunomonitoring program run by the Cancer Immunotherapy Consortium 154 

(http://www.cancerresearch.org/cic) [24, 31, 32]. 155 

 156 

T cell responses to DENV 157 

Human T cell responses to DENV were first characterized over 30 years ago, and many of the 158 

general principles originally described have remained consistent [33, 34]. Infection with one DENV 159 

induces both CD4 and CD8 memory T cells specific for DENV epitopes, with a small number of epitopes 160 

dominating the response in each individual. Epitopes are located throughout the DENV polyprotein, 161 

although several regions, especially the nonstructural protein 3 (NS3), appear to have a concentration of 162 

immunodominant epitopes. The amino acid homology across the four DENV serotypes varies for each 163 

epitope; however, most epitopes are well conserved among strains within the same serotype and differ 164 

at relatively few positions (1 to 3 of 9 residues) from the corresponding epitopes of other DENV 165 

serotypes (and other flaviviruses). The overall T cell response induced by a primary DENV infection is 166 

strongest to the serotype to which the subject had been exposed, but variable degrees of cross-167 

reactivity are usually observed to one or more of the other serotypes. 168 

http://www.cancerresearch.org/cic


Notwithstanding the confirmation of the above paradigms, the greater understanding of T cell 169 

biology and advancements in techniques for analysis of T cell responses described above have provided 170 

a more detailed and complex picture, particularly with regard to the different characteristics of the 171 

memory T cell response and their potential functions during the recall response to a subsequent DENV 172 

infection. Inasmuch as vaccination is intended to induce an immune response that will protect against 173 

infection or disease during a subsequent DENV exposure, these findings are highly relevant to evaluating 174 

the immunogenicity of different vaccine regimens. However, extrapolating observations from natural 175 

DENV infection to current vaccines is confounded by several important differences, as will be discussed 176 

further below. 177 

 178 

Survey of recent literature 179 

The pace of scientific publications describing the T lymphocyte response to DENV has greatly 180 

accelerated in recent years. A review of PubMed entries showed at least 38 papers published since 2005 181 

that analyzed human DENV-specific T cell responses based either on functional responses to stimulation 182 

by DENV antigens or staining by HLA-peptide tetramers containing DENV peptides, 26 of which have 183 

been published since 2010 [35-75]; papers that measured serum levels of cytokines or frequencies of 184 

lymphocyte subsets during acute DENV infection were not counted if the methods could not relate the 185 

findings with antigen specificity. Taking advantage of newer techniques, these papers have greatly 186 

expanded the number of individuals whose immune responses have been characterized- tens to 187 

hundreds of subjects in each study, in comparison to fewer than 10 in most of the earlier studies. The 188 

knowledge base of DENV-specific immune responses is thus more representative of the global 189 

population, particularly among populations in dengue-endemic areas. 190 

Several methodological trends are evident in the recent literature. ELISPOT and flow cytometry 191 

have become preferred assays; relatively few of the results from these assays- usually only for dominant 192 



responses- have been validated by analysis of epitope-specific T cell lines. All ELISPOT and cytokine flow 193 

cytometry studies have examined the production of IFN-. Studies using cytokine flow cytometry have in 194 

addition measured several other effector functions, in particular TNF, MIP-1, or IL-2 production or 195 

release of cytotoxic granules (measured by capture of CD107a at the cell surface). 196 

In vitro stimulation for detection of DENV-specific T cells was accomplished with synthetic 197 

peptides in nearly all of the recent studies. In comparison with crude antigen preparations used in 198 

earlier studies, such as DENV-infected cell lysates, synthetic peptides provide greater standardization 199 

and reproducibility, and also directly provide detailed epitope localization. The large number of peptides 200 

needed to provide a comprehensive analysis of all potential DENV epitopes presents a major technical 201 

challenge, however. None of the studies reviewed included overlapping peptides from the full 202 

proteomes of all four DENV serotypes. Weiskopf et al conducted the most comprehensive analysis [60]; 203 

however, although a total of 8,000 peptides were used in the study, each subject was only tested for 204 

recognition of a subset of peptides selected based on predictions of peptide binding to autologous HLA 205 

class I alleles. Epitope prediction algorithms were used in 8 other studies, but many fewer candidate 206 

epitopes were tested. Fourteen studies tested sets of overlapping peptides; of these, 4 studies tested 207 

peptides covering the full proteome of DENV-2, whereas the remaining studies tested overlapping 208 

peptides covering only a portion of the proteome, most often the NS3 protein. 209 

At least 10 studies have used HLA-peptide tetramers to analyze DENV-specific T cells either 210 

directly ex vivo or after in vitro expansion [36, 38, 42, 47-49, 52, 59, 66, 73]. However, six of these 211 

studied the same HLA-A*1101-restricted “GTS” epitope on the NS3 protein; in total, the remaining 4 212 

studies investigated 5 other CD8 T cell epitopes and 2 CD4 T cell epitopes. Thus, conclusions based on 213 

this body of data still are subject to considerable potential for bias. 214 

 215 



Contributions from animal models 216 

Differences between study populations in host genetics as well as prior DENV exposures 217 

continue to complicate the comparison of findings across studies. Given the difficulty in documenting or 218 

controlling these factors, there continues to be substantial interest in experimental animal models, 219 

particularly small, genetically defined animals such as mice. Several “humanized” mouse models have 220 

been studied. In several studies of transgenic mice expressing single HLA alleles, investigators 221 

demonstrated recognition of candidate epitopes that were selected for predicted HLA binding; 222 

subsequent testing of DENV-immune humans confirmed responses to some but not all of these epitopes 223 

[64, 69, 76-78]. Studies of immunodeficient mice in which human immune cells were reconstituted by 224 

transfusion of human hematopoietic stem cells detected T cell responses to a limited number of known 225 

human T cell epitopes [79, 80]. These studies provide preliminary evidence that these models might 226 

supplement human studies. Limited testing of heterologous secondary DENV infections was done in 227 

HLA-transgenic mice [78], but no comprehensive analysis of the different possible sequences of DENV 228 

infection has been conducted in these models to date. 229 

 230 

Epitope distribution and cross-reactivity 231 

Recent studies have greatly expanded the database of T cell epitopes identified on DENV 232 

proteins [81]. This reflects the combined effects of studying a larger number of humans with more 233 

diverse HLA alleles and prior DENV infection history as well as the application of single-cell assays such 234 

as ELISPOT with large numbers of synthetic peptides. It is difficult to directly compare the results from 235 

different studies, however, because of the confounding effects of differences in the numbers and 236 

characteristics of the peptides used. Overlapping peptides covering over 70% of the proteome of 237 

representative strains of all four DENV serotypes have been made available to the research community 238 

through an NIAID-funded reagent repository (www.beiresources.org), but these were not used in most 239 

http://www.beiresources.org/


of the published studies. Additionally, there remains a lack of consensus on the optimal criteria for 240 

defining epitopes. Immunodominant epitopes- those that induce responses of high magnitude in the 241 

majority (often nearly all) of subjects with the appropriate HLA allele- have generally shown similar 242 

results across studies, but these represent a minority of the epitopes identified and the generalizability 243 

of the observations regarding these epitopes needs to be verified. 244 

As mentioned above, the distribution of T cell epitopes across all DENV proteins, albeit with a 245 

predominance of epitopes on nonstructural proteins, has been reinforced by the expanded literature. A 246 

need to test for responses to the entire proteome of all four DENV serotypes presents challenges for 247 

performing large-scale testing of T cell responses, such as in the context of a phase II or III vaccine trial. 248 

In contrast, data pointing to the immunodominance of responses to particular regions of the polyprotein 249 

provide some support for more targeted testing. For example, Weiskopf et al have estimated that a pool 250 

of 268 peptides would include 90% or more of CD8 T cell epitopes in any study population [72]. 251 

However, this conclusion is based on their approach of HLA class I epitope prediction. It is reasonable to 252 

hypothesize that other immunologically important epitopes, especially HLA class II-restricted epitopes, 253 

have yet to be defined. Studies have yielded conflicting data on whether the distribution of CD4 T cell 254 

epitopes is similar or different from that of CD8 T cell epitopes [48, 57], with one study reporting that 255 

CD4 T cells more often recognized epitopes on structural proteins [57]. 256 

The use of single-cell assays such as ELISPOT has complicated the interpretation of serotype-257 

cross-reactivity of T cell responses, as these assays do not assess serotype-cross-reactivity at the level of 258 

individual cells. This is a particular problem in individuals who have been exposed to more than one 259 

DENV serotype, either through sequential exposure or multivalent immunization. Although one study 260 

concluded that serotype-specific epitopes could be defined based on sequence conservation alone [78], 261 

other experimental data are directly contradictory [36, 37, 41]. Another study described a panel of CD4 262 

T cell epitopes predicted to be serotype-specific based on high sequence divergence across serotypes 263 



[55]. Among participants in a cohort study, individuals who experienced an interval DENV infection 264 

acquired responses to peptides of one additional serotype [74]; however, only 7 subjects were studied 265 

and the DENV serotype causing the interval infection was not identified. 266 

Several recent findings underscore the importance of clinical, virologic, and epidemiologic data 267 

on individual subjects for the interpretation of T cell responses to DENV. Although measures of T cell 268 

responses at the population level consistently show stronger responses to the infecting DENV serotype 269 

after a primary DENV infection, exceptions to this pattern have been observed at the level of individual 270 

epitopes [37, 49, 52], and the patterns of cross-reactivity have been even more difficult to predict after 271 

secondary DENV infections. Several studies have also found sufficient sequence divergence within one 272 

or more DENV serotype(s) to affect the T cell response [67, 82], but the clinical significance of these 273 

observations is unknown. 274 

 275 

T cell subsets and their effector functions 276 

Recent studies using multiparameter flow cytometry have provided a more detailed picture of 277 

the effector T cell response to DENV. As noted above, most studies have focused on type 1 cytokine-278 

producing T cells (Th1/Tc1); these studies have revealed a high degree of heterogeneity in cytokine 279 

production at the individual cell level. While polyfunctional T cells expressing 3 or more effector 280 

functions have been observed, there are also substantial populations of cells expressing 1 or 2 of the 281 

functions measured, including cells expressing only cytokines with pro-inflammatory effects (TNF 282 

and/or -chemokines) [37, 49, 60, 67]. Stimulation with the corresponding epitopes of different DENV 283 

serotypes has been shown to alter the profile of cytokines produced, suggesting that variant epitopes 284 

act as altered peptide ligands for some DENV-specific T cells [36, 37]. 285 

Comparably less is known regarding effector responses other than Th1/Tc1. Of the few studies 286 

that reported data on the production of type 2 cytokines, most reported little or no production of IL-4 287 



except one study of very young children (mean age 7.7 months) [61]. Single studies have described 288 

production of IL-17 [61] or IL-21 [57] by T cells in response to stimulation, or have observed the 289 

expression of markers associated with follicular helper CD4 T cells [57] or T cells capable of homing to 290 

skin [73]. 291 

 292 

Primary vs. secondary infection 293 

Models of sequential infection with different DENV serotypes postulate that the immune 294 

response to secondary infection will differ in several important ways from that to the primary infection: 295 

a) the memory T cell response will be induced more rapidly and achieve higher levels, b) the memory 296 

response will preferentially activate T cells directed at epitopes that are more highly conserved between 297 

the different DENV serotypes, mainly on non-structural proteins, and c) the memory T cell response will 298 

have an altered effector profile reflecting differential activation by peptides from the second DENV 299 

serotype [83]. Although testing these postulates is highly relevant to understanding both protective and 300 

detrimental immune responses in dengue, only a few studies have compared immune responses during 301 

or after primary versus secondary DENV infections. Consistent with the predictions, differences have 302 

been reported in the expression of some phenotypic markers [71], in the dominant epitopes targeted 303 

[78], and in the profile of serotype cross-reactivity [52, 82]. Surprisingly, no significant differences were 304 

observed in the kinetics of the response or in the peak T cell frequencies during the acute infection [48, 305 

52]. These studies involved only symptomatic DENV infections, however, and the intrinsic incubation 306 

period prior to the onset of symptoms could not be determined. Also, the clearance of viremia may be 307 

more rapid in secondary infections, as suggested by some data [84]. These significant differences could 308 

have masked differences in the kinetics and magnitude of the immune response in primary versus 309 

secondary infections. 310 

 311 



Vaccines vs. natural infection 312 

With the expanding pipeline of vaccines in clinical testing and the wider availability of the 313 

requisite expertise and technology, there has been a growing body of literature describing the T cell 314 

response to dengue vaccines. All of the recently published studies have involved candidate live 315 

attenuated vaccines. These studies have shown that DENV-specific memory T cells, including 316 

polyfunctional Th1/Tc1 cells, are induced within 21 days after vaccination of flavivirus-naïve subjects 317 

[56]. In comparison to vaccination with its individual components, vaccination with the tetravalent 318 

formulation of the NIH/Butantan vaccine (Table 2) preferentially induced T cell responses to peptides 319 

from the more conserved non-structural proteins [70]. Interestingly, vaccination with the Sanofi Pasteur 320 

chimeric DENV-YFV vaccine induced T cell responses to epitopes on DENV NS3 protein in DENV-immune 321 

subjects but not in DENV-naïve subjects, suggesting that the heterologous YFV epitopes could reactivate 322 

pre-existing memory CD8 T cells but not antigen-inexperienced T cells [62]. Comparison of the T cell 323 

responses induced by the different dengue vaccines listed in Table 2 is not possible, however, because 324 

of significant differences in study and assay design. 325 

 326 

Potential contributions of T cell assays to dengue vaccine development  327 

The area where assessment of T cell responses to dengue vaccines would clearly have greatest 328 

impact is in identifying correlates of vaccine efficacy. A reliable immunological correlate of vaccine-329 

induced protective immunity would accelerate vaccine testing in different populations, regimens, or 330 

epidemiological contexts. The limitations of current neutralizing antibody assays reinforce the need for a 331 

better understanding of correlates of protective immunity, although the poor discriminant ability of 332 

neutralizing antibody titers may point either to deficiencies in the assay or to non-antibody protective 333 

mechanisms. Human cohort studies and animal experiments have found associations between T cell 334 

IFN- production and protective immunity [51, 60, 85, 86], supporting the potential to identify T cell 335 



responses associated with protective immunity induced by vaccination. However, the published data are 336 

quite limited. Only two studies correlated T cell responses in blood samples collected prior to exposure 337 

with clinical outcomes in individual subjects [51, 87]; both studies relied on the same prospective cohort 338 

and the sample sizes were small. Also, given the difficulty in defining individuals who are fully protected 339 

from infection, all subjects in these studies experienced DENV infections and comparisons were based 340 

on severity of illness (hospitalized dengue versus non-hospitalized dengue in one study and subclinical 341 

versus symptomatic infection in the other). Other studies measured T cell responses only during or after 342 

DENV infection, a significant confounding factor for any conclusions regarding causality. This concern is 343 

somewhat lessened in the case of experimental infection, where protective immunity was associated 344 

with early IFN- responses [88]. In light of the limitations of published data, however, it will be essential 345 

to validate immunological correlates against clinical endpoints in vaccine trials. 346 

It will be important to validate any immunological correlates independently for several different 347 

vaccines, because the associations between immunological readouts and vaccine efficacy may or may 348 

not be equivalent. In addition to the differences in immune response pathways that might be stimulated 349 

by live versus inactivated or subunit vaccines, there are significant differences in antigenic content 350 

among the dengue vaccines currently in clinical development (Table 2). This is most pronounced with 351 

regard to the repertoire of flavivirus non-structural (NS) proteins, with some vaccines containing no NS 352 

proteins (subunit and inactivated vaccines, although the latter may include some NS1 protein), some 353 

containing NS proteins of one flavivirus, either DENV2 or the heterologous YFV, and one containing NS 354 

proteins of 3 of 4 DENV serotypes. Since non-structural proteins contain the majority of T cell epitopes, 355 

the repertoire of T cell responses induced by each vaccine will likely differ as well, although the resulting 356 

immunological profile is difficult to predict at this stage. 357 

A second area where measurement of T cell responses could make an important contribution is 358 

in evaluating the durability of vaccine-induced protective immunity. This is likely to be of particular 359 



importance for dengue vaccines given the evidence that partial immunity increases the risk for more 360 

severe illness. Substantial insight has been gained into how the initial activation of T cells contributes to 361 

the establishment of both long-lasting T cell and B cell memory, and this process has been successfully 362 

manipulated with pharmaceuticals such as rapamycin in experimental models [89, 90]. Licensed 363 

vaccines against other diseases differ significantly in the durability of pathogen-specific antibodies and T 364 

cells [91]; through comprehensive “systems vaccinology” approaches, early indicators of antibody and T 365 

cell responses have been identified for several of these vaccines [92, 93], although further studies are 366 

needed to establish their ability to predict longer-term durability of the response. 367 

The single-cell resolution and potential to evaluate multiple T cell effector functions of newer 368 

assays offer the capacity to reveal extraordinary detail on the relationships between these responses. 369 

This capacity will likely be of special interest in the case of dengue vaccines, given the multivalent nature 370 

of dengue vaccines, the need to provide protective immunity against all four DENV serotypes, and the 371 

evidence that more severe dengue disease is associated with an inflammatory immune response. Data 372 

from several studies showing the induction of polyfunctional T cells by different tetravalent dengue 373 

vaccines are encouraging [56, 70, 75]. However, it is unclear whether the degree of ‘polyfunctionality’ 374 

described is optimal; similar frequencies of polyfunctional T cells are seen after natural DENV infection, a 375 

setting that does not reflect fully (i.e., tetravalent) protective immunity. Partial immunity to DENV 376 

present prior to vaccination, as was seen in the majority of subjects in phase III vaccine trials in endemic 377 

areas [3, 4], could also modify the pattern of T cell effector functions. 378 

 379 

Conclusions and recommendations  380 

Although assessments of pathogen-specific T cell responses have not been a priority in most 381 

vaccine development efforts, we argue that dengue is a special case and that planning and preparation 382 

for such assessments should be given greater emphasis. The example of natural infection illustrates the 383 



potential for both positive (protective) and negative (pathological) effects of partial immunity to DENV, 384 

and potential concerns for long-term safety will likely remain a major impediment to licensure and 385 

widespread uptake of dengue vaccines. The current understanding of T cell responses to DENV indicates 386 

the potential for evaluations of T cell responses to accelerate vaccine design and testing by helping to 387 

identify correlates of vaccine efficacy and also to reduce the risk to vaccine developers by helping to 388 

understand negative outcomes of vaccine trials, should they occur [94]. Implementing analyses of T cell 389 

responses in the context of upcoming dengue vaccine trials will present a number of significant logistical 390 

challenges (Table 4). Based on current knowledge, it is not possible to define the assay or assays that 391 

would reliably serve all of the pertinent objectives. The experience from prospective dengue cohort 392 

studies [51, 87] and trials of other vaccines [95] does provide guidance to vaccine developers as to how 393 

T cell studies can be incorporated into dengue vaccine trials. There continues to be a need for studies of 394 

natural DENV infection as well as efforts to develop new technologies for assessment of T cell responses 395 

to DENV. Implementation of these efforts will require ongoing support from government, industry, and 396 

charitable foundations, as well as creative solutions from the scientific community. 397 
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Table 1. Characteristics defining different subsets of effector CD4 T cells. 661 

Subset Cytokine(s) 

produced 

Chemokine 

receptor(s) 

Transcription 

factor(s) 

Comment 

Th1 IFN- CXCR3 T-Bet Cellular immunity 

Th2 IL-4, IL-5, IL-13 CCR3, CCR4, 

CCR8 

GATA-3 Humoral immunity 

Th17 IL-17 CCR2, CCR4, 

CCR6 

RORt Inflammation 

Th9 IL-9 CCR3, CCR6, 

CXCR3 

PU.1 Mucosal immunity 

Th22 IL-22 CCR4, CCR10 AhR Parasites 

Tfh IL-21 CXCR5 Bcl-6 B cell help 

iTreg IL-10, TGF- CCR6 FoxP3 Immunosuppression, tolerance 

 662 
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Table 2. T cell antigenic content of dengue vaccine candidates in clinical development. 664 

Vaccine developer Structural proteins Non-structural proteins 

Live, attenuated (chimeric 

flaviviruses) 

  

Sanofi Pasteur C: YFV; pre-M, E: DENV1-4 NS1-5: YFV 

Takeda C: DENV2; pre-M, E: DENV1-4 NS1-5: DENV2 

NIH/Butantan C: DENV1/3/4; pre-M, E: DENV1-

4 

NS1-5: DENV1/3/4 

Purified inactivated   

WRAIR/GSK C, pre-M, E: DENV1-4 None (? NS1) 

Subunit   

Merck E (80%): DENV1-4 None 
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Table 3. Advantages and disadvantages of different methodologies for evaluation of pathogen-specific T 667 

cell responses. 668 

Method Functions measured Advantages Disadvantages 

Ex vivo (no stimulation)    

Flow cytometry (HLA-

peptide tetramer 

staining) 

Antigen specificity 

Phenotype 

Quantitative readout of 

cell frequency 

Independent of cell 

responsiveness 

Limited to one or few 

epitopes 

Not reflective of cell 

function 

Costly 

    

Short-term in vitro (1 

day) 

   

Flow cytometry/mass 

cytometry 

(intracellular 

staining) 

Cytokine production 

Degranulation 

(cytolysis)  

Phenotype 

Quantitative readout of 

cell frequency 

Multiple functions 

assessed 

Costly 

Specimen requirement 

high 

ELISPOT Cytokine secretion 

Granzyme release 

Quantitative readout of 

cell frequency 

Technical ease 

Reproducibility 

Specimen requirement 

low/modest 

One (or two) functions 

assessed per cell 



Single-cell 

transcriptional 

profiling 

Any function (based on 

gene expression) 

Gene networks 

controlling cell fate 

Provides complete 

profiling at the 

single-cell and 

population level 

Technically complex 

Low throughput 

Expensive 

Data analysis requires 

bioinformatics 

expertise 

    

Extended in vitro (5+ 

days) 

   

ELISPOT Cytokine secretion 

Granzyme release 

High sensitivity 

Technical ease 

Specimen requirement 

low/modest 

One (or two) functions 

assessed per cell 

Cell frequency altered 

by stimulation 

Flow cytometry (marker 

dilution) 

Proliferation High sensitivity 

Technical ease 

Less reproducible 

3H-Thymidine 

incorporation 

Proliferation High sensitivity 

Low cost 

Technical ease 

Radioisotope 

Less reproducible 

Immunoassay Cytokine secretion 

Granzyme release 

Technical ease 

Can be multiplexed 

Low sensitivity for rare 

cells 



Cloning (characterize 

with other assays) 

Multiple Multiple functions 

measured 

Evaluates antigen 

crossreactivity 

Low throughput (few 

cells evaluated) 

Costly 

Technical complexity 
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Table 4. Logistical issues and recommendations for assessment of T cell responses to dengue vaccines. 671 

Issues Recommendations 

Technical expertise and infrastructure needed for 

collection of viable PBMC 

Study site development and staff training and 

supervision 

Need to measure responses to all four DENV 

serotypes (and separately for structural 

and non-structural antigens) 

Collect adequate volumes of blood for assessment 

of T cell responses 

Immune correlates of vaccine efficacy have not yet 

been defined 

Apply a diverse suite of assays of T cell function 

and specificity 

Variation in HLA alleles and prior DENV exposure 

history in vaccine recipients 

Enroll adequate numbers and diversity of subjects 

in assessments of T cell responses to 

vaccination 

Collect blood samples before and after vaccination 

for T cell assays 

Lack of high-throughput assays to measure cross-

reactivity at single-cell level 

Development of new assay technologies 
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