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(Received 23 July 1993) 

The spectral densities of dynamical spin autocorrelation functions at infinite temperature are 
studied for the S = ~ XXZ model (with exchange couplings J., = Jy:::::: J, J,.) on the linear chain, the 
square lattice, and the simple cubic lattice. The low-frequency behavior of a given spectral density 
is inferred from certain characteristic properties of its continued-fraction coefficients as determined 
from computed frequency moments. The analysis yields estimates for the J,.f J dependence of the 
infrared-singularity exponent. In the d = 1 case, the exponent for spin fluctuations perpendicular 
to the 0(2} symmetry axis responds sensitively as the anisotropy parameter sweeps across the 0(3} 
symmetry point J,. / J = 1, while the exponent for the parallel fluctuations shows little variation. In 
the cases d = 2 and d = 3 the same observations are made for autocorrelation functions of aggregate 
spins in chains and lattice planes, respectively. 

I. INTRODUCTION 

The phenomenological concept of diffusion of a con­
served magnetization component was introduced more 
than four decades ago. 1 It has been very useful for the 
interpretation of experiments that probe the transport 
of spin fluctuations at high temperature. However, a 
genuinely microscopic theory of spin diffusion has re­
mained a challenge for theorists to this day. For classical 
spin models, the most detailed results on spin diffusion 
are being produced by simulation studies. But in spite 
of considerable computational investments, no consensus 
has emerged yet, for example, on the exact nature of 
the long-time behavior of spin autocorrelation functions 
at infinite temperature for the Heisenberg model. 2•3 In 
quantum spin systems, the characteristic signatures of 
spin diffusion have for the most part eluded detection be­
yond ambiguity until recently, when new techniques for 
the analysis of frequency moments4•5 or the correspond­
ing continued-fraction coeffi.cients6•7 were introduced. 

Here we study T = oo autocorrelation functions of spin 
operators for the S = ~ X X Z model 

Hxxz =- L {J(SfSj + SfSJ) + JzSfSj}, (1) 
(i,j) 

with nearest-neighbor coupling on a linear chain (d = 1), 
a square lattice (d = 2), or a simple cubic lattice (d = 3). 
The z component Sf of the total spin is conserved for ar­
bitrary values of Jz / J, but ST only for the isotropic case 
J,jJ = 1 (Heisenberg model). The variation of the con­
tinuous parameter Jzf J switches one conservation law on 
and off at the symmetry point while the other one stays 
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on all the way. Diffusive behavior of a given spin com­
ponent, for which the conservation law is a prerequisite, 
manifests itself as a characteristic long-time tail, ex: t-d/2, 
in the local spin autocorrelation function. This corre­
sponds to a characteristic infrared (i.e., low-frequency) 
singularity in the spectral density. 

The continued-fraction analysis of spectral densities as 
previously developed and used in the context of the re­
cursion method8•9 offers some very sensitive instruments 
for the determination of precisely that infrared singular­
ity. 

II. METHOD 

We consider a normalized spin autocorrelation function 
at T = oo for a site on an infinite lattice, 

C~-'~-'(t) = (S~(t)S~) II= X z 
(S~ S~) ' ,.. ' ' 

(2) 

and the corresponding spectral density 

cli~-'~-'(w) = £: dteiwtc~-'~-'(t). (3) 

The correlation function can be expanded into a power 
series of the form 

C~-'~-'(t) = ~ ( -l)k M~-'"t2k 
LJ (2k)! 2k ' 
k=O 

(4) 

where the expansion coefficients are the frequency mo­
ments of the spectral density, 
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(5) 

and can be expressed as expectation values of iterated 
commutators involving the Hamiltonian Hxxz and the 
spin operator S~. The evaluation of the moments is 
straightforward in principle but exceedingly tedious in 
practice- an ideal task for computers.4 •5 •10- 13 

The short-time expansion (4) is obviously not suited to 
study a long-time phenomenon such as diffusion. How­
ever, the information contained in the first K frequency 
moments (5) may be put to work by converting them into 
the first K continued-fraction coefficients ~~~< of the re­
laxation function14 

In a typical application, the sequence of continued­
fraction coefficients ~~~< displays patterns which reflect 
characteristic properties of the spectral density (3). One 
of these recognizable patterns is directly related to the ex­
ponent of the infrared singularity in .P~<~< ( w), as we shall 
see. 

An important characteristic of a sequence of continued­
fraction coefficients is its growth rate. It is defined as the 
power of k with which a given ~k sequence grows on 
average (asymptotically): 

(7) 

The growth rate determines the decay law of the spectral 
density (3) at high frequencies: 15•16 

(8) 

The available data for the X X Z model exhibit growth 
rates in the range 1 ;S A ;S 2. 

Our method of estimating the infrared-singularity ex­
ponent in <f>~<~<(w) proceeds as follows: We choose a model 
spectral density with (i) a variable overall frequency scale 
unit w0 , (ii) a power-law infrared singularity with variable 
exponent a, and (iii) a high-frequency decay law of the 
type (8) with variable growth rate A. The simplest func­
tion which meets these requirements and has the correct 
normalization reads 

The frequency moments of this spectral density are 

(10) 

Closed-form expressions for the corresponding continued­
fraction coefficients are only known for the special case 
A= 1: 

Here the singularity exponent a can be determined from 
the vertical displacement of the ~2k-l from the line ~2k. 
For A #- 1, a singularity of growing strength in (9) still 
causes an alternating pattern of growing amplitude in 
~k, but the relation between exponent and displacement 
is more complicated. Looking at our data for the X X Z 
model, we observe that the characteristic alternating pat­
tern is most conspicuously present in the ~~~< sequences 
precisely in those cases where a diffusive infrared singu­
larity is expected to dominate the low-frequency behavior 
of <f>~<ll(w). 

The known coefficients ~ %"' of <I>"'"' ( w) for J z / J = 1 
and Jz/ J = 0.3 are displayed vs k in the main plot of 
Fig. 1 (circles connected by solid lines). Note the dif­
ferent growth rates and degrees of alternation. In order 
to estimate the exponent value a~<J.t that gives rise to 
the observed amount of alternation in the data sequence 
~ill, ... , ~it, we determine a matching model sequence 
~1 , ... , ~K obtained from (10) by numerically minimiz-
ing the mean-square deviation 

K 

L: (~~J.!- ~k)2 (12) 
k=kmin 

with respect to the undetermined parameters A, a, and 
w0 • The lower cutoff kmin was found to be necessary 
because the first few continued-fraction coefficients tend 
to deviate significantly from the asymptotic behavior 
described by the model coefficients ~k· We have set 
krnin = 3 for all sequences analyzed here. Two opti­
mized model ~k sequences are displayed as dashed lines 
in Fig. 1 along with the data sets to which they have 
been fitted. 

We know the exact moments Mr/: up to K = 14, 7, 6 in 
d = 1, 2, 3 space dimensions, respectively. 17 The growth 

40.0 

30.0 

X 
X .;,; 
<l 20.0 

r ... diagonal 
80~ ~{)site 

80-! 

~ .!1: ~ 
<l 40 ~ z, . 

0.0+-~~-~~~~-~-~------,----J 
0 3 6 9 12 15 

k 

FIG. 1. Continued-fraction coefficients l:!.~"', ... , l:!.~: ( cir­
cles connected by solid lines) of the xx site-spin autocorrela­
tion function at T = oo for two cases of the X X Z chain. The 
sequences for J.j J = 0.3 and 1.0 have growth rates >. = 1.03 
and >. = 1.18, respectively. The model l:!.k sequences which 
provide the best fit as described in the text are shown as 
dashed lines. The inset shows the l:!.k"' plotted vs k>. for the 
site spin (open circles) and the (diagonal) chain spin (solid 
circles) of the S = ~ X X Z model at T = oo on the square 
lattice. Here >. = 1.54 is the growth rate of the site-spin data. 
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rates .X range between 1.0 and 1.3 for d = 1 and up to 
2.0 ford= 2 and 3.18 

Before the presentation of our results, let us briefly 
review the predictions of diffusion phenomenology. The 
Green function of the d-dimensional diffusion equation 
(with Dirichlet boundary conditions at infinity) is given 
by 

e-"2 /4Dt 
G(r t)- --~ 

' - (4nDt)df2 ' 
{13) 

where Dis the diffusion constant. This function describes 
the density of a diffusing (globally conserved) quantity 
initially concentrated in a point at the origin. The den­
sity autocorrelation function of that quantity exhibits the 
characteristic diffusive long-time tail: G(O, t) ex cd/2. 
Integration of the d-dimensional Green function over one 
spatial coordinate yields the ( d - 1 )-dimensional Green 
function. Physically, this describes the diffusive spread­
ing of a linelike distribution. A planelike initial distribu­
tion is obtained by integrating over two dimensions. The 
spectral density of G ( 0, t) has infrared singularities of the 
form"' lwl-112,"' lnlwl, and"' lwl 112 in d = 1,2,3, re­
spectively. Our method of analysis is sensitive mainly to 
the strongest ofthese three singularities,"' lwl- 1/ 2 • That 
singularity is expected for site-spin autocorrelation func­
tions in d = 1 as well as for autocorrelation functions of 
chainlike and lattice-plane spin aggregates in d = 2 and 
3, respectively. 

In more general terms, the idea behind our method of 
analysis may be stated as follows: Associated with any 
d-dimensional diffusion process on a d-dimensional lat­
tice is a one-dimensional diffusion process on the same 
lattice, described in terms of aggregate dynamical vari­
ables. Therefore, the alternating pattern in the ~~I' 
data, which is a direct and sensitive indicator of one­
dimensional diffusion processes, is at the same time an 
indirect but equally sensitive indicator of d-dimensional 
diffusion processes for d > 1. 

0.25,-~~------------------, 
d= 1,2,3 lattices 

(d=2, site) 

-0.50 (d= I, site) 

--- zz 

-0.75 -XX 

0.5 0.7 0.9 1.1 1.3 1.5 

Jz/J 
FIG. 2. J.,j J dependence of the infrared exponents a.,., 

(solid lines) and au (dashed lines) for the site-spin spectral 
densities at T = oo of the S = ! X X Z model in lattice 
d. . d 2 1mens10ns = 1, 2, 3. 

III. RESULTS 

The Jz/ J dependence of the infrared exponents a.,., 
and azz for the autocorrelation functions of a site spin 
on a lattice of dimension d = 1, 2, 3 is displayed in Fig. 2. 
We see at one glance that our indicator detects fairly re­
liably where site-spin autocorrelation functions describe 
one-dimensional diffusion, namely, for the d = 1 lattice 
only. The exponent a.,., varies strongly with J,,j J as 
expected and assumes a minimum value at the symme­
try point Jzf J = 1, consistent with d = 1 spin diffusion. 
The exponent azz• by contrast, stays near that value over 
the entire anisotropy range shown, thus reflecting sus­
tained diffusive behavior.19•20 The broad nature of the 
minimum in a.,., is attributable to the fact that the true 
long-time behavior is only nebulously encoded in the first 
few continued-fraction coefficients. 

The data for the site-spin exponents a'"'" and azz in 
lattice dimensions d = 2, 3 lie significantly above the d = 
1 data. In d = 2, site-spin diffusion is characterized by 
a logarithmic divergence in the spectral density. That 
weak divergence causes a shallow minimum in a.,., at 
J,) J = 1 and a sustained negative azz of much smaller 
magnitude than in d = 1. The characteristic "' lwl 112 

cusp singularity of d = 3 site-spin diffusion is unlikely 
to be detectable by our analysis because of terms in the 
spectral density that are regular at w = 0. Our data 
for a.,., and azz, which are non-negative except near the 
margins, indeed do not bear any signature of the diffusive 
cusp singularity. 

The exponents a.,., and azz for the d = 1 case were 
previously analyzed by a somewhat different method,7 

which does not take fully into account the deviations of 
the growth rate from unity. That gave rise to significant 
systematic errors in the resulting exponent values. They 
have been much reduced in the results of the present 
method. 

Figures 3 and 4 summarize our numerical evidence for 

0.25-,-------------------
square lattice 

0.00 

:t 
::t-0.25 

cs 

-0.50 

-xx 
--- zz 

FIG. 3. Jz/ J dependence of the infrared exponents a.,., 
(solid lines) and au (dashed lines) for three types ofspectral 
densities at T = oo of the S = ~ X X Z model on the square 
lattice: site spin, chain spins in (1 0) direction (row), and 
(1 1) direction (diagonal). 
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0.25-,-~~-----------· 
simp1e cubic lattice 
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::i-0 25 
tS row 

I 

-0.501 - ~~--:-:l 
~---------

~~~--- ' 
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_----- --- zz 
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FIG. 4. Jz/ J dependence of the infrared exponents a.,., 
(solid lines) and au {dashed lines) for three types of spectral 
densities at T = oo of the S = ~ X X Z model on the simple 
cubic lattice: site spin, chain spin in (1 0 0) direction (row), 
and (1 0 0) plane spin. 

quantum spin diffusion in lattice dimensions d = 2, 3. 
Consider first the square lattice (Fig. 3}. The two upper­
most curves, which we have already discussed in the con­
text of Fig. 2, reflect the weak logarithmic divergence in 
~J.'I' ( w) associated with the two-dimensional site-spin dif­
fusion. The two pairs of curves underneath bear the sig­
nature of the much stronger w- 112 divergence in ~~'~'(w) 
associated with the one-dimensional diffusion of chainlike 
spin aggregates consisting of entire rows or diagonals of 
spins on the lattice. The exponent o:.,., now has a much 
deeper minimum at J,.jJ = 1, and O:zz stays strongly 
negative over the entire parameter range. 

The difference between the results for the two types 
of chain spins in Fig. 3 is attributable to the fact that 
the 6.~~-' used in our analysis to gain information on the 
isotropic long-time dynamics are strongly influenced by 
the anisotropic short-time dynamics. The deviations be­
tween the two sets of curves are non-negligible but suffi­
ciently small to make our approach meaningful. 

• On leave from Institut fiir Physik, U niversitat Dortmund, 
D-44221 Dortmund, Germany. 
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