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Ordering and fluctuations in the ground state of the one-dimensional and
two-dimensional S = % X X Z antiferromagnets:
A study of dynamical properties based on the recursion method

V.S. Viswanath, Shu Zhang, Joachim Stolze,* and Gerhard Miiller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817
(Received 10 August 1993)

The recursion method is applied to the T' = 0 dynamics of the S = % X X Z model on a linear chain
and a square lattice. By means of new calculational techniques for the analysis of the continued-
fraction coefficients pertaining to specific dynamical quantities, we obtain reliable information on
the type of ordering in the ground state, on the size of gaps in the dynamically relevant excitation
spectrum, on the bandwidths of dominant structures in spectral densities, on the exponents of
infrared singularities, and on the detailed shape of spectral-weight distributions. We investigate some
characteristic properties of the dynamic structure factors S,,(q,w) and the spin autocorrelation
functions S**(w) = N! Zq S,u(q,w), specifically their dependence on the uniaxial anisotropy,
i.e., on the parameter which controls the type of ordering and the amount of quantum fluctuations
in the ground state. We find, for example, that the different degrees of ordering in the planar regime
of the one-dimensional and two-dimensional systems (criticality versus antiferromagnetic long-range
order) have characteristic signatures in the dynamical properties which are conspicuously displayed

in our results.

I. INTRODUCTION

The S = 1/2 X X Z model with bilinear antiferromag-
netic coupling between nearest-neighbor spins on some
lattice is specified by the Hamiltonian

H =Y {J(SFSs + S¥SY) + J.S7 55}
(i,d)

(1.1)

for J,,J > 0. It is an important model for magnetic
insulators and plays a significant role as a limiting case
of models used to describe systems of strongly correlated
electrons (e.g., Hubbard model, t-J model).

For a given lattice, the degree of ordering in the ground
state and the nature of the spectrum of low-lying excita-
tions depend strongly on the type of exchange anisotropy
(planar or uniaxial), which is controlled by the continu-
ous parameter J,/J. Schematic representations of the
T = 0 phase diagrams (order parameter and spectral
gaps) for the linear chain and the square lattice—the two
cases we are concerned with in this study—are shown in
Fig. 1.

For the one-dimensional (1D) system that sketch is
based on rigorous results. The system is known to un-
dergo a T = 0 phase transition between extended crit-
icality at J,/J < 1 (planar regime) and a state with
antiferromagnetic long-range order at J,/J > 1 (uni-
axial regime). The ground-state energy and the exci-
tation spectrum including the spectral gap have been de-
termined via the Bethe ansatz.! The exact expression
for the staggered magnetization M, was a by-product of
Baxter’s work on 2D six-vertex models.? The critical ex-
ponents which characterize the susceptibilities and inte-
grated intensities at ¢ = 7 and the infrared singularities
in various dynamical quantities throughout the planar
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regime depend continuously on the anisotropy parame-
ter J,/J. That functional dependence was investigated
and rigorously established along several different paths.3

Despite a wealth of exact results for static T = 0
properties, the determination of dynamical correlation
functions has remained an elusive goal except for the
case J,/J = 0, which can be interpreted as a model
of free lattice fermions. But even for that case the
evaluation of some dynamical quantities is exceedingly

(a) linear chain

M
z
criticality __--"hE
0 1 1,/
(b) square lattice
M M,
=777 AE

I,/

FIG. 1. Phase diagrams of the 1D and 2D S =1/2 XXZ
antiferromagnets in a schematic representation: J./J depen-
dence of the staggered magnetization M, or M, (solid lines)
and of the spectral gap AFE between the ground state and the
lowest branch of excitations at ¢ = m or q = (w,w), respec-
tively (dashed lines).
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complicated because of the subtle relationship between
fermion operators and spin operators.? The few existing
exact expressions for frequency-dependent spin correla-
tion functions®® are an ideal testing ground for the vari-
ous calculational techniques that are being used to tackle
the more formidable tasks of investigating the dynamics
of models with few or no guideposts of rigorous knowl-
edge.

Exact results for the 2D X X Z model have essentially
been limited to existence proofs for long-range order in
the ground state. At this time, published proofs’ '°
cover the entire parameter range excluding the vicinity
(0.22 < J,/J < 1.47) of the isotropic case, but the con-
sensus is that the X X Z model on the square lattice is an-
tiferromagnetically ordered for all values J,/J > 011714
Consequently there must be a transition, logically at the
symmetry point J,/J = 1, involving a 90° rotation of
the order parameter (from M, # 0 to M, # 0). In order
for that to happen, the spectral gap AE must go to zero
as J,/J approaches unity from above. At J,/J <1, the
spectral gap stays zero because the order parameter M
now breaks a continuous symmetry of H.

Since the staggered magnetization does not commute
with the Hamiltonian, its magnitude is reduced from the
saturation value, and the ground state contains a certain
amount of correlated quantum fluctuations except in the
Ising limit J,/J — oo. As the anisotropy parameter de-
creases toward J,/J = 1, the quantum fluctuations gain
strength and cause an increasing amount of spin reduc-
tion. In the 1D system, they make the long-range order
disappear completely at the symmetry point. Moreover,
the planar anisotropy does not weaken them sufficiently
to allow an in-plane staggered magnetization to estab-
lish itself for J,/J < 1. In the 2D system, by contrast,
the quantum fluctuations lead to only a partial spin re-
duction anywhere on the J,/J axis. The magnitude of
the order parameter is expected to have a minimum for
isotropic exchange coupling.15:16

It is interesting to compare the impact of zero-point
quantum fluctuations on the antiferromagnetic ordering
with the impact of thermal fluctuations at small nonzero
temperature. In the planar regime (J,/J < 1), 2D long-
range order is stable against the former (I' = 0) but,
according to the Mermin-Wagner theorem,!” not against
the latter (T > 0), whereas 1D long-range order is nonex-
istent even at 7' = 0. In the uniaxial regime (J,/J > 1),
the 1D and 2D staggered magnetizations both survive
the zero-point motion, but only the 2D order parameter
can withstand some amount of thermal fluctuations.

The different types of zero-temperature phase transi-
tion that take place at J,/J = 1 in the 1D and the 2D
S = 1/2 antiferromagnets and the different degrees of or-
dering at J,/J < 1 are reflected in the dynamical prop-
erties by unmistakable signatures. The goal of this study
is to determine and elucidate these signatures by means
of the recursion method.

II. RECURSION METHOD

The recursion method!®1®

quantum many-body dynamics

as applied to problems in
20722 j5 a general calcu-
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lational technique with virtually no intrinsic restrictions.
For a given model system, the recursion method provides
(in the context of this study) an algorithm for the com-
putation of the sequence of continued-fraction coeflicients
pertaining to any zero-temperature dynamic quantity of
interest. The input into the recursion algorithm consists
of (i) the Hamiltonian operator and its ground-state wave
function for a system of finite size, H|¢o) = Eo|¢o), and
(i) the operator A representing the dynamical variable
of interest. The finite-size ground-state wave function
can be determined by standard algorithms based on the
Lanczés method?!:23 or (for enhanced convergence) the
conjugate-gradient method.2425

A. Orthogonal expansion of wave functions

The Hamiltonian representation of the recursion
method for the determination of the correlation function

5(t) = (¢ol AT () Alo) = (do|ATA(=t)Ido)  (2.1)

is based on an orthogonal expansion of the wave
function,?!

[%(2)) = A(=t)ldo) = Y Di(t)|fa)- (2:2)

k=0

The orthogonal basis {|fx)} is determined recursively
from the initial state |fo) = A|$o) with the Hamiltonian
H = H — Ej as the generator of new directions:

|frs1) = H|fx) — arlfe) — bilfe-1) , K =0,1,2,...,

(2.3a)

_ (felHIfx) _
=i k=0,1,2,..., (2.3b)
b2 = _rlfe) k=1,2,..., (2.3¢)

T (feealfe) T

with |f_;) = 0. The expansion (2.2) is then inserted into
the Schrédinger equation, i(8/8t)|v(t)) = H|¢(t)) This
results in a set of coupled linear differential equations for
the functions Dy (t), which, upon Laplace transform,

di(¢) = /0°° dteictDk(t), (2.4)

can be solved for do(¢) in the continued-fraction repre-
sentation,

do(¢) = (2.5)

b2 ’
b3

C—ag—...

¢(—ag—
C—a1—

and from which the structure function
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+oo
S(w) = / dte™t (1) (2.6)
is then directly recovered via the relation
S(w) = 2(golA! Algo) lim Rldo(w +i6)].  (2.7)

B. Orthogonal expansion of dynamical variables

The Liouvillian representation of the recursion method

for the determination of the fluctuation function,

o(t) = 3[S(t) + S(-1)], (2.8)

provides an alternative algorithm based on an orthogonal
expansion of the dynamical variable,2°

A(t) =Y Ci(t) fe- (2.9)
k=0

The orthogonal basis {fi} is obtained recursively from
fo = A with the Liouvillian L = [H, | as the generator
of new directions:

_fk+1 = iLfk + Akfk—l , k=0,1,2,..., (2.108.)
(fk’fk)
Ao = = e— = e .
0=0, Ag Goh k=1,2,..., (2.10b)
with the inner product
(fr: 1) = Lol FL 1 + Fifll o). (2.11)

The expansion (2.9), inserted into the Heisenberg equa-
tion, dA/dt = iLA, yields a set of coupled linear differ-
ential equations for the functions C(t), which can be
solved, after Laplace transform,

c(z) = /Ow dte=*Ci(t), (2.12)

for the relazation function co(z) in the continued-fraction
representation,

1
TR,
24 22
zZ4+ ...

(2.13)

The (normalized) spectral density, which is the Fourier
transform of the normalized fluctuation function,

®p(w) = /+°° dte**Cy(t) , Co(t) = &) (2.14)
0 = - 0 ] 0 &(0) Ll .
can be recovered directly from the relaxation function:

Dy (w) = 31_1}:(1) 2R[co (e — iw)]. (2.15)

C. Nearly size-independent A; sequences

The results obtained from the two representations of
the recursion method are equivalent in principle. The
fluctuation function (2.8) is equal to the (symmetric) real
part of the correlation function (2.1) and determines, by
virtue of the Kramers-Kronig relations, also the (anti-
symmetric) imaginary part of (2.1). At zero tempera-
ture, this translates into the following relation between
the (one-sided) structure function (2.6) and the (sym-
metric) spectral density (2.14):

S(w) = 2ol AT Al6o)2o(w)O(w) (T =0).  (2.16)
The relation between the continued fractions (2.5) and
(2.13) can be expressed in terms of transformation for-
mulas between the respective coefficients (see Appendix
A for details).

Employing the Hamiltonian or the Liouvillian repre-
sentation of the recursion method in a given applica-
tion is a matter of computational convenience, but for
the interpretation and further analysis of the informa-
tion thus obtained, processing the single A, sequence
determined directly (Sec. IIB) or indirectly (Sec. ITA
and Appendix A) offers important advantages over pro-
cessing the double sequence {a,b?}.

Whereas many properties of the ground state are
strongly dependent on the system size N (here the num-
ber of spins), there exists for each dynamic quantity a
number of coefficients Ay that are at most very weakly
size dependent.?% For the continued-fraction analysis pro-
posed here we discard all but the nearly size-independent
Ap’s. The relatively small number of available nearly
N-independent A’s limits the precision of the predic-
tions that can be made. Our experience shows that
these limitations are benign compared to the problems
that arise when strongly N-dependent Ag’s are included
in the analysis. In all applications discussed here, the
nearly size-independent Aj’s exhibit some more or less
clearly recognizable pattern that translates into a spe-
cific property of the associated spectral density (2.15).
We may call this pattern the ¢mplicit information ex-
tractable from the sequence A;,...,Ak in addition to
the ezplicit information contained in these K values.

D. Model spectral densities

A common occurrence in quantum many-body dynam-
ics are Ay, sequences that grow linearly with k on average.
This property translates into spectral densities with un-
bounded support and a Gaussian decay law for the spec-
tral weight at high frequencies.?”-?® The patterns which
are typical for the applications discussed in this study can
all be generated from one of two model spectral densities.

The first model spectral density is of the form

(o3

exp(—w?/wd).

- 27 ’ w (2.17)

®ow) = STz 1/2)

wo

The A} sequence inferred from its frequency moments is
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known in closed form:2°

Age—1 = 3wd(2k —1+a) , Ay = 3wi(2k). (2.18)
The slope of the line Aj; determines the characteris-
tic frequency wo, and the vertical displacement of the
Ask_1 from that line determines the exponent a of the
infrared singularity. The model spectral density (2.17) is
displayed in Fig. 2 for a positive and a negative value of
a along with the corresponding Ay sequences in the in-
sets. These characteristic patterns (henceforth called 1A
for & < 0 and 1B for a > 0) are typical in applications
to dynamical quantities associated with critical fluctua-
tions. In fact, type-1 Ay sequences are useful indicators
for the identification and location of critical points in
T = 0 phase diagrams of quantum many-body systems.
They can also be used to estimate the values of critical
exponents (Sec. IIIC).

The second model spectral density relevant in the con-
text of this study reads

(w|-0)?

Bo(w) = 2w Ab(w) + VT Z‘F — A)O(|w| - Q) B

(2.19)

It has unbounded support and a gap of width 22 centered
at w = 0. An isolated spectral line with intensity A > 0
is located at the center of the gap. For A = 0 and 2 =
0, expression (2.19) reduces to a pure Gaussian, whose
Ak sequence grows linearly with k, Ay = wk/2. The
effect of the gap is to split the A} sequence into two
subsequences Az, and Ag_; that still grow (roughly)
linearly, but with different slopes. In the absence of a
central peak, the Az,_; grow more steeply than the Ay
(type 2A). If the Az, grow more steeply (at least for
large k), this is a sure indicator that a central peak is
present (type 2B). We do not know the Ay sequence of
the model spectral density (2.19) in closed form, but it
can be generated numerically from the exact frequency

¢ (@)

FIG. 2. Model spectral density (2.17) with unbounded sup-
port and power-law behavior at low frequencies for the two
cases a = —1/2 (solid lines) and a = 2 (dashed lines). The
A} sequences (2.18) for the two cases are displayed in the
insets.
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FIG. 3. Model spectral density (2.19) with unbounded sup-
port and a gap for the two cases A = 0, wo = 29 (solid lines)
and A = 1/2, wo = 2 (dashed lines). The A sequences for
the two cases are displayed in the insets.

moments as described in Appendix A. Two prototypical
cases are displayed in Fig. 3.3°

In applications of the recursion method, these type-2
patterns play an important role in identifying the pres-
ence of long-range order in the ground state®! and in
identifying the dynamical variable associated with that
long-range order. Type-2 patterns also occur in the anal-
ysis of dispersion curves of low-lying excitations that
dominate certain spectral densities.

E. Reconstruction of spectral densities

The calculational scheme proposed here has been de-
signed to incorporate the explicit and the implicit in-
formation contained in a sequence A,,...,Ak of nearly
size-independent continued-fraction coefficients to the
fullest extent possible into the reconstructed spectral
density. The method is best described in terms of three
different relaxation functions, each expanded into a con-
tinued fraction down to level K.

The ezact relazation function

1
CO(Z) = AL
z+

(2.20)

zZ4+...
Ag_1

T ATk ()

is the one we wish to determine, here expressed in terms
of explicitly known coefficients Ay, ..., Ak obtained from
the recursion method, and an unknown termination func-
tion 'k (2).

The model relazation function ¢o(z) expressed in terms
of K model coefficients A;,...,Ax and a model termi-
nation function 'k (z) is determined via

Co(2) = %/ dwq)o(w)

w— 1z

(2.21)
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from one of the two model spectral densities (2.17) or
(2.19) with its parameters determined by fitting the
model A, sequence of the correct type to the known
sequence of nearly size-independent Ag’s. The func-
tion €o(z) thus incorporates the implicit information con-
tained in the latter.

The reconstructed relazation function ¢y(z), finally, is
obtained by substituting the known, matching termina-
tion function 'k (z) for the unknown function 'k (2) in
(2.20). This function thus combines the explicit informa-
tion from c¢o(z) and the ¢mplicit information from ¢&y(z)
consistently and comprehensively. Furthermore it screens
out finite-size effects to a considerable extent. Remarks
on practical aspects of the reconstruction procedure are
found in Appendix B.

III. 1D S=1/2 XXZ MODEL
IN THE PLANAR REGIME

The 1D case of Hamiltonian (1.1) has a critical ground
state throughout the planar regime 0 < J,/J < 1, as
noted previously (see Fig. 1). The two-spin equal-time
correlation functions are known to decay algebraically at
large distances,

<Slu Slu+n

Yy~ (=1)*n7 . (3.1)
The critical exponents 7, = 7, and 7, depend continu-
ously on J,/J:3

Nz = 1/05 Ne = 07 (323)

1
6 =1 — = arccos(J,/J). (3.2b)
T
The spectrum of low-lying excitations most relevant for
the T = 0 dynamical quantities discussed here has the
form of a two-parameter continuum consisting of two
partly overlapping sheets with a common lower bound-
ary,

Tsi
er(q) = %lsinﬂ , cos¥ =J,/J, (3.3a)
and two separate upper boundaries,3?
nJsind, . _
ev(q) = —-19—| sin %I =éy(m —q). (3.3b)

The critical nature of the ground state manifests it-
self in characteristic (power-law) infrared singularities
(with J,/J-dependent exponents) in all those dynami-
cal quantities that are susceptible to the critical fluctua-
tions, specifically the dynamic structure factor S, (g,w)
at ¢ = w and the frequency-dependent spin autocorrela-
tion function S$**(w).

A. Dynamic structure factor S..(q,w)

For the reconstruction of the dynamic structure factor
Szz(g,w) we have consistently used K = 6 nearly size-
independent Aj’s extracted by means of the recursion

method from the ground-state wave function of a system
with N = 16 spins. The results of the reconstruction
are plotted in Figs. 4(a)—(c) for three values of J,/J.
The Ayg’s are of type 2A at 0 < ¢ < 7, which indicates a
spectral gap. Therefore we use the model spectral density
(2.19) with A = 0 to reconstruct Sgz(¢,w) as outlined
in Sec. IIE. At q = m, the Ag sequence is of type
1A, which signals zero gap and a divergent singularity at
w = 0. Here we employ the (Gaussian) model spectral
density (B3).32 In order to recover the dynamic structure
factor Sz, (gq,w) at w > 0, i.e., the structure function (2.6)
from the reconstructed spectral density (2.15), we have
to multiply the latter by twice the integrated intensity
(8257 ,) (= (folfo) in the recursion algorithm).

Let us first discuss the results for the case J,/J = 1,
which are depicted in Fig. 4(a). We observe that almost
all the spectral weight is distributed between the contin-
uum boundaries €1,(g) and ey(q) [indicated by circles in
the (g,w) plane]. The reconstructed S, (g,w) is strongly
peaked at w ~ £1,(q), and there exists a conspicuous tail
of spectral weight tapering off at w ~ ey(q). The g¢-
dependent gap of size e1(q) is very reliably reproduced
for all q values. We should like to emphasize that for the
results shown in Fig. 4(a) the value of the gap parameter
Q in the model spectral density (2.19) was inferred from
the nearly size-independent Aj’s and not externally set
equal to e1(q).

From the stability of these results under variations of
the numerical analysis, we conclude that they are largely
free of artificial structures. The only exceptions are per-
haps the weak secondary maxima at ¢ = 57/8 and 6n/8,
mainly because we do not have an interpretation for
their presence. Since the reconstruction is based exclu-
sively on the nearly size-independent A’s, the curves do
not reflect the unwanted effects of the discrete finite-size
spectrum.34

The reconstructed Sz, (mw,w) suggests the presence of
a strong infrared divergence. This is indeed rigorously
known to be the case and attributable to the critical fluc-
tuations. Thermal fluctuations are expected to remove
the infrared divergence in Sz (m,w), but it is doubtful
that the peak should move away from w = 0 as suggested
by the quantum Monte Carlo results of Ref. 35.

The reconstructed dynamic structure factors S, (g, w)
for J,/J = 0.5 and J,/J = 0 are shown in Figs. 4(b)
and 4(c), respectively. In order to correct for some not
so accurate gap estimates in these two cases, we have
set the parameter €2 in the model spectral density (2.19)
equal to £1,(q) , the known exact threshold of the excita-
tion spectrum. This accounts for the sharper edge in the
spectral-weight distributions at w = €1(g) in Figs. 4(b),
(c) as compared to (a).3¢

What is the effect of planar anisotropy on the dynamic
structure factor S;;(q,w) as reflected in the results of
Fig. 4? For J,/J < 1, a significant amount of spec-
tral weight is transferred to the second sheet [with upper
boundary £y (q)] of the two-parameter continuum. This
effect is best visible at small gq. The integrated inten-
sity (S78%,) is nonzero for ¢ = 0. There is no longer
a conservation law which prohibits that from happening.
The line shapes strongly suggest that the spectral-weight
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distribution is divergent at the lower continuum bound-
ary €r(q) throughout the planar regime. This confirms
the conclusions of an early finite-chain study of XXZ
dynamics.3? The mild enhancement of spectral weight at
the continuum boundary £y (q), best visible in Fig. 4(c),
is attributable to a divergent density of states at the up-
per edge of the two-parameter continuum.

Let us conclude with a remark on the dynamic struc-
ture factor S;,(g,w), which has been the object of more
extensive studies based on a variety of approaches (com-
plete numerical diagonalization of finite chains,3%:37:38
sum rules,3%4? lattice fermions,3%44?2 Fermi fields,*3
bosonization**). The results of those studies have led
to a consistent picture, according to which the function
S22(q,w) has almost all of its spectral weight confined be-
tween the boundaries €1(q) and ey(g). In Refs. 32 and

(a)
601 ] ~ "
5 YOI N\
T 40l W\ 7
% N~ /
n I\ /@
2.0 L
\ /
(c)
8.01

40, an explicit expression for S,.(¢,w) was proposed for
the spectral-weight distribution within the range of the
two-parameter continuum, which connects smoothly with
the known exact result® for J,/J = 0 and exhibits the
right singularity at ¢ ~ w. That expression for J,/J =1
was recently found to provide a near perfect match with
the data of an inelastic neutron scattering experiment by
Nagler et al.*® on the quasi-1D compound KCuF'3.

The free-fermion nature of the exactly solvable case
J./J = 0 poses a problem for the reconstruction of the
function S, (g,w) in that the fermion interaction causes a
crossover between different patterns in the Ay sequences.
This has the consequence that none of the model spec-
tral densities introduced in Sec. IID is applicable over
much of the planar regime (0.5 S J,/J < 0.9). However,
for sufficiently weak coupling (J,/J < 0.5), new oppor-

8.0 N) |

6.0 — T
3 S—"
Z 4o \UU \%
" AN :

2.0 \

(
L1

(]

T
3.0

FIG. 4. Dynamic structure factor Sz.(g,w) at T = 0 for fixed ¢ = n7/8,n = 0,1,...,8 of the 1D S = 1/2 X X Z antiferro-
magnet with J =1 and (a) J; =1, (b) J. = 0.5, and (c) J. = 0. The results were derived from the reconstructed relaxation
function & (z) with six nearly size-independent continued-fraction coefficients A, and a judiciously selected termination func-
tion as described in the text. The circles in the (g,w) plane indicate the boundaries (3.3) of the two-parameter continuum of

dominant excitations.
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tunities present themselves for an alternative continued-
fraction analysis with enhanced precision.®

B. Spin autocorrelation function $**(w)

The frequency-dependent spin autocorrelation func-
tion,

+7l'd

273 Sz::c(qa w)?

s = [ aestost) - |

-

(3.4)

subjected to its own continued-fraction analysis, pro-
vides further insight into the dynamics of the XXZ
chain. Starting from the same finite-size ground-state
wave function for a ring of N = 18 spins, we have de-
termined K = 7 nearly size-independent Aj’s for the
operator A = Sf in expression (2.1). Here we are dealing
with type-1 Ag-sequences (no gap!). In an effort to be as
unbiased as possible with respect to the spectral-weight
distribution emerging from the reconstruction process,
we have employed the Gaussian model spectral density
(B3) with wo determined by a one-parameter fit. The
results of this reconstruction are depicted in Fig. 5. The
six curves on the left pertain to the values 0, 0.1,...,0.5
of the exchange anisotropy J,/J and the five curves on
the right to the values 0.6,...,1.0.

The reconstructed S*%(w) evolves rather smoothly
with varying J,/J. None of the observed structures are
artificially imposed by our choice of termination function,
nor are they artifacts by nature. An exact result exists
only at J,/J = 0.% It was inferred by means of special
methods which exploit the free-fermion nature of the ex-

FIG. 5. Spin autocorrelation function S**(w) at T = 0
of the 1ID S = 1/2 XXZ antiferromagnet with J = 1
and J, = 0,0.1,...,1.0. The results are derived from the
reconstructed relaxation function &(z) with seven nearly
size-independent continued-fraction coefficients A and a ju-
diciously selected termination function as described in the
text. The tick marks on the auxiliary horizontal axes inside
the figure indicate the range of values of 1 (7 /2) for the J,
values selected on either side of the figure.

citation spectrum. In a previous study,?? we have used
that exact result as a benchmark test for the recursion
method and our continued-fraction analysis.

The enhancement of spectral weight at low frequencies
signals the presence of an infrared divergence with vari-
able strength. It is strongest at J,/J = 0 and weakens
monotonically with increasing J,/J. The exact result
for J,/J = 0 has a square-root infrared divergence. The
J./J dependence of that singularity will be further ana-
lyzed in Sec. IIIC.

Now consider the peak at w/J 2 1. Note that its posi-
tion moves monotonically to higher frequencies as J,/J
increases from 0 to 1. That peak echoes a divergent sin-
gularity of some kind at w = e (7/2). The peak position
is, in fact, very close to that frequency throughout the pa-
rameter range, as indicated by the marks on the auxiliary
axes. That singularity is a consequence of the singularity
in S;z(g,w) along the spectral threshold e (q).

The variable strength of the peak at w/J 2 1 might in-
dicate that the associated singularity is also characterized
by a J,/J-dependent exponent like the one at w = 0.47
If that is so, then the results of Fig. 5 indicate that with
J. increasing from zero, the singularity gains strength at
least initially (up to J,/J ~ 0.5). Since the singularity at
w = 0 is rigorously known to lose strength with increas-
ing J,, that observation would imply that the divergence
at w = er(q) in the dynamic structure factor S;.(g,w)
is not characterized by one and the same exponent for
different values of g¢.

For J,/J = 0, the function S**(w) is known to have
a further detectable singularity—a square-root cusp at
w = 2J. In the curves of Fig. 5 there is indeed a hint
of structure at or near the upper continuum boundary
ey(m) = €y(0). There is very little spectral weight be-
yond that frequency, which further underlines the im-
portance of the two-parameter continuum bounded by
the branches (3.3) for the T = 0 dynamics of the 1D
S =1/2 XXZ model.

Let us add a word here on the function $**(w). For
J./J = 0 it is exactly known® and expressible in terms
of elliptic integrals.® Not much is known about its struc-
ture for J,/J > 0 other than the exponent of its in-
frared singularity (to be discussed in Sec. IIIC). The
continued-fraction analysis of this function is subject to
the same type of complications and offers the same kind
of alternatives as previously mentioned in the context of
the function S, (q,w).48

C. Infrared singularities in S,,(7,w) and S#*(w)

The critical nature of the ground state of the 1D
S =1/2 XX Z model in the planar regime manifests it-
self not only in terms of algebraically decaying equal-time
correlation functions (S{'S}, ) or, equivalently, power-
law singularities in the corresponding integrated intensi-
ties (S#S% ), but also in terms of power-law infrared sin-
gularities in specific structure functions such as S, (7, w)
and S**(w). Both types of singularities describe different
aspects of the same critical fluctuations and are charac-
terized by interrelated sets of critical exponents. For the
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model at hand, these exponents are continuous functions
of J,/J. The explicit results for the exponents 7,7, of
the equal-time correlation functions have already been
quoted in (3.2). For the structure functions we have

SH (W) ~ w, S, (T,w) ~ WP, (3.5)
with
1
a, = ,Bz + 1= 6 -

and the parameter § from (3.2b). The relation be-
tween the static exponents 7),, and the dynamic exponents
oy, By is established by the Lorentz invariance of the
Fermi field theory which was shown to describe the long-

1, apg=B+1=0-1, (3.6)

distance and long-time properties of the X X Z chain:43:44
(SE(B)Stin) ~ (—1)"[n* — Fe?]73m, (3.7)

An exact determination of the exponents describing
the critical ground state of a quantum many-body sys-
tem is in general out of reach. Therefore, the availability
of a general method by which the exponents of infrared
singularities in spectral densities can be estimated with
reasonable accuracy is an asset of considerable value. The
recursion method is such a method. Here we use it to
estimate the exponents a,,8, of the § = 1/2 XXZ
chain in a test application that shows its strengths and
limitations. A different general method, based on Luck’s
formula, was previously employed by Schulz and Ziman*®
with considerable success for the determination of the ex-
ponents 7,7, from finite-size data for the energies of the
ground state and and two specific low-lying excitations.
In our approach, by contrast, the infrared exponents are
derived from the finite-size ground-state wave function.

The assumption is that the nearly size-independent se-
quence Ay,..., Ak to be analyzed exhibits a type-1 pat-
tern. If that is the case, we determine the singularity ex-
ponent by using the model sequence (2.18) as follows: At
first the slope parameter wg is determined by a straight-
line fit to Aq,...,Ak.%° For every possible pair of one
Ay, and one Agi_; the vertical displacement between
lines (of slope w2/2) going through the two data points
is then determined. Finally, the average (over all pairs) of
those displacements is used to determine the singularity
exponent.

The results of our exponent analysis are summarized
in Fig. 6 (circles and squares). For comparison, the ex-
act J,/J dependence of the exponents a,fB,p = z,2
is shown by four solid lines. With fewer than ten Ay’s
available, such an analysis is subject to considerable sta-
tistical and systematic uncertainty.

Starting at J./J = 1, our analysis correctly predicts
an exponent o, = «, near zero and an exponent 3, = 3,
very close to —1. For decreasing values of J,/J, the
increasing trend of a,,(, and the decreasing trend of
ag, 3, are both correctly reproduced by our estimates.

The results for the exponents a,, a, are evidently less
accurate than those for 8., 3,. The reason for this is the
more complex structure of the autocorrelation functions
SH#(w) as compared to the dynamic structure factors
Suu(q,w). The former have a singularity at w = e1,(7/2)
of strength comparable to that at w = 0. This second sin-

0.54

0.0+

-0.5

singularity exponent

-1.0

-1.54

By=6-2 ® Bx

0.0 0.2 0.4 0.6 0.8 1.0
3,/3

FIG. 6. Infrared-singularity exponents a,,,, 4 = z,2 of
S#*(w) and S,,u(7m,w) as functions of the anisotropy param-
eter J./J for the 1D S = 1/2 XXZ model at T = 0. The
circles and squares represent the results derived as explained
in the text from K = 8 nearly size-independent Ag’s com-
puted for a system of N = 18 spins. The exact results (3.6)
are shown as solid lines.

gularity is more likely to interfere with the simple pattern
of the model A sequence (2.18) on which our exponent
estimates are based.

More accurate exponent values can be obtained if more
Ap’s are available for the analysis. This expectation is
supported by the following result: For J,/J = 0 we can
compute up to 13 completely size-independent Aj’s from
exactly known frequency moments.® When we use them
all in our exponent analysis, we obtain a data point for
a; at J, = 0 which is right on target.2?

For the exponents o, (3, the analysis has only been
carried out over a restricted parameter range (0.5 <
J./J < 1). In the weak-coupling regime, J,/J < 1,
of the corresponding lattice fermion system, an exponent
analysis based on nearly size-independent Aj’s is still
possible but must proceed differently.46

IV.2D S =1/2 XXZ MODEL

Widespread interest in 2D quantum spin models was
no doubt kindled by the excitement about the oxide
high-T, superconductors. The electronic properties of
the CuO; planes in the undoped parent compound La,
CuOy4 are describable, in some approximation, by the
prototype model for a Mott insulator—the 2D Hubbard
model. For very strong on-site repulsion, it turns into the
2D S = 1/2 Heisenberg antiferromagnet.>%*! By embed-
ding the latter in the more general X X Z model (1.1), we
gain a parameter, J,/J, which controls the direction of
the magnetic ordering in the ground state. This enables
us to identify and interpret finite-size effects even though
our numerical analysis is limited to a single system size
(4 x 4 lattice).

In a classical description, the T = 0 phase change at
J./J = 1 consists of a simple spin-flop transition be-
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tween two Néel states representing saturated antiferro-
magnetic long-range order parallel and perpendicular to
the z axis. The two classical ground states are further
distinguished by their degree of degeneracy. The one for
J./J > 1, which breaks a discrete symmetry of H, is
twofold degenerate, whereas the degeneracy of the other
(for J,/J < 1), which breaks a continuous symmetry of
H, is proportional to the lattice size. Both types of de-
generacy are removed in the presence of quantum fluctu-
ations, and all finite-size ground-state properties change
smoothly across the transition point J,/J = 1. In fi-
nite systems, therefore, the characteristic signature of
phase transitions must be searched in the dynamically
relevant excitation spectrum. The most direct access to
that spectrum is provided by the recursion method as we
have already amply demonstrated for the 1D case.

A. Dynamic structure factors S,,(w,n,w)

The numerical results presented here for the T = 0
dynamics of the 2D S = 1/2 X X Z model are all derived
from the ground-state wave function of a 4 x 4 lattice
with periodic boundary conditions. The question is then
not how to avoid finite-size effects but how to identify
them and how to estimate their impact. For the recon-
struction of the functions S,,(q,w),ux = z,z over the
parameter range 0 < J,/J < 2, we have used the first
six Ay’s and a termination function selected according to
the criteria spelled out in Appendix B. It is quite clear
that not all six Ag’s are nearly size independent.?¢ We
have indirect evidence that the number of nearly size-
independent Ay’s varies with J,/J and is (not unexpect-
edly) lowest near the transition point. However, for our
reconstruction procedure, we need at least five or six Ag’s
for the identification of the pattern, which determines
the type of termination function to be used. Inevitably,
they are strongly influenced by finite-size effects, at least
in some instances. Nevertheless, observing the variation
with J,/J of the patterns in the A, sequences yields
important clues about changes in the structure of the
ground state, specifically their nature and their location
in parameter space.

Naturally, we wish to scrutinize the Aj sequences
pertaining to S,.(q,w), p = x,z at the wave vector
q = (m,w) associated with antiferromagnetic ordering.
The one for S,,(m,m,w) shows a distinct type-2A pat-
tern at small J,/J, indicative of a spectral gap. With
increasing J,/J, that pattern is stable at first, then, at
J./J =~ 0.9 begins to change its character to a type-2B
pattern, which reflects the emergence of a §-function cen-
tral peak as caused by antiferromagnetic long-range order
in the z direction. That metamorphosis is completed at
J./J ~ 1.3. A similar change in pattern can be observed
in the Ay sequence of S, (m,m,w), but in opposite di-
rection, i.e., from a type-2A pattern at J,/J > 1 to a
type-2B pattern at J,/J < 1.52 These changes of pattern
together with the observation that no such changes oc-
cur in the Ay sequences for other wave vectors, clearly
single out the phase diagram sketched in Fig. 1(b) from
other possible scenarios. For comparison, recall that the
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patterns in 1D were of type 2B for S,,(7,w) and of type
2A for Sy.(m,w) at J,/J > 1, where antiferromagnetic
long-range order is established [see Fig. 1(a)], but of type
1 for both functions in the critical phase at J,/J < 1.
The reconstructed functions S**(w,7,w) themselves
are displayed in Fig. 7 over a broad range of J,/J val-
ues around the transition region. A general observation
is that the spectral-weight distribution is considerably
more localized than in Sy, (7,w) of the 1D system. In
the planar regime, S, (7, 7,w) is dominated by a narrow
central peak, as is S, (7, 7,w) in the uniaxial regime.
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FIG. 7. Dynamic structure factors S,,.(q,w) at T = 0
for fixed q = (m,n) and (a) p = z, (b) p = z of the 2D
S = 1/2 XXZ model with J =1 and J, = 0,0.1,...,1.6.
The results are derived from the continued-fraction coeffi-
cients Aj,...,As and a matching termination function as de-
scribed in the text. The circles in the (J.,w) plane mark the
linear spin-wave frequency at q = (w,w) for that model in
the Néel state, specifically the frequencies for modes involv-
ing spin fluctuations (a) perpendicular and (b) parallel to the
z axis. For greater clarity, the curves at J, = 1.2,1.4, and 1.5
have been omitted in (b).



These central peaks, which originate from type-2B Ay
sequences, represent the antiferromagnetic order param-
eter in the two phases, respectively. The nonzero width is
entirely due to our use of the one-parameter terminator
(B3) for the reconstruction procedure.®?

The fluctuations transverse to the order parameter are
reflected in S, (7,7, w) at J,/J > 1 and in S, (7,7, w)
at J,/J < 1, in the form of well-defined peaks with nearly
symmetric line shapes. The position of these peaks is in
fair agreement with the prediction of linear spin-wave
theory (to be discussed in Sec. IVC). However, let us
keep in mind that linear spin waves are not exact eigen-
states of the X X Z antiferromagnet and that the ground
state is subject to correlated quantum fluctuations, which
cause a partial reduction of the order parameter as dis-
cussed in the context of Fig. 1. All this will surely result
in an intrinsic broadening of the spin-wave peak such as
is evident in Fig. 7. Note that the spin-wave peaks as
obtained from our reconstruction procedure do not rep-
resent individual poles of a truncated continued fraction
[i-e., expression (2.5) with b% = 0] evaluated at { = w+ie
with £ > 0 to smear out the § functions into Lorentzians.

B. Soft modes

On approach to the transition point J,/J = 1 from
either side, the spin-wave peaks at q = (m,m) become
soft as expected, but the gap in the reconstructed func-
tions S,,,, (7, T, w) reaches zero only somewhat beyond the
transition point—a clear finite-size effect. Here, the co-
efficients A,,...,Ag as extracted from the 4 x 4 system
are more strongly size dependent than for other param-
eter values. In Fig. 8 we have plotted the peak posi-

O 6x6 o 4x4
A 8xB

3,/

FIG. 8. Dependence on the anisotropy parameter J,/J of
the spectral gap between the ground state and the lowest
transverse excitation at wave vector q = (w,w) for the 2D
S = 1/2 XX Z model. The solid lines represent the spin-wave
peak of the dynamic structure factors displayed in Fig. 7
(S22 for J./J < 1 and S.. for J,/J 2 1). The full circles
denote the exact spectral gaps of the 4 x 4 lattice. The open
squares and triangles are spectral gaps for 6 x 6 and 8 x 8
lattices, respectively, as quoted from a quantum Monte Carlo
study (Ref. 54). The linear spin-wave predictions are shown
as dashed lines.
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tions of the reconstructed S,,(m,7,w) as functions of
J./J and the corresponding linear spin-wave frequen-
cies. Also plotted are the exact spectral gaps between
the ground state (k = 0, S% = 0) and the lowest state at
k = (m,7) relevant for in-plane fluctuations (S% = *1)
or out-of-plane fluctuations (S% = 0), and corresponding
quantum Monte Carlo data of Barnes et al.®* for lat-
tice sizes 6 X 6 and 8 x 8. In the transition region, the
peak positions from Fig. 7 agree quite well with the spec-
tral gaps of the 4 x 4 lattice, which confirms the strong
size dependence of some of the coefficients Aq,...,Ag
used for the reconstruction. However, unlike the 4 x 4
excitation gap, which stays nonzero throughout the pa-
rameter range shown in Fig. 8, the spin-wave peak of
the reconstructed S,,(m,7,w) turns into a true central
peak at the edge of the transition region. Here our in-
put data Aq,...,Ax extracted from the 4 x 4 ground
state are considerably less size dependent than the finite-
size spectral gap. The linear spin-wave frequency of the
transverse mode at the ordering wave vector goes to zero
as |J./J — 1|/'/2 near the Heisenberg point in both 1D
(¢ = m) and 2D [q = (m,7)]. However, it is rigorously
known in 1D that the lowest out-of-plane excitation at
q = 7 stays soft in the planar regime, and the lowest in-
plane excitation rises by an exponential law in the uni-
axial regime (see Fig. 1). It is not clear how accurate the
spin-wave prediction near J,/J =1 is in the 2D case.5®

The size dependence of the peak frequency in S,,,(q,w)
at q = (m,7) has been the object, directly or indirectly,
of several studies based on a variety of methods. Our
continued-fraction analysis for the 4 x 4 lattice (N = 16)
yields w/J =~ 0.57. Chen and Schiittler>® carried out a
different continued-fraction analysis and obtained peak
frequencies of w/J ~ 2.0, 1.0, and 0.58 for N = 4, 8,
and 16, respectively. de Vries and de Raedt®” solved the
time-dependent Schrodinger equation numerically, em-
ploying the Lie-Trotter formula, and obtained peak fre-
quencies w/J ~ 0.47 and 0.39 for N = 20 and 26, re-
spectively. Barnes et al.>* calculated energy differences
by the Lanczos method and the diffusion Monte Carlo
method, and obtained w/J ~ 0.5786, 0.27, and 0.13 for
N = 16, 36, and 64, respectively. All these data are
well in line with each other and with the predicted size
dependence®® w/J = 8/N.

C. Spin-wave dispersions

The well-defined spin-wave-like excitations observed®®
in LazCuQOy4 and also found in our analysis of the dynamic
structure factors Sy, (m, 7, w) suggest that we extend the
comparison of the continued-fraction analysis with spin-
wave theory to the full Brillouin zone of the square lat-
tice. As a starting point for the spin-wave analysis, we
consider the d-dimensional hypercubic spin-S XY Z anti-
ferromagnet with J, > J,,J,. The dispersion of the lin-
ear spin waves, which are the normal modes transverse to
the Néel state in the z direction (classical ground state)
is then®?

wg = 4d*S*(J, £ Joi) (T2 F Jy)s (4.1)
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where

e = (4.2)

d
E cos k.
a=1

Ul -

Applied to the 2D S = 1/2 XX Z model (1.1), this ex-
pression reduces to the branch

wic = 20/ 2/ T2 — 2

for the uniaxial regime (J, > J, = J, = J) and, after a
rotation in spin space, to the two branches

(4.3)

wi =2J V1 £ )1 F (J2/T) %] (4.4)

for the planar regime (J, < J). The two branches
(4.4) correspond to in-plane (upper sign) and out-of-
plane (lower sign) fluctuations, respectively.

The spin-wave dispersions (4.4) for the case J,/J =0
are plotted in Fig. 9(a) along a path through the Bril-
louin zone (see inset) which touches all q vectors of the
4 x 4 lattice. The circles and squares represent the peak
positions of the reconstructed dynamic structure factors
S2z(q,w) and S;z(q,w), respectively. The in-plane spin-
wave mode (solid lines) becomes soft for k — (m,m)
(7k = —1) with the staggered zero-frequency mode rep-
resenting a rigid rotation of the order parameter in the
zy plane. The out-of-plane fluctuations (dashed lines) on
the other hand, have a soft mode at k = 0 (v = 1), but
with zero intensity in S,,(0,w) because of the conserved
quantity S% = 0. The overall agreement between the lin-
ear spin-wave prediction and the continued-fraction anal-
ysis is very satisfactory, indeed surprisingly good in view
of the fact that the former is based on a caricature ground
state and the latter on a miniature lattice.

The results of the two approaches deviate much more
strongly for the model with isotropic exchange (J,/J =
1) as shown in Fig. 9(b). The linear spin-wave disper-
sions (4.4), now both identical with (4.3), are shown as
solid lines and the peak positions of the reconstructed
function Sy (m,m,w) = S,,(m,7,w) for the 4 x 4 lat-
tice as circles. There is now a significant mismatch in
the overall frequency scale, and the (7,n) mode of the
continued-fraction analysis is not really soft for reasons
explained in Sec. IV A.

For comparison we have included in Fig. 9(b) the dis-

sin? k, + sin® ky (short-dashed

lines), inferred by Wang®! from an approximate calcu-
lation based on a 2D application of the Jordan-Wigner
transformation between spins with S = 1/2 and lattice
fermions.®2 It differs from the spin-wave dispersion most
strongly along the (1,0) direction. Our data point at
q = (m,0) seems to rule out Wang’s dispersion, but the
catch is that the nearest-neighbor periodic 4 x 4 square
is topologically equivalent to a 4D nearest-neighbor pe-
riodic 2 X 2 x 2 x 2 hypercube,®® implying equivalence

persion, proportional to

of ¢ = (m,0) and q = (7/2,7/2). For completely un-
related reasons, the spin-wave dispersion too yields the
same frequency at those two wave vectors.

The intrinsically classical linear spin-wave dispersion
derived above is renormalized by quantum and nonlinear
effects, which may be taken into account in higher-order
spin-wave theory. As shown in a recent study®® of the
Heisenberg (J,/J = 1) model, this leads to a weak three-
magnon continuum in the dynamic structure factor, in
addition to the single-magnon (é-function) peak. The
position of that peak marks the renormalized spin-wave
frequency, which differs from (4.3) by a factor in the range
between 1.2 and 1.4 over most of the Brillouin zone, in
agreement with a series expansion (in J/J,)% combined
with the single-mode approximation®®. That would bring
the spin-wave curves in Fig. 9(b) much closer to the data
points at q # (m,m) of our continued-fraction analysis.®”
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FIG. 9. Spin-wave dispersion relations for the 2D S = 1/2
XX Z model with (a) J./J =0, (b) J./J = 1. The solid and
dashed lines in (a) represent the in-plane and out-of-plane
linear spin-wave modes, respectively, as given in Eq. (4.4).
In (b) the two linear spin-wave modes (4.4) coalesce and are
plotted as solid line. The short-dashed line in (b) is Wang’s re-
sult derived in the fermion representation. The peak positions
of the dynamic structure factors Sz-(q,w) and S..(q,w) ob-
tained by the recursion method for the 4 x 4 lattice are shown
as full squares and circles, respectively.
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APPENDIX A: FREQUENCY MOMENTS AND
CONTINUED-FRACTION COEFFICIENTS

In the power series of the normalized correlation func-
tion,

(Af(t)4)

Do) = “rgvay

(A1)

Z M zt)

n=0

the coefficients M, of the real, symmetric part are the
same as those in the expansion of the normalized fluctu-
ation function

Ca(t) — (A(t)sA) — i ( 1) Mz t2k (A2)
k=0

(4, A) 2k!

The M,; are the even frequency moments of both the
(normalized) structure function So(w) = S(w)/(A'A)
and the spectral density ®¢(w). The odd moments Mag 41
of So(w) can be derived, via the Kramers-Kronig rela-
tions, from the even moments M, provided the full set
is known. In the present study we only use a finite num-
ber of M,;’s (converted into an equal number of Ag’s).
The Hamiltonian representation of the recursion method
produces pairs of continued-fraction coefficients a, bZ for
the function do(¢). They can be converted into an equal
number of moments M,, for the function Do(t) and vice
versa by a simple algorithm as follows. By Laplace trans-
form (2.4) the power series (A1) becomes an asymptotic
expansion

oo
do(¢) =) Mp¢~ "),
n=0
which, when compared to the same function in the
continued-fraction representation (2.5), yields a set of re-
lations between the continued-fraction coefficients ay, b2
and the moments M,,. Those relations are most easily
expressed in terms of two arrays of auxiliary quantities
Lﬁ") and M,ﬁ”).
Given a set of moments My = 1, M,,...,
continued-fraction coefficients ao, ...,
are obtained by initializing

(A3)

Mk 11, the
ax and b2,...,b%

M = (-1)*M; , L = (-1)*"'Myy1,  (A4)
for k=0,...,2K and then applying the recurrence rela-
tions

. B M(n—l)
MP =LY _ Nk (A5a)

(n) (n—1)

Lgc") Mk+1 _ Mk ) (A5b)
n n—1)’
MDY M

for k =n,...,2K —n+1 (in two successive inner loops)
andn = 1,...,2K (outer loop). The resulting continued-
fraction coefficients are

2 =M™,

an=-L"™ ,n=0,... K. (A6)

In the reverse direction, the proper initialization is

M'Sn)zb:,len)z_an,n:()’"'?K’ (A7)
(where b2 =1, b2, = 1), and
MY =0,k=0,...,2K+1. (A8)

The recurrence relations to be carried out for n =
0,...,min(K,2K — j) (inner loop) and j =0,...,2K +1
(outer loop) are

(n ) a a1
Mn+)j+1 b:.Ln+J b2 Mn+] ’ (Aga‘)
n) (n+1) (n)
L$;+J+1 Mn+J+1 bz Mn+J+1’ (Agb)
The moments are then given by
M, =(-1)"M® ,n=0,...,2K + 1. (A10)

The even moments My, ..., M2k resulting from that pro-
cedure may then be used to construct the Ag’s (k =
1,...,K) by a similar recursive scheme:®® Initialize

(A11)

MY = My, MY =0, k=0,...,.K

and A_; = Ag = 1, then execute (for m = 1,2,...,K)

m m—2
M = Ai(m :) Aiz(i‘_zz), k=mm+1,...,K
(A12)
and collect the desired coefficients
Ap =M™, (A13)

APPENDIX B: RECONSTRUCTION
PROCEDURE

Consider the model spectral density (2.19) with A =
0, which is a Gaussian of width wg split at the center
to produce a gap of size 2Q. The associated model A
sequence can be generated numerically, as explained in
Appendix A, from the exact frequency moments,

k
= Z 2k
M2k =27 ( 2m )

m=0

2m()2(k—m)
ﬂzm—(zm — 1!

e 8 (12, o o0
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with (—1)!' = 1. As a first step in the reconstruction
of the relaxation function &y(z) from a type-2A sequence
Ay,...,Ak (the data produced by some application of
the recursion method) we determine the parameters 2
and wy of the model spectral density ®o(w) by minimizing
the quantity

1

ZE'Ak — Agl. (B2)
k=1

This particular criterion turned out to be the most reli-
able and robust one in a series of tests.

In the second step, the model relaxation function &y(z)
is determined by a numerical evaluation of the Hilbert
transform (2.21) and then expanded into a continued
fraction with the known model coefficients A, down to
level K as in (2.20). This determines the model termi-
nation function ' (z). Replacing the model coefficients
A,,...,Ak in the expansion of &(z) by the system co-
efficients Aq,..., Ak yields the reconstructed relaxation
function é¢(z), which, evaluated near the physical fre-
quency axis (we use z = £ — iw, € = 1073J) becomes the
reconstructed spectral density.

The worst that can happen if this procedure is applied
to a type-2A Ay sequence is that the fit (B2) overes-
timates the spectral gap in the sense that it produces
a value for the gap parameter 2 that is not completely
consistent with the known coefficients Ay,...,Ag. In
that (rare) event, the reconstructed spectral density ex-
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hibits an artifact that is easy to recognize, namely a dip
at w = Q and a spectral spike at some lower frequency.
This artifact can be removed by choosing a lower value
for the gap parameter. Much less harm is done if the fit
(B2) underestimates the true spectral gap. The spectral
weight is then not strictly zero where it should be; instead
it tapers off continuously albeit rapidly, if the mismatch
is not too large.

For the present study, we have used the model spectral
density (2.19) with A = 0 also for type-2B and type-1 A
sequences. Here the gap parameter €2 turns out to be zero
and (2.19) reduces to a one-parameter Gaussian:

= 2 % 1
‘I)o(w) = w_\/o”_re—wz/wg s Ak = Ew(z)k

(B3)
This choice has the advantage that it is completely un-
biased with respect to any structural detail in the recon-
structed spectral density. Artificial structures are then
unlikely to make their appearance. The price to be paid
is that some genuine structural features are less focused
than they could be: Type-1A spectral densities recon-
structed with (2.17) would have real infrared divergences,
whereas reconstruction with (B3) results in central peaks
of finite height. Likewise, type-2B spectral densities re-
constructed with (2.19) would have a real spectral line
at the center of the gap as opposed to a central peak of
finite height and width, albeit very tall and narrow if the
reconstruction is carried out with (B3).
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