
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Institute for Immunology and Informatics 
Faculty Publications 

Institute for Immunology and Informatics 
(iCubed) 

2015 

Time for T? Immunoinformatics addresses the challenges of Time for T? Immunoinformatics addresses the challenges of 

vaccine design for neglected tropical and emerging infectious vaccine design for neglected tropical and emerging infectious 

diseases diseases 

Francis E. Terry 

Leonard Moise 
University of Rhode Island 

Rebecca Martin 

Melissa Torres 

Nils Pilotte 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.uri.edu/immunology_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Terry, F. E., Moise, L., Martin, R., Torres, M., Pilotte, N., Williams, S., & De Groot, A. S. (2015). Time for T? 
Immunoinformatics addresses the challenges of vaccine design for neglected tropical and emerging 
infectious diseases. Expert Review of Vaccines, 14(1), 21-35. 
Available at: http://www.tandfonline.com/doi/full/10.1586/14760584.2015.955478 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Institute for 
Immunology and Informatics Faculty Publications by an authorized administrator of DigitalCommons@URI. For 
more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, 
contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/immunology_facpubs
https://digitalcommons.uri.edu/immunology_facpubs
https://digitalcommons.uri.edu/immunology
https://digitalcommons.uri.edu/immunology
https://digitalcommons.uri.edu/immunology_facpubs?utm_source=digitalcommons.uri.edu%2Fimmunology_facpubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tandfonline.com/doi/full/10.1586/14760584.2015.955478
mailto:digitalcommons-group@uri.edu


Time for T? Immunoinformatics addresses the challenges of vaccine design for Time for T? Immunoinformatics addresses the challenges of vaccine design for 
neglected tropical and emerging infectious diseases neglected tropical and emerging infectious diseases 

Authors Authors 
Francis E. Terry, Leonard Moise, Rebecca Martin, Melissa Torres, Nils Pilotte, Steven Williams, and Anne S. 
De Groot 

The University of Rhode Island Faculty have made this article openly available. The University of Rhode Island Faculty have made this article openly available. 
Please let us knowPlease let us know  how Open Access to this research benefits you. how Open Access to this research benefits you. 

This is a pre-publication author manuscript of the final, published article. 

Terms of Use 
This article is made available under the terms and conditions applicable towards Open Access Policy 
Articles, as set forth in our Terms of Use. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/immunology_facpubs/
46 

http://web.uri.edu/library-digital-initiatives/open-access-online-form/
https://digitalcommons.uri.edu/oa_policy_terms.html
https://digitalcommons.uri.edu/immunology_facpubs/46
https://digitalcommons.uri.edu/immunology_facpubs/46


Time for T? Immunoinformatics addresses the challenges of 

vaccine design for neglected tropical and emerging 

infectious diseases
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1EpiVax, Inc., Providence, RI, USA
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3Smith College, Northampton, MA, USA

Summary

Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, 

while also raising the quality of human life. However, newly emerging infectious diseases (EID) 

and more well-established tropical disease pathogens present complex challenges to vaccine 

developers; in particular, Neglected Tropical Diseases (NTD), which are most prevalent among 

the world’s poorest, include many pathogens with large sizes, multi-stage life cycles and a 

variety of non-human vectors. EID such as MERS-COv and H7N9 are highly pathogenic for 

humans. For many of these pathogens, while their genomes are available, immune correlates of 

protection are currently unknown. These complexities make developing vaccines for EID and 

NTD all the more difficult. In this review, we describe the implementation of an 

immunoinformatics-driven approach to systematically search for key determinants of immunity 

in newly available genome sequence data and design vaccines. This approach holds promise 

for the development of 21st century vaccines, improving human health everywhere.
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Neglected Tropical and Emerging Infectious Diseases: New Challenges 

Climate change and international travel have had a dramatic impact on the geographic 

distribution of pathogens infecting humans and animals. Old world pathogens such as Dengue 

and Chikungunya virus, previously restricted to the Middle East, Africa and Asia have now 

appeared in the Americas [1]. Newer pathogens such as Middle East Respiratory Syndrome 

(MERS) and an entirely new coronavirus affecting humans (MERS-CoV) have been spreading 

beyond the region of the world from which the virus derives its name [2]. Meanwhile, human 

populations in developing areas of the world continue to be threatened by neglected tropical 

diseases (NTD). More than two billion people – nearly 30 percent of the world's population –

suffer from one or more neglected tropical diseases [3], which include leishmaniasis, lymphatic 

filariasis, onchocerciasis, schistosomiasis and soil-transmitted helminthiasis (among others, see 

Table 1A). Thus in addition to climate change and airline travel, economic conditions leading to 

transmigration contribute to the spread of NTD. Recent examples include the re-emergence of 

Leishmania in Spain [4] and Chagas disease in Texas [5]. 

Even while NTD expand their reach, vaccine development for these diseases lags behind. In 

contrast, vaccines for important emerging infectious diseases (EID, Table 1B) are being 

developed, to a certain extent, by large biotechnology companies, particularly when these 

companies receive guaranteed purchase agreements or other incentives to accelerate vaccine 

development. Examples include the development of a vaccine for H7N9 (an emerging avian 

influenza) by Novartis and Novavax in 2013 [6,7] and work towards the development of a new 

MERS-CoV vaccine in 2014 [8]. However, the standard approach to developing new vaccines 

for emerging (and re-emerging) infectious disease threats, which is to implement previously 

existing vaccine design methodologies such as cloning and expressing the dominant surface 

antigen [9], frequently results in the development of vaccines that are only effective when given 

with strong adjuvants [10]. This approach is particularly unlikely to work for pathogens that have 

complex lifecycles (such as parasites) or are highly mutable (such as RNA viruses). This article 

will discuss new, computational approaches that may accelerate and improve the design of 

vaccines for NTDs and EIDs.

Truly effective vaccines do not exist for the majority of the NTD. Although vaccines are in 

development for several NTD pathogens [11], lack of financial incentive to invest in research 

and development programs for diseases concentrated in low income countries has mired the 



progress of vaccine efforts among large pharmaceutical companies [3]. Preventative 

chemotherapy mass drug administration (MDA) programs employing donated or extremely low-

cost generic drugs are currently in progress to control lymphatic filariasis, onchocerciasis, 

leprosy, trachoma and helminthiases in many areas of the world [12]. A complication inherent in 

this strategy is that because the regions affected by different NTDs overlap, co-infections can be 

difficult to manage with anti-parasitic agents [13]. The success of these long-term efforts and 

off-target effects of mass-eradication campaigns at the individual and population levels remain 

to be determined [14]. As has been observed for polio, geopolitical upheaval may hamper global 

efforts to eradicate NTD. Thus, effective NTD vaccines are still needed [15]. New cost-effective 

design methodologies can help to bridge the gap between the great need for these vaccines 

and return on investment for pharmaceutical companies.

Fortunately, genomes for many newly emerging pathogens and neglected tropical disease-

associated pathogens are becoming available due to research efforts worldwide [16]. The

availability of these genomes now makes it possible to apply computational vaccinology tools to 

these diseases of global health importance. 

Basic Principles of vaccinology

Host immune response to pathogens is mediated by the innate and adaptive arms of the 

immune system. Innate immune cells such as macrophages, neutrophils and natural killer cells 

are responsible for the first line of defense, while adaptive immunity provides a more targeted 

response to pathogens that establishes immune memory for more rapid responses upon 

repeated exposures. B cells produce antibodies, which are capable of recognizing and 

neutralizing pathogenic antigens. T cells support antibody production, activation, and memory 

development, and are capable of lysing infected cells. The potent response from T and B cells, 

however, comes at a cost. Whereas innate immune cells can respond within 24-72 hours, the 

primary adaptive response normally takes 7-14 days to mature. Secondary adaptive responses 

driven by immune memory are much faster and much stronger. This is the principle behind 

vaccination: pre-exposure to pathogen-derived antigens can induce pathogen-specific immune 

memory. The discovery of critical antigens that drive protective memory is facilitated by new 

computational tools. 

Indeed, the general principle that immune cells develop memory to specific pathogen 

components – has driven the development of genome-derived vaccines over the past two 



decades. Since T cells play a critical role in adaptive immunity and the development of immune 

memory required for an efficacious vaccine, computational tools have been use to search for 

small linear peptides (T cell epitopes) derived from protein antigens that drive class I and class 

II T cell responses. These peptides are displayed on the surface of antigen presenting cells 

(APC) by multiple alleles of the major histocompatibility complex (MHC). Since human beings 

express multiple alleles of class I and class II MHC molecules, called human leukocyte antigens 

(HLA), computational vaccinologists now search for T cell epitopes that can bind to the most 

common HLA alleles in the human population, reasoning that broad HLA coverage will 

contribute to the development of effective genome-derived vaccines. Computational tools can 

also be used to select epitope-rich surface proteins that are better immunogens to drive B cell 

response. Fortunately, while B cells and antibodies generally recognize surface proteins, T cells 

recognize epitopes derived from a broader range of proteins, giving the computational 

vaccinologist many possible sources (internal and external proteins, as well as secreted 

proteins) for the selection of T cell epitopes for vaccines.

Exposure to a given pathogen generates memory T cell clones capable of rapid and efficient 

response upon subsequent re-infection [17]. This response may include T cell help for induction 

of higher antibody titers, T cell-mediated lysis of infected cells, and the expression of cytokines 

to coordinate other cell-mediated immune processes such as activation of antigen presenting 

cells. Breadth of T cell response (responding to many different epitopes) appears to be 

correlated with protection from severe disease for many pathogens that affect humans. More 

specifically, for human immunodeficiency virus (HIV), hepatitis B (HBV), hepatitis C (HCV), 

lymphocytic choriomeningitis virus (LCMV), and malaria, protection from disease has been 

correlated with broad T cell epitope response to both "immunodominant" and sub-dominant T 

cell epitopes [18,19,20,21,22]. These discoveries have contributed to the concept that vaccines 

can be made directly from genomes by selecting sets of epitopes that will stimulate immune 

responses and protect against disease.

Based on the observation that broad T cell response may be protective, computational 

vaccinologists have worked to define collections of T cell epitopes that can re-create the 

requisite features of this response. T cell-driven, epitope-based strategies for developing 

vaccines against EID and NTD are currently the focus of several NTD research laboratories. 

Proof of the principle exists for a number of disease models: cellular immunity elicited by 

epitope immunization provided complete protection against Respiratory Syncytial Virus (RSV)

challenge, partial protection of BALB/c mice against sporozoite challenge, elimination of 



malaria-infected hepatocytes in vitro, partial protection of BALB/c and CBA against encephalitis 

following intracerebral challenge with a lethal dose of measles virus, complete protection from 

intraperitoneal Herpes Simplex Virus (HSV) challenge, protection against infection with malaria 

or influenza A virus, and full protection of sheep against Bovine Leukemia Virus (BLV) (these 

examples are reviewed in [23]). We have demonstrated complete protection against lethal 

vaccinia challenge [24], and successful clearance of a chronic bacterial infection (H. pylori) 

following T-cell epitope-driven vaccination [25]. In earlier studies, we achieved partial protection 

against an aerosolized bacterial pathogen (Tularemia, [26]) using a vaccine that contained only 

14 epitopes. While mice are not humans, growing evidence that T cell-epitope driven vaccines 

can be effective in humans has led to establishment of a number of biotech startups and 

venture-backed companies focused entirely on T-cell epitope based vaccines.

T cell epitopes as ‘payload’

As described in the following sections, computational tools are being used to identify proteins or 

antigens of interest directly from the genomes of pathogens. In theory, a minimal set of antigens

or epitopes that induce a competent immune response to a pathogen can be discovered using 

the new tools. Adjuvant triggers innate immunity, which is an essential component of the 

protective immune response, directing it towards inflammation rather than tolerance. When 

combined with the minimum antigenic components that comprise the “payload” of a genome-

derived-vaccine, delivered in the right vehicle, may trigger protective immune response. The 

fundamental principle of the genome-derived epitope-driven vaccine approach is illustrated thus:

Immunogenic Payload + Adjuvant + Delivery vehicle = Vaccine. 

The importance of epitopes as key determinants of protective immune responses is reflected by 

the flurry of immunoinformatics activity over the past decades. A number of T cell epitope 

mapping tools have been developed to accelerate the identification of these critical components 

of the immune response. Using methods such as frequency analysis, support vector machines, 

hidden Markov models, and neural networks, researchers have developed highly accurate tools 

for modeling the MHC-peptide interface and predicting T cell epitopes. Available tools have 

been comprehensively reviewed: see Brusic et al. [27], De Groot and Martin [28], and Sette et 

al. [29]. The concept was at first called “vaccinomics” by Brusic and Petrovsky in 2002 [30], then 

“reverse vaccinology” by Rappuoli in 2003 [31] and, more recently, “immunome-derived” or 

"genome-derived vaccine design” by Pederson [32]; De Groot and Martin [33]; and Doytchinova, 

Taylor, and Flower [34]. 



B cell epitopes – T cell epitope content as a proxy for B cell response? 

Computational vaccinologists have been unable to successfully develop accurate tools for B cell 

epitope prediction, even though one of the most commonly measured outcomes of vaccination 

and accepted determinant of protection is antibody generation [35,36]. Thus, current 

computational vaccinology approaches to vaccine development must take B cell response into 

consideration and develop approaches that include means of stimulating effective humoral 

immunity where it is required for protection against challenge. Given T cell dependence for 

essential features of an effective antibody response, including B cell affinity maturation, class 

switch recombination, plasma cell differentiation, and memory B cell differentiation [37], T cell

epitope analysis and quantification have been used by our group as a proxy for identifying good 

B cell immunogens, linking in silico sequence analysis to desired putative B cell responses [28].

The iVAX approach to designing genome-derived epitope driven vaccines

De Groot and colleagues have integrated epitope-mapping tools with a wider array of vaccine 

design algorithms into the web-based iVAX toolkit, which will be described in some detail in the 

next sections. The tools were initially used by EpiVax and collaborators [23,38,39,40,41,42], and 

then expanded and refined for projects that have been in progress at the Institute of 

Immunology and Informatics (iCubed) [43,44,45]. The iVAX toolkit is currently in use for NTD

research at the iCubed and with academic collaborators under an agreement established 

between EpiVax and URI in 2009. iVAX tools are being used to evaluate the protective potential 

of existing NTD and EID vaccines [46,47], to predict immune response to newly emerging 

pathogens [9,10] and to design novel NTD vaccines composed of T cell epitopes (for Chagas 

disease, Brugia malayi, and several different species of Leishmania [48]). In the next few 

sections we describe the iVAX approach to designing genome-derived epitope-driven vaccines

for NTD and EID. 

Selecting Targets

One of the first questions facing computational vaccinologists is how to prioritize their search for 

antigenic proteins and epitope sub-units. The entire set of proteins derived from a pathogen’s 

genome is an unlikely point of departure for epitope mapping, since many of these proteins may

not be part of the ‘core genome’ for a set of bacterial or viral strains of the same pathogen. 

Others may be proteins that serve as ‘housekeeping’ genes that are also well-conserved in 

harmless commensal organisms. On the other hand, proteins that are highly conserved across 

variant strains, that are pathogen-specific, and those that are up-regulated during interactions 



with the host, particularly those that are secreted by a pathogen (presumably in an attempt to 

alter the host environment), are excellent targets for vaccine development. 

In addition to targeting upregulated, secreted, and pathogen-specific antigens, other means of 

selecting antigens for epitope screening include: (1) identifying proteins that are more common 

in virulent, as compared to avirulent strains, and (2) selection of genes differentially expressed 

in immunopathogenesis; (3) prioritizing proteins exposed on the surface of the pathogen; (4) 

focusing on proteins that are expressed early in the course of natural infection. The ExPASy 

(Expert Protein Analysis System) proteomics server of the Swiss Institute of Bioinformatics (SIB) 

offers a wide variety of proteomics tools that can be used for this purpose, including tools 

related to protein identification and characterization. Our groups have adapted an approach first 

described by Gennaro et al. for Mycobacterium tuberculosis (Mtb) [49], employing a series of

ExPASy tools (SignalP, TMPred, and Prosite Scan available at www.expasy.org) to triage 

pathogen genomes, reducing the number of potential targets from thousands of proteins to 

several dozen candidate antigens. In our first test of this approach, we found that a subset of 

epitopes derived from the Mtb genome elicited interferon-gamma (IFNγ) response from Mtb-

exposed human samples, and prototype epitope-based TB vaccines were shown to be robustly 

immunogenic in murine studies [50].

Immunogenicity Scale: Ranking Antigens

Once a set of antigens is selected using the methods described above, tools available through 

the iVAX toolkit can be used to rank proteins for relative immunogenicity, based on their putative 

T cell epitope content. For this purpose, iVAX calculates an "immunogenicity score," which 

represents the deviation between the number of putative epitopes found in a given protein and 

the number we would expect to find in a randomly-generated protein sequence, taking care to 

adjust for protein size. In this context, an immunogenicity score of zero reflects random, or 

"average" putative epitope content; positive scores reflect more epitope content than expected, 

while negative scores reflect less epitope content than expected [51]. Large numbers of protein 

sequences derived directly from the genome of selected pathogens can be ordered by potential 

class I (CTL), class II (T helper) or both class I and class II epitope content and placed on an 

immunogenicity scale (Figure 1). This tool allows researchers to quickly rank a given set of 

proteins both in relative (i.e. relative to each other) and absolute (i.e. relative to a panel of 

known immunogens and non-immunogenic proteins) terms [52]. In our experience, epitope-rich 

proteins are good vaccine targets and elicit strong antibody responses – thus, as previously 

stated, T cell epitope content is a useful proxy for overall immunogenic potential. 



Antigen selection is particularly complicated when targeting parasitic organisms due to their 

comparatively massive genomes and multi-staged life cycles, and ranking of these antigens 

may assist with the selection of better targets. For example, in Figure 1, we show two candidate 

antigens derived from Brugia malayi, a causative agent of lymphatic filiariasis, whose life cycle 

is divided into multiple larval stages including a microfilarial stage [53]. In this case, TPX-2, a 

protein that has been identified as a potential vaccine target [54], is shown to contain minimal T 

cell epitope content, with an immunogenicity score of -27.61, and thus it may be less successful 

as a vaccine candidate. In contrast, Juv-p120, a B. malayi ortholog of a Litomosoides 

sigmodontis antigen implicated in conferring protection against microfilarial infection [55] carries 

substantially more T cell epitope content, scoring +94.14 on the immunogenicity scale, in the 

same range as other well-known immunogens. Furthermore, as is illustrated here in the case of 

B. malayi, we frequently find evidence that pathogens appear to reduce T cell epitope content in 

key proteins to avoid human immune responses. Epitope deletion is an established means of 

immune evasion in HIV and HCV [56,57]; thus, the mechanism may also be relevant in the 

context of infections that are associated with chronic infection caused by filaria, leishmania, and 

other chronic NTDs, particularly in stages associated with chronic parasitism and parasite 

persistence in the face of immune pressure. We will discuss additional means of immune 

evasion that can be uncovered by computational tools, below. 

EpiMatrix: T-cell Epitope Mapping of Selected Antigens

T-cell epitopes are short linear peptides that can bind to MHC molecules and engage T cells 

through their receptors (TCR), activating specific populations of CD8+ and/or CD4+ 

lymphocytes. These epitopes are key to forming the immunological synapse between antigen-

presenting cells and T cells. Because TCRs are produced in a myriad of possible conformations

(much like antibodies, to which they are related), MHC binding is the dominant event in immune 

recognition. In other words, most MHC ligands are also T cell epitopes, and T cell epitopes are 

by definition, MHC ligands. The MHC-peptide interaction is well-characterized [58,59]. Based on 

these characterizations, pattern-matching algorithms such as EpiMatrix have been developed to 

screen protein sequences for peptides that will bind MHC. 

The human MHC molecules, or HLA, are among the most variable proteins in the human 

genome. This variation ensures that the surveillance capabilities of the human immune system 

are both broad and deeply redundant, making immune escape through mutation more difficult 

for pathogenic organisms. Fortunately, some alleles are much more common than others in the 

human population, and the binding repertoire of many alleles significantly overlap. 



By focusing on alleles that are both common (in the human population) and significantly 

different from each other (representative of human diversity), HLA alleles can be grouped into

“supertypes”, which can reduce the search space to a manageable number of evaluations. Six 

of these class I super-type alleles that “cover” the genetic backgrounds of most humans 

worldwide have been used to define CTL epitopes: A*0101, A*0201, A*0301, A*2402, B*0702, 

and B*4403 [60]. For class II T helper epitopes, mapping for a panel of eight common alleles:

DRB1*0101, *0301, *0401, *0701, *0801, *1101, *1301, and *1501, gives broad T helper 

epitope coverage [61]. The concept of supertype alleles is generally accepted and widely 

applied to vaccine design in the field of computational vaccinology [60,61]. 

Using the set of selected protein antigens as a starting point, iVAX uses EpiMatrix to parse each

into overlapping 9-mer frames where each 9-mer overlaps the last by eight amino acids. Each 

9-mer is then scored for predicted binding affinity to a panel of class I or class II HLA alleles. 

The EpiMatrix algorithm compares the amino acid sequence of each given 9-mer peptide to the 

coefficients contained in stored probability matrices, and produces a raw score. In order to 

compare potential epitopes across multiple HLA alleles, EpiMatrix raw scores are converted to a 

normalized “Z” scale. Peptides scoring above 1.64 on the EpiMatrix “Z” scale (typically the top 

5% of any given sample), are likely to be MHC ligands [62]. Evidence from animal studies 

suggests that the number of epitopes required for full protection is a small and definable subset 

(approximately 50) [63,64]; thus, epitope-driven vaccines developed by our group generally 

contain a payload of 50-100 epitopes that provide broad coverage of human genetic 

backgrounds. With a combination of promiscuous class II epitopes and class I supertype 

epitopes, it is possible to attain >99% coverage of the HLA of most human populations [60,61].

Eliminating Regulatory or Suppressor Epitopes using JanusMatrix

A recent development in vaccine design includes the consideration of epitopes that induce 

regulatory or suppressive immune responses [65]. Our group has been investigating epitope 

cross-conservation with the human genome and its association with diminished or regulatory

immune responses. Using a recently developed tool called JanusMatrix, we first determined 

that published effector T cell epitopes can be distinguished from reported regulatory T cell 

epitopes on the basis of TCR-specific cross-reactive potential with the human genome and 

human microbiome [66]. JanusMatrix differs from whole-sequence alignment tools such as 

BLAST [67] in its basis upon T cell receptor homology. Pathogenic peptides whose TCR-facing 

residues are identical to the epitopes contained in multiple self may be recognized by T cells 

specific to those human proteins. Of course, even though the MHC-facing residues may differ, 

these peptides must still have the capacity to bind to the same MHC as the pathogen sequence, 



provided that binding is preserved. Taking this into account, JanusMatrix compares the TCR-

facing contour of pathogen ligands to other genomes of interest, identifying matches therein that 

are predicted to bind the same MHC. TCR-homologous epitopes shared between pathogens 

and humans, or pathogens and other microbes, can be uncovered with remarkable speed using 

the JanusMatrix tool. 

Exploring further, we have uncovered a high degree of host (human) homology in viruses that 

tend to establish chronic infections in humans such as Epstein Barr Virus (EBV) and 

Cytomegalovirus (CMV) [68]. Furthermore, ‘commensal’ viruses can be shown to contain 

significantly more human genome-homologous epitopes relative to those causing acute 

infection (e.g. Ebola, Marburg) [68]. The limited clinical efficacy of some vaccines against

selected microbial pathogens may, in fact, have been due to their extensive cross-conservation 

with the human genome [10]. The JanusMatrix tool is currently being used by our team and 

collaborators and to identify significant homology between candidate payload epitopes and 

proteins contained within the human genome and the human microbiome. Using the tool, we 

find that not only viruses but also bacteria that establish chronic infections in humans 

‘deimmunize’ (remove T cell epitopes) and ‘tolerize’ (modify epitopes to be more cross-reactive 

to human T cell epitopes). Comprehensive studies of NTD genomes (and stage-by-stage 

analysis of parasite antigens) will be performed using the JanusMatrix tool, in the near future.

It follows that careful selection of T cell epitopes, and re-design of whole antigens, to avoid the 

inclusion of T cell epitopes that may be highly cross-reactive with the human genome could

improve the efficacy of whole-antigen and epitope-based vaccines. JanusMatrix complements 

recent research [69] on the development of adaptive immunity and supports the hypothesis that 

adaptive T cell responses are reinforced by cross-reactivity with the human microbiome

[70,71,72]. 

Cytoscape is an online tool that is usually used by bioinformaticians to illustrate the relatedness

between proteins, for example, all of the intracellular proteins that might be involved in the 

stimulation of a cell through toll-like receptors. We have repurposed cytoscape to describe the 

relationship between epitopes across proteins in groups of sequences (the human genome, the 

human microbiome, pathogen genomes [66]). Using Cytoscape [73], the results of JanusMatrix 

analysis (comparing a pathogen epitope to the human genome, for example) can be visualized 

as networks where each epitope derived from a pathogen is linked to its TCR-matched 



counterparts in the search database, which themselves are linked to their source proteins. For 

example, an influenza T cell epitope previously identified by Mark Davis and colleagues [69] that 

stimulates T cells in subjects never exposed to influenza can be shown to have an extensive 

network of cross-reactive TCR-facing epitopes in the human microbiome. In contrast, an epitope 

from vaccinia virus synthesized and tested by Larry Stern’s group is shown to have extensive 

cross-reactivity with the human genome by JanusMatrix. This epitope was non-immunogenic in 

vitro (by IFNγ ELISpot) even though it was shown to bind to the correct class II MHC [74]. This 

epitope fits the emerging in silico definition of a Treg epitope. 

Due to their commensal nature and need to avoid human immune responses over many years 

of co-existence, it is even more likely for selected human parasites to share putative T cell 

epitope content with their human hosts. In Figure 2 we offer two example peptides from B. 

malayi antigens TPX-2 and Juv-p120, compared to published Treg epitopes from human 

immunoglobulin and effector epitopes, the CEFT pool (a set of peptides used as ‘control 

positive’ peptides in ELISpots [66]). The potential cross-reactivity network differential is evident 

between the TPX-2 epitope, with many related epitopes derived from human sequences, and 

the Juv-p120 sequence, whose related human epitopes are few. This finding underscores the 

importance of validating the response phenotype of T cells stimulated by epitopes identified in 

silico prior to their inclusion in vaccine constructs, and also illustrates the importance of this type 

of analysis for the selection of candidate epitopes for NTD.

ClustiMer: Finding Promiscuous T-cell Epitopes

Promiscuous HLA binding potential is a feature of class II-restricted T cell epitopes particularly 

exploitable for vaccine design purposes. It has been shown that putative epitopes for HLA class 

II are not often distributed evenly across protein sequences, but instead tend to cluster in 

specific regions, where it is not uncommon to observe several reactive 9-mer frames in close 

proximity [75]. These “clusters” of unusually high predicted epitope density can be identified in 

silico using the ClustiMer algorithm. In general, T cell epitope clusters identified by the ClustiMer 

algorithm tend to be promiscuous MHC binders and are frequently T cell epitopes [51]. Due to 

overlapping peptide-binding preferences among HLA-DR alleles, it is also possible to identify 

single 9-mers capable of binding four or more HLA alleles [75]. These sequences have been

dubbed “EpiBars” due to their horizontal, band-like signature in readout from EpiMatrix (see

Figure 3). T cell epitope clusters can be very powerful, and EpiBars may be a characteristic 

feature of highly immunogenic, promiscuous class II epitopes. These compact, highly reactive 



peptides are relatively easy to deliver and show great promise as vaccine components. We 

have used these clusters extensively in our own work [24,43,50].

Class I Epitope Selection
Promiscuous T cell epitopes also exist, to a certain degree, for class I alleles; however, this is 

much less common than for class II. Some laboratories have demonstrated cross-presentation 

of peptides within HLA "superfamilies,” such as the A3 superfamily: A3, A11, A31, A33 and A68 

[76]. Cross-MHC binding and presentation to T cells has been confirmed in HIV vaccine studies 

[77]. However, we have found that weighting towards the selection of highly promiscuous class I 

epitopes may lead to identification of candidate epitopes that have lower binding affinities 

overall. Higher binding affinity appears to be a critical aspect of CTL epitope efficacy [78], thus 

our group prefers to select a small set of the best-scoring putative epitopes for each of the six 

class I HLA superfamilies from a given protein or set of conserved peptides (Figure 4). 

EpiAssembler: Generating Immunogenic Consensus Sequences

Selecting epitopes that are broadly reactive across circulating strains can enhance broad 

applicability of new vaccines. The problem of pathogen variability significantly complicates the 

selection of epitopes for vaccine design. To address this problem, EpiVax has developed 

EpiAssembler [79] to identify sets of overlapping, conserved and immunogenic epitopes and to 

assemble them into extended immunogenic consensus sequences (ICS, Figure 5). 

The theory behind developing ICS is that processing and presentation of these sequences 

would allow for presentation of the highly conserved Class II-restricted epitopes contained in the 

ICS in the context of more than one MHC. The resulting peptide is not a “pseudo-sequence” as 

such, since each constituent epitope occurs in its corresponding position in the native protein; 

adjacent epitopes may be similarly conserved but not in the same variant of the pathogen. The 

ICS approach has been useful for identifying highly immunogenic epitopes for HIV vaccine 

design [38]. Using HIV as an example, while the full composite ICS peptides happen to be 

exactly conserved in a few individual strains of HIV, each peptide represents a significant 

percentage of circulating strains because every constituent overlapping epitope is conserved in 

a large number (range 893 to 2,254) of individual HIV-1 strains [38].

By extending the approach described above, it is possible to develop completely synthetic 

antigens whose sequences are optimized for T helper potential. With an eye to structural 

considerations, even recombinant protein-only vaccines could be optimized in this way, enabling 

primary cognate T help to be maximized and B cell memory to be elicited. An ideal vaccine 

might include whole proteins in addition to some epitopes; some or all of these antigens could 



be optimized using the ICS approach. Linking ICS epitopes to a carrier protein (such as a 

surface protein target of B cell response) would further maximize primary cognate T help, since 

B cells that capture the recombinant proteins would be able to process and present T helper 

epitopes derived from more variable proteins. 

As compared with immunogenic consensus sequences, randomly-selected counterparts, on 

average, contain half as many binding motifs and cover one third fewer isolates [40]. To develop 

vaccines of equivalent antigenic “payload” using conventional methods would be prohibitively 

expensive, as it would require use of multiple variants of each antigen. We believe that this and 

similar approaches that harness conserved T help have tremendous potential and deserves

careful consideration in vaccine design.

From Genomes to Vaccines: Epitope Annotation, Validation and Down-Selection. 

The next step in the iVAX approach is to review the putative epitopes produced by the EpiMatrix

system, adding qualitative and quantitative annotations wherever possible, leading to an 

investigator-driven down-selection process. Putative epitopes derived from known antigens or 

from proteins over-expressed during early stages of infection or proteins known to be exposed 

to immune surveillance as reported in the literature may be prioritized. Further, putative epitopes 

with the in silico profile of potential regulatory T cell epitopes (based on JanusMatrix analysis) 

are removed from further consideration.

iTEM: Individualized T-cell Epitope Measure

Algorithms can also be helpful to interpret vaccine component responses in preclinical and 

clinical studies. In studies of immune response to therapeutic proteins and vaccines, the authors 

have observed that subject-to-subject variation in T-cell response closely relates to 1) subject 

HLA type and 2) the number of motifs or peptides that match the subject’s HLA haplotype. To 

describe this relationship, EpiVax researchers have developed a metric that may be useful in 

clinical assessment of immune response to vaccines, called the “individualized T-cell epitope 

measure” or iTEM. For a given T cell epitope, an individual’s iTEM score can be calculated by 

weighting and summing the epitope’s EpiMatrix Z-scores for each HLA allele in a given subject’s 

haplotype. This calculated score allows for individualized immunogenic potential to be predicted 

based on the number of putative epitopes contained in a protein and a given individual’s HLA 

haplotype. Using this score, it is possible to analyze the contribution of haplotype to the 

corresponding T-cell response. In prospective and retrospective evaluations, significant 

correlations were found between the IFNγ response to a given antigen and the iTEM scores for 

individual subjects [42]. In addition, correlations between the iTEM score and patient HLA have 



been observed for antibody titers [40,80,81], reflecting the importance of HLA-restricted T cell 

responses to the genesis of a robust anti-drug antibody response. 

Iterative Combinatorial Analysis for Vaccine Design

A number of methods for enhancing epitope-based vaccines have been described and 

implemented [82,83]. One approach is to align the individual epitopes in a protein or DNA 

vaccine construct as a “string of beads” without any intervening sequences or spacers between 

the payload epitopes [84]. However, the lack of spacers between the payload epitopes has 

raised concern that these sequences may contain junctional epitopes. VaccineCAD, an 

algorithm that iteratively analyzes epitope assemblies and minimizes the potential for junctional 

immunogenicity in any string-of-beads construct has been developed to address this concern

[40]. Peptide sequences contained in the junctional regions between the target epitopes are 

evaluated for potential immunogenicity. The highest scoring junction is identified and the 

algorithm optimizes the order of epitopes by evaluating potential alternative sequences. The 

process is repeated until no additional reductions in junctional immunogenicity can be achieved 

or until all junctional immunogenic potential has been eliminated. When the potential for 

junctional immunogenicity cannot be sufficiently reduced, a cleavage promoting spacer 

sequence, typically “AAY” for class I restricted constructs [85] or a binding inhibiting “breaker” 

sequence such as “GPGPG” for class II restricted constructs [86] is placed between the two 

offending epitopes. The ability to minimize junctional immunogenicity while simultaneously 

minimizing the presence of transmembrane domains or highly hydrophobic peptide segments 

which may be difficult to express would be a logical extension of this tool’s capabilities.

Successful Vaccine Design

The integration of computational tools for epitope discovery has enabled the development of 

genome-derived vaccines [41,45,44]. Compared to conventional strategies, this approach has 

the potential to create more effective and safer next-generation vaccines, as carefully selected 

epitopes focus immune responses on the minimal, essential pathogen-specific antigenic 

elements; epitopes directed against conserved “self” (host) antigens are eliminated. This 

approach is also well suited to highly variable pathogens, as selection of epitopes that are 

conserved across multiple strains or subtypes enables development of a broadly applicable, 

multi-pathogen vaccine. The genome-derived vaccine strategy has been applied by our team to 

a wide range of pathogens, including F. tularensis, variola, HIV, Mtb, H. pylori and influenza. 

These studies demonstrate that immunoinformatic-predicted epitopes are immunoreactive in 



vaccinees and survivors of infection, and stimulate de novo, protective immune responses in 

vivo in HLA transgenic mice [e.g.24,25,26,50].

Epitope-driven vaccines offer distinct advantages over traditional subunit vaccines. Multiple 

epitopes derived from several antigens can be packaged together. Thus, a broad-based 

immune response directed against several different antigenic proteins can be elicited without 

manufacturing and administering the entire protein, much of which will be immunologically 

irrelevant. This may reduce formulation challenges, cost, and safety risk. The use of epitopes 

also mitigates safety concerns arising from the use of intact recombinant proteins that may have 

undesired biological activity. 

This review of vaccine design tools developed by the EpiVax team is by no means 

comprehensive, and has mainly focused on antigen selection and design. Topics not covered in 

this review include formulation of epitope-driven vaccines, route of delivery (mucosal, 

intradermal, etc.), adjuvanting, selection of delivery vehicles, and preclinical and clinical testing. 

A major caveat concerning the use of the iVAX toolkit is that none of the vaccines designed 

using these tools have advanced to the clinic. Given the cycle of vaccine development, this is 

not surprising (it may take up to 20 years to develop a vaccine with full industry support). 

Retrospective and prospective studies have provided extensive validation of the tools described 

here [10, 28, 46, 47]. Nonetheless, algorithms developed and applied by this group to a wide 

range of pathogens have met with significant preclinical success and are currently in use for the 

development of vaccines against NTD parasites, EID viruses, and bioterror pathogens. 

Access to nearly all of the tools described in this article is freely available to trained users 

through the iVAX toolkit (http://www.immunome.org/ivax/ivax-tool-kit/). The website was 

developed with funding from the National Institutes of Health in 2010. Access to the iVAX toolkit 

and training on the tools is available for interested researchers under collaborative agreements

with the University of Rhode Island (primarily for neglected tropical diseases, but other 

arrangements are possible). Commercial users are directed to EpiVax

(http://www.EpiVax.com) which provides a secure-access version of the iVAX website for

commercial users. 

Expert Commentary

In general, the field of vaccine research has been slow to adopt new vaccine design tools, and 

even fewer NTD researchers are familiar with the use of the tools, despite proof-of-principle for 

the genome-derived vaccine approach and the fact that it significantly reduces time and effort to 

http://www.epivax.com/
http://www.immunome.org/ivax/ivax-tool-kit/


make vaccines. For EID, “tried and true” approaches often win out over newer approaches, 

even though traditional approaches have no greater likelihood of success. The MERS-CoV 

vaccine development programs that have been implemented illustrate this principle; despite the

fact that the virus belongs to a family of coronaviruses that have a history of rapid evolution, 

vaccination approaches are once again targeting the ‘spike’ protein. A similar approach was 

used during the emergence of SARS and completely failed to protect against rapidly evolving 

SARS viruses in animal challenge models [9,87]. Application of advanced immunoinformatics 

tools to NTD vaccines has also lagged for a number of reasons. NTD researchers do not use 

the tools because they lack access to and familiarity with them, and there are no widely 

publicized examples focusing on diseases that impact the developing world.

A series of technical challenges for NTD vaccines have been described recently, including

antigen discovery, process development, preclinical development, clinical trials in resource-poor 

settings, and the immune response to NTD infection, including what is commonly referred to as 

the IgE trap, through which certain individuals, perhaps especially those in endemic regions,

may have elevated pre-existing IgE antibodies for potential NTD vaccine antigens, leading to 

increased risk with vaccination [88]. Computational vaccinology cannot currently address all of 

these challenges; however the approach described here offers a unique opportunity to address 

certain hurdles early in the developmental process. Early in the pipeline, antigen discovery 

using T cell epitope prediction and ranking, along with candidate epitope triage using cluster 

analysis and cross-reactivity prediction provide valuable leads. Selected peptide candidates can 

be screened ex vivo in order to verify the phenotype of the immune response prior to inclusion 

in a final vaccine product.

Finally, T cell epitope based strategies are exceptionally platform-flexible, adaptable to synthetic 

peptide formulations deliverable in saline, emulsion, or microparticle, or encoding into plasmid 

vectors for DNA vaccination or recombinant protein production, thus allowing for novel 

distribution strategies necessary to reach the world’s poorest. This flexibility extends to the 

antigen discovery approach as well, in that many kinds of targets may be explored using 

immunoinformatics tools. A pertinent example for NTD and EID applies to vector-based targets. 

Vaccine components based upon the salivary proteins of arthropod vectors are already under 

investigation [89]. However, vector salivary antigens also have known immunomodulatory 

properties allowing for extended host tolerance [90,91]. The same discovery and evaluation 

strategy described for pathogenic antigens could be applied to such proteins, potentially 

providing a mechanism through which to stimulate robust immune response in the absence of 

the immunomodulatory properties of the complete salivary antigens.



Five Year View

The amount of data generated through new technologies, such as next generation sequencing, 

continues to expand exponentially. By applying these technologies to the study of EID and NTD 

causative agents, and expanding our genomic knowledge of these organisms, the feasibility of 

using high-throughput, informatics-based tools for the identification of putative protein and 

peptide targets increases. Vaccine efficacy may also improve, as the selection of targets can be 

refined by comparing the antigen to other genome sequences, such as the human genome and 

the human microbiome. The in silico-based approach to vaccine design may also alleviate many 

of the funding-associated challenges common to traditional vaccine design, by reducing the 

number of assays that need to be performed to select vaccine targets. Reduced cost should 

allow for the re-allocation of critical funding to the testing of in silico-predicted targets and 

constructs. And finally, improved safety, by eliminating human genome cross-conserved 

epitopes, may reduce unwanted adverse effects. Looking further into the future, we are 

confident that the evolution of the tools described here will eventually contribute to the 

development of personalized, on-demand vaccines [92]. 

Considering the importance of controlling infectious diseases to global economic stability, the 

integration of computational vaccinology tools and their application to the design of vaccines for 

NTDs and EID is of paramount importance. Delay is no longer acceptable. Vaccine developers 

must implement computational vaccinology tools if they wish to contribute to improving world 

health in the 21st century. 

Key Issues

 New immunoinformatics tools have been developed that address critical problems in 

vaccine design. 

 These tools have been extensively validated in pre-clinical models. 

 The design of vaccines for neglected tropical diseases would benefit from expanded use 

of these tools. 
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Table Legend

Table 1. Neglected Tropical and Emerging Infectious Diseases. 

Affecting more than two billion people, the neglected tropical diseases (A) and most emerging/reemerging 

infectious diseases (B) shown here lack effective vaccines. Computational vaccinology tools represent an 

accelerated, cost-sparing approach to vaccine design for these challenging targets. 

Disability-adjusted life year (DALYs) reflect global sum of years of life lost and years lived with disability 

as of 2010, presented with 95% uncertainty interval (UI), data taken from: Murray CJ, Vos T, Lozano R et. 

al. Lancet. 2012 [93]. ND: No Data.

Figure Legends

Figure 1. Lymphatic filariasis antigens on the EpiMatrix Protein Immunogenicity Scale. All other 

factors being equal, the more HLA ligands (i.e. putative T cell epitopes) contained in a given protein, the 

more likely that protein is to induce an immune response. To capture this concept, the EpiMatrix 

Immunogenicity Scale presents proteins by EpiMatrix Protein Score, and compares them to other known 

immunogens. The EpiMatrix Protein Score is the difference between the number of predicted T cell 

epitopes expected in a protein of a given size and the number of putative epitopes predicted by the 

EpiMatrix. EpiMatrix Protein Scores are “normalized” and can be plotted on a standardized scale.  

“Average” proteins score near zero. Protein Scores above zero indicate the presence of excess MHC 

ligands and denote a higher potential for immunogenicity while scores below zero indicate the presence 

of fewer potential MHC ligands than expected and a lower potential for immunogenicity. The EpiMatrix 

Protein Score is correlated with observed immunogenicity in vitro and in vivo. As shown here, proteins 

scoring above +20, like B. malayi antigen Juv-p120, are considered to have a significant immunogenic 

potential. Proteins scoring below -20, like TPX-2 in the figure, are less likely to be immunogenic in vivo. 

Figure 2. JanusMatrix analysis. This tool considers identity of TCR-facing residues to target proteins or 

genomes independently from residues that contribute to MHC binding. Peptides that have similar TCR-

facing residues and are presented in the context of the same HLA can be identified. Extensive homology 

is easy to identify using the Cytoscape network visualization tool. The extent of the network can be used 

to distinguish potential regulatory T cell epitopes (A) from potential effector T cell epitopes (B). A 

published Treg epitope example is shown in (C), and several published Teff epitope examples are shown 

in (D). For these illustrations, yellow hexagons identify the source antigens, turquoise diamonds identify 

the source T cell epitope clusters, grey squares indicate the source 9-mers, dark blue triangles indicate 

matched human 9-mers, and light blue circles indicate human antigens in which matched 9-mers are 

found. Data taken from [66]

Figure 3. Example of an EpiBar: EpiMatrix analysis of candidate lymphatic filariasis epitope. In 

addition to providing an overall Immunogenicity Score, EpiMatrix can be used to analyze epitopes at the 

local level. A Brugia malayi Juv-p120 peptide is shown above, parsed into 9-mer frames and analyzed for 

predicted immunogenicity. EpiMatrix assessments above 1.64 constitute the top 5% of predicted HLA-

binders and are shaded medium blue, while scores above 2.32 fall in the top 1% and are shaded dark 

blue. This Juv-p120 peptide registers significant scores for all 8 alleles in EpiMatrix in a single 9-mer 

frame, and based on the EpiMatrix method, has a Cluster Score of 16.81 (reflecting the number of 

predicted binders per amino acid length). Cluster Scores higher than 10 are considered to be significant 

based on retrospective and prospective studies carried out by the EpiVax group. The band-like pattern 

illustrated in frame 35 is called an EpiBar, and is characteristic of promiscuous epitopes.



                                                                                                                                                                                                   
Figure 4. Class I epitope “staircase” ranking. In the process of generating a selection of predicted 

high-affinity class I epitopes for inclusion in T cell-driven vaccines, parsed 9-mers from any antigen are 

ranked by potential to bind supertype HLA alleles and collated in a “staircase” report. In this example, the 

top five highest-scoring peptides from a given antigen are shown. In general, prioritizing class I epitopes 

by score for each of the individual alleles is preferred to defining epitopes that bind across alleles.

Figure 5. EpiAssembler construction of Immunogenic Consensus Sequences (ICS). This figure 

illustrates the process of assembling highly conserved T cell epitopes into a single molecule. First, a 

highly conserved, promiscuous epitope  is identified to form the 9-mer core of the ICS peptide (red bar). 

Overlapping conserved epitopes (pink, orange, green, and blue bars) are then added to the N- and C-

termini of the peptide until a suitable length is reached for binding in the class II HLA binding groove. This 

economical approach allows for targeting of multiple strains of a given pathogen using a single peptide, 

as illustrated by the blended bar at the bottom of the figure.
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Figure 1. Immunogenicity Scale



Figure 2. Cytoscape Depiction of T cell epitopes 

Potential LF Treg Epitope
(TPX-2)

Potential LF Teff Epitope
(Juv-p120)

Published Treg Epitope
Human IgG

Published Teff Epitopes
CEFT Pool

A B

C D



Figure 3. 

Frame Frame Hydro- DRB1*0101 DRB1*0301 DRB1*0401 DRB1*0701 DRB1*0801 DRB1*1101 DRB1*1301 DRB1*1501

Start Stop phobicity Z-Score Z-Score Z-Score Z-Score Z-Score Z-Score Z-Score Z-Score

32 IAFFTLAQT 40 0.3 -0.11 -0.86 0.27 -0.48 0.69 1 0.59 1.23 0

33 AFFTLAQTI 41 0.3 0.73 0.24 -0.11 1.21 0.09 -0.92 -0.15 0.74 0

34 FFTLAQTIT 42 0.24 1.68 -0.17 0.77 1.24 0.92 0.55 0.06 0.57 1

35 FTLAQTITA 43 1.01 2.21 2.19 2.89 2.08 2.02 2 2.1 2.14 8

36 TLAQTITAR 44 0.04 -0.31 0.24 -0.05 -0.3 0.26 -0.72 0.95 -0.58 0

37 LAQTITART 45 0.04 1.23 -0.38 1.46 1.03 0.84 0.68 0.65 0.78 0

38 AQTITARTV 46 0.05 0.93 -0.26 0.38 0.89 -0.96 0.73 -0.37 0.36 0

DRB1*0101 DRB1*0301 DRB1*0401 DRB1*0701 DRB1*0801 DRB1*1101 DRB1*1301 DRB1*1501 Total

2.21 2.19 2.89 2.08 2.02 2 2.1 2.14 --

3.89 2.19 2.89 2.08 2.02 2 2.1 2.14 19.31

2 1 1 1 1 1 1 1 9

EpiMatrix Cluster Detail Report
Representative T cell Epitope Cluster: Brugia malayi Juv-p120 

Count of Significant Z Scores

Total Assessments Performed: 56 Hydrophobicity: 1.15 EpiMatrix Score: 13.55 EpiMatrix Score (w/o flanks): 16.81

AA Sequence Hits

Summarized Results

Maximum Single Z score

Sum of Significant Z scores



Figure 4. “Staircase” report for Class I Epitopes

Frame Frame A0101 A0201 A0301 A2402 B0702 B4403

Start Stop Z-Score Z-Score Z-Score Z-Score Z-Score Z-Score

286 LLQQLLQEY 294 3.04 0.96 1.44 1.07 0.17 0.58 1

314 LMEQQKQLV 322 2.18 1.41 -0.57 0.41 0.67 -0.59 1

311 LVDLMEQQK 319 1.95 -0.23 1.75 -0.58 -0.98 -2.19 2

326 FLEPPQKQT 334 1.75 1.17 -0.23 0.23 -0.44 0.18 1

375 QSMFEKLLK 383 1.7 -0.87 2.88 -0.99 -0.73 -0.68 2

131 FLHNQQITL 139 0.45 2.78 0.65 2.19 1.51 0.17 2

3 KMKKGIIFL 11 -0.35 2.55 1.4 2.1 1.57 0.3 2

162 KLLQRQQTV 170 -0.16 2.55 0.58 0.14 1.12 0.1 1

256 LLQQLQIIV 264 0.48 2.44 0.27 0.14 1.09 -0.71 1

279 LLQEQQTLL 287 0.68 2.36 0.12 2.05 0.77 -0.13 2

13 IIAFSSCTK 21 1.36 0.75 3.19 -0.62 -0.15 -1.07 1

375 QSMFEKLLK 383 1.7 -0.87 2.88 -0.99 -0.73 -0.68 2

240 KQHSNVSTK 248 -0.91 0.21 2.86 -0.58 0.79 -0.15 1

52 MTALSTENK 60 1.56 0.03 2.72 -0.21 0.07 0.07 1

263 IVQLIQLQK 271 1.11 0.33 2.52 0.08 0.28 -0.53 1

293 EYQQQQPLI 301 0.22 -0.44 -2.06 3.7 -0.29 0.63 1

349 LMQQQQQLL 357 1.18 1.9 -0.32 2.89 1.41 -0.29 2

33 AFFTLAQTI 41 -0.57 0.86 0.36 2.61 1.03 1.33 1

47 SFSTTMTAL 55 0.35 0.7 0.31 2.52 1.47 0.41 1

341 QQQPQFQQL 349 0.48 1.11 -0.49 2.44 0.46 0.9 1

24 TPGITVVTI 32 -0.79 0.53 -0.82 0.71 3.47 0.34 1

272 QPRYDQKLL 280 -1.1 -0.05 -0.86 1.15 3.17 0.25 1

84 NPVPHQLQL 92 -0.6 0.75 -0.9 2.01 3.09 0.78 2

195 QPLTVQQEA 203 -0.83 0.37 -1.23 -0.19 2.33 -0.21 1

328 EPPQKQTLL 336 -0.09 -0.4 -1.48 1.12 2.12 0.57 1

292 QEYQQQQPL 300 -0.14 0.48 -1.18 1.51 0.93 2.62 1

78 QELEQQNPV 86 -0.41 0.89 -1.14 -0.37 0.3 2.47 1

315 MEQQKQLVV 323 -0.09 0.6 -0.86 -0.66 1.32 2.44 1

27 ITVVTIAFF 35 1.63 0.66 0.82 1.94 1.57 2.04 2

113 QENLRQQLR 121 0 -1.14 0.58 -0.29 -0.91 2.02 1

AA Sequence Hits



Figure 5.
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Tables

Table 1A. The Neglected Tropical Diseases

Disease Primary Causative Agents Primary Vector(s)
DALYs x 1000 

(95% UI)

Buruli Ulcer Mycobacterium ulcerans aquatic arthropods ND

Dracunculiasis Dracunculus medinensis cyclops water flea ND

Human African 
Trypanosomiasis

Trypanosoma brucei tsetse flies
560 

(76-1,766)

Leishmaniasis Leishmania spp.
phlebotomine sand 

flies
3,317 

(2,180-4,890)

Leprosy
Mycobacterium leprae. Mycobacterium 

lepromatosis
6 

(3-11)

Lymphatic Filiariasis
Wuchereria bancrofti, 
Brugia malayi, Loa loa

mosquitoes
2,774 

(1,807-4,000)

Schistosomiasis Shistosoma spp. Freshwater snails
3,309 

(1,705-6,260)

Soil-transmitted 
helminthiasis

Ancylostoma duodenale, Necator 
americanus, Ascaris lumbricoides, 

Trichuris trichiura
ND

Trachoma Chlamydia trachomatis
5 

(4-6)
Yaws Treponema pallidum pertenue ND

Chagas Disease Trypanosoma cruzi triatomine bugs
546 

(271-1,054)

Chikungunya Chikungunya virus Aedes mosquitoes ND

Dengue & severe 
Dengue

Dengue virus Aedes mosquitoes
825 

(344-1,412)

Echinococcosis Echinococcus granulosus
144 

(69-286)

Foodborne 
Trematodiases

Clonorchis sinensis, Opisthorchis spp., 
Fasciola spp. Paragonimus spp.

1,875 
(708-4,837)

Onchocerciasis Onchocerca volvulus Black flies
494 

(360-656)

Taeniasis/ 
Cysticercosis

Taenia solium
503 

(379-663) 
(Cysticercosis only)

http://en.wikipedia.org/wiki/Onchocerca_volvulus


Table 1B. Emerging Infectious Diseases (as of 2014)

Disease Primary Causative Agents Primary Vector(s)
DALYs x 1000

(95% UI)

Anthrax Bacillus anthracis ND

Infections caused by 
microbes that have 

developed antimicrobial 
resistance

Mycobacterium tuberculosis
Staphylococcus aureus

Enterococcus spp.
Neisseria spp.

Gonorrhoeae spp.

ND

Botulism Clostridium botulinum toxin ND

Campylobacteriosis Campylobacter spp.
7,541 

(5,687–9,374)

MERS, SARS Coronaviruses

Dengue Fever
DEN-1, DEN-2, DEN-3, DEN-4

virus
Aedes mosquitos

825 
(344–1,412)

Ehrlichiosis Erlichia bacterium Blacklegged ticks ND

Enteropathogenic E. coli 
(EPEC)

Enterotoxigenic E. coli 
(ETEC)

Eschericia coli

EPEC: 7,542 
(5,686–9,524)
ETEC: 6,894 
(5,619–8,286)

Flu (Influenza) Avian/porcine Influenza strains Birds, pigs
19,244 

(16,906–21,451)

Group A Streptococcal 
Infections

Streptococcus pyogenes ND

Hepatitis Hepatitis A, B, C, D, or E Virus
13,258

(11,364–15,855)

Lyme disease Borrelia burgdorferi Blacklegged ticks ND

Plague Yersinia pestis
Infected animals,

rodent fleas
ND

Prion Diseases Abnormal Prions
Sporadically, or 

inherited mutation 
of Prion gene

ND

Salmonellosis Salmonella spp.
Undercooked or 

raw meat, reptiles
4,847 

(3,819–5,949)

Shigellosis Shigella spp.
7,052 

(5,676–8,466)

Tularemia Francisella tularensis
Ticks, deer flies, 
infected animals

ND

West Nile Virus Flavivirus Mosquitoes ND
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