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Abstract
Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1
infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on
Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme),
which at 8 µg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 µg. That represents 230-
fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was
mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 µg/ml SP4-2
blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4,
suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained
observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after
virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by
up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active
molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that
directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug
development.

Background
S. fusiforme is a species of brown macroalgae (Class Phae-
ophyceae) that is commonly found in middle to lower
rocky intertidal zones along the coastlines of China,
Korea, and Japan. Formerly called Hizikia fusiformis [1], it
frequently occurs in dense aggregations. Individuals can
be up to 1 m in length, with shorter side branches and nar-
row blades. It is frequently collected for human consump-

tion. In our previous work with whole S. fusiforme extract,
we reported up to 90% inhibition of HIV-1 replication in
several different cell types, including T cells and macro-
phages, both during entry and post-entry stages of the
HIV-1 life cycle [2]. Importantly, this inhibition was also
mediated against primary isolate R5-tropic HIV-1 (ADA)
in human macrophages, and it also inhibited cell-to-cell
fusion and subsequent viral spread to uninfected cells,
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which demonstrated ability of S. fusiforme to inhibit phys-
iologically relevant HIV-1 mechanism of infection.

Based upon this work, we proposed that S. fusiforme mix-
ture contained more than one biologically active mole-
cule, and that it would be a lead candidate for bioactivity-
guided isolation of active compounds mediating HIV-1
inhibition. Here, we report the isolation of a bioactive
fraction SP4-2, with 230-fold enhanced antiretroviral
activity against both X4 and R5-tropic HIV-1, specificity of
inhibition of viral fusion mediated against CD4 receptor,
and post entry inhibition of the HIV-1 RT. Compounds
isolated from S. fusiforme have not been investigated until
now [3,4].

Results
Dose dependent inhibition of HIV-1
To begin characterization of the complex S. fusiforme
extract, we performed bioactivity-guided fractionation,
which resulted in identification of a biologically active
fraction SP4-2 that we tested in T cells for the ability to
inhibit HIV-1 infection (Fig. 1). Cells were treated with
increasing concentrations of SP4-2, infected, and virus
replication was measured by luciferase expression in 1G5
cells that were equalized to the same number of viable
cells by the MTT assay (Fig. 1A). Viability of treated cul-
tures remained high and similar to that of mock and 10-

6M ddC treated cells (Fig. 1B). Maximal virus replication
was determined from infected and untreated cells (0 µg
SP4-2), which expressed 29,601 luciferase relative light
units (RLU), demonstrating active and ongoing virus rep-
lication (Fig. 1A). Highly productive infection was con-
firmed by flow cytometry, with 99% of cells positive for
HIV-1 antigens (data not shown). Comparatively, treat-
ment with 2 µg, 4 µg, 6 µg, and 8 µg/ml SP4-2 reduced
luciferase expression in a dose-dependent manner to
23,243, 13,253, 6,222, and 3,877 RLU, respectively. As
expected, control cultures treated with 10-6M ddC,
expressed background counts of 587 RLU, indicating
almost total inhibition of virus replication (Fig. 1A). We
calculated percent HIV-1 inhibition in comparison to
infected and untreated cells (Fig. 1C). Treatment with
SP4-2 inhibited virus replication in a dose dependent
manner by 21, 55, 79, and 86%, respectively. The 50%
inhibitory concentration (IC50) was calculated to be 3.7
µg.

S. fusiforme inhibits both X4 and R5-tropic HIV-1 
infection
Next, we examined the cells coreceptor specificity and
tested SP4-2 fraction for ability to inhibit both X4 and R5-
tropic HIV-1 (Fig. 2). GHOST cells expressing both X4 and
R5 coreceptors were treated with increasing concentra-
tions of SP4-2, and infected with X4-tropic NL4-3 (A) or
with R5-tropic 81A (B), and FACS analyzed 48 h after

infection. Treatment with SP4-2 resulted in a dose
dependent decrease in number of infected cells by either
virus. X4-tropic virus (A) infected 15.7% cells without
treatment (a), which decreased to 13.5% (b), 7.6% (c),
and 0.7% (d) infected cells after treatment with 1, 6, and
12 µg/ml SP4-2, respectively. Inhibition of infection was
calculated to be 14%, 51%, and 95%, respectively. For R5-
tropic infection, we observed a mean of 21% infected cells
(e), which decreased to 19.9% (f), 17.5% (g), and 11.7%
(h) infected cells after treatment with 1, 6, and 12 µg/ml
SP4-2, respectively. Inhibition of infection was calculated
to be 6%, 17%, and 45%, respectively. However, when we
increased SP4-2 treatment to 14, 16, 20, and 24 µg/ml, R5
inhibition of infection increased proportionally to 65%,
70%, 78%, and 88%, respectively (not shown). Based on
these results, we conclude that treatment with SP4-2
inhibits both X4 and R5-tropic HIV-1 infection in a dose
dependent manner, confirming our previous results with
whole S. fusiforme extract, which inhibited both X4 and
primary R5-tropic HIV-1.

S. fusiforme inhibits HIV-1 fusion by blocking CD4 
receptor
Viral entry into cells consists of two distinct steps of 1)
virus binding to the cellular receptor and coreceptor,
which is followed by 2) fusion of the viral and cellular

Inhibition of HIV-1 infectionFigure 1
Inhibition of HIV-1 infection. 1G5 T cells were pre-
treated for 24 h with increasing concentrations of SP4-2, or 
with 10-6M ddC, or mock treated (0 µg SP4-2), as indicated. 
Then, cells were infected with HIV-1 (NL4-3) at multiplicity 
of infection (moi) of 0.01 for 1.5 h, washed 3 times, and 
returned to culture with the same concentration of each 
treatment, for the duration of the experiment. (A) On day 3 
after infection, HIV-1 infection was quantified by luciferase 
gene marker expression from cell lysates that were normal-
ized to the same number of viable cells, and expressed as rel-
ative light units (RLU) on the y-axis. (B) Viability for each cell 
culture treatment was quantified by MTT uptake. (C) Percent 
inhibition of HIV-1 was calculated from raw data in (A), utiliz-
ing the formula in the Methods, and plotted on the Y-axis as 
% HIV-1 Inhibition. Data are mean ± SD of three separate 
experiments.
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membranes and internalization. To determine mecha-
nism of the observed inhibition of infection, we tested for
SP4-2 activity against HIV-1 fusion to CD4-expressing
SupT1 T cells, by utilized a highly specific and sensitive
fluorescence resonance energy transfer (FRET)-based HIV-
1 fusion assay (Fig. 3), [5,6]. HIV-1 β-lactamase-Vpr
(BlaM-Vpr) chimerical HIV-1 (NL4-3) was used to infect
target cells that were loaded with CCF2/AM dye. Changes
in CCF2 fluorescence reflect intracellular presence of
BlaM, which is only present due to HIV-1 fusion and
entry. Mock-treated negative control cells were loaded
with dye, and were gated for background 520 nm emis-
sions, which was low at 1.6% positive cells (0% fusion,
panel A). After infection with BlaM-Vpr HIV-1, fusion was
detected in 51.8% of the cells (100% fusion), as indicated
by a shift to blue fluorescence (panel B). However, treat-
ment of cells with 10 µg SP4-2 fraction inhibited this shift
and markedly reduced viral entry, with only 25% of the

cells being positive for viral fusion, which corresponded
to 51.7% inhibition of the fusion (panel C). As a positive
control for inhibition, we treated cells with 250 nM
AMD3100 (CXCR4 inhibitor), which inhibited virus
fusion, yielding 28.7% fusion positive cells that corre-
sponded to 44.5% inhibition (panel D). Inhibition of
fusion with AMD3100 increased to 80%, when we
increased its concentration to 500 nM (not shown). From
three different experiments we observed that treatment
with 10 µg SP4-2 inhibited HIV-1 fusion by average of
53% (± 0.8 SEM).

Next, in a parallel experiment, we studied for the possible
interaction between SP4-2 and CD4 (Fig. 3E–H). From
37% BlaM-Vpr HIV-1 fusion positive cells without any
inhibitor (panel F), incubation with sCD4 only, resulted
in 8.4% positive cells and blocked HIV-1 fusion by 77.2%
(panel G). However, incubation of sCD4 together with

Inhibition of X4 and R5-tropic HIV-1Figure 2
Inhibition of X4 and R5-tropic HIV-1. GHOST X4/R5 and GFP expressing cells were plate at 1 × 105/well in 12-well plates 
and incubated at 37°C in CO2 atmosphere with increasing concentrations of SP4-2, as indicated, then infected with either X4-
tropic NL4-3 (panel A, a-d) or with R5-tropic 81A (panel B, e-h), at 0.3 moi, in replicates (n = 4). 48 h after infection cells were 
quantified by FACS, and % infected cells is shown on each panel. Uninfected and untreated control (mock) is superimposed 
over each graph in dotted line. Representative of 4 experiments.
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SP4-2 resulted in 34% HIV-1 fusion positive cells (panel
H), in effect reversing inhibition of fusion observed with
sCD4 treatment. This result clearly indicates that SP4-2
interacts with CD4 receptor thereby blocking HIV-1
fusion to target cell.

S. fusiforme inhibits HIV-1 binding but not entry or 
replication
In addition to demonstrating inhibition of HIV-1 fusion
by SP4-2-CD4 interaction, we were interested to define
mechanism of this inhibition by investigating whether
treatment with S. fusiforme prevents virus binding to the
cell surface receptors in culture (Fig. 4). Cells that are
infected at 4°C allow only HIV-1 binding to the cell sur-
face receptor but not fusion or entry. Except for 2 h SP4-2
pretreatment of cells that was done at 37°C to allow for
SP4-2-CD4 interaction, we performed all the subsequent
steps, including HIV-1 infection at 4°C. GHOST X4/R5
expressing cells were treated with increasing concentra-
tions of SP4-2 (0–20 µg), and then washed three times
with warm media to remove any unbound SP4-2. Next,
cells were cooled and infected at 4°C with NL4-3 for 2 h,

washed three times to remove any unbound virus, and
bound HIV-1 was quantified from replicates (n = 6) by
HIV-1 core antigen p24 ELISA (Fig. 4A). Treatment with 0,
12, 16, and 20 µg/ml SP4-2, resulted in a dose dependent
decrease of HIV-1 bound to cells, which measured 860,
805, 435, and 331 pg/ml p24, respectively. The percent
decrease in bound virus was calculated comparative to
100% bound virus (860 pg/ml p24), which was 6.3, 49.4,
and 61.5%, respectively. Treatment with both 16 and 20
µg SP4-2 led to statistically significant decrease (p ≤
0.0001) compared to no treatment (0 µg). To test whether
HIV-1 bound at 4°C was capable of membrane fusion and
replication, in a parallel experiment performed under
same conditions, we returned the infected and washed cell
cultures to 37°C for 48 h, and quantified virus replication
by monitoring HIV-1 p24 production (Fig. 4B). Cell cul-
tures pretreated with 0, 4, 8, 12, and 24 µg/ml SP4-2, rep-
licated HIV-1 in a dose dependent manner that produced
1061, 807, 544, 352, and 148 p24 pg/ml, respectively. The
HIV-1 inhibition was calculated to be 23.9, 48.7, 66.8,
and 86%.

Inhibition of HIV-1 fusionFigure 3
Inhibition of HIV-1 fusion. SupT1 cells (1 × 106) were (A) mock infected, (B) infected for 2 h at 0.5 moi with BlaM-Vpr-X4-
tropic NL4-3, or (C) infected in the presence of 10 µg/ml SP4-2, or (D) infected in the presence of 250 nM AMD3100. In a par-
allel experiment, SupT1 cells (1 × 106) were either (E) mock infected, or (F) infected for 2 h at 0.5 moi with BlaM-Vpr-X4-
tropic NL4-3, or (G) infected in the presence of 20 ng/ml sCD4, or (H) infected in the presence of 20 ng/ml sCD4 together 
with 16 µg/ml SP4-2. Cells were loaded with CCF2/AM dye and fusion was analyzed by multiparameter flow cytometry using a 
violet laser for excitation of CCF, and gated from 10,000 cells. Percentages in each panel are of cells displaying blue fluores-
cence (virus fusion positive cells). Representative of 3 separate experiments.
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S. fusiforme inhibits HIV-1 reverse transcriptase
We showed that inhibition by whole S. fusiforme was
mediated during several stages of the virus life cycle [2].
To determine mechanism of this inhibition, we examined
HIV-1 replication during post entry steps of the virus rep-
lication cycle (Fig. 5). HIV-1 that is envelope deficient and
is pseudotyped with VSV-G envelope bypasses any recep-
tor entry restrictions and allows for a single round of
infection, as previously demonstrated [7]. To bypass inhi-
bition at entry, we infected SupT1 cells with NL4-3 Env-

Luc+ virus pseudotyped with VSV-G envelope for 2 h, and
then added increasing concentrations of SP4-2 treatment.
24 h after infection, we measured luciferase production
and calculated inhibition of virus replication in response
to SP4-2 treatment (Fig. 5A). Treatment with 6, 10, and 12
µg SP4-2 inhibited post entry HIV-1 replication in a dose
dependent manner by 50, 61, and 71%, respectively. Via-
bility of treated cells, as quantified by MTT assay,
remained similar to mock treatment (data not shown).

These data demonstrate that the HIV-1 is inhibited by
SP4-2 after virus entry into cells. To examine the precise
mechanism of the observed post entry inhibition, we
investigated direct inhibition of recombinant HIV-1 RT, in
a cell free assay. Treatment with increasing concentrations
of SP4-2, with 0.078, 0.156, 0.313, 0.625, 0.125, and 2.5

µg, inhibited HIV-1 RT activity in a dose dependent man-
ner by 4, 6, 17, 28, 47, and 79%, respectively (Fig. 5B). As
a negative control for inhibition, we used a different frac-
tion that was derived from whole S. fusiforme, which was
shown to be inactive during bioactivity-guided fractiona-
tion. This fraction did not inhibit HIV-1 RT (not shown).

Discussion
Recently, we identified whole S. fusiforme extract as a
potent inhibitor of HIV-1 infection, which at a concentra-
tion of 3 mg/ml lowered viral infection by up to 80% in a
variety of primary cells and cell lines, and for a prolonged
period of time [2]. To begin identification of the active
components that are contained within this extract, we
started bioactivity-guided fractionation that resulted in
identification of a biologically active fraction SP4-2,
which at 8 µg/ml inhibited HIV-1 infection by 86.9% (Fig.
1). Compared with the IC50 value of 860 µg to the whole
extract previously reported by us, SP4-2 inhibited virus
replication with an IC50 value of 3.7 µg, which represents
a 230-fold enrichment of the antiretroviral activity.
Importantly, SP4-2 treatment did not decrease cell viabil-
ity, which remained similar to either mock or ddC treated
controls (Fig. 1B). Interestingly, SP4-2 inhibited both X4

Inhibition of post entry HIV-1 replicationFigure 5
Inhibition of post entry HIV-1 replication. (A) SupT1 
cells were infected for 1.5 hours in the absence of any treat-
ment, with HIV-1 chimera NL4-3 Env-Luc+/VSV-G pseudo-
type, washed 3 times, and then treated with increasing 
concentrations of SP4-2, for 24 h. Intracellular luciferase 
gene marker expression was quantified from cell lysates that 
were normalized to the same number of viable cells by the 
MTT assay, and percent inhibition of HIV-1 replication was 
calculated from a control cell culture of infected but 
untreated cells, and plotted on the y-axis. (B) Standard cell 
free fluorescent RT assay was performed in the presence of 
2 units recombinant HIV-1 RT/reaction with the indicated 
concentrations of SP4-2. Percent inhibition was calculated 
comparative to assay performed in absence of treatment, 
100% RT activity. Data are mean ± SD of three separate 
experiments.

Inhibition of HIV-1 binding and replicationFigure 4
Inhibition of HIV-1 binding and replication. GHOST 
cells were plate at 1 × 105/well in 12-well plates and incu-
bated at 37°C in CO2 atmosphere with increasing concentra-
tions of SP4-2 for 1.5 hours prior to infection. Treatment 
was washed off 3 times with warm media and plates were 
transferred to 4°C for 2 h to cool. Then the cells were 
infected at 4°C with NL4-3 at 0.1 moi for 2 hours. (A) 
Unbound virus was removed by washing with cold PBS, and 
viral particles remaining bound to the cells were quantified by 
p24 ELISA. (B) In a parallel experiment, 4°C infected plates 
were returned to 37°C for 48 hours, and virus replication 
was quantified by p24 ELISA. Data are mean ± SD of 6 repli-
cates.
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and R5-tropic HIV-1 infections in a dose dependent man-
ner (Fig. 2). Although SP4-2 was more potent in inhibit-
ing X4 virus (compare Fig. 2A to 2B), when we increased
SP4-2 dose, we observed corresponding dose dependent
increase in R5 virus inhibition of up to 88%, without low-
ering cell viability (data not shown). The observed differ-
ences in inhibition of infection can be explained due to
innate differential expression of coreceptors on GHOST
cells. However, inhibition of both X4 and R5 HIV-1, sug-
gested no specificity for inhibition of HIV-1 coreceptors.
To ascertain mechanistic specificity of inhibition observed
by bioactive SP4-2 fraction, we next performed detailed
analysis of HIV-1 fusion events (Fig. 3). Indeed, in three
separate experiments, treatment with 10 µg SP4-2 inhib-
ited HIV-1 fusion by an average of 53% (Fig. 3C). As a
positive control for inhibition of fusion, both AMD3100
and sCD4 also inhibited HIV-1 entry, as expected (Fig. 3D
and 3G, respectively). We further examined specificity of
this inhibition, by investigating whether SP4-2 might
reverse the observed sCD4 inhibition of HIV-1 fusion, and
we tested this possibility by preincubating SP4-2 together
with sCD4 (Fig. 3H). Indeed, SP4-2 almost completely
reversed sCD4 inhibition of HIV-1 fusion, presumably by
binding to it. Inhibition of CD4 receptor also explains
observed dual inhibition of both X4 and R5-tropic HIV-1
infection (Fig. 2), since both strains utilize CD4 as their
main receptor.

To further clarify these events, we examined ability of SP4-
2 fraction to directly inhibit HIV-1 binding to cellular sur-
face receptors in culture (Fig. 4). HIV-1 infection at 4°C
allows only binding of the virus to cellular receptors but
not membrane fusion or cellular entry. Cells treated with
increasing concentrations of SP4-2 and infected at 4°C,
inhibited HIV-1 binding in a dose dependent manner by
up to 61% (Fig. 4A). Next, to test whether 4°C bound
HIV-1 was able to fuse, enter cells and replicate, in a par-
allel experiment, we returned 4°C infected cultures to
37°C for 48 h and measured HIV-1 replication by p24
ELISA (Fig. 4B). Similar to inhibition of HIV-1 binding,
SP4-2 also inhibited virus replication in a dose dependent
manner. This result confirmed our data for inhibition of
fusion (Fig. 3), demonstrating that S. fusiforme blocks
HIV-1 entry by interfering with virus binding to CD4
receptor on cell surface.

Whole S. fusiforme extract inhibited cell-to-cell fusion and
viral spread to the uninfected cells, however it also inhib-
ited post fusion events of HIV-1 replication life cycle [2].
To investigate mechanism of post entry inhibition, we
tested ability of the SP4-2 fraction to inhibit HIV-1 repli-
cation after bypassing entry restriction (Fig. 5). We first
infected cells with NL4-3 Env-Luc+/VSV-G that bypasses
any receptor restrictions and allows for one round of virus
replication [7]. After completing the infection, cells were

treated with increasing concentrations of SP4-2, which
inhibited virus replication in a dose dependent manner by
up to 71%, clearly demonstrating post entry inhibition of
viral life cycle (Fig. 5A).

First step after HIV-1 entry is reverse transcription and
cDNA formation by viral RT, and therefore we next inves-
tigated for possible direct inhibition of HIV-1 RT by SP4-
2, in a cell free assay (Fig. 4B). Indeed, SP4-2 inhibited
HIV-1 RT in a dose dependent manner by up to 79%.
Importantly, as a negative control, we also tested a similar
fraction that was derived from whole S. fusiforme extract,
which did not have any biological activity, including RT
inhibition (not shown).

To examine specificity of S. fusiforme inhibition of HIV-1,
we also tested for possible inhibition of two additional
enveloped viruses, vaccinia and influenza, which were not
inhibited by SP4-2 (data not shown). Unlike nonspecific
inhibition by sulfated polysaccharides isolated from natu-
ral sources [8-10], S. fusiforme does not inhibit infection of
the enveloped viruses that we tested. Instead, its specificity
of inhibition for HIV-1 can be explained through its par-
ticular interaction with the viral CD4 receptor and direct
inhibition of reverse transcriptase.

Conclusion
Taken together, we have demonstrated an average of 53%
inhibition of HIV-1 fusion, and approximately 47% of vir-
ions that do enter cells are further inhibited up to 79% by
RT, which equals to a total global inhibition of HIV-1
infection of approximately 90% that is in agreement with
our results (Fig. 1). These results show that the SP4-2 frac-
tion contains two distinct inhibitory activities against
HIV-1, which we hypothesize to be mediated by at least
two different molecules, one that is CD4 fusion inhibitor
and the other that is RT inhibitor. We conclude that S. fusi-
forme is a lead candidate for HIV-1 antiviral drug develop-
ment.

Materials and methods
Bioactivity-guided fractionation
A sample of S. fusiforme (14 kg) was soaked in aqueous
70% acetone (140 L × 2) overnight. The filtered extract
was concentrated to remove the acetone and the residue
was dried overnight. The extraction temperature was con-
trolled at 70°C to avoid possible thermal breakdown of
bioactive natural products. The solid residue was filtered
to give 75 g of a dark blue paste (SP4), with activity similar
to that of the whole aqueous extract generated previously
[2]. SP4 (38 g) was dissolved in 200 ml of methanol and
treated with 10 g of active charcoal. After filtration, the
brown solution was concentrated, yielding 14 g of brown
residue, which was subjected to silica gel column chroma-
tography and eluted with methylene chloride with an
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increasing amount of methanol. A total of 600 fractions
(25 ml/each) were collected and grouped into 27 fractions
following TLC analyses. The SP4-2 (fraction #81–120,
903 mg) was the most active fraction in 1G5 luciferase
assay monitoring inhibition of HIV-1. Further purifica-
tion of SP4-2 to its individual components is currently in
progress.

Cells
1G5 [11], SupT1 [12], and GHOST X4/R5 [13] cells were
obtained from the HIV AIDS Research and Reference Rea-
gent Program, Division of AIDS, NIAID, NIH, and were
cultured and maintained as specified by the reagent pro-
tocol. Cells were treated as indicated in the Figure legends
for each experiment, infected at the indicated moi,
washed three times, and returned to culture with the indi-
cated concentration of each treatment, for the duration of
experiment, and then analyzed as indicated.

HIV-1 molecular clones, envelope expression vectors, and 
generation of pseudotyped and BlaM-Vpr chimera
HIV-1 X4-tropic molecular clone NL4-3 expresses all
known HIV-1 proteins [14], and the R5-tropic molecular
clone 81A-4 has Ba-L Env sequences on the backbone of
NL4-3 [15] were obtained from HIV AIDS Research and
Reference Reagent Program. Envelope expression defi-
cient and luciferase positive pNL4-3.HSA.R+.E- was
obtained from Dr. Nathaniel Landau [16,17], and was
pseudotyped with VSV-G envelope to produce single
round infectious HIV-1. pL-VSV-G vector was obtained
from Dr. M. Emerman; it contains a VSV G insert in the
pcDNA expression vector modified by replacing the
cytomegalovirus promoter with the HIV-1 long terminal
repeat [18]. We generated native and pseudotyped virus as
previously described [7]. Briefly, 1.5 × 106 293T cells cul-
tured in 10-cm2 plates were cotransfected by calcium
phosphate precipitation [19], with 10 µg of HIV-1 clone
DNA and 15 µg of VSV-G envelope expression plasmid
DNA, a ratio of DNAs found to yield the highest HIV-1
infectious titers in our hands. For native HIV-1 produc-
tion, 1.5 × 106 293T cells were transfected with 15 µg of
NL4-3 or 81A DNA. 293T culture supernatants were har-
vested 72 h after transfection, filtered through a 0.45-µm-
pore-size Millipore filter, and stored at -80°C until use.
Cell-free viral stock was quantified for HIV-1 p24 core
antigen content by enzyme-linked immunosorbent assay
(ELISA) using the HIV-1 Ag kit as specified by the manu-
facturer (AIDS Vaccine Program, NCI-Frederick), and was
also quantified for titers of infectious virus by multinu-
clear activation of a β-galactosidase indicator (MAGI)
assay [20]. Culture supernatants contained 1 to 2 µg of
viral p24 protein per ml and 1 × 106 to 2 × 106 infectious
units (IU) per ml. In our hands, a multiplicity of infection
of 1 for CD4-positive T cells is equivalent to approxi-
mately 1 pg of viral p24 per cell [7].

Fusion sensitive BlaM-Vpr chimera DNA plasmid was a
kind gift from Dr. W. Greene [5], and HIV-1 virions con-
taining the BlaM-Vpr chimera were produced as previ-
ously described [5] Briefly, 293T cells in 10 cm2 flasks
were cotransfected with pNL4-3 proviral DNA (60 µg),
pCMV-BlaM-Vpr (20 µg), and pAdVAntage vectors (10
µg) (Invitrogen). After 48 h at 37°C, the virus-containing
supernatant was centrifuged at low speed to remove cellu-
lar debris and at 72,000 g for 90 min at 4°C to concentrate
virus, which was resuspended in DMEM and aliquoted for
storage at -80°C. For all transfections, calcium phosphate
was used to precipitate DNA, and viral stocks were nor-
malized by p24 content measured by ELISA as described
above.

Infection and analysis of HIV-1 expression by 
luminescence, FACS, and RT
For determination of luciferase expression, 1G5 T cells
were seeded in 12 well plates at 1 × 106 cells/well, treated
for 24 h as indicated in Figure legend, then washed to
remove treatment, and infected in replicates at the indi-
cated moi. After washing, cells were returned to culture
with the same concentration of each treatment for 3 days,
and then equal number of viable cells that were normal-
ized by a CellTiter 96 Non-Radioactive Cell Proliferation
Assay [(3-(4,5-Dimethyl-2-thiazolyl)-2,5-dephenyltetra-
zolium, Promega] (MTT) assay, were tested for luciferase
expression using a Luciferase Assay System (Promega), as
specified by the manufacturer.

Percent (%) inhibition was determined utilizing the fol-
lowing formula:

Fusion assay was done as previously described [5,6].
Briefly, Sup T1 cells were first infected for 2 h with BlaM-
Vpr-X4 (NL4-3) chimera at 0.5 moi, washed in CO2 inde-
pendent media and loaded for 1 h at room temperature
(rt) with the CCF2/AM dye as specified by the manufac-
turer (Gibco), washed in developing buffer and reaction
was allowed to developed overnight. After development,
cells were washed in PBS and fixed in 1.2% paraformalde-
hyde solution. BlaM reaction was detected by the change
in emission fluorescence of CCF2 after cleavage by the
BlaM-Vpr chimera, which was monitored by FACS with a
three-laser Vantage SE (Becton Dickinson, San Jose, CA).
A coherent krypton laser operating at 200 mW and gener-
ating light at 406.7 nm was used to excite the CCF2 dye.
Blue emission was detected with an HQ455/50 filter, and
green emission was detected with an HQ545/90 BP filter;
for light splitting, a 505 SP filter was used. Data were col-
lected with CellQuest and analyzed with FlowJo software
(Treestar, San Carlos, CA).

Inhibition %
reated cells Mock-treated cells

Untre
[ ] = − −

1
(T ) ( )

( aated cells Mock-treated cells) ( )−








 ×100
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GHOST X4/R5 expressing adherent cells that are stably
transfected with GFP under control of the HIV-1 LTR, and
cells were plated in 24-well plates at concentration of 5 ×
104 cells/well in 90% DMEM, 10% fetal bovine serum,
500 mg/ml G418, 100 mg/ml hygromycin, 1 mg/ml puro-
mycin, and 1% penicillin/streptomycin. Next day cells
were treated with 2-fold dilutions of 50 mg/ml SP4-2 for
1.5 hours. The treatment was then removed by washing,
and cells were infected at 0.3 moi with either X4-tropic
(NL4-3), or with R5-tropic (81A) HIV-1 clone. Infection
was carried out in a volume of 150 µl at 37°C in 5% CO2
atmosphere, cell cultures were washed and returned to
media containing each respective treatment. Cells were
collected 40–48 hours post infection, washed in PBS, and
incubated in 200 µl 1.2% parafolmaldehyde in PBS for 2–
3 hours at 4°C prior to FACS analysis. Cell counting was
performed on BD FACSCanto™ FACS system and analyzed
with BD FACSDiva software. The percent of infected
(GFP-expressing) cells in untreated wells was taken as
100% infection and inhibition by SP4-2 was calculated
comparative to it.

HIV-1 reverse transcriptase (RT) assay kit (Invitrogen) was
performed in accordance with the manufacturer's instruc-
tions. Briefly, 2 units of HIV-1 RT (Ambion) were mixed
in the reaction mixture with the indicated serial dilutions
of SP4-2, and RT activity was quantified from fluorescence
readings resulting from RT catalyzing RNA-DNA heter-
oduplex formation. Percent RT inhibition was calculated
from RT reaction in the absence of treatment or 100% RT
activity.
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