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Dimer and Néel order-parameter fluctuations in the spin-fluid phase of thes5 1
2 spin chain with

first- and second-neighbor couplings

Yongmin Yu and Gerhard Mu¨ller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

V. S. Viswanath
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032

~Received 9 April 1996!

The dynamical properties atT50 of the one-dimensional~1D! s5
1
2 nearest-neighbor~NN! XXZmodel with

an additional isotropic next-nearest-neighbor~NNN! coupling are investigated by means of the recursion
method in combination with a weak-coupling continued-fraction analysis. The focus is on the dynamic struc-
ture factorsSzz(q,v) andSDD(q,v), which describe~for q5p) the fluctuations of the Ne´el and dimer order
parameters, respectively. We calculate the dependence on the exchange constants of the infrared exponent, the
renormalized bandwidth of spinon excitations, and the spectral-weight distribution inSzz(p,v) and
SDD(p,v), all in the spin-fluid phase, which is realized for planar NN anisotropy and sufficiently weak NNN
coupling. For some parameter values we find a discrete branch of excitations above the spinon continuum.
They contribute toSzz(q,v) but not toSDD(q,v). @S0163-1829~96!02538-6#

I. INTRODUCTION

Quantum many-body systems with competing interactions
are apt to exhibit ordering tendencies in the ground state of
which no trace exists in the presence of any one coupling
alone and which are impossible to predict on the basis of a
classical model with both couplings. Among the many dif-
ferent model systems where this phenomenon is manifest,
the Heisenberg antiferromagnet with nearest-neighbor~NN!
and next-nearest-neighbor~NNN! couplings on a bipartite
lattice is a prominent example. For coupling strengths of
comparable magnitude on the square lattice, various ordering
tendencies including Ne´el order, collinear order, dimer order,
twist order, and chiral order are in competition with each
other and with disordering tendencies such as embodied by
the resonating valence-bond state.1

The one-dimensional~1D! version of this model had
gained prominence many years before, when the ground state
for one particular ratio of the coupling constants was found
to be a pure dimer state.2,3 Spontaneous dimerization is a true
quantum phenomenon. Several studies have succeeded in
mapping out the zero-temperature phase diagram of this
model in one or the other extended parameter space,4–7albeit
with little emphasis on dynamical properties. In this paper
we study theT50 dynamics of the Hamiltonian

H5(
l51

N

$J'@Sl
xSl11

x 1Sl
ySl11

y #1JzSl
zSl11

z 1J2Sl•Sl12%,

~1.1!

parametrized by the two coupling constantsD5Jz /J' and
L5J2 /J' . Extending the parameter space to cases with
uniaxial anisotropy in the NN coupling offers the advantage
that the model withD5L50, which reduces to a system of
free lattice fermions,8,9 can be used as a convenient starting
point for weak-coupling approaches.

A schematic representation of theT50 phase diagram is
shown in Fig. 1. The free-fermion point (D50, L50) is
located in the middle of the spin-fluid phase. Here the system
is a Luttinger liquid. The ground state is critical—i.e., the
excitation spectrum is gapless—and the static spin and dimer
correlation functions decay algebraically with exponents de-
pending on the coupling constants of the two types of inter-
action.

For L,0 the NNN coupling strengthens the correlations
produced by the NN coupling and thus reinforces the prevail-
ing ordering tendency. Therefore, we expect to find ferro-
magnetic long-range order in the region (L<0, D<21)
and antiferromagnetic long-range order in the region
(L<0, D.1). For21,D<1 the NN interaction alone is
known not to support any kind of long-range order. No phase
transition is suspected to occur if a negative NNN coupling
is added.

FIG. 1. Zero-temperature phase diagram of the model system
~1.1! with coupling constantsD5Jz /J' andL5J2 /J' in a sche-
matic representation.
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ForL.0 the NN and NNN couplings are in competition
with each other. The latter thus frustrates the ordering ten-
dency of the former. One predictable consequence is that the
boundary of the ferromagnetic phase, which is located at
D521 for L,1/4, bends to the left in Fig. 1 for increasing
NNN coupling.10 Increasing amounts of uniaxial anisotropy
are necessary to stabilize the spin alignment. A simple
spin-wave stability criterion yields the expression
1/L54@ uDu2AD221# for the phase boundary in that re-
gion.

In the region of planar anisotropy,uDu,1, the interplay of
the two competing forces in the presence of quantum fluc-
tuations produces the dimer phase. Curiously, within the
dimer phase there exists one point in parameter space,
(D51, L51/2),2,3 where the ground state is a pure dimer
state with no correlated fluctuations, notwithstanding the fact
that this phase owes its very existence to quantum fluctua-
tions. However, theT50 dynamics at this point turns out to
be only marginally simpler than elsewhere in the dimer
phase, where the structure of the ground state is much more
complex.11

In the region of uniaxial antiferromagnetic anisotropy,
D.1, there exists a Ne´el phase. Like the ferromagnetic
phase, it is destabilized by sufficiently strong competing
NNN coupling. The phase boundaries between the spin-fluid,
dimer, and Ne´el phases as sketched in Fig. 1 were first pro-
posed by Haldane5 based on a continuum fermion theory.
The impact of the transitions between the Ne´el, dimer, and
spin-fluid phases on theT50 dynamics will be explored in a
separate study.12

II. SPIN AND DIMER FLUCTUATIONS

The Néel order parameter~staggered magnetization! and
the dimer order parameter for the model system~1.1! are
given, respectively, by the operators

M̄ z5
1

N (
l51

N

~21! lSl
z , ~2.1!

D5
1

N (
l51

N

~21! lDl , Dl5Sl
1Sl11

2 1Sl
2Sl11

1 . ~2.2!

Néel order in its purest form is realized in the states

uF1
z&5u↑↓↑•••↓&, uF2

z&5u↓↑↓•••↑&, ~2.3!

and pure dimer order in the states

uF1
D&5@1,2#@3,4#•••@N21,N#, uF2

D&5@2,3#@4,5#•••@N,1#,

~2.4!

where the singlets@ l ,l11#5$u↑↓&2u↓↑&%/A2 are formed
by pairs of NN spins. In the ground state of Eq.~1.1!, the
former is realized at (L50, D5`) and the latter at
(L51/2, D51).

Néel ordering manifests itself in the two-spin correlation
function ^Sl

zSl1n
z & and dimer ordering in the four-spin corre-

lation function ^DlDl1n&. For translationally invariant and
orthonormal linear combinations of the symmetry-breaking
Néel states ~2.3! and dimer states~2.4!, they are
^Sl

zSl1n
z &5 1

4(21)n, ^DlDl1n&50 (nÞ0) and ^Sl
zSl1n

z &50

(unuÞ1), ^DlDl1n&2^Dl&^Dl1n&5 1
4 (21)n (nÞ0), re-

spectively, and reflect the long-range nature of the two types
of ordering. In the free-fermion ground state atD5L50, by
contrast, the same correlation functions decay algebraically,8

^Sl
zSl1n

z &5
1

2p2n2
@cos~np!21#, ~2.5!

^DlDl1n&2^Dl&^Dl1n&5
1

p2n2 F2n221

n221
cos~np!1

1

n221G .
~2.6!

In this study we use the recursion method13,14 to investi-
gate the dynamical ~i.e., frequency-dependent! order-
parameter fluctuations as probed by the dynamic spin struc-
ture factorSzz(q,v) and the dynamic dimer structure factor
SDD(q,v), i.e., by the function

SAA~q,v!5E
2`

1`

dteivt^Aq
†~ t !Aq&, ~2.7!

whereAq stands for the spin and dimer fluctuation operators,

Sq
z5N21/2(

l
eiqlSl

z , Dq5N21/2(
l
eiql@Dl2^Dl&#.

~2.8!

For the calculation of the dynamic correlation function
^FuAq

†(t)AquF& in the ground stateuF& of the system, it can
be based on an orthogonal expansion of the dynamical vari-
ableAq(t) ~Liouvillian representation15! or on an orthogonal
expansion of the wave functionAq(2t)uF& ~Hamiltonian
representation16!. The algorithms of both representations,
which have been described and illustrated in a recent
monograph,17 produce equivalent data. These data are ex-
pressible most concisely in terms of a sequence of continued-
fraction coefficientsD1

A(q), D2
A(q), . . . for the relaxation

function

c0
AA~q,z!5

1

z1
D1
A~q!

z1
D2
A~q!

z1 . . .

, ~2.9!

which is the Laplace transform of the symmetrized and nor-
malized correlation function Re^FuAq

†(t)AquF&/
^FuAq

†AquF&. The T50 dynamic structure factor~2.7! is
then obtained from Eq.~2.9! via

SAA~q,v!54SAA~q!Q~v! lim
e→0

Re@c0
AA~q,e2 iv!#,

~2.10!

where SAA(q)5^FuAq
†AquF& is the static structure factor

~integrated intensity!.
For the reconstruction ofSAA(q,v) based on a number of

coefficientsDk
A(q) extracted from the finite-size ground-state

wave function uF&, we employ techniques of continued-
fraction analysis described previously in the context of other
applications, one pertaining to the strong-coupling regime18

and the other to the weak-coupling regime19 of a given quan-
tum many-body system.
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III. RESULTS AND INTERPRETATION

For the special caseL5D50 of the spin model~1.1!,
dynamic correlation functions can be calculated exactly. The
evaluation is particularly simple for the two dynamic struc-
ture factors of interest here, because the operators involved,
Sq
z and Dq , are density operators in the fermion repre-
sentation:20,21

Szz~q,v!5
2

A4J'
2 sin2~q/2!2v2

, ~3.1!

SDD~q,v!5
A4J'

2 sin2~q/2!2v2

J'
2 sin2~q/2!

, ~3.2!

for J'usinqu,v,2J'usin(q/2)u. Both quantities have the
same excitation spectrum, the particle-hole continuum of
free fermions. For other dynamical variables such asSq

x the
evaluation of dynamic correlation functions is much more
involved, and the results have a much more complicated
structure with dynamically relevant excitation spectra of un-
bounded support.22

In the XXZ antiferromagnet with planar anisotropy
(L50, 0<D<1), the spectral weight inSzz(q,v) is
known23 to be dominated by a continuum of unbound two-
spinon states with upper and lower boundaries

eL~q!5JDusinqu, eU~q!52JDusin~q/2!u, ~3.3!

where JD5pJ'sinq/2q, cosq5D. The D dependence of
Szz(q,v) has already been investigated by several calcula-
tional techniques.19 No equivalent results exist for
Szz(q,v) in the extended parameter space (D,L) or for
SDD(q,v) anywhere in this parameter space. Given the exact
solutions~3.1! and~3.2!, the caseL5D50 presents itself as
a convenient starting point for a weak-coupling continued-
fraction analysis of the two dynamic structure factors at
uLu!1 anduDu!1.19

A. Correlation exponent and spin velocity

Haldane’s continuum analysis5 predicts that the exponents
which characterize the power-law decay of the spin and
dimer correlation functions ^Sl

zSl1n
z &;(21)nn2hz,

^DlDl1n&2^Dl&^Dl1n&;(21)nn2hD, are the same:
hz5hD . A calculation taking into account both the back-
scattering and the umklapp terms in the interaction leads to a
pair of scaling equations for the dependence ofhz onD and
L. If the umklapp terms are neglected, the analysis yields the
explicit result,5

hz~D,L!52A~p28L!/~p14D!. ~3.4!

This expression is expected to be most accurate for the spe-
cial coupling ratioL/D51/6, where the umklapp terms are
absent in the continuum Hamiltonian. Indeed the high accu-
racy of Eq.~3.4! is demonstrated by the fact that its value
hz51.006 at the boundary to the Ne´el phase
(D51, L51/6) misses the supposedly exact valuehz51
by less than 1%. It is not clear how accurate expression~3.4!
is for coupling ratiosL/DÞ1/6. At L50 it can be tested
against the exact result24

hz~D,0!exact5@12~1/p!arccosD#21. ~3.5!

The two expressions agree to leading order in the coupling
constant:hz5224D/p1O(D2).

An independent way of determining the correlation expo-
nent hz for arbitrary coupling ratiosL/D in the region of
very weak interaction is provided, as will be demonstrated in
Sec. III C, by the weak-coupling continued-fraction analysis
of the infrared exponents in the dynamic spin and dimer
structure factors,

Szz~p,v!;vbz, SDD~p,v!;vbD. ~3.6!

The continuum analysis suggests that the two infrared expo-
nents are identical and related tohz :

bz5bD5hz22 . ~3.7!

The renormalized spin velocityvs(D,L) is another quan-
tity for which the continuum analysis predicts an explicit
result,5

vs~D,L!5J'~112D/p24L/p!. ~3.8!

It can be checked against the renormalized bandwidth
v0(D,L) of Szz(p,v) or SDD(p,v) as obtained~in Sec.
III C ! via weak-coupling continued-fraction analysis. Both
quantities are expected to have the same dependence on the
coupling constants except for constant factors. AtL50 we
have v05eU(p)52JD and vs5@deU(q)/dq#q505JD ;
hence,

v0
z5v0

D52vs . ~3.9!

B. Weak-coupling continued-fraction coefficients

The exact expressions~3.1! and~3.2! can be recovered for
q5p from theDk sequences

Dk
z~p!5J'

2 ~11dk,1!, Dk
D~p!5J'

2 , ~3.10!

by direct evaluation of Eq.~2.9!. TheseDk values pertain to
the infinite system. They are exactly reproduced up to
k5N/221 for Szz(p,v) and up to k5N/222 for
SDD(p,v) by the recursion method applied to a chain ofN
sites with periodic boundary conditions.

Weak coupling (uDu!1,uLu!1) produces systematic de-
viations of theDk’s from the reference sequences~3.10!.
They are illustrated in the four panels of Fig. 2 for both
dynamic structure factors and both types of interaction. In
each case theDk’s for KA<k<KW exhibit a pseudoasymp-
totic behavior. In panel~a! it starts atKA52, in panel~b! at
KA53, and in panels~c! and ~d! at KA51. The number
KW marks the beginning of the crossover from zero growth
to power-law growth, which is most conspicuously observ-
able in panel~d!. KW becomes smaller with increasing cou-
pling strength. When we haveKW.KA , we are in the
strong-coupling regime.19

In the weak-coupling regime, the systematic deviations
from Eq. ~3.10! are of two kinds:~i! TheDk sequence tends
to converge toward a higher or lower valueD`

(W) as k in-
creases towardKW . ~ii ! TheD2k and theD2k21 approach the
pseudoasymptotic valueD`

(W) from opposite sides. In Fig. 2
we observe that the direction of the shift, which changes with
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the sign of either interaction, is the same for both dynamic
structure factors but opposite for the two types of coupling,
whereas the alternating pattern, which also changes with the
sign of either interaction, has the same direction for both
functions and for both types of coupling.

For a quantitative analysis of the two pseudoasymptotic
effects we must select the string ofDk’s carefully. In
SDD(p,v), the valueKW is considerably smaller than in
Szz(p,v) for a given coupling strength, which restricts the
weak-coupling analysis ofSDD(p,v) to a narrower range of
couplings.

The shift of the pseudoasymptotic valueD`
(W) @effect ~i!#

describes the renormalized bandwidthv0 of the dynamically
predominant two-particle continuum of lattice fermions via
the relation17

D`
~W!5v0

2/4. ~3.11!

For pure NN coupling (L50, uDu,0.1), the band-edge fre-
quencyv0 inferred from the average ofD2 , . . . ,D5 was
shown to reproduce the exact bandwidtheU(p)52JD of the
spinon continuum~3.3! very accurately.19

The alternating approach of theDk’s towardD`
(W) @effect

~ii !# describes an infrared singularity~3.6! in the two dy-
namic structure factors. For a truly convergentDk sequence,
the singularity exponentb is governed by the leading term of
the large-k asymptotic expansion:17,25

Dk5D`F12~21!k
b

k
1••• G . ~3.12!

In Ref. 19 we proposed and tested two procedures~averag-
ing and extrapolation! for extracting the exponent from a
finite Dk sequence. For the NN case (L50, uDu<0.05), a
benchmark test showed that the exponentbz inferred from

the coefficientsD2 , . . . ,D5 reproduces@via Eq. ~3.7!# the
exact correlation function exponent~3.5! with reasonable ac-
curacy.

The patterns in Fig. 2 make it clear that in the (D,L)
plane there are sectors with compressed (Dv0,0) and ex-
panded (Dv0.0) bandwidth, and sectors with divergent
(b,0) and cusp (b.0) singularities. We have determined
these boundaries between the resulting four sectors near the
free-fermion point (D50, L50) by a systematic investiga-
tion of the Dk sequences along several lines in parameter
space.

One such series of sequences forSzz(p,v) is displayed in
Fig. 3. Between D520.005 ~bottom sequence! and
D50.006~top sequence! at fixedL520.001, we observe a
gradual reversal of both patterns~i! and ~ii !. At
D.20.002, the averageDk goes from negative to positive,
implying a corresponding change in sign ofDv0

z . At
D.0.002, the average ofD2k212D2k goes from positive to
negative, implying a corresponding change in sign of the
infrared exponentbz . The two sequences closest to the pat-
tern changes are highlighted by full symbols.

The lines in parameter space on which the interaction
leaves the bandwidthv0

z or the exponentbz unchanged de-
pend somewhat on theDk strings used for the analysis. This
is illustrated in Fig. 4. The expectation is that the results
improve as we shift theDk string to higher indicesk, where
nonasymptotic effects become weaker.26 Our best results, in-
ferred from the stringD4 , . . . ,D7, yield sector boundaries at
coupling ratiosD/L.0.52 for Dv0

z50 andD/L.20.44
for bz50, in fair agreement with the corresponding sector
boundariesD/L50.5 for Dvs50 and D/L520.5 for
Dhz50, respectively, predicted by the continuum results
~3.8! and ~3.4! and shown as long-dashed lines in Fig. 4.

FIG. 2. Continued-fraction coefficients for
the dynamic structure factorsSzz(p,v) ~left!
and SDD(p,v) ~right! at T50 in the weak-
coupling regime of Hamiltonian~1.1! with
L50 ~top! orD50 ~bottom!. The energy unit
is J'51. These coefficients have been pro-
duced by the recursion algorithm~Ref. 17! ap-
plied to the wave functionSp

z uF& ~left! or
DpuF& ~right!, where uF& is the finite-N
ground-state wave function.
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C. Infrared exponent and bandwidth

Figure 5~a! shows the weak-coupling continued-fraction
results for the infrared exponentbz(D,L) at coupling
strengths along the circle

D5Gcosu, L5Gsinu, ~3.13!

with radius G50.01 around the free-fermion point in the
(D,L) plane. The three data sets from differentDk strings

27

fall onto sinelike curves in this representation, as does the
prediction inferred from the continuum result~3.4!, shown
here as a solid line.

The best overall agreement between our data and
Haldane’s result occurs at anglesu.9.5°,189.5°, which cor-
respond to the special coupling ratioL/D51/6 with vanish-
ing umklapp terms in the continuum Hamiltonian. However,
the agreement between the dashed line and the data set from
D4 , . . . ,D7, which is least affected by nonasymptotic coef-
ficients, is remarkably good at all angles.

The dependence of the renormalized bandwidthv0
z on the

same angular variableu is shown in Fig. 5~b! in a compara-
tive plot of three sets of weak-coupling continued-fraction
data and the prediction inferred via Eq.~3.9! from the con-
tinuum result~3.8! for the renormalized spin velocity. Again

FIG. 3. Dk sequences for the dynamic spin structure factor
Szz(p,v) at L520.001,D520.005,20.004,. . . ,0.006 as pro-
duced by the recursion algorithm~Ref. 17!. The energy unit is
J'51. The sequences forD560.002 are marked by solid sym-
bols.

FIG. 4. The spin-fluid phase in the weak-coupling regime is
divided into four sectors with infrared exponentsbz and bandwidth
renormalizationDv0

z of opposite sign. The solid lines denote the
sector boundaries derived from the stringsD2 , . . . ,D5 ~circles!,
D3 , . . . ,D6 ~squares!, andD4 , . . . ,D7 ~triangles!. One solid line is
extended short-dashed into the weak–strong-coupling crossover re-
gion of coefficient D7. The long-dashed lines with slope
L/D561/2 are the sector boundaries predicted by the continuum
analysis.

FIG. 5. ~a! Infrared exponentbz of Szz(p,v) and~b! renormal-
ized bandwidthv0

z of the two-spinon continuum at different cou-
pling ratios L/D5tanu and fixed coupling strength
AD21L25G50.01. The squares, circles, and triangles represent
the results of a weak-coupling continued-fraction analysis based on
three differentDk strings. The solid lines in~a! and~b! are derived
from the continuum results~3.4! and~3.8!, respectively. The energy
unit is J'51.
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the agreement improves as theDk string is shifted toward
higher indices, where it is less affected by nonasymptotic
coefficients.

When the exponent and bandwidth are determined for a
circle of much smaller radius,G50.0001, we find the same
angular dependence ofbz andv0

z and the same~rescaled!
amplitude within a 5% margin of error. This confirms that
the Dk’s used in this analysis are free of weak–strong-
coupling crossover effects.

We have carried out the same analysis for the renormal-
ized bandwidth v0

D and the infrared exponentbD of
SDD(q,v). The results for parameter values on a circular line
with radiusG50.0001 are displayed in Fig. 6. This radius
had to be chosen much smaller than in the case of
Szz(p,v) in order to ascertain that at least the coefficients
D2 , . . . ,D6 are free of crossover effects.

The bandwidth data from two differentDk strings de-
picted in Fig. 6~b! are in near perfect agreement with each
other and with the result inferred from Eq.~3.8!. Likewise
the data for the exponentbD as shown in Fig. 6~a! exhibit
the same characteristic oscillation as already observed in Fig.
5~a! for bz . The phase of the oscillation predicted by Eq.
~3.4! is accurately reproduced by our data. There are signifi-
cant deviations in the amplitude, which are attributable to the
strongly nonasymptotic nature of the coefficientsD2 ,D3, but
the trends indicated by the two data sets are in the right
direction.

The angular dependences of the exponent and bandwidth
data shown in Figs. 5 and 6 are observed to be out of phase
by some 55°, giving rise to the four sectors of weak-coupling
dynamical behavior discussed in the context of Fig. 4. This is
consistent with Haldane’s predictions~3.4! and ~3.8! for the
correlation exponent and the renormalized Fermi velocity,
respectively. These quantities have extreme values at
tanu52 and tanu522, respectively, which correspond to
angles 63.4° and 116.6°563.4°153.2°.

The characteristic oscillations of the infrared-exponent
data are also expected to be present~with the same phase! in
the angular dependence of the static spin and dimer structure
factors at the critical wave numberq5p. In the free-fermion
limit, the Fourier transform of the exact results~2.5! and
~2.6! yields

Szz~q!5
uqu
2p

, SDD~q!5
1

p
@ uqu2usinqu#. ~3.14!

Both functions have a cusplike maximum atq5p, which
reflects the critical spin and dimer fluctuations, respectively,
in the ground state. It is reasonable to expect that the varia-
tion of Szz(p) andSDD(p) with the interaction in the weak-
coupling limit is synchronized with the variation of the cor-
relation exponenthz5hD and, hence, with the infrared
exponentbz5bD .

In Fig. 7 we have plotted theu dependence ofSzz(p) and
SDD(p) for fixed coupling strengthsG50.0001. Both quan-
tities exhibit the characteristic sinusoidal behavior. The am-
plitude is proportional toG in each quantity. Interestingly,
the phases are different. WhereasSDD(p) varies in phase
with the infrared exponent,Szz(p) does not.

D. Reconstruction ofSzz„p,v… and SDD„p,v…

The third major feature~in addition to the renormalized
bandwidth and the infrared exponent! characterizing the line
shape of the dynamic spin and dimer structure factors at the
critical wave numberq5p is the detailed spectral-weight
distribution near the band edge. For the pure NN case
(L50), we found thatDÞ0 causes a redistribution of the
spectral weight inSzz(p,v) near the band edge and~for
D,0 only! the appearance of a discrete spectral line outside
the band.19 This discrete state was identified~by Bethe an-
satz! to belong to a branch of bound spin complexes.

For the more general model~1.1! with LÞ0, it is not
known for which parameter values such discrete states exist.
We have investigated this question for parameter values
(D,L) on the circular line~3.13! by means of a weak-
coupling continued-fraction reconstruction ofSzz(p,v)

FIG. 6. ~a! Infrared exponentbD of SDD(p,v) and ~b! renor-
malized bandwidthv0

D of the two-spinon continuum at different
coupling ratios L/D5tanu and fixed coupling strength
AD21L25G50.0001. The squares and circles represent the results
of a weak-coupling continued-fraction analysis based on two differ-
ent Dk strings. The solid lines in~a! and ~b! are derived from the
continuum results~3.4! and ~3.8!, respectively. The energy unit is
J'51.
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based on the coefficientsD1 , . . . ,DKw
and a termination

function which incorporates the renormalized bandwidthv0
z

and the infrared exponentbz . A detailed description of the
procedure can be found in Refs. 17 and 19.

The dependence on the angular parameteru of the recon-
structedSzz(p,v) is displayed in Fig. 8. Asu increases from
zero to 60o @panel~a!#, the bandwidth shrinks and the infra-
red divergence gains strength. In addition to these two fea-
tures we observe the emergence atu.15° of a discrete spec-
tral line above and outside the band. In the reconstructed
relaxation function the discrete state is represented by an
isolated pole. Forz5e2 iv with e50.0001 it has a nonzero
width. At u515°, the discrete state is barely distinguishable
from the band edge.

Betweenu560° andu5120° the bandwidth continues to
shrink, while more and more spectral weight is transferred
from the continuum to the discrete state. The infrared diver-
gence, which has reached its maximum strength atu.60°,
weakens over this parameter range. The further evolution of
the line shapes near the band edge and at small frequencies is
shown in panel~b!. The infrared divergence disappears at
u.150° and turns into a cusp singularity~see inset!. The
bandwidth of the continuum expands while the discrete state
moves closer to the band edge and slowly loses spectral
weight.

These trends continue betweenu5195° andu5240° as
shown in panel~c!. The depletion of spectral weight at small
v becomes more and more prounouced, and the discrete
state merges with the band edge atu.210°. Nothing dra-
matic happens to the line shape on the last stretch of the
circle. The range of parameter values where a discrete state
is observed, 30°<u<210°, roughly coincides with the range
where the renormalized bandwidth is compressed. In the
fermion representation, this is the region, where the Fermi
velocity is renormalized downward.

FIG. 7. Integrated intensitiesSzz(p) andSDD(p) of the spin and
dimer order-parameter fluctuations, respectively, at different cou-
pling ratios L/D5tanu and fixed coupling strength
G5AD21L250.0001 as derived from the ground-state wave func-
tion for N516.

FIG. 8. Dynamic spin structure factorSzz(p,v) at different cou-
pling ratios L/D5tanu and fixed coupling strength
AD21L25G50.01, specifically for the angles ~a!
u50°,15°, . . . ,60°, ~b! u5135°,150°,. . . ,180°, and ~c!
195°,210°,. . . ,240°. The main plot depicts the line shapes near the
band edge and the inset the line shapes at low frequencies. All
curves have resulted from a weak-coupling continued-fraction re-
construction based on the coefficientsD1 , . . . ,D7 and a compact
a terminator as explained in Refs. 17 and 19. The energy unit is
J'51.
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In the weak-coupling reconstruction ofSDD(p,v), which
starts from the expression~3.2! and the constantDk sequence
~3.10!, the effects of a weak interaction~3.13! on the line
shape are similar in two aspects yet different in a third as-
pect.~i! The low-frequency behavior is governed by a weak
infrared singularity which switches from a divergence to a
cusp in accordance with the exponent data presented in Fig.
6~a!. ~ii ! The only noticeable change at the band edge is the
variation of the continuum boundary in accordance with the
bandwidth data presented in Fig. 6~b!. ~iii ! However, no no-
ticeable rearrangement of spectral weight near the band edge
occurs unlike what has been observed inSzz(p,v). In par-

ticular, the discrete state found inSzz(p,v) does not carry
any spectral weight inSDD(p,v). It does not play any role
in the dimer fluctuations.
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