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Charge and spin dynamics in the one-dimensionalt-Jz and t-J models

Shu Zhang,* Michael Karbach, and Gerhard Mu¨ller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

Joachim Stolze
Institut für Physik, Universita¨t Dortmund, 44221 Dortmund, Germany

~Received 11 September 1996!

The impact of the spin-flip terms on the~static and dynamic! charge and spin correlations in the Luttinger-
liquid ground state of the one-dimensional~1D! t-J model is assessed by comparison with the same quantities
in the 1D t-Jz model, where spin-flip terms are absent. We employ the recursion method combined with a
weak-coupling or a strong-coupling continued-fraction analysis. AtJz /t501 we use the Pfaffian representa-
tion of dynamic spin correlations. The changing nature of the dynamically relevant charge and spin excitations
on approach of the transition to phase separation is investigated in detail. At the transition point, thet-Jz
ground state has zero~static! charge correlations and very short-ranged~static! spin correlations, whereas the
t-J ground state is critical. Thet-Jz charge excitations~but not the spin excitations! at the transition have a
single-mode nature, whereas charge and spin excitations have a complicated structure in thet-J model. A
major transformation of thet-J spin excitations takes place between two distinct regimes within the Luttinger-
liquid phase, while thet-Jz spin excitations are found to change much more gradually. In thet-Jzmodel, phase
separation is accompanied by Ne´el long-range order, caused by the condensation of electron clusters with an
already existing alternating up-down spin configuration~topological long-range order!. In the t-J model, by
contrast, the spin-flip processes in the exchange coupling are responsible for continued strong spin fluctuations
~dominated by two-spinon excitations! in the phase-separated state.@S0163-1829~97!06210-3#

I. INTRODUCTION

At the heart of many phenomena in condensed-matter
physics is the interplay between the charge and spin degrees
of freedom of interacting electrons. The impact of the mag-
netic ordering and fluctuations on the charge correlations or
the effect of the phase separation on the spin correlations, for
example, are important issues in the study of strongly corre-
lated electron systems. One of the simplest scenarios in
which these questions can be formulated transparently and
investigated systematically comprises two successive ap-
proximations of the Hubbard model with very strong on-site
repulsion. They are known under the namest-J and t-Jz
models.1

Here we consider a one-dimensional~1D! lattice.2–9 In
both models the assumption is that the Hubbard on-site re-
pulsion is so strong that double occupancy of electrons on
any site of the lattice may as well be prohibited completely.
This constraint is formally incorporated into the two models
by dressing the fermion operators of the standard hopping
term with projection operators:

Ht52t (
s5↑,↓

(
l

$c̃l ,s
† c̃l11,s1 c̃l11,s

† c̃l ,s% ~1.1!

with c̃l ,s5cl ,s(12nl ,2s), nl5nl ,↑1nl ,↓ , nl ,s5cl ,s
† cl ,s . In

the t-J model the Hubbard interaction is further taken into
account by an isotropic antiferromagnetic exchange coupling
between electrons on nearest-neighbor sites:

Ht-J5Ht1J(
l

$Sl•Sl112
1
4nlnl11% ~1.2!

with Sl
z5 1

2(nl ,↑2nl ,↓), Sl
15 c̃l ,↑

† c̃l ,↓ , and Sl
25 c̃l ,↓

† c̃l ,↑ . In
the t-Jz model the isotropic exchange interaction is replaced
by an Ising interaction:

Ht-Jz
5Ht1Jz(

l
$Sl

zSl11
z 2 1

4nlnl11%. ~1.3!

The absence of spin-flip terms inHt-Jz
introduces addi-

tional invariants~not present inHt-J) for the spin configura-
tions of eigenstates and thus alters the relationship between
charge and spin correlations considerably. All results pre-
sented here will be for one-quarter-filled bands (Ne5N/2
electrons on a lattice ofN sites!.

For weak exchange interaction, both models have a
Luttinger-liquid ground state. For stronger interaction,
electron-hole phase separation sets in. Phase separation is
primarily a transition of the charge degrees of freedom. Here
it is driven by an interaction of the spin degrees of freedom,
and it is accompanied by a magnetic transition. The degree
of spin ordering in the phase-separated state depends on the
presence (t-J) or absence (t-Jz) of spin-flip terms in the
interaction.

Detailed information on the charge and spin fluctuations
in Ht-J andHt-Jz

is contained in the dynamic charge structure

factor Snn(q,v) and in the dynamic spin structure factor
Szz(q,v), i.e., in the quantity

SAA~q,v![E
2`

1`

dteivt^Aq~ t !A2q&, ~1.4!

whereAq stands for the fluctuation operators
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nq5N21/2(
l
e2 iqlnl , Sq

z5N21/2(
l
e2 iqlSl

z . ~1.5!

The degree of spin and charge ordering in the ground state
is also reflected in the equal-time charge correlation function
^nlnl1m& and spin correlation function̂Sl

zSl1m
z & and in their

Fourier transforms, the structure factorsSnn(q)[^nqn2q&
andSzz(q)[^Sq

zS2q
z &.

In the following we investigate theT50 charge and spin
fluctuations of the two modelsHt-J andHt-Jz

in three differ-
ent regimes with the calculational tools adapted to the situa-
tion: the limit of zero exchange coupling~Sec. II!, the
Luttinger-liquid state~Sec. III!, and the phase-separated state
~Sec. IV!.

II. FREE LATTICE FERMIONS

A. Charge correlations and dynamics

The tight-binding Hamiltonian~1.1! has a highly spin-
degenerate ground state. The charge correlations are inde-
pendent of the spin configurations and, therefore, equivalent
to those of a system of spinless lattice fermions,

Ht852t(
l

$cl
†cl111cl11

† cl%. ~2.1!

This Hamiltonian has been well studied in the context of the
1D s51/2 XX model,

HXX52J'(
l

$Sl
xSl11

x 1Sl
ySl11

y %, ~2.2!

which, for J'52t, becomes Eq.~2.1! via Jordan-Wigner
transformation.10,11 The equal-time charge correlation func-
tion of Ht ~or Ht8) exhibits power-law decay,

^nlnl1m&2^nl&^nl1m&5
cos~pm!21

2p2m2 , ~2.3!

and the charge structure factor has the form

Snn~q!2
N

4
dq,05

uqu
2p

. ~2.4!

The dynamic charge structure factor, which is equivalent to
the zz dynamic spin structure factor of Eq.~2.2! reads~for
N→`):12

Snn~q,v!p2d~q!d~v!

1
2Q~v22t sinq!Q~4t sin~q/2!2v!

A16t2sin2~q/2!2v2
. ~2.5!

B. Spin correlations

The charge-spin decoupling as is manifest in the product
nature of the ground-state wave functions ofHt-Jz

at

Jz /t501 andHt-J at J/t501 was shown to lead to a fac-
torization in the spin correlation function.4,13,14We can write

^Sl
zSl1m

z &5 (
j52

m11

C~ j21!P~m, j !, ~2.6!

whereC(m)[^Sl
zSl1m

z &LS is the correlation function in the
ground state of a system ofNe localized spins with antifer-
romagnetic Heisenberg (t-J) or Ising (t-Jz) coupling, and

P~m, j ![^nlnl1md j ,Nm
&, Nm[ (

i5 l

l1m

ni

is the probability of finding j electrons on sites
l ,l11, . . . ,l1m with no holes at the end points of the in-
terval. This expression can be brought into the form

^Sl
zSl1m

z &5
21

4Ne
(
kÞ0

S~k!

sin2~k/2!

3@Dm~k!22Dm21~k!1Dm22~k!#, ~2.7!

S~k!5(
j51

Ne

eik jC~ j !, Dm~k!5K expS 2 ik(
l50

m

nl D L , ~2.8!

whereS(k) for k5(2p/Ne)n, n50, . . . ,Ne21 is the static
structure factor for the localized spins, and theDm(k) are
many-fermion expectation values, which are expressible as
determinants of dimensionm11:4

Dm~k!5Ud i j2 ~11e2 ik!

2Ne

sin@p~ i2 j !/2#

sin@p~ i2 j !/2Ne#
U
i , j50, . . . ,m

.

In Ht-Jz
we have C(m)5(1/4)(21)m, i.e., S(k)

5(Ne/4)dk,p , reflecting the~invariant! alternating up-down
sequence of successive electron spins. Expression~2.7! can
then be evaluated in closed form:

^Sl
zSl12n

z &5
~21!n

2p2 )
i51

n21

Pi
2 , ~2.9a!

^Sl
zSl12n11

z &52 1
2 ~^Sl

zSl12n
z &1^Sl

zSl12n12
z &! ~2.9b!

with

Pi5
2

p )
j51

i S 12
1

4 j 2D
21

.

The leading terms of the long-distance asymptotic expansion
of ~2.9! are15

^Sl
zSl1m

z & t-Jz ——→
m→` A2

4A2
1

Aumu

3F S 12
1

8

1

m2D cosmp

2
2

1

2m
sin
mp

2 G
~2.10!

with A521/12exp@3z8(21)#50.64500 . . . . The structure of
Dm(p) is very similar to that of thexx spin-correlation func-
tion of HXX .

10,16,17Its leading asymptotic term has the form
^Sl

xSl1m
x &XX;(A2/2A2)m21/2.

In Ht-J the spin-flip terms weaken the spin correlations at
J/t501. The functionS(k) in Eq. ~2.7! is determined via
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Eq. ~2.8! by the spin correlation function of the 1Ds51/2
Heisenberg antiferromagnet (XXX model!. Its leading as-
ymptotic term reads18 C(m);G(21)mm21(lnm)1/2 with
amplitude G.0.125(15) as estimated from finite-chain
data.19 The leading asymptotic term of thet-J spin correla-
tion function inferred from Eq.~2.7! has the form13

^Sl
zSl1m

z & t-J;GA2A2cos~pm/2!
~ lnm!1/2

m3/2 . ~2.11!

The t-J and t-Jz spin structure factorsSzz(q) inferred from
the results presented here will be presented and discussed in
Sec. III E.

For an intuitive understanding of theq5p charge density
wave in the ground state atJz /t501 andJ/t501, we note
that the hopping term opposes electron clustering. In the ab-
sence of the exchange term, which favors clustering of elec-
trons with opposite spin, the hopping effectively causes an
electron repulsion. This is reflected in the power-law decay
~2.3! of the charge correlation function, specifically in the
term which oscillates with a period equal to twice the lattice
constant (q54kF5p). In this state, an electron is more
likely to have a hole next to it than another electron.

How does this affect the spin correlations? Recall that the
ground state ofHt-Jz

at Jz /t501 is characterized by an~in-
variant! alternating spin sequence. In a perfect electron clus-
ter this sequence would amount to saturated Ne´el ordering
(q5p), but here it is destroyed by a distribution of holes.
Spin long-range order exists only in a topological sense.

However, some amount of actual spin ordering survives by
virtue of the effective electron repulsion in the form of the
algebraically decaying term~2.10! in the spin correlation
function with a wavelength equal to four times the lattice
constant (q52kF5p/2).

A similar argument obtains for thet-J model. Since its
ground state atJ/t501 contains all spin sequences with
ST
z50, not just the alternating ones, the resultingq5p/2
oscillations ~2.11! in the spin correlation function decay
more rapidly than in thet-Jz case.

20

C. Spin dynamics

Expression~2.6! cannot be generalized straightforwardly
for the calculation ofdynamicspin correlations, the principal
reason being that the number of electrons between any two
lattice sites is not invariant under time evolution. However,
in the t-Jz case we can determine the function^Sl

z(t)Sl1m
z &

on a slight detour. We use open boundary conditions and
write

Sl
z52

1

2
sL)

i51

l

~21!ninl , ~2.12!

where sL561 denotes the spin direction of the leftmost
particle in the chain, whichis an invariant under time evolu-
tion. The time-dependent two-spin correlation function of the
open-endedt-Jz chain is then related to the following many-
fermion correlation function:

^Sl
z~ t !Sl1m

z &5
1

4 K nl~ t !)i51

l

~21!ni ~ t !)
j51

l1m

~21!njnl1mL
5^cl

†~ t !cl~ t !A1~ t !B1~ t !A2~ t !B2~ t !•••Al~ t !Bl~ t !A1B1A2B2•••Al1mBl1mcl1m
† cl1m&

with Al[cl
†1cl , Bl[cl

†2cl . In order to extract the bulk
behavior of ^Sl

z(t)Sl1m
z & from this expression, we must

choose both sitesl andl1m sufficiently far from the bound-
aries.

The numerical evaluation of this function via Pfaffians
shows21–23 that the leading long-time asymptotic term de-
scribes uniform power-law decay,^Sl

z(t)Sl12n
z &;t21/2, for

even distances and~more rapid! oscillatory power-law decay,
^Sl

z(t)Sl12n11
z &;e22i t t2a, a*1, for odd distances. More-

over, we have found compelling numerical evidence that the
relation~2.9b! can be generalized to time-dependent correla-
tion functions in the bulk limitl→`.

Our data for the dynamic correlations in conjunction with
the long-distance asymptotic result~2.10! for the static cor-
relations suggest that the leading term for large distances and
long times has the form24

^Sl
z~ t !Sl1m

z & t-Jz;
1

4

A2/&

~m224t2!1/4
cos

pm

2
, ~2.13!

which is, apart from the spatial oscillations, similar to the
corresponding~exact! asymptotic result in theXXmodel:17,25

^Sl
x~ t !Sl1m

x &XX;
1

4

A2&

~m22J'
2 t2!1/4

. ~2.14!

The asymptotic behavior~2.13! of the dynamic spin correla-
tion function implies that the dynamic spin structure factor
has a divergent infrared singularity atq5p/2:
Szz(p/2,v) t-Jz;v21/2. Further evidence for this singularity

and for a corresponding singularity inSzz(q,v) t-J will be
presented in Sec. III F.

III. LUTTINGER-LIQUID STATE

Turning on the exchange interaction inHt-J and Ht-Jz
,

which is attractive for electrons with unlike spins and zero
otherwise, alters the charge and spin correlations in the
ground state gradually over the range of stability of the
Luttinger-liquid state. In thet-Jz model, where successive
electrons on the lattice have opposite spins, the exchange
coupling counteracts the effectively repulsive force of the
hopping term and thus gradually weakens the enhanced
q5p charge andq5p/2 spin correlations. We shall see that

55 6493CHARGE AND SPIN DYNAMICS IN THE ONE- . . .



the repulsive and attractive forces reach a perfect balance at
Jz /t542. Here the distribution of electrons~or holes! is
completely random. All charge pair correlations vanish iden-
tically and all spin pair correlations too, except those be-
tween nearest-neighbor sites. This state marks the boundary
of the Luttinger-liquid phase. AtJz /t.4 the attractive na-
ture of the resulting force between electrons produces new
but different charge and spin correlations in the form of
charge long-range order atq501 ~phase separation! and
spin long-range order atq5p ~antiferromagnetism!.

In the t-J model the disordering and reordering tendencies
are similar, but the exchange interaction with spin-flip pro-
cesses included is no longer uniformly attractive. At no point
in parameter space do the attractive and repulsive forces can-
cel each other and produce a random distribution of elec-
trons. A sort of balance between these forces exists at
J/t52, which is reflected in the observation9 that the ground
state is particularly well represented by a Gutzwiller wave
function at this coupling strength. Charge and spin correla-
tions exhibit power-law decay at the endpoint,J/t.3.2, of
the Luttinger-liquid phase. Here the attractive forces start to
prevail on account of sufficiently strong antiferromagnetic
short-range correlations and lead to phase separation, but the
spin correlations continue to decay to zero asymptotically at
large distances.

One characteristic signature of a Luttinger liquid is the
occurrence of infrared singularities with interaction-
dependent exponents in dynamic structure factors. In the fol-
lowing we present direct evidence for interaction-dependent
infrared singularities in the dynamic charge and spin struc-
ture factors ofHt-Jz

and Ht-J . We employ the recursion
method26 in combination with techniques of continued-
fraction analysis recently developed in the context of mag-
netic insulators.27–30

The recursion algorithm in the present context is based on
an orthogonal expansion of the wave function
uCq

A(t)&[Aq(2t)uf& with Aq as defined in Eq.~1.5!. It pro-
duces ~after some intermediate steps! a sequence of
continued-fraction coefficientsD1

A(q),D2
A(q), . . . for the re-

laxation function,

c0
AA~q,z!5

1

z1
D1
A~q!

z1
D2
A~q!

z1 . . .

, ~3.1!

which is the Laplace transform of the symmetrized correla-
tion function R^Aq(t)A2q&/^AqA2q&. The T50 dynamic
structure factor~1.4! is then obtained via

SAA~q,v!54^AqA2q&Q~v! lim
«→0

R@c0
AA~q,«2 iv!#.

For some aspects of this study, we benefit from the close
relationship of the two itinerant electron modelsHt-Jz

and

Ht-J with the 1Ds51/2 XXZmodel,

HXXZ5HXX2Ji(
l
Sl
zSl11

z ,

a model for localized electron spins. The equivalence of
Ht-Jz

andHXXZ for Ji5Jz/2 andJ'52t was pointed out and
used before.7,4 Depending on the boundary conditions, it can
be formulated as a homomorphism between eigenstates be-
longing to specific invariant subspaces of the two models.
The mapping assigns to any up spin and down spin in
HXXZ an electron and a hole, respectively, inHt-Jz

. The spin
sequence of the electrons in the subspace of interest here is
fixed, namely alternatingly up and down. The importance of
this mapping derives from the fact that the ground-state
properties ofHXXZ have been analyzed in great detail.31–33

The T50 dynamic charge structure factorSnn(q,v) of
Ht-Jz

is thus equivalent to theT50 dynamic spin structure

factor Szz(q,v) of HXXZ throughout the Luttinger-liquid
phase, and we shall take advantage of the results from pre-
vious studies ofXXZ spin dynamics.34,35The spin dynamics
of Ht-Jz

is not related to any known dynamical properties of

HXXZ .

A. Charge structure factor

Certain dominant features of the dynamic charge structure
factorSnn(q,v) are related to known properties of the static
charge structure factor. Figure 1 displays finite-N data of
Snn(q) for various coupling strengths in the Luttinger-liquid
phase of~a! Ht-Jz

and ~b! Ht-J .
The alignment of the data points on a sloped straight line

in the free-electron limit represents the exact result~2.4!,
which is common to both models. The persistent linear be-
havior at smallq for nonzero coupling reflects an asymptotic
term of the form;A0m

22 in the charge correlation function
^nlnl1m&, while the progressive weakening of the cusp sin-
gularity at q5p reflects an asymptotic term of the form
;A1cos(pm)/m

hr with a coupling-dependent charge correla-
tion exponent hr . For Ht-Jz

this exponent is exactly
known:33

hr52/@12~2/p!arcsin~Jz/4t !#. ~3.2!

FIG. 1. Static charge structure factor atT50 of ~a! the t-Jz
model and~b! t-J model in the Luttinger-liquid phase. Results ex-
tracted from the ground-state wave function determined numeri-
cally for a system ofN512 sites.
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No exact result exists for thet-J case, but the prediction is
that the charge correlation exponent varies over the same
range of values,5 i.e., betweenhr52 atJ/t50 andhr5` at
J/t.3.2. ForJ/t*1, the data in Fig. 1~b! indicate the pres-
ence of a third cusp singularity inSnn(q), namely at
q5p/2, which reflects the third asymptotic term,
;A2cos(pm/2)/m

11hr/4, predicted for the t-J charge
correlations.36 No corresponding singularity is indicated in
the data of Fig. 1~a!, nor is any corresponding asymptotic
term predicted in theXXZ spin correlations.

At the endpoint of the Luttinger-liquid phase (Jz /t54),
the t-Jz ground-state wave function has the form

uf0&5 (
1< l1, l2, . . ., l N/2<N

S N
N/2D 21/2

u l 1 , . . . ,l N/2&

3
1

A2
$u↑↓↑ . . . &2u↓↑↓ . . . &%, ~3.3!

where u l 1 , . . . ,l N/2& specifies the variable charge positions.
It corresponds to the vector with total spinST5N/2 andz
componentST

z50 of the degenerateXXZ ground state at
Ji /J'51. The electrons are distributed completely at ran-
dom on the lattice, while the sequence of spin orientations is
frozen in a perfect up-down pattern. This state is nondegen-
erate for finiteN, and its energy per site isN independent:
E0 /N52t. For N→`, the t-Jz charge correlations disap-
pear completely,̂ nlnl1m&2^nl&^nl1m&5dm,0/4 as is indi-
cated by the finite-N data for Jz /t54 in Fig. 1~a!:
Snn(q)2(N/4)dq,05@N/4(N21)#(12dq,0). The t-J charge
correlations, by contrast, seem to persist atJ/t.3.2.

B. Charge dynamics„weak-coupling regime…

Expression~2.5! for the T50 dynamic charge structure
factor Snn(q,v) of Ht is modified differently under the in-
fluence of aJz-type or aJ-type exchange interaction. Within
the Luttinger-liquid phase we distinguish two regimes for the
charge dynamics: aweak-couplingregime and astrong-
coupling regime. In the weak-coupling regime, the interac-
tion produces only small and gradual changes inSnn(q,v),
which are accessible to perturbation calculations. That is no
longer the case in the strong-coupling regime, where changes
of a more qualitative nature are likely to take place. In the
context of the recursion method, the two regimes can be
diagnosed by a technical criterion, namely the growth of the
sequence of continued-fraction coefficientsDk

A(q) in Eq.
~3.1!.29

In the framework of a weak-coupling continued-fraction
~WCCF! analysis, the dynamically dominant excitation spec-
trum of Snn(q,v) is confined to a continuum as in Eq.~2.5!
but with modified boundaries and a rearranged spectral-
weight distribution. Moreover, a discrete branch of excita-
tions appears outside the continuum. A WCCF analysis for
Snn(p,v) of Ht-J and, in disguise, also ofHt-Jz

, namely in

the form of Szz(p,v) for HXXZ was reported in Ref. 29,
mainly for the purpose of calculating line shapes.

The renormalized bandwidthv0 of the dynamic charge
structure factorSnn(p,v) versus the coupling constant as
obtained from a WCCF analysis is shown in the main plot of
Fig. 2 for both thet-Jzmodel (h) and thet-J model (s). In

the XXZ context,v0 is the bandwidth of the two-spinon
continuum, which is exactly known.32 Translated intot-Jz
terms, the expression reads

v0/2t5~p/m!sinm, cosm52Jz/4t ~3.4!

and is represented by the solid line. Comparison with our
data confirms the reliability of the WCCF analysis.

Our bandwidth data for thet-J model can be compared
with numerical results of Ogataet al.5 for the charge velocity
vc as derived from the numerical analysis of finite chains.
The underlying assumption is that the relationv052vc ,
which is exact inHt-Jz

, also holds forHt-J . The t-J charge-
velocity results of Ref. 5 over the entire range of the
Luttinger-liquid phase are shown as full circles connected by
a dashed line in the inset. The solid line represents the exact
t-Jz charge velocityvc5v0/2 with v0 from Eq. ~3.4!.

The dashed line in the main plot is thet-J bandwidth
prediction inferred from the data of Ref. 5. It is in near per-
fect agreement with the WCCF data (s). The open squares
in the inset show the WCCF data over a wider range of
coupling strengths. The renormalized bandwidthv0 will
shrink to zero at the endpoint of the Luttinger-liquid phase,
and the spectral weight will gradually be transferred from the
shrinking continuum to states of a different nature at higher
energies.

C. Infrared exponent

In the Luttinger-liquid phase, the dynamic charge struc-
ture factor has an infrared singularity with an exponent re-
lated to the charge correlation exponent:

Snn~p,v!;vbr, br5hr22 . ~3.5!

The WCCF analysis yields specific predictions forbr in both
models. Our results plotted versus coupling constant are

FIG. 2. Main plot: Renormalized bandwidth of the dynamically
relevant charge excitations in the weak-coupling regime of the
Luttinger-liquid phase of thet-J and t-Jz models. Inset: Charge
velocity in the two models over the full range of the Luttinger-
liquid phase. The open symbols represent weak-coupling continued-
fraction data and the solid lines represent the exact expression~3.4!.
The full circles are finite-chain data from Ref. 5.
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shown in the inset to Fig. 3 forHt-Jz
(h) andHt-J (s). The

solid line represents the exactt-Jz result inferred from Eq.
~3.2!.

We observe that the WCCF prediction for the infrared
exponent (h) rises somewhat more slowly from zero with
increasing coupling than the exact result. The solid line in
the main plot depicts the inverse square of the exactt-Jz
correlation exponent~3.2! over the entire range of the
Luttinger-liquid phase. The open squares represent the
WCCF data for 21br5hr extended to stronger coupling.
For Ht-J the correlation exponent is not exactly known. The
solid circles interpolated by the dashed line represent the
prediction forhr of Ogataet al.

5 based on a finite-size analy-
sis. The dashed line in the inset is inferred from the same
data. It agrees reasonably well with the WCCF data forbr

(s).
The solid and long-dashed curves in the main plot suggest

the intriguing possibility that the exponentshr of the two
models have the same dependence on the scaled coupling
constantsJz /Jz

(c) with Jz
(c)54t and J/J(c) with J(c).3.2t.

The short-dashed line represents the exactt-Jz result ~3.2!
thus transcribed forHt-J . Its deviation from the data of
Ogata et al. is very small throughout the Luttinger-liquid
phase.

In Ref. 29 we carried out a WCCF reconstruction of the
function Snn(p,v) for the t-J model and thet-Jz model
~aliasXXZmodel!.37 The observed spectral-weight distribu-
tions of both models consisted of a gapless continuum with a
cusplike infrared singularity (br.0), a shrinking bandwidth
(v0/2t,2), and a lone discrete state outside the continuum
near its upper boundary.

D. Charge dynamics„strong-coupling regime…

What happens to the dynamic charge structure factor
Snn(q,v) as the exchange interaction is increased beyond the

weak-coupling regime of the Luttinger-liquid phase? For the
t-Jz case the answer can be inferred from known results for
the spin dynamics ofHXXZ .

34,35 The continuum of charge
excitations with sine-like boundaries

eL~q!5
pt sinm

m
usinqu, eU~q!52eL~q/2!,

continues to shrink to lower and lower energies, and discrete
branches of excitations

en~q!5
2pt sinm

m sinyn
sin
q

2
Asin2

q

2
1sin2yncos

2
q

2

with yn5(pn/2m)(p2m) emerge successively at
m5p/(111/n) from the upper continuum boundary.38,35All
these excitations carry some spectral weight, at least for fi-
niteN, but most of the spectral weight inSnn(q,v) is trans-
ferred from the shrinking continuum to the top branch, the
one already present in the WCCF reconstruction.29

At the endpoint of the Luttinger-liquid phaseJz /t54, the
continuum states have been replaced by a series of branches
en(q)5(2t/n)(12cosq), n51,2, . . . , all the spectral
weight is carried by the top branch (n51), and the dynamic
charge structure factor reduces to the single-mode form

Snn~q,v!5p2d~q!d~v!1
p

2
dS v2Jzsin

2
q

2D .
In the framework of the recursion method applied to the
exact finite-size ground state~3.3!, this simple result follows
from a spontaneously terminating continued fraction with co-
efficientsD1(q)5Jz

2sin4(q/2), D2(q)50.
The dynamically relevant charge excitation spectrum of

Ht-J , which has an even more complex structure, will be
presented in a separate study. In this case, exact results exist
only at one point (J/t52) in the strong-coupling regime.7

E. Spin structure factor

The long-distance asymptotic behavior of thet-J spin cor-
relation function in the Luttinger-liquid phase was predicted
to be governed by two leading power-law terms of the
form2–5

^Sl
zSl1m

z & t-J;B1

1

m2 1B2

cos~pm/2!

mhr/411 , ~3.6!

wherehr is the charge correlation exponent discussed previ-
ously. The open circles in Fig. 4~a! depict the spin structure
factorSzz(q) t-J for J/t501 of a system withN556 sites as
inferred via numerical Fourier transform from the results for
the spin correlation function presented in Sec. II. The two
asymptotic terms of Eq.~3.6! are reflected, respectively, in
the linear behavior at smallq and in the pointed maximum at
q5p/2. The latter turns into a square-root cusp asN→`.
The extrapolated maximum isSzz(p/2)t-J50.28(1) ~indi-
cated by a1 symbol!. The extrapolated slope atq50 is
Szz(q) t-J /q50.0847(20). The observed smooth minimum at
q5p suggests thatSzz(q) t-J , unlike Snn(q) t-J , has no sin-
gularity there. The extrapolated value isSzz(p) t-J
50.127 019(2).

FIG. 3. Inset: Infrared exponentbr as defined by Eq.~3.5! in the
weak-coupling regime of the Luttinger-liquid phase of thet-J and
t-Jz models. Main plot: Inverse square of the charge correlation
exponent for both models over the full range of the Luttinger-liquid
phase. The open symbols represent weak-coupling continued-
fraction data, the solid lines represent the exact expression~3.2!,
and the short-dashed line the same expression withJ/3.2t substi-
tuted forJz/4t. The full circles are the finite-chain data from Ref. 5.
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The predictions of Eq.~3.6! that the linear behavior in
Szz(q) t-J at smallq persists throughout the Luttinger-liquid
phase and that the cusp singularity atq5p/2 weakens with
increasingJ/t and disappears at the onset of phase separation
are consistent with our result forJ/t53.2, plotted in Fig.
4~b!. The open circles suggest a smooth curve which rises
linearly from zero atq50. The smooth extremum atq5p
has turned from a minimum atJ/t501 into a maximum at
J/t53.2.

The solid line in Fig. 4~a! representsSzz(q) t-Jz for the

free-fermion caseJz /t501 as obtained from Fourier trans-
forming Eq.~2.9!. It differs from the correspondingt-J result
(s) mainly in three aspects:~i! the rise from zero at small
q is quadratic instead of linear, reflecting nonsingular behav-
ior at q50, i.e., the absence of a nonoscillatory power-law
asymptotic term in ^Sl

zSl1m
z & t-Jz; ~ii ! the singularity at

q5p/2 is divergent:;uq2p/2u21/2; ~iii ! the smooth local
minimum at q5p has a slightly higher value,
Szz(p) t-Jz.0.129.

Over the range of the Luttinger-liquid phase, the asymp-
totic term in ^Sl

zSl1m
z & t-Jz which governs the singularity in

Szz(q) t-Jz at q5p/2 is of the form;B2cos(pm/2)/m
hr/4. As

in the t-J case, the singularity weakens gradually and then
disappears at the transition point,Jz /t54. The finite-N re-
sult of Szz(q) t-Jz at Jz /t54, (d) in Fig. 4~b!, indeed sug-
gests a curve with no singularities. This is confirmed by the
exact result,

Szz~q! t-Jz5
1
8 ~12cosq!, ~3.7!

inferred from the exact ground-state wave function~3.3! for
N→`. It reflects a spin correlation function which vanishes
for all distances beyond nearest neighbors.

F. Spin dynamics

Under mild assumptions, which have been tested for
Ht-Jz

at Jz /t501, the following properties of the dynamic

spin structure factorsSzz(q,v) of Ht-J or Ht-Jz
can be in-

ferred from the singularity structure ofSzz(q): ~i! The exci-
tation spectrum inSzz(q,v) is gapless atq5p/2. ~ii ! The
spectral-weight distribution at the critical wave number
q5p/2 has a singularity of the form:

SzzS p

2
,v D

t-Jz

;vhr/422, SzzS p

2
,v D

t-J

;vhr /421.

In the weak-coupling limit (hr52), this yields;v23/2 for
Ht-Jz

and;v21/2 for Ht-J . In both cases, the infrared expo-
nent increases with increasing coupling. A landmark change
in Szz(p,v) occurs at the point where the infrared exponent
switches sign~from negative to positive!. In thet-Jz case this
happens forhr58 and in thet-J case forhr54. According
to the data displayed in Fig. 3, this corresponds to the cou-
pling strengthsJz /t53.6955 . . . andJ/t.2.3, respectively.

The dynamic spin structure factorSzz(q,v) t-Jz as obtained
via the recursion method combined with a strong-coupling
continued-fraction~SCCF! analysis27,28 is plotted in Fig. 5 as
a continuous function ofv and a discrete function of
q52pm/N, m50, . . . ,N/2 with N512 for coupling
strengthsJz /t501,2,3,4. This function has a nongeneric
(q↔p2q) symmetry, which obtains for the dynamically
relevant excitation spectrum and for the line shapes, but not
for the integrated intensity.39 In the weak-coupling limit,
Jz /t501, the spectral weight inSzz(q,v) is dominated by
fairly well defined excitations at all wave numbers. The dy-
namically relevant dispersion isucosqu-like.

With Jz /t increasing toward the endpoint of the
Luttinger-liquid phase, the following changes can be ob-
served inSzz(q,v): The peaks atqÞp/2 gradually grow in
width and move toward lower frequencies. Theucosqu-like
dispersion of the peak positions stays largely intact, but the
amplitude shrinks steadily. The central peak at the critical
wave numberq5p/2 starts out with large intensity and
slowly weakens with increasing coupling. BetweenJz /t53
and Jz /t54, it turns rather quickly into a broad peak, sig-
naling the expected change in sign of the infrared exponent.

The dynamically relevant dispersion of the dominant spin
fluctuations as determined by the peak positions in our SCCF
data forSzz(q,v) is shown in Fig. 6 for several values of
Jz /t. The linear initial rise from zero atq5p/2 is typical of
a Luttinger liquid. The amplitude of theucosqu-like disper-
sion decreases with increasingJz /t and approaches zero at
the transition to phase separation. At the same time, the line
shapes ofSzz(q,v) t-Jz tend to broaden considerably. These

trends are not shared with thet-J spin excitations as we shall
see.

The SCCF analysis indicates that the Luttinger-liquid
phase of thet-J model can be divided into two regimes with
distinct spin dynamical properties. For coupling strengths
0,J/t&1, the functionSzz(q,v) t-J , which is plotted in Fig.
7, exhibits some similarities with the correspondingt-Jz re-
sults. The main commonality is a well-defined spin mode at
not too small wave numbers with aucosqu-like dispersion.

FIG. 4. Static spin structure factor atT50 of the t-Jz and t-J
models ~a! in the free-electron limit and~b! at the transition to
phase separation. The data forJz501 are calculated via numerical
Fourier transform of expression~2.9!. The data forJ501 are de-
rived from expression~2.7! as explained in the text. The remaining
results are extracted from the ground-state wave function deter-
mined numerically for systems ofN512 sites.
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This dispersion is displayed in the main plot of Fig. 8 for
different J/t values within this first regime of the Luttinger-
liquid phase.

However, even in the common features, the differences
cannot be overlooked:~i! The (q↔p2q) symmetry in the

line shapes ofSzz(q,v) t-Jz is absent inSzz(q,v) t-J . ~ii ! The
amplitude of theucosqu-like dispersion grows with increasing
J/t, contrary to the trend observed in Fig. 6 for the corre-
spondingt-Jz spin dispersion.~iii ! The gradual upward shift
of the peak position inSzz(p,v) t-J is accompanied by a sig-
nificant increase in line width~see inset to Fig. 9!. Over the
range 0<J/t&1.25, the trend of theq5p spin mode is op-
posite to what one expects under the influence of an antifer-
romagnetic exchange interaction of increasing strength.~iv!
The intensity of the central peak inSzz(p/2,v) t-J is consid-
erably weaker than in inSzz(p/2,v) t-Jz. The peak turns shal-
low and disappears quickly with increasing coupling~see
Fig. 9, main plot!. This observation is in accord with the
proposed dependences of the infrared exponents on the cou-
pling constants.~v! The linear dispersion of the dynamically
relevant spin excitations have markedly different slopes
above and below the critical wave numberq5p/2 ~Fig. 8,
main plot!. At long wavelengths the spectral weight in
Szz(q,v) t-J is concentrated at much lower frequencies than
in Szz(q,v) t-Jz.

40

As the coupling strength increases past the value
J/t.0.75, the spin modes which dominateSzz(q,v) t-J in the
first regime of the Luttinger-liquid phase broaden rapidly and
lose their distinctiveness. There is a crossover region be-
tween the first and second regime, which roughly comprises
the coupling range 1&J/t&2. Over that range, the spin dy-
namic structure factor tends to be governed by complicated
structures with rapidly moving peaks.

FIG. 5. Dynamic spin structure factorSzz(q,v) at T50 in the Luttinger-liquid phase of thet-Jz model. The results fort51 and four
different values ofJz are obtained via strong-coupling continued-fraction reconstruction from the coefficientsD1 , . . . ,D6 and an unbounded
gap terminator~Refs. 27,28!. TheDk’s are extracted from the ground-state wave function for a system ofN512 sites.

FIG. 6. Dynamically relevant dispersions of the excitations
dominating the dynamic spin structure factorSzz(q,v) at T50 for
t51 and different values ofJz within the Luttinger-liquid phase of
the t-Jz model. The symbols, which are smoothly interpolated by
solid lines, represent the peak positions of results such as shown in
Fig. 5.
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At the end of the crossover region, a new type of spin
mode with an entirely different kind of dispersion has gained
prominence inSzz(q,v) t-J , and it stays dominant throughout
the remainder of the Luttinger-liquid phase. This is illus-

trated in Fig. 10 for threeJ/t values in the second regime of
the Luttinger-liquid phase. The dispersion of these new spin
modes gradually evolves with increasing coupling strength
as shown in the inset to Fig. 8. Note that the frequency has
been rescaled byJ both here and in Fig. 10. AtJ/t&2.0 the
dispersion has a smooth maximum atq5p and seems to
approach zero linearly asq→0. As J/t increases toward the
transition point, the peak positions inSzz(q,v) t-J gradually
shift to lower values ofv/J, most rapidly atq nearp.

IV. PHASE SEPARATION

The transition from the Luttinger-liquid phase to a phase-
separated state inHt-Jz

takes place atJz /t54. The equiva-

lent XXZ model undergoes a discontinuous transition to a
state with ferromagnetic long-range order at the correspond-
ing parameter value (Ji /J'51). The ground state at the
transition is noncritical and degenerate even for finiteN. The
XXZ order parameter,M̄5N21( lSl

z , commutes with
HXXZ .

Notwithstanding the exact mapping, the transition of
Ht-Jz

at Jz /t54 is of a different kind. Only one of the

N11 vectors which make up the degenerateXXZ ground
state atJi /J'51 is contained in the invariant subspace that
also includes thet-Jz ground state. The other vectors corre-
spond tot-Jz states with different numbersNe of electrons.
The t-Jz ground state atJz /t54 for fixedNe5N/2 is non-
degenerate and represented by the wave functionuf0& as
given in Eq.~3.3!.

The fully phase-separated state as represented by the
wave function

uf1&[
1

A2N (
l151

N

u l 1 ,l 111, . . . ,l 11N/221&3$u↑↓↑•••&

6u↓↑↓•••&% ~4.1!

FIG. 7. Dynamic spin structure factorSzz(q,v) at T50 for
t51 and two values ofJ in the first regime of the Luttinger-liquid
phase of thet-J model. The results are obtained by the same
method as those of Fig. 5.

FIG. 8. Dynamically relevant dispersions of the excitations
dominating the dynamic spin structure factorSzz(q,v) at T50 for
t51 and different values ofJ in the first regime~main plot! and the
second regime~inset! of the Luttinger-liquid phase of thet-J
model. The symbols, which are smoothly interpolated by solid
lines, represent the peak position of results such as shown in Figs. 7
and 10.

FIG. 9. Line shape atq5p ~inset! andq5p/2 ~main plot! of
the dynamic spin structure factorSzz(q,v) at T50 for t51 and
various values ofJ in the first regime of the Luttinger-liquid phase
of the t-J model. The results are obtained by the same method as
those in Fig. 5.
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has an energy expectation value atJz /t54,
^E1&52t(N22), which exceeds the finite-N ground-state en-
ergy,E052tN, pertaining touf0&. However, by comparing
theJz dependence of the energy expectation values~per site!
of the two wave functionsuf0& and uf1&,

ẽ0[
1

N
^f0uHt-Jz

uf0&52t2
1

2 S Jz4 2t D S 12
1

N21D ,
ẽ1[

1

N
^f1uHt-Jz

uf1&52
Jz
4 S 12

2

ND ,
in the vicinity of the transition,Jz /t54(11e), we obtain

ẽ02ẽ1 ——→
N→` e

2t
,

which implies that a level crossing betweenuf0& and uf1&
occurs atJz /t54 in the infinite system. Moreover, from ex-
act Bethe-ansatz calculations for theXXZmodel,41 we know
that thet-Jz ground-state energy per site atJz /t.4 is equal
to ẽ1 in the limit N→`. This proves that a first-order tran-
sition takes place in the infintet-Jz chain atJz /t54 between
a state with no charge correlations at all and the fully phase-
separated state.

The transition to phase separation inHt-Jz
is characterized

by the charge and spin order parameters

Qr5
1

N (
l51

N

ei2p l /Nnl , Qs5
1

N (
l51

N

eip lSl
z .

Neither operator commutes withHt-Jz
. The phase-separated

state ofHt-Jz
is characterized, forN→`, by a broken trans-

lational symmetry,̂Qr&Þ0, and a broken spin-flip symme-
try, ^Qs&Þ0.

In the t-J model, the transition to the phase-separated
state, which takes place atJ/t.3.2, produces charge long-
range order,̂Qr&Þ0, but is not accompanied by the onset of
spin long-range order,̂Qs&50. The similarities in the
charge correlations and the differences in the spin correla-
tions of the two models are evident in the finite-size static
charge and spin structure factors.

A. Charge structure factor

The vanishing charge correlations in the finite-sizet-Jz
ground state at the onset of phase separation (Jz /t54) is
reflected in the flat charge structure factorSnn(q) as shown
in Fig. 11~a!. The correspondingt-J result for J/t.3.2 as
shown in Fig. 11~b! indicates that correlated charge fluctua-
tions do exist at the transition.

With the exchange coupling increasing beyond the transi-
tion point, the charge structure factors of the two models
become more and more alike and reflect the characteristic

FIG. 10. Dynamic spin structure factorSzz(q,v) at T50 in the
second regime of the Luttinger-liquid phase of thet-J model. The
results fort51 and three different values ofJ are obtained by the
same method as those in Fig. 5.

FIG. 11. Static charge structure factor atT50 of ~a! the t-Jz
model and~b! the t-J model in the phase-separated state. Results
extracted from the ground-state wave function determined numeri-
cally for systems ofN512 sites.
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signature of phase separation. Phase separation is associated
with an enhancement ofSnn(q) in the long-wavelength limit.
Because of charge conservation, this enhancement is mani-
fest, in a finite system, not atq50 but atq52p/N. It is
conspicuously present in the data for couplingsJz /t54.5
andJ/t53.5, not far beyond the transition point.

The charge correlation function for the fully phase sepa-
rated state, as represented by the wave function~4.1!, is a
triangular function,42 ^nlnl1m&51/22umu/N, umu<N/2.
This translates into a charge structure factor of the form

Snn~q!5
N

4
dq,01

11cos~Nq/2!

N~12cosq!
~12dq,0!, ~4.2!

as shown~for N512) by the full diamonds in Fig. 11. This
function vanishes for all wave numbersq52p l /N with even
l and increases monotonically with decreasing oddl . The
data in Fig. 11 suggest that the phase separation is nearly
complete before the exchange coupling has reached twice the
value at the transition. In thet-Jz case, we already know that
complete phase separation is established~for N→`) right at
the transition.

B. Spin structure factor

The extremely short-ranged spin correlations in thet-Jz
ground state~3.3! for N→` are reflected by the static spin
structure factor~3.7!. For finite N the spin correlations at
distancesunu>2 do not vanish identically. An exponential
decay is observed instead with a correlation length that dis-

FIG. 12. Static spin structure factor atT50 of ~a! the t-Jz
model and~b! the t-J model in the phase-separated state. Results
extracted from the ground-state wave function determined numeri-
cally for systems ofN512 sites.

FIG. 13. Dynamic spin structure factorSzz(q,v) at T50 in the
phase-separated state of thet-J model. The results fort51 and two
values ofJ are obtained by the same method as those in Fig. 5.

FIG. 14. Line shape of the dynamic spin structure factor~a!
Szz(p,v) and ~b! Szz(p/2,v) of the t-J model in the phase-
separated state. The results fort51 and various values ofJ are
obtained by the same method as those in Fig. 5. Inset: Dynamically
relevant dispersions of the excitations dominating the dynamic spin
structure factorSzz(q,v) at T50 for t51 and different values of
J in the phase-separated state of thet-J model. The symbols which
are smoothly interpolated by solid lines represent the peak position
of results such as shown in Fig. 13.
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appears asN→`. Hence the difference between Eq.~3.7!
and the finite-N data depicted in Fig. 12~a! (d). Thet-J spin
structure factor near the transition (J/t.3.2) has a similar
q dependence except at smallq, where it tends to zero lin-
early instead of quadratically.

Whereas the charge structure factors of the two models
become more and more alike as the exchange coupling in-
creases in the phase-separated state~Fig. 11!, divergent
trends are observed in the respective spin structure factors,
on account of the fact that thet-Jz model supports spin long-
range order, and thet-J model does not.

The fully phase-separated state of thet-Jz model is at the
same time fully Ne´el ordered. The spin correlation function
in the state ~4.1! reads ^Sl

zSl1m
z &5(1/4)(21)m(1/2

2umu/N),umu<N/2, and the corresponding spin structure
factor has the form

Szz~q!5
N

16
dq,p1

12cos@N~p2q!/2#

4N@12cos~p2q!#
~12dq,p!. ~4.3!

The function~4.3! vanishes~for evenN/2) at all wave num-
bersq52p l /N with evenl , just as Eq.~4.2! did. The excep-
tion is the wave numberq5p, whereSzz(q) assumes its
largest value.

The t-J spin structure factor evolves quite differently in
the presence of increasing phase separation as is illustrated in
Fig. 12~b!. The electron clustering produces in this case the
Heisenberg antiferromagnet, whose ground state is known to
stay critical with respect to spin fluctuations. The spin struc-
ture factor of that model is known to be a monotonically
increasing function ofq, which grows linearly from zero at
small q and ~for N→`) diverges logarithmically at
q5p.18

C. Spin dynamics„t-J model…

The charge long-range order in the phase-separated state
freezes out the charge fluctuations in both models, and the
accompanying spin long-range order in thet-Jz model
freezes out the spin fluctuations too. What remains strong are
the spin fluctuations in thet-J model.

At the transition to phase separation (J/t.3.2), the
q5p spin mode inSzz(q,v) t-J does not go soft. However,
the gradual electron clustering tendency in conjunction with
the continued strengthening of the antiferromagnetic ex-
change interaction brings about a softening in frequency and
an enhancement in intensity of the order-parameter fluctua-
tions associated with Ne´el order. Both effects can be ob-
served in the reconstructed dynamic spin structure factors at
J/t53.25, 4.0, 5.0 as shown in Figs. 11~c!, 13~a!, and
13~b!.

A close-up view of the gradual transformation of the
q5p mode is shown in Fig. 14~a!. For sufficiently strong
exchange coupling, the functionSzz(p,v) t-J will be charac-
terized by a strong, i.e., nonintegrable infrared divergence,
;A2 lnv/v,43 which characterizes the order-parameter fluc-
tuations of the 1Ds51/2 XXX antiferromagnet.

Figure 14~b! shows the gradual change in line shape and
shift in peak position of the functionSzz(p/2,v) t-J in the
phase-separated state. The peak, which starts out relatively
broad at the transition, shrinks in width, loses somewhat in
intensity, and moves to a higher frequency. ForJ/t*5.0 it
settles atv/J.p/2 in agreement with the lower boundary,
vL(q)5(pJ/2)usinqu, at q5p/2 of the two-spinon con-
tinuum. The width has shrunk to a value consistent with the
width of the two-spinon continuum at that wave number.

In the inset to Fig. 14 we show the evolution of the dy-
namically relevant dispersion forSzz(q,v) t-J in the phase-
separated state, as determined by the peak positions of our
data obtained via SCCF reconstruction. The dashed line rep-
resents the exact lower threshold of the two-spinon con-
tinuum. The shift of the peak positions in our data is directed
toward that asymptotic position at all wave numbers for suf-
ficiently largeJ/t.
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20What this simple argument does not explain is why the spin cor-
relations are stronger (;m21/2 or m23/2) than the charge corre-
lations (m22).

21J. Stolze, V.S. Viswanath, and G. Mu¨ller, Z. Phys. B89, 45
~1992!.

22J. Stolze, A. No¨ppert, and G. Mu¨ller, Phys. Rev. B52, 4319
~1995!.

23References on the properties of Pfaffians and their use for the
calculation of many-fermion correlations can be found, for ex-
ample, in the Appendix of Ref. 21.

24We have set the energy unit of Eq.~1.1! equal to unity (t51)
here, in order to avoid confusion with the time variable.

25H. G. Vaidya and C. A. Tracy, Physica92A, 1 ~1978!; G. Müller
and R. E. Shrock, Phys. Rev. B29, 288 ~1984!.

26R. Haydock, inSolid State Physics: Advances in Research and
Applications, edited by H. Ehrenreich, F. Seitz, and D. Turnbull
~Academic, New York, 1980!, Vol. 35, p. 215; M. H. Lee, Phys.
Rev. B 26, 2547 ~1982!; E. R. Gagliano and C. A. Balseiro,
ibid. 38, 11 766~1988!.

27V. S. Viswanath and G. Mu¨ller, Recursion Method - Application
to Many-Body Dynamics, Lecture Notes in Physics, Vol. 23
~Springer-Verlag, New York, 1994!.

28V. S. Viswanath, S. Zhang, J. Stolze, and G. Mu¨ller, Phys. Rev. B
49, 9702~1994!.

29V. S. Viswanath, S. Zhang, G. Mu¨ller, and J. Stolze, Phys. Rev. B
51, 368 ~1995!.

30A. Fledderjohann, M. Karbach, K.-H. Mu¨tter, and P. Wielath, J.
Phys. Condens. Matter7, 8993~1995!.

31C. N. Yang and C. P. Yang, Phys. Rev.150, 321~1966!; 151, 258
~1966!.

32J. Des Cloizeaux and M. Gaudin, J. Math. Phys.7, 1384~1966!.
33A. Luther and I. Peschel, Phys. Rev. B12, 3908~1975!; F.D.M.

Haldane, Phys. Rev. Lett.45, 1358~1980!.
34T. Schneider, E. Stoll, and U. Glaus, Phys. Rev. B26, 1321

~1982!.
35H. Beck and G. Mu¨ller, Solid State Commun.43, 399 ~1982!.
36This cusp was also observed atJ/t*1 in the Monte Carlo data of

Ref. 3 for considerably larger systems.
37See Figs. 4~b! and 9 in Ref. 29 for thet-Jz and t-J results, re-

spectively.
38J.D. Johnson, S. Krinsky, and B. M. McCoy, Phys. Rev. A6,

1613 ~1973!.
39The continued-fraction coefficients in Eq.~3.1! are found to have

the symmetry propertyDk
z(q)5Dk

z(p2q), whereas the inte-
grated intensitySzz(q) remains asymmetric.

40A quantitative analysis oft-J spin dispersions at 0<q<p/2 in
this coupling range requires data for longer chains.

41G. Albertini, V.E. Korepin, and A. Schadschneider, J. Phys. A28,
L303 ~1995!.

42See, e.g., Fig. 8~f! of Ref. 3.
43A.H. Bougourzi, M. Couture, and M. Kacir, Phys. Rev. B54,

R12 669 ~1996!; M. Karbach, G. Mu¨ller, A.H. Bougourzi, A.
Fledderjohann, and K.-H. Mu¨tter, ibid. ~to be published!.

55 6503CHARGE AND SPIN DYNAMICS IN THE ONE- . . .


	Charge and spin dynamics in the one-dimensional t-Jz and t-J models
	Citation/Publisher Attribution

	Charge and spin dynamics in the one-dimensional t-Jz and t-J models
	Publisher Statement
	Terms of Use


	tmp.1405716329.pdf._3NXl

