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ABSTRACT

Migrating songbirds interrupt their feeding to fly between stop-
over sites that may vary appreciably in diet quality. We studied
the effects of fasting and food restriction on body composition
and digestive organs in a migratory songbird and how these
effects interacted with diet quality to influence the rate of re-
covery of nutrient reserves. Food limitation caused white-
throated sparrows to reduce both lean and fat reserves, with
about 20% of the decline in lean mass represented by a decline
in stomach, small intestine, and liver. During refeeding on diets
similar in nutrient composition to either grain or fruit, food-
limited grain-fed birds ate 40% more than did control birds,
and they regained body mass, with on average 60% of the
increase in body mass composed of lean mass including di-
gestive organs. In contrast, food-limited fruit-fed birds did not
eat more than did control birds and did not regain body mass,
suggesting that a digestive constraint limited their food intake.
The interacting effects of food limitation and diet quality on
the dynamics of body composition and digestive organs in
sparrows suggest that the adequacy of the diet at stopover sites
can directly influence the rate of recovery of body reserves in
migrating songbirds and hence the pace of their migration.

Introduction

During migration, birds alternate between periods of short-
term fasting during flight and periods of increased food intake

* Corresponding author; e-mail: bjpierce2@yahoo.com.
†E-mail: srmcwilliams@uri.edu.

Physiological and Biochemical Zoology 77(3):471–483. 2004. � 2004 by The
University of Chicago. All rights reserved. 1522-2152/2004/7703-3010$15.00

at stopover sites. These alternating periods of fasting and re-
feeding are associated with dynamic changes in body mass of
migrating birds. Early studies suggested that the observed
changes in body mass of migrating birds were caused primarily
by the deposition and subsequent use of fat (Connell et al.
1960; Odum et al. 1964; Hicks 1967). More recent studies of
migrating birds have shown that both body fat and protein are
used and restored (Marsh 1984; Piersma 1990; Lindström and
Piersma 1993; Karasov and Pinshow 1998; Bordel and Haase
2000). If birds at stopover sites must rebuild used protein re-
serves before resuming migration, then eating fruits, which
often are low in available protein (Herrera 1982; Johnson et
al. 1985; Witmer 1998), may slow recovery rates of protein
reserves and so increase duration of stopover. Because many
species of migratory songbirds eat primarily fruit during fall
migration (Martin et al. 1951; Thompson and Willson 1979;
Parrish 1997), some studies have examined whether fruits pro-
vide adequate nutrients for songbirds (Bairlein 1987; Levey and
Karasov 1989; Levey and Grajal 1991; Witmer 1998; Witmer
and Van Soest 1998). However, few studies have examined the
influence of diet quality on nutrient reserve recovery rates in
migratory songbirds (Bairlein 1987; Jordano 1988).

Short-term changes in food intake (e.g., fasting, hyperphagia)
during migration directly affect the digestive system of migra-
tory songbirds, which in turn may influence the tempo of mi-
gration in these birds (McWilliams and Karasov 2001). Eco-
logical field studies have revealed that recently arrived migrants
experience a delay in recovery of body mass followed by a
progressive increase in body mass after the first day (Rappole
and Warner 1976; Moore and Kerlinger 1987; Lindström 1995;
Yong and Moore 1997). Hume and Biebach (1996) showed that
migratory garden warblers (Sylvia borin) had reduced small
intestine mass after short-duration fasts and that they had sig-
nificantly lower intake rates on the first day of refeeding than
on subsequent days. They suggested that the delay in recovery
of body mass in newly arrived migrants was a result of birds
having to rebuild gut mass before maximizing food intake and
replenishing lost nutrient reserves. If short-term fasting com-
promises gut function, then birds that periodically eat during
migration may not incur as much reduced gut function and
so may more quickly rebuild lost nutrient reserves on arrival
at a stopover site. Consistent with this hypothesis, Lee et al.
(2002) found that yellow-rumped warblers that were food re-
stricted had smaller gut mass and reduced gut function com-
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472 B. J. Pierce and S. R. McWilliams

Table 1: Composition of two semisynthetic diets fed to white-throated
sparrows

Ingredients

Fruit Diet Grain Diet

% Wet Mass % Dry Mass % Dry Mass

Glucose 16.45 65.8 …
Corn starcha … … 61.53
Caseinb 2.5 10.0 10.0
Amino acid mixc .7 2.8 2.77
Vitamin and minerals mixd .25 1.0 1.0
Salt mixe 1.68 6.7 5.5
Cellulosef .68 2.7 5.0
Ground silica sand … … 5.0
Sodium bicarbonate … … 1.0
Choline chloride … … .2
Olive or corn oilg 1.5 6.0 8.0
Agarh 1.25 5.0 …
Water 75.0 … …

a Corn starch: U.S. Biochemical Corp., Cleveland.
b Casein (high N): U.S. Biochemical Corp., Cleveland.
c Amino acid mix: by Murphy and King (1982), all amino acids supplied by Fisher Scientific,

Pittsburgh.
d AIN-76 Vitamin and Mineral Mix, ICN Biomedicals.
e Salt mix: Briggs-N salt mixture, ICN Biomedicals.
f Celufil-hydrolyzed: U.S. Biochemical Corp., Cleveland.
g Olive oil in the fruit diet, corn oil in the grain diet.
h Agar bacteriological grade: U.S. Biochemical Corp., Cleveland.

pared with control birds that were fed ad lib., although on

returning to ad lib. feeding, previously restricted birds were

immediately able to feed and digest at rates similar to those of

control birds. Few studies have compared the effects of fasting

and food restriction on gut size and rate of body composition

change in a migratory songbird (Karasov and Pinshow 2000;

McWilliams and Karasov 2004). No previous study has ex-

amined the interactive effects of food limitation and diet quality

on gut size and body composition change in a migratory

songbird.

In this study, we examined the effects of fasting and food

restriction on overall body composition and digestive organs

and how these effects interact with diet quality to influence the

rate of recovery of nutrient reserves in a migratory songbird.

We tested the following hypotheses: (1) fasting and food re-

striction cause songbirds to simultaneously lose both fat and

protein reserves, (2) fasting and food restriction reduce gut size

of songbirds, and this, in turn, slows recovery rates of body

reserves, and (3) recovery of body reserves after food limitation

is slower in birds fed a fruit diet than in birds fed a grain diet

because of differences in the nutritional quality of these two

diets.

Material and Methods

Capture and Maintenance of Birds

White-throated sparrows ( ) were captured using mistn p 55
nets between October 25 and December 14, 1998, in Kingston,
Rhode Island (41�5�N, 71�5�W; U.S. Fish and Wildlife Service
permit 22923-B, Rhode Island Department of Environmental
Management permit 98-87). White-throated sparrows are
abundant, short-distance migrants that are primarily granivo-
rous throughout the year. However, during the fall migration
period, they may eat mostly fruit (Terres 1996). Thus, they are
an excellent species in which to study the effects of food quality
and food limitation on the dynamics of nutrient and energy
reserves in a migratory songbird.

Birds were immediately banded and weighed (�0.1 g), and
their wing chord was measured (�0.1 cm). In the laboratory,
birds were housed individually in stainless-steel cages (59

cm), at constant temperature (23�C), andcm # 45 cm # 36
on a light cycle that simulated the natural light cycle at time
of capture (11L : 13D light : dark cycle, lights on at 0700 hours).
All birds were initially provided ad lib. water and one of two
semisynthetic diets (Table 1; fed fruit diet, fedn p 28 n p 27
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grain diet) and for the first 5 d were supplemented with 2 g
of cracked corn each day. Nutrient content of the two semi-
synthetic diets simulated a fruit diet (65% carbohydrate : 13%
protein : 6% fat) and a grain diet (62% carbohydrate : 13%
protein : 8% fat; Table 1). Use of such semisynthetic diets makes
the composition of the diets less ambiguous than diets com-
pounded from raw foodstuffs (Murphy and King 1982). Each
day we measured body mass (�0.1 g) and food intake (�0.1
g wet) of each bird. All procedures related to bird husbandry
and care during this experiment conformed to those of Gaunt
and Oring (1997) and were approved by University of Rhode
Island Institutional Animal Care and Use Committee (A98-09-
012).

Diets and Feeding Schedules

All birds were acclimated to the laboratory conditions and to
their respective diets for 5 d before the experiment. After the
5-d acclimation period, birds were randomly assigned to one
of three feeding schedules: ad lib. (hereafter called control;

fruit fed, 9 grain fed), restricted ( ), and fastedn p 10 n p 9/diet
( ). Control birds continued to receive ad lib. food,n p 9/diet
and all birds were given ad lib. water. The restricted feeding
schedule included feeding periods interrupted with nonfeeding
periods to simulate natural conditions of short-distance diurnal
migrants, which may intermittently feed throughout the day.
The schedule of food restriction was determined by gradually
reducing the time that birds were given access to food each
day until we observed a decline in body mass at 0700 hours
on the following day. Fruit-fed birds were restricted to eating
60% of their normal daily ad lib. intake ( g wet),18.81 � 0.76
and grain-fed birds were restricted to eating 50% of their nor-
mal daily ad lib. intake ( g wet). Restricted birds6.74 � 0.53
fed the fruit diet were offered food for five 1-h intervals every
other hour during their 11-h light cycle. Restricted birds fed
the grain diet were offered food for three 15-min intervals
starting at 0800 hours, 1200 hours, and 1600 hours. All food
was removed at 1800 hours so that no feeding occurred at
night. Fasted birds ( ) in both diet groups were deniedn p 9
food for 1–2 d.

Restricted and fasted birds remained on their designated
feeding schedule until they lost approximately 20% (mean mass
loss: [range: 17%–22%]) of their initial prefasted19.5% � 2.5%
or prerestriction body mass. Once this minimum body mass
was achieved, a subset of birds in each diet group was killed,
and their digestive organs were measured. The remaining birds
( ) were refed ad lib. for 3 d, and then they were killed,n p 31
and their digestive organs were measured.

Dry matter food intake (�0.1 g) was measured daily
throughout the experiment. We dried (90�C) and weighed
(�0.1 g) samples of food offered and remaining to estimate
water content and then dry matter intake (DMI) for each spar-
row ( mass mass of uneaten food).DMI p dry offered � dry

Organ Collection and Analysis

Once minimum body mass was achieved after food restriction
or fasting, six control birds per diet and three birds from each
of the other four treatment groups were killed. The gizzard,
liver, and pancreas were removed, rinsed in distilled water,
blotted dry, and weighed (�0.1 mg). The small intestine and
large intestine were removed, perfused with distilled water, blot-
ted dry, weighed (�0.1 mg), and measured (�0.1 cm). All
organs were then placed back into the carcass, and the whole
bird was stored frozen at �20�C for later body composition
analysis. After the 3-d refeeding period, this same procedure
was repeated on the remaining control birds (four fruit fed,
three grain fed) and on the birds from each of the other four
treatment groups ( in all four cases).n p 6

Total Body Electrical Conductivity Measurements

We estimated lean and fat mass of live sparrows using an EM-
SCAN SA-3000 Small Animal Body Composition Analyzer with
a Model 3044 detection chamber (Em-Scan, Springfield, Ill.)
and a custom-built Plexiglas cylinder to restrain the bird (Kar-
asov and Pinshow 1998). Total body electrical conductivity
(TOBEC) measurements of sparrows were taken each day be-
ginning with the day before any food limitation and ending
with the third day of recovery. Measurements were made im-
mediately after lights on to ensure birds had empty guts. Mea-
surements were made of the empty cylinder before and im-
mediately after three consecutive measurements of the cylinder
with the bird. A bird’s TOBEC E value was calculated as the
difference between the mean values of the chamber with and
without the bird. Using TOBEC to measure body composition
allowed us to determine the changes in lean mass within the
same individuals over time.

Body Composition Analysis

It was necessary to obtain the actual body composition of a
subset of sparrows to determine the accuracy and precision of
TOBEC for estimating lean and fat mass of white-throated
sparrows. Bird carcasses were plucked, freeze-dried, weighed
(�0.1 mg), and then ground in a small Waring blender.
Each ground carcass was placed in a ceramic thimble (30

mm, medium porosity) and refluxed with petroleummm # 80
ether for 6 h in a Soxhlet apparatus to measure fat content
(Dobush et al. 1985). Total body fat was the extracted fat mass.
Lean mass was the body mass at death minus the fat mass and
therefore includes all nonfat body components plus feather
mass and water mass.
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474 B. J. Pierce and S. R. McWilliams

Figure 1. Mean body of white-throated sparrows fed fruitmass � SE
or grain diets at one of three feeding schedules: control, restricted
(50%–60% of ad lib.), or fasted (for 1–2 d). Restricted ( )n p 9/diet
and fasted ( ) birds weighed less than control birds (n p 9/diet n p

fruit fed, grain fed) on the final day of food limitation. On10 n p 9
the final day of food limitation, body mass of restricted and fasted
birds was similar for birds in both diet groups. During the 3-d refeeding
period, grain-fed birds were heavier than fruit-fed birds, and restricted
( ) and fasted ( ) birds weighed less than controln p 6/diet n p 6/diet
birds ( fruit fed, grain fed). Fruit-fed birds that were foodn p 4 n p 3
limited were unable to increase in body mass, whereas grain-fed birds
increased their body mass.

TOBEC Calibration and Validation

The TOBEC calibration model was built with 18 sparrows
(body mass –26.5 g) and validated with six spar-range p 16.5
rows (body mass –25.1 g). Model I least squaresrange p 17.1
linear regression was used to build a predictive model for
estimating lean mass given TOBEC E value. An estimate of
the precision of the predictive equation is given by the 2r
value and the standard error of the mean derived from the
linear regression. The absolute and relative errors associated
with our predictive equation were calculated using six birds
that were not used to build the predictive model but for
which we had measured lean and fat mass. The absolute
error was calculated as the absolute difference between the
predicted and measured value (absolute error p

). The relative error was calculatedFpredicted � measuredF
as 100 times the absolute error divided by the measured
value ( ).100 # (Fpredicted � measuredF)/measured

Principal component analysis was performed using seven
structural measurements (wing length, tail length, tarsus length,
head length, bill length, bill width, bill depth; Pyle 1997) from
18 sparrows to determine whether structural size was a signif-
icant covariate in the predictive equation. We used multiple
linear regression to discern the relationships among lean mass,
TOBEC value, and structural measures (Burger 1997).

Statistical Analysis

Repeated-measures ANOVA (RMANOVA) was used to com-
pare changes in body mass, lean mass, and fat mass during the
food-limitation period and to compare body mass, lean mass,
fat mass, and daily intake during the refeeding period for each
of the diet groups and each of the feeding schedules. One-way
ANOVA was used to compare body mass and food intake of
sparrows before the experiment. In addition, ANOVA was used
to compare body mass, lean mass, and fat mass of sparrows
on the final day of food limitation and on the final day of
refeeding. ANOVA was also used to compare organ masses of
sparrows in each diet and feeding schedule after food limitation
and after refeeding. Principal component analysis was used to
account for differences in structural size of sparrows, and linear
regression was used to create a model to predict lean mass
given TOBEC E value. We also used linear regression to estimate
the proportion of body mass change composed of lean and fat
mass. All statistical analyses were performed using the general
linear model in SPSS 10.0 (SPSS 1999), and Tukey’s HSD (hon-
est significant difference) was used for all post hoc comparisons.
Results are reported as .means � SE

Results

Body Mass and Food Intake in Fruit-Fed and Grain-Fed
Sparrows before Food Limitation

At capture, there was no significant difference in body mass of
birds that were assigned to the two diet groups or the three
feeding schedules (FS; ANOVA, diet: , ; FS:F p 0.09 P p 0.761, 49

, ; : , ). AfterF p 1.42 P p 0.25 diet # FS F p 2.36 P p 0.112, 49 2, 49

acclimation, body masses of grain-fed sparrows ( g)24.5 � 0.4
on all three feeding schedules were on average heavier than
fruit-fed sparrows ( g; ANOVA, diet: ,22.8 � 0.4 F p 10.031, 49

; FS: , ; :P p 0.003 F p 0.089 P p 0.92 diet # FS F p2, 49 2, 49

, ). During the experimental period (food limi-0.035 P p 0.97
tation and refeeding), both fruit-fed and grain-fed control birds
maintained constant body mass (RMANOVA, time: F p5, 25

, ; diet: , ).1.71 P p 0.17 F p 6.99 P p 0.0461, 5
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Figure 2. Mean daily dry matter food of white-throatedintake � SE
sparrows fed fruit or grain diets during the 3-d refeeding period after
food limitation. Daily dry matter intake of grain-fed and fruit-fed birds
was measured in six birds for the restricted and fasted feeding sched-
ules, in four birds for the control fruit-fed group, and in three birds
for the control grain-fed group. During the refeeding period, previously
food-limited grain-fed but not fruit-fed birds increased their food
intake compared with control birds.

Figure 3. Relationship between lean mass measured by chemical ex-
traction and total body electrical conductivity (TOBEC) E value in
white-throated sparrows ( ). A best-fit least squares linear re-n p 18
gression line is shown and its equation [lean mass p 3.123 � 0.0745
(TOBEC)] was used to predict lean mass of sparrows given only
TOBEC E value. Using this predictive equation, lean mass of sparrows
was estimated with precision of 0.62 g or approximately 3% error.
Open circles are grain-fed sparrows, and closed circles are fruit-fed
sparrows. Relationship between lean mass and TOBEC E value was
not significantly different between diet groups ( , ).t p 1.99 P 1 0.05

Before food limitation, fruit-fed sparrows ate three times
more food each day ( g wet) than did grain-fed spar-19.3 � 0.6
rows ( g wet). However, dry matter intake was sig-6.2 � 0.3
nificantly higher in grain-fed sparrows ( g) than in6.2 � 0.2
fruit-fed sparrows ( g). Before food limitation, spar-4.9 � 0.2
rows within the fasted group ate significantly more (6.1 �

g) than did controls ( g) but not more than did0.3 5.1 � 0.3
sparrows within the restricted group ( g; ANOVA, diet:5.5 � 0.3

, ; FS: , ; :F p 21.03 P ! 0.001 F p 3.97 P p 0.03 diet # FS1, 49 2, 49

, ).F p 1.71 P p 0.192, 49

Effect of Food Limitation and Refeeding on Body Mass and
Daily Intake

As expected, food restriction and fasting caused birds to reduce
their body mass compared with control birds (ANOVA, FS:

, ; Fig. 1). After food limitation, bodyF p 30.451 P ! 0.012, 49

mass of restricted and fasted birds was similar for fruit-fed and
grain-fed sparrows (ANOVA, diet: , ;F p 3.621 P p 0.061, 49

: , ).diet # FS F p 0.655 P p 0.522, 49

During the 3-d refeeding period, fruit-fed birds that were

food limited did not increase in body mass, whereas grain-fed
birds that were food limited increased their body mass
(RMANOVA, time: , ; :F p 15.94 P ! 0.001 diet # time2, 50

, ; : , ;F p 13.14 P ! 0.001 FS # time F p 4.58 P p 0.0032, 50 4, 50

: , ; Fig. 1). In general,diet # FS # time F p 5.039 P p 0.0024, 50

grain-fed birds were significantly heavier than fruit-fed birds,
and restricted and fasted birds weighed significantly less than
control birds (RMANOVA, diet: , ; FS:F p 13.432 P ! 0.011, 25

, ; : , ; Fig.F p 10.051 P ! 0.01 diet # FS F p 0.522 P p 0.602, 25 2, 25

1).
During the 3-d refeeding period, whole food intake of fruit-

fed birds ( g) was significantly higher than that of16.59 � 0.54
grain-fed birds ( g; RMANOVA, diet:5.6 � 0.27 F p1, 25

, ; time: , ). However, dry195.35 P ! 0.01 F p 1.8 P p 0.182, 50

food intake of grain-fed birds ( g) was significantly5.6 � 0.27
higher than that of fruit-fed birds ( g; RMANOVA,3.6 � 0.25
diet: , ; time: , ; Fig.F p 27.366 P ! 0.01 F p 0.15 P p 0.861, 25 2, 50

2). Food intake of restricted ( g dry) and fasted5.19 � 0.29
birds ( g dry) was generally higher than that of4.92 � 0.29
control birds ( g dry), especially for the grain-fed3.92 � 0.38
sparrows (RMANOVA, FS: , ; :F p 3.12 P p 0.06 diet # FS2, 25

, ).F p 2.19 P p 0.132, 25

Effect of Food Limitation and Refeeding on Body Composition

Predictive Model Given TOBEC. Principal component analysis
using seven structural measurements (wing length, tail length,
tarsus length, head length, bill length, bill width, bill depth)
from 18 sparrows yielded two components (PC1 and PC2) that
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Table 2: Lean and fat mass (g ) of white-throated sparrows fed fruit or grain dietswet � SE
ad lib. (controls) or immediately after food limitation (either restricted or fasted)

Feeding Schedule

Fruit Diet Grain Diet

n Lean Massa Fat Massa n Lean Massa Fat Massa

Control 10 21.21 � .75A 1.62 � .32A 9 22.35 � .5A 2.21 � .39A

Restricted 9 18.46 � .29B 1.03 � .3A 9 19.68 � .58B .65 � .2B

Fasted 9 18.94 � .86AB .94 � .4A 9 20.05 � .32B .63 � .42B

Note. Lean mass was estimated using total body electrical conductivity (TOBEC). Fat mass was calculated by subtracting

estimated lean mass from measured body mass. Lean mass was significantly greater in grain-fed than in fruit-fed sparrows,

food-limited sparrows had significantly less lean mass than did controls, and grain-fed sparrows that were food limited

had significantly less fat mass than did controls (although fat mass of grain-fed sparrows was not significantly different

from fruit-fed sparrows).
a Means with the same letters within columns are not significantly different ( ) on the basis of ANOVA withinP 1 0.05

each diet.

Table 3: Lean and fat mass (g ) of white-throated sparrows fed fruit or grain dietswet � SE
ad lib. (control) or immediately after the 3-d refeeding period after food limitation (either
restricted or fasted)

Feeding Schedule

Fruit Diet Grain Diet

n Lean Massa Fat Massa n Lean Massa Fat Massa

Control 4 21.82 � .36A 1.90 � .43A 3 22.18 � .36A 2.95 � .34A

Restricted 6 19.47 � .39AB .32 � .21B 6 22.28 � .81A 1.52 � .51A

Fasted 6 19.05 � .9B .82 � .27AB 6 20.74 � .26A 2.31 � .82A

Note. Lean mass was estimated using total body electrical conductivity (TOBEC). Fat mass was calculated by subtracting

estimated lean mass from measured body mass. Lean and fat mass were significantly greater in grain-fed than in fruit-

fed sparrows, and feeding schedule had a significant effect on lean and fat mass of fruit-fed sparrows. Grain-fed sparrows

that were food limited had body composition similar to that of control sparrows by the final day of the 3-d refeeding

period, whereas fruit-fed sparrows had less lean and fat mass compared with controls.
a Means with the same letters within columns are not significantly different ( ) on the basis of ANOVA withinP 1 0.05

each diet.

explained 48% and 23% of the variance in structural size, re-
spectively. Only PC1 was found to be significantly correlated
with lean mass ( , ), although the rela-F p 4.175 P p 0.0451, 16

tionship was relatively weak ( , ). In ad-2r p 0.228 SE p 2.18
dition, backward stepwise linear regression resulted in a pre-
dictive model that included only TOBEC E value ( ,2r p 0.84

) and the removal of PC1 (model with PC1 and ESE p 0.99
value; , ). Thus, we built a linear regression2r p 0.84 SE p 1.02
model for predicting lean mass given only TOBEC E value.

TOBEC E value was positively related to lean mass
( , ; , ; Fig. 3). The2F p 101.38 P ! 0.001 r p 0.864 SE p 0.92101, 16

relationship between TOBEC E value and lean mass was not
significantly different between diet groups ( , ;t p 1.99 P 1 0.05
Fig. 3). The following linear regression equation, lean

(TOBEC), was used to estimate leanmass p 3.123 � 0.0745
mass of white-throated sparrows given only TOBEC E value.
Using this predictive equation, we estimated the lean mass of
six sparrows that were not used to build the model with a
precision of 0.62 g or 3.06% relative error. We used this pre-
dictive equation to directly estimate lean mass and indirectly
estimate fat mass of sparrows throughout the experiment.

Changes in Body Composition of Sparrows. On the final day of
food limitation, fruit-fed birds had significantly less lean mass
than did grain-fed birds, and food-limited birds (both restricted
and fasted) had significantly less lean mass than did control
birds (ANOVA, diet: , ; FS: ,F p 5.686 P p 0.02 F p 12.21, 55 2, 55

; : , ; Table 2). Fat massP ! 0.001 diet # FS F p 0.01 P p 0.992, 55

of fruit-fed sparrows was not significantly different from that
of grain-fed sparrows, and food-limited birds (both restricted
and fasted) had significantly less fat mass than did control birds
(ANOVA, diet: , ; FS: ,F p 0.01 P p 0.91 F p 6.93 P p1, 55 2, 55

; : , ; Table 2). Separate0.002 diet # FS F p 1.27 P p 0.292, 55

analyses of fruit-fed versus grain-fed birds confirmed that feed-
ing schedule had a significant effect on body composition. Re-
stricted birds fed the fruit diet had significantly less lean mass
than did the control birds (ANOVA, FS: ,F p 4.75 P p2, 28

; Table 2). Restricted and fasted birds fed the grain diet0.02
had significantly less lean and fat mass than did control birds
(ANOVA, FS: , ; FS: ,F p 9.15 P p 0.001 F p 6.68 P p2, 27 2, 27

; Table 2).0.005
We estimated the proportional change in fat and lean mass

during food limitation by calculating the difference in fat and
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Figure 4. Small intestine and liver mass (g ) of white-throatedwet � SE
sparrows fed fruit or grain diets either ad lib. (control), at 50%–60%
of ad lib. (restricted), or fasted (for 1–2 d). On the final day of food
limitation, fasted ( ) birds had lighter small intestines thann p 3/diet
did control birds ( ), and restricted ( ) and fastedn p 6/diet n p 3/diet
birds had lighter livers than did control birds. Differences in letters
above each pair of bars denote significant differences at be-P ! 0.05
tween feeding schedules.

lean mass of individual birds before and after food limitation.
If all body mass change caused by food limitation was fat mass,
then (1) the relationship between change in body mass and
change in fat mass would be isometric (i.e., slope of 1.0) and
(2) there would be no relationship between change in body
mass and change in lean mass (i.e., slope of 0.0). In fact, the
slope of the relationship between the change in body mass

and change in fat mass (DF) during food limitation was(DM )b

0.81 ( , ), and that be-2R p 0.497 (DF) p 0.807(DM ) � 1.493b

tween and change in lean mass ( ) was 0.19 ( 2(DM ) DL R pb

, P. Thus, food-limited spar-0.0535 (DL) p 0.192(DM ) � 1.493b

rows simultaneously used both protein and fat reserves during
food limitation.

On the final day of refeeding, grain-fed sparrows had sig-
nificantly greater lean and fat mass than did fruit-fed sparrows
(ANOVA for lean mass, diet: , ; FS:F p 8.89 P p 0.0061, 31

, ; : , ;F p 4.64 P p 0.02 diet # FS F p 1.57 P p 0.232, 31 2, 31

ANOVA for fat mass, diet: , ; FS:F p 8.26 P p 0.0081, 31

, ; : , ).F p 3.67 P p 0.04 diet # FS F p 0.89 P p 0.922, 31 2, 31

Fasted birds fed the fruit diet had significantly less lean mass
than did the control birds (ANOVA, FS: ,F p 4.33 P p2, 16

; Table 3). Restricted birds fed the fruit diet had significantly0.04
less fat mass than did control birds (ANOVA, FS: ,F p 7.022, 16

; Table 3). Restricted and fasted birds fed the grainP p 0.009
diet had similar lean and fat mass compared with control birds
by the final day of the 3-d refeeding period (ANOVA, FS:

, ; FS: , ; Table 3).F p 0.94 P p 0.42 F p 2.17 P p 0.162, 15 2, 15

We estimated the proportional change in fat and lean mass
during recovery as described previously for the food limitation
period, but we did so only for grain-fed sparrows because fruit-
fed sparrows did not regain body mass during the recovery
period. The slope of the relationship between the change in
body mass and change in fat mass during recovery(DM ) (DF)b

was 0.40 ( , ), and that2R p 0.154 (DF) p 0.399(DM ) � 0.514b

between and change in lean mass was 0.60(DM ) (DL)b

( , ). Thus, grain-fed2R p 0.292 (DL) p 0.601(DM ) � 0.4514b

sparrows simultaneously regained both protein and fat reserves
during recovery from food limitation.

Effect of Food Limitation and Refeeding on Gut Morphology

After food limitation, restricted and fasted birds had signifi-
cantly lighter livers than did control birds (diet: ,F p 0.7431, 18

; FS: , ; :P p 0.40 F p 10.78 P p 0.001 diet # FS F p2, 18 2, 1 8

, ; Fig. 4), and fasted but not restricted birds had0.212 P p 0.81
significantly lighter small intestines than did control birds
(diet: , ; FS: , ;F p 0.731 P p 0.404 F p 4.425 P p 0.0271, 18 2, 18

: , ; Fig. 4). In addition, fruit-diet # FS F p 0.354 P p 0.702, 18

fed birds had significantly longer large intestines than did grain-
fed birds (Table 4). No other significant differences in gut mor-
phology were found for birds killed immediately after food
limitation (Table 4).

After the 3-d refeeding period, grain-fed birds had signifi-
cantly heavier small intestines compared with fruit-fed birds,
although there was a significant interaction between diet and
feeding schedule (ANOVA, diet: , ; FS:F p 7.823 P p 0.011, 25

, ; : , ; Fig.F p 1.114 P p 0.34 diet # FS F p 4.587 P p 0.022, 25 2, 25

5). Restricted grain-fed birds had the heaviest small intestines,
whereas restricted fruit-fed birds had the lightest small intes-
tines (Fig. 5). Restricted birds had significantly heavier livers
than did control or fasted birds, with restricted grain-fed birds
having the heaviest livers and control grain-fed birds having
the lightest livers (ANOVA, diet: , ; FS:F p 1.309 P p 0.261, 25

, ; : , ;F p 8.513 P p 0.002 diet # FS F p 4.228 P p 0.032, 25 2, 25

Fig. 5). No other significant differences in gut morphology were
found for birds killed after the 3-d refeeding period (Table 5).
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Table 4: Mass (mg ) and length ( ) of digestive organs of white-throated sparrows that were fedwet � SE mm � SE
fruit or grain diets according to one of three feeding schedules: control (ad lib.), fasted, or restricted

Diet and Feeding
Schedule n

Large Intestine
(mg)

Pancreas
(mg)

Gizzard
(mg)

Small Intestine
(mm)

Large Intestine
(mm)

Fruit:
Control 6 40.0 � 11.0 100.0 � 9.0 715.1 � 62.0 157.33 � 6.11 10.00 � 1.09
Restricted 3 39.5 � 10.0 75.2 � 8.0 655.0 � 52.0 154.0 � 11.02 12.33 � 1.76
Fasted 3 43.4 � 13.0 72.0 � 17.0 772.5 � 85.0 153.67 � 8.17 11.67 � 2.40

Grain:
Control 6 40.0 � 6.0 90.0 � 7.0 673.2 � 59.0 156.67 � 4.66 7.83 � .60
Restricted 3 31.7 � 4.0 102 � 10.0 546.7 � 39.0 160.67 � 3.18 10.00 � 1.00
Fasted 3 27.6 � 3.0 78.8 � 8.0 609.6 � 38.0 145.67 � 8.29 8.00 � .00

Statistical analysis:
Diet:

F1, 18 1.743 .71 3.552 .013 7.396
P .20 .41 .07 .91 .014

Feeding schedule:
F2, 18 .267 2.30 1.158 .667 1.482
P .77 .13 .34 .53 .25

Diet # FS:
F2, 18 .080 2.44 .465 .431 .146
P .92 .12 .64 .66 .87

Note. Control birds were killed on the same day as food-limited birds, which was immediately after restricted and fasted birds had finished their

food limitation. Bold type denotes significant difference ( ) in large intestine length between birds fed each diet.P ! 0.05

Discussion

Food Limitation and Refeeding Caused Changes in both
Protein and Fat Reserves

Food limitation caused white-throated sparrows to reduce both
lean and fat reserves with on average 20% of the decline in
body mass composed of lean mass. When grain-fed sparrows
increased their body mass after food limitation, on average 60%
of the increase in body mass was composed of lean mass. Other
studies have documented simultaneous changes of protein and
fat in birds. For example, Karasov and Pinshow (1998) found
that in blackcaps (Sylvia atricapilla) for every gram of body
mass lost during fasting or gained during refeeding, about 40%
was lean mass. LeMaho et al. (1981) found that for every ki-
logram of body mass lost in fasting geese, 37% was lean mass.
For garden warblers (Biebach 1990; Klaassen and Biebach
1994), thrush nightingales (Luscinia luscinia; Klaassen et al.
1997), willow warblers (Phylloscopus trochilus; Biebach 1990),
and several species of waders (Charadrii; Piersma 1990; Zwarts
et al. 1990), 20%–50% of the change in total body mass was
lean mass. Given that birds cannot eat during migratory flights,
these results suggest that during migration stopovers, birds
must rebuild both lean and fat reserves. These estimates of
proportional use of lean tissue may underestimate protein ca-
tabolism for a flying bird, however, because of the much higher

metabolism associated with flight. Regardless of the quantitative
amount of lean mass lost and gained during migration, what
seems clear is that migratory birds at stopover sites likely require
dietary sources of both protein and energy to rebuild used body
reserves.

Changes in lean mass of birds may involve catabolism or
anabolism of several protein-containing tissues including pec-
toral muscle (Lindström et al. 2000), leg muscle (McLandress
and Raveling 1981), heart (Piersma et al. 1999), and digestive
organs such as intestine, liver, kidney, and stomach (Piersma
et al. 1999; McWilliams and Karasov 2001, 2004). For migrating
red knots (Calidris canutus), sizes of pectoral muscle and heart
were correlated with body mass, whereas those of leg muscles
and digestive organs were correlated with rate of body mass
change (Piersma et al. 1999). For migrating blackcaps, 44% of
the decline in lean mass caused by fasting was represented by
a decline in mass of stomach, small intestine, and liver (Karasov
and Pinshow 1998). For white-throated sparrows, we found
that 22% of the decline in lean mass caused by fasting or food
restriction was represented by a decline in mass of the same
three organs. Thus, although digestive organs constitute only
about 10% of a bird’s lean mass (Daan et al. 1990; Karasov
and Pinshow 1998), dynamic short-term changes in these or-
gans are a major component of lean mass change in migratory
birds.
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Figure 5. Small intestine and liver mass (g ) of white-throatedwet � SE
sparrows after the 3-d refeeding period. Grain-fed birds had heavier
small intestines than did fruit fed birds. Restricted grain-fed sparrows
had the heaviest small intestines, whereas restricted fruit-fed sparrows
had the lightest small intestines. Restricted ( ) birds hadn p 6/diet
heavier livers than did control ( fruit fed, grain fed) orn p 4 n p 3
fasted ( ) birds. Differences in letters above each pair of barsn p 6/diet
denote significant differences at between feeding schedules.P ! 0.05

Phenotypic Flexibility in Gut Size and Its Ecological
Implications

White-throated sparrows that were fasted or food restricted
had lighter livers than did control birds, and fasted sparrows
had lighter small intestines than did food-restricted or control
birds. Similar reductions in digestive organs associated with
food limitation have been observed in shorebirds (Piersma
1998; Piersma and Gill 1998), warblers (Biebach 1998; Karasov
and Pinshow 1998; Lee et al. 2002), gulls (Alonso-Alvarez and
Ferrer 2001), and many other birds (reviewed by Stark 1999;
McWilliams and Karasov 2001, 2004).

What are the ecological implications of having smaller guts
for migrating birds? We have shown that digestive organs of
white-throated sparrows were reduced by fasting and that when
fasted grain-fed sparrows were subsequently provided ad lib.
food, their food intake was reduced, relative to restricted birds,
for 1 d. In contrast, when sparrows were food restricted, di-
gestive organs were also reduced, but food intake of grain-fed
sparrows was at least 40% higher than that of controls on all

3 d after the food restriction while both groups were fed ad
lib. Other recent studies confirm that fasting and food restric-
tion reduce digestive organs in migratory songbirds and that
these reductions may limit food intake primarily in fasted birds
(Klaassen and Biebach 1994; Hume and Biebach 1996; Klaassen
et al. 1997; Karasov and Pinshow 2000; Lee et al. 2002). This
would suggest that such a digestive constraint is most likely to
limit refueling rates in long-distance migrants or in other mi-
grants that do not feed for at least a day at a time (McWilliams
and Karasov 2004). In fact, an initial delay in recovery of body
reserves has been observed in free-living long-distance migra-
tory songbirds at stopover sites (e.g., Biebach 1998; Gannes
2002).

After the 3-d refeeding period, food-limited grain-fed birds
had heavier small intestine and liver mass than did control
birds. For these grain-fed birds, the timescale of depletion and
recovery of digestive organs such as small intestine and liver
was !3 d. This is consistent with other bird studies that showed
increases in digestive organs within 1–6 d after changes in food
quantity (Stark 1999; McWilliams and Karasov 2001, 2004).
For an actively migrating bird, however, the digestive response
to refeeding may be slow enough to limit food intake and thus
the rate of refueling. For example, Gannes (2002) and Karasov
and Pinshow (2000) found that body mass gain of blackcaps
at a stopover site in Israel was delayed for 1–2 d, and they
suggested that reductions in digestive organs limited food intake
and hence delayed mass gain.

The Inadequacy of Fruit for Recovery of Body Reserves in
Migratory Birds

Given that migratory birds must use and rebuild protein as
well as fat reserves, diets that provide primarily carbohydrates
and fats (e.g., fruit) may not provide sufficient protein (Witmer
1998; Levey and Martı́nez del Rio 2001). In addition, diets that
contain primarily nonnutritive components (e.g., fruits with
mostly water, indigestible fiber, or plant secondary compounds)
may be too dilute to satisfy a bird’s energy and nutrient re-
quirements (Levey and Grajal 1991). For example, many species
of Palearctic songbirds fed only fruit were unable to maintain
their body mass (Berthold 1976; Bairlein 1990; Bairlein and
Gwinner 1994). In general, migratory songbirds fed a mixed
diet of fruit and insects gained body mass faster than when fed
either fruit or insects (Bairlein and Gwinner 1994; Parrish
2000).

In our study, food-limited sparrows that were fed the grain
diet during recovery were able to increase food intake and
digestive organs and regain body mass on return to ad lib.
feeding. In contrast, food-limited sparrows that were fed the
fruit diet during recovery did not increase food intake or di-
gestive organs and did not regain lost body reserves during the
3-d recovery period. Thus, diet clearly influenced the ability of
sparrows to recover from food limitation.
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Table 5: Mass (mg ) and length ( ) of digestive organs of white-throated sparrows that werewet � SE mm � SE
fed fruit or grain diets according to one of three feeding schedules: control (ad lib.), fasted, or restricted

Diet and Feeding
Schedule n

Large Intestine
(mg)

Pancreas
(mg)

Gizzard
(mg)

Small Intestine
(mm)

Large Intestine
(mm)

Fruit:
Control 4 40.0 � 4.0 100.0 � 11.0 552.5 � 37.0 148.75 � 4.70 9.50 � 1.55
Restricted 6 33.5 � 4.0 88.6 � 10.0 583.0 � 16.0 148.33 � 2.76 9.83 � .65
Fasted 6 31.0 � 2.0 92.5 � 12.0 623.0 � 39.0 164.67 � 7.46 9.33 � .92

Grain:
Control 3 30.0 � 4.0 90.0 � 3.0 514.4 � 37.0 155.33 � 2.67 10.00 � 1.0
Restricted 6 42.0 � 4.0 86.4 � 7.0 648.8 � 52.0 157.17 � 4.34 9.33 � .76
Fasted 6 35.0 � 5.0 99.4 � 5.0 654.0 � 42.0 157.17 � 2.07 8.17 � .95

Statistical analysis:
Diet:

F1, 25 .263 .249 .327 .433 .232
P .61 .62 .57 .52 .63

Feeding schedule:
F2, 25 .838 .576 2.946 2.254 .637
P .44 .57 .07 .13 .54

Diet # FS:
F2, 25 1.599 .697 .695 1.928 .324
P .22 .51 .51 .17 .73

Note. Control birds were killed on the same day as food-limited birds, which was immediately after restricted and fasted birds had finished

their 3-d refeeding period.

The inability of fruit-fed birds to regain body mass after food
limitation suggests a diet-related digestive constraint. Recall that
the two diets contained similar amounts of protein (13% in
the fruit and grain diet), fat (6% and 8%, respectively), and
carbohydrate (66% and 62%, respectively) on a dry matter
basis. However, the two diets were quite different in nutrient
composition as fed to the birds because the fruit diet contained
75% water, whereas the grain diet contained essentially no wa-
ter. After food limitation, sparrows fed the fruit diet ate 2.5
times more wet food per day but obtained 35% less energy and
nutrients per day compared with sparrows fed the grain diet
because of the different water contents of the two diets. This
level of food intake was inadequate for fruit-fed sparrows as
indicated by their inability to recover the nutrient reserves lost
during food limitation. Witmer (1998) also found that daily
food intake and rates of energy assimilation in songbirds were
constrained by digestive processing of dilute fruit diets.

We suggest that fruit-fed sparrows were limited in their food
intake by a digestive constraint associated with the water con-
tent of the fruit diet. Although birds that primarily eat nectar
can cope with excessive water intake, this ability is not the
norm among terrestrial vertebrates (Martı́nez del Rio et al.
2001). Most ingested water is absorbed from the intestine
(McWhorter and Martı́nez del Rio 2000) and so must be pro-
cessed by the kidneys and eliminated into the large intestine
(Goldstein and Skadhauge 2000). Extraordinary water con-

sumption leads to dilution of blood plasma that can decrease
concentrations of necessary solutes (e.g., sodium) in the plasma
to toxic levels (Faenestil 1977; Gevaert et al. 1991).

Our study was not designed to elucidate the physiological
mechanism(s) that constrains intake in sparrows fed dilute diets
such as fruit. However, our results are consistent with the pre-
dictions of a model presented by McWhorter and Martı́nez del
Rio (2000) that suggests a digestive constraint limits intake in
nectar-feeding birds especially in energy-demanding situations
(e.g., while increasing body reserves, when exposed to cold
temperatures). The predictions of their model that were con-
sistent with our results were that (1) before food limitation,
fruit-fed birds ate three times more food (g wet) than did grain-
fed birds, while both groups of birds maintained their body
mass. This result provides a good example of compensatory
feeding whereby birds increase their food intake to compensate
for decreased energy and nutrient density of their diet. In ad-
dition, (2) after food limitation, when sparrows with a com-
promised digestive system were attempting to rebuild lost body
reserves, birds fed the higher energy and nutrient density diet
(i.e., grain) were able to increase their food intake, whereas
birds fed the more dilute diet (i.e., fruit) were unable to increase
their food intake and so did not regain lost body reserves. This
result suggests that digestive constraints are most likely to im-
pact migrating birds when energy expenditure is highest and
diets are most dilute (i.e., birds that eat fruit to fuel migration).
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Interactive Effects of Food Limitation and Diet Quality on
Body Composition and Digestive Organs of Migratory Birds

Diet quality and type of food limitation affected the recovery
of body reserves in white-throated sparrows. Fasted and food-
restricted sparrows were unable to regain body reserves when
fed the fruit diet. For sparrows fed the grain diet, those birds
that were initially fasted showed a 1-d delay in recovery of body
reserves, whereas birds that were initially food restricted im-
mediately increased food intake and body reserves on return
to ad lib. feeding. Thus, there was a strong interaction between
the effects of food limitation and diet quality on the dynamics
of body composition and digestive organs in white-throated
sparrows. Similarly, white-crowned sparrows (Zonotrichia leu-
cophrys) and blackcaps that were food restricted were able to
immediately increase nutrient assimilation rate and food intake,
whereas fasted birds could not (Murphy et al. 1989; Karasov
and Pinshow 2000).

The interactive effects of food limitation and diet quality
have important implications for both long-distance and short-
distance migrants. Long-distance migrants that fast for at least
1 d may have limited food intake because of the negative affects
of fasting on digestive organs. Short-distance migrants that
continue to feed intermittently each day during migration may
encounter no such digestive constraint. However, our results
suggest that the quality of the diet at stopover sites can directly
affect the rate of recovery of body reserves in migratory birds
and hence the pace of their migration.
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Klaassen M., Å. Lindström, and R. Zijlstra. 1997. Composition
of fuel stores and digestive limitations to fuel deposition rate
in the long-distance migratory thrush nightingale, Luscinia
luscinia. Physiol Zool 70:125–133.

Lee K.A., W.H. Karasov, and E. Caviedes-Vidal. 2002. Digestive
response to restricted feeding in migratory yellow-rumped
warblers. Physiol Biochem Zool 75:314–323.

LeMaho Y., J.V.V. Ka, H. Koubi, G. Desasmes, G. Girard, J.
Ferre, and M. Cagnard. 1981. Body composition, energy ex-
penditure, and plasma metabolites in long-term fasting geese.
Am J Physiol 241E:342–354.

Levey D.J. and A. Grajal. 1991. Evolutionary implications of
fruit-processing limitations in cedar waxwings. Am Nat 138:
171–189.

Levey D.J. and W.H. Karasov. 1989. Digestive responses of tem-
perate birds switched to fruit or insect diets. Auk 106:675–
686.

Levey D.J. and C. Martı́nez del Rio. 2001. It takes guts (and
more) to eat fruit: lessons from avian nutritional ecology.
Auk 118:819–831.
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Lindström Å. and T. Piersma. 1993. Mass changes in migrating
birds: the evidence for fat and protein storage re-examined.
Ibis 135:70–78.

Marsh R.L. 1984. Adaptations of the gray catbird Dumetella
carolinensis to long-distance migration: flight muscle hyper-
trophy associated with elevated body mass. Physiol Zool 57:
105–117.

Martin A.C., J.S. Zim, and A.L. Nelson. 1951. American wildlife
and plants: a guide to wildlife food habits. McGraw-Hill,
New York.

Martı́nez del Rio C., J.E. Schondube, T.J. Mcwhorter, and L.G.
Herrera. 2001. Intake responses in nectar feeding birds: di-
gestive and metabolic causes, osmoregulatory consequences,
and coevolutionary effects. Am Zool 41:902–915.

McLandress M.R. and D.G. Raveling. 1981. Changes in diet

and body composition of Canada geese before spring mi-
gration. Auk 98:65–79.

McWhorter T.J. and C. Martı́nez del Rio. 2000. Does gut func-
tion limit hummingbird food intake? Physiol Biochem Zool
73:313–324.

McWilliams S.R. and W.H. Karasov. 2001. Phenotypic flexibility
in digestive system structure and function in migratory birds
and its ecological significance. Comp Biochem Physiol 128:
579–593.

———. 2004. Migration takes guts: digestive physiology of
migratory birds and its ecological significance. In P. Marra
and R. Greenberg, eds. Birds of Two Worlds. Johns Hopkins
University Press, Washington, D.C.

Moore F. and P. Kerlinger. 1987. Stopover and fat deposition
by North American wood-warblers (Parulinae) following
spring migration over the Gulf of Mexico. Oecologia 74:47–
54.

Murphy M.E. and J.R. King. 1982. Semi-synthetic diets as a
tool for nutritional ecology. Auk 99:165–167.

Murphy M.E., J.R. King, and L. Jianjiian. 1989. Malnutrition
during the postnuptial molt of white-crowned sparrows:
feather growth and quality. Can J Zool 66:1403–1413.

Odum E.P., D.T. Rogers, and D.L. Hicks. 1964. Homeostasis
of nonfat components of migrating birds. Science 143:1037–
1039.

Parrish J.D. 1997. Patterns of frugivory and energetic condition
in nearctic landbirds during autumn migration. Condor 99:
681–697.

———. 2000. Behavioral, energetic, and conservation impli-
cations of foraging plasticity during migration. Stud Avian
Biol 20:53–70.

Piersma T. 1990. Pre-migratory “fattening” usually involves
more than the deposition of fat alone. Ringing Migr 11:113–
115.

———. 1998. Phenotypic flexibility during migration: opti-
mization of organ size contingent on the risks and rewards
of fueling and flight. J Avian Biol 29:511–520.

Piersma T. and R.E.J. Gill. 1998. Guts don’t fly: small digestive
organs in obese bar-tailed godwits. Auk 115:196–203.

Piersma T., G.A. Gudmundsson, and K. Lilliendahl. 1999. Rapid
changes in the size of different functional organ and muscle
groups during refueling in a long-distance migrating shore-
bird. Physiol Biochem Zool 72:405–415.

Pyle P. 1997. Identification Guide to North American Birds. I.
Slate Creek, Bolinas, Calif.

Rappole J.H. and D.W. Warner. 1976. Relationships between
behavior, physiology and weather in avian transients at a
migration stopover site. Oecologia 26:193–212.

SPSS. 1999. SPSS 10.0. SPSS, Chicago.
Stark J.M. 1999. Structural flexibility of the gastro-intestinal

tract of vertebrates: implications for evolutionary morphol-
ogy. Zool Anz 238:87–101.

This content downloaded from 131.128.197.126 on September 24, 2018 08:28:27 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2F285210&citationId=p_30
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.2307%2F4086033&citationId=p_45
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2F316680&citationId=p_53
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.1016%2FS1095-6433%2800%2900336-6&citationId=p_42
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2F639556&citationId=p_27
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.2307%2F4087757&citationId=p_31
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.1139%2Fz88-206&citationId=p_46
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.1080%2F03078698.1990.9673972&citationId=p_50
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&pmid=10667974&citationId=p_35
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2F515428&citationId=p_24
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2F342003&citationId=p_28
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.1642%2F0004-8038%282001%29118%5B0819%3AITGAMT%5D2.0.CO%3B2&citationId=p_32
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&pmid=14107427&crossref=10.1126%2Fscience.143.3610.1037&citationId=p_47
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.2307%2F3677170&citationId=p_51
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.1111%2Fj.1474-919X.1993.tb02811.x&citationId=p_36
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2F316746&citationId=p_25
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&pmid=28309583&crossref=10.1007%2FBF00345289&citationId=p_55
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&pmid=28310413&crossref=10.1007%2FBF00377344&citationId=p_44
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.2307%2F1370480&citationId=p_48
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.2307%2F4089124&citationId=p_52
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2Fphyszool.57.1.30155973&citationId=p_37
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system=10.1086%2F316753&citationId=p_41
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.1007%2FBF00302551&citationId=p_26


Diet Quality and Quantity Affect Body Composition and Guts 483

Terres J.K. 1996. The Audubon Society Encyclopedia of North
American Birds. Wings Books, New York.

Thompson J.N. and M.F. Willson. 1979. Evolution of temperate
bird/fruit interactions: phenological strategies. Evolution 33:
973–982.

Witmer M.C. 1998. Ecological and evolutionary implications
of energy and protein requirements of avian frugivores eating
sugary diets. Physiol Biochem Zool 71:599–610.

Witmer M.C. and P.J. Van Soest. 1998. Contrasting digestive
strategies of fruit-eating birds. Funct Ecol 12:728–741.

Yong W. and F.R. Moore. 1997. Spring stopover of intercon-
tinental migratory thrushes along the northern coast of the
Gulf of Mexico. Auk 114:263–278.

Zwarts L., B.J. Ens, M. Kersten, and T. Piersma. 1990. Moult,
mass and flight range of waders ready to take off for long-
distance migrations. Ardea 78:339–364.

This content downloaded from 131.128.197.126 on September 24, 2018 08:28:27 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&system-d=10.1086%2F516001&citationId=p_60
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.1046%2Fj.1365-2435.1998.00242.x&citationId=p_61
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&crossref=10.2307%2F4089167&citationId=p_62
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F383503&pmid=28568428&crossref=10.1111%2Fj.1558-5646.1979.tb04751.x&citationId=p_59

	Diet Quality and Food Limitation Affect the Dynamics of Body Composition and Digestive Organs in a Migratory Songbird (Zonotrichia albicollis)
	Citation/Publisher Attribution

	Diet Quality and Food Limitation Affect the Dynamics of Body Composition and Digestive Organs in a Migratory Songbird (Zonotrichia albicollis)
	Terms of Use

	Diet Quality and Food Limitation Affect the Dynamics of Body Composition and Digestive Organs in a Migratory Songbird (Zonotrichia albicollis)

