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Dimer and Neel order-parameter fluctuations in the spin-fluid phase of thes=1 spin chain with
first- and second-neighbor couplings

Yongmin Yu and Gerhard Mler
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

V. S. Viswanath
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032
(Received 9 April 1996

The dynamical properties @t=0 of the one-dimensionélD) s= % nearest-neighbdiNN) XXZ model with
an additional isotropic next-nearest-neighiBiNN) coupling are investigated by means of the recursion
method in combination with a weak-coupling continued-fraction analysis. The focus is on the dynamic struc-
ture factorsS,(q,w) andSpp(q, ), which describefor g= ) the fluctuations of the Nt and dimer order
parameters, respectively. We calculate the dependence on the exchange constants of the infrared exponent, the
renormalized bandwidth of spinon excitations, and the spectral-weight distributioB,,[nr,0) and
Spp(7,w), all in the spin-fluid phase, which is realized for planar NN anisotropy and sufficiently weak NNN
coupling. For some parameter values we find a discrete branch of excitations above the spinon continuum.
They contribute tdS,(q,w) but not toSpp(q,w). [S0163-182806)02538-4

I. INTRODUCTION A schematic representation of tHe=0 phase diagram is
shown in Fig. 1. The free-fermion poinAE0, A=0) is

Quantum many-body systems with competing interactiondocated in the middle of the spin-fluid phase. Here the system
are apt to exhibit ordering tendencies in the ground state df @ Luttinger liquid. The ground state is critical—i.e., the
which no trace exists in the presence of any one couplingXcitation spectrum is gapless—and the static spin and dimer
alone and which are impossible to predict on the basis of £0rrelation functions decay algebraically with exponents de-
classical model with both couplings. Among the many dif- Pe€nding on the coupling constants of the two types of inter-
ferent model systems where this phenomenon is manifesgCction.

the Heisenberg antiferromagnet with nearest-neighibiow) For A<0 the NNN coupling strengthens the correlations
and next-nearest-neighb¢NNN) couplings on a bipartite produced by the NN coupling and thus reinforces the prevail-

lattice is a prominent example. For coupling strengths ofn'd ordering tendency. Therefore, we expect to find ferro-
comparable magnitude on the square lattice, various ordering@gnetic long-range order in the region €0, A<—1)
tendencies including N order, collinear order, dimer order, and antiferromagnetic long-range order in the region
twist order, and chiral order are in competition with each(A=<0, A>1). For—1<A<1 the NN interaction alone is

other and with disordering tendencies such as embodied H§OWn not to support any kind of long-range order. No phase
the resonating valence-bond sthte. fransition is suspected to occur if a negative NNN coupling

The one-dimensiona(1D) version of this model had IS added.
gained prominence many years before, when the ground state
for one particular ratio of the coupling constants was found 07 PURE
to be a pure dimer stafe® Spontaneous dimerization is a true ] DIMER STATE
quantum phenomenon. Several studies have succeeded in °°%] iueR &
mapping out the zero-temperature phase diagram of this
model in one or the other extended parameter shacbeit 0-251
with little emphasis on dynamical properties. In this paper

we study theT=0 dynamics of the Hamiltonian A 0.009

SPIN-FLUID NEEL
PHASE PHASE

PHASE

FREE LATTICE

_0.254 FERMIONS

FERROMAGNETIC

N
H=3, (LSS o+ S+ IS 1+ 0882,
(1.9

-0.50

parametrized by the two coupling constadts-J,/J, and R P P a—y 0.0 0’5 1’0 15

A=J3,/3, . Extending the parameter space to cases with A

uniaxial anisotropy in the NN coupling offers the advantage

that the model withA = A =0, which reduces to a system of  FIG. 1. Zero-temperature phase diagram of the model system
free lattice fermiond;?® can be used as a convenient starting(1.1) with coupling constanta =J,/J, andA=J,/J, in a sche-
point for weak-coupling approaches. matic representation.

0163-1829/96/54.3)/92428)/$10.00 54 9242 © 1996 The American Physical Society
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For A>0 the NN and NNN couplings are in competition (|n|#1), (DD, .)—(D,\}D n)=%(—1)" (n#0), re-
with each other. The latter thys frustrates the orde_rlng te”spectively, and reflect the long-range nature of the two types
dency of the former. One predictable consequence is that thg ordering. In the free-fermion ground stateAat A =0, by

boundary of the ferromagnetic phase, which is located atsnirast, the same correlation functions decay algebraitally,
A=—1 for A<1/4, bends to the left in Fig. 1 for increasing

NNN coupling!® Increasing amounts of uniaxial anisotropy ey 1

are necessary to stabilize the spin alignment. A simple (S =5 2z zlcognm) —1], 2.9

spin-wave stability criterion vyields the expression

1/A=4[|A|— JAZ—1] for the phase boundary in that re- 1 [2n2—-1

gion. (DiD14n) =(DIXDysn)= 22| 127 COSNT) + 77 |-
In the region of planar anisotropj| <1, the interplay of (2.6

the two competing forces in the presence of quantum fluc-

tuations produces the dimer phase. Curiously, within the In this study we use the recursion methbtf to investi-
dimer phase there exists one point in parameter spacgate the dynamical(i.e., frequency-dependentorder-
(A=1, A=1/2) 23 where the ground state is a pure dimer parameter fluctuations as probed by the dynamic spin struc-
state with no correlated fluctuations, notwithstanding the facture factorS,,(q,») and the dynamic dimer structure factor
that this phase owes its very existence to quantum fluctueSy5(q,w), i.e., by the function

tions. However, thd =0 dynamics at this point turns out to
be only marginally simpler than elsewhere in the dimer
phase, where the structure of the ground state is much more

complext!

Saa(g, @)= fﬁ:dtei“"(Aé(t)Aq), 2.7

In the region of uniaxial antiferromagnetic anisotropy, whereA, stands for the spin and dimer fluctuation operators,

A>1, there exists a N# phase. Like the ferromagnetic

phase, it is destabilized by sufficiently strong competing SZ=N‘1’22 eiqlslz,
NNN coupling. The phase boundaries between the spin-fluid, [

dimer, and Nel phases as sketched in Fig. 1 were first pro-

Dq=N""22) €I[D;~(Dy)].
(2.8

posed by Haldartebased on a continuum fermion theory. For the calculation of the dynamic correlation function

The impact of the transitions between theeNedimer, and

spin-fluid phases on thE=0 dynamics will be explored in a

separate studf

II. SPIN AND DIMER FLUCTUATIONS

The Neel order parametefstaggered magnetizatipand
the dimer order parameter for the model systéin) are
given, respectively, by the operators

N
— 1
MZ:N Izl

(-D's, (2.9
1 N
D=3 (-1, Di=§'S.1+§'SL. 22
Neel order in its purest form is realized in the states

[DD=[T1T---1), [®H=[IT]---1),
and pure dimer order in the states

(2.3

|®F)=[1,2][3,4]- --[N—=LN], |#3)=[2,3][4,5]- - -[N,1],
(2.9

where the singlet§l,1+1]={|1/)—|/1)}/\2 are formed

by pairs of NN spins. In the ground state of E@.1), the

former is realized at A=0, A=) and the latter at
(A=1/2, A=1).

(<D|A$(t)Aq|<D> in the ground statgb) of the system, it can

be based on an orthogonal expansion of the dynamical vari-
ableAy(t) (Liouvillian representatiot?) or on an orthogonal
expansion of the wave functioA,(—t)|®) (Hamiltonian
representatiot}). The algorithms of both representations,
which have been described and illustrated in a recent
monograph, produce equivalent data. These data are ex-
pressible most concisely in terms of a sequence of continued-
fraction coefficientsAf(q), A5(q), ... for the relaxation
function

ch™(q,2)= (2.9

ANa)
t "
A3(q)
Z+
zZ+ ...

which is the Laplace transform of the symmetrized and nor-
malized  correlation  function R@|A£(t)Aq|<D>/
<<I>|A$Aq|<I>>. The T=0 dynamic structure facto2.7) is
then obtained from Eq2.9) via

San(0, @) =4Saa(0) O () MR cH™(q,e—iw)],
e—0
(2.10

where SAA(q)=<<D|AgAq|<I>> is the static structure factor
(integrated intensity
For the reconstruction @, (g, ) based on a number of

Neel ordering manifests itself in the two-spin correlation coefficientsA(q) extracted from the finite-size ground-state
function(S'S, ,,) and dimer ordering in the four-spin corre- wave function|®), we employ techniques of continued-
lation function(D,D, ). For translationally invariant and fraction analysis described previously in the context of other
orthonormal linear combinations of the symmetry-breakingapplications, one pertaining to the strong-coupling redfme

Neel states (2.3) and dimer states(2.4), they are
(St =3(—1)", (DD} 4)=0 (n+0) and(S{S’,,)=0

and the other to the weak-coupling regithef a given quan-
tum many-body system.
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Ill. RESULTS AND INTERPRETATION 7A(A,0) exac= [ 1— (L/m)arccod ] L. (3.5

For the special casa =A=0 of the spin model1.1),  The two expressions agree to leading order in the coupling
dynamic correlation functions can be calculated exactly. Theonstant:z,=2—4A/ 7+ O(A?).

evaluation is particularly simple for the two dynamic struc-  An independent way of determining the correlation expo-
ture factors of interest here, because the operators involvedent », for arbitrary coupling ratios\/A in the region of

S; and Dg, are density operators in the fermion repre-very weak interaction is provided, as will be demonstrated in

sentatiorf%%! Sec. Il C, by the weak-coupling continued-fraction analysis
of the infrared exponents in the dynamic spin and dimer
S,(q.0) 2 (3.1 structure factors,
q,w)= > , .

V4disir(a/2) - o? S, (mw)~wPz,  Syp(m )~ wPp. (3.6

J4stin2(q/2)—w2 The contin_uum_analysis suggests that the two infrared expo-
Sop(q,w)= S , (3.2  nents are identical and related 1g:

€L
B,=Bp=7n,—2. (3.7

for J,|singl<w<2J,|sin@2)|. Both quantities have the

same excitation spectrum, the particle-hole continuum of The renormalized spin velocity(A,A) is another quan-
free fermions. For other dynamical variables suctSgashe  tity for which the continuum analysis predicts an explicit
evaluation of dynamic correlation functions is much moreresult®
involved, and the results have a much more complicated
structure with dynamically relevant excitation spectra of un- vs(A,A)=J,(1+2A/m— 4N/ ). (3.9
bounded suppoff

In the XXZ antiferromagnet with planar anisotropy
(A=0,0<A<1), the spectral weight inS,,(q,w) is
knowr?® to be dominated by a continuum of unbound two-
spinon states with upper and lower boundaries

It can be checked against the renormalized bandwidth
wo(A,A) of S,[(7,w) or Syp(7,w) as obtainediin Sec.

Il C) via weak-coupling continued-fraction analysis. Both
gquantities are expected to have the same dependence on the
coupling constants except for constant factors A&t 0 we

e(@=dlsinal, ey(@)=23ylsinqr)|, (@3 [Ave wo=eu(m=2Jy and vs=lde,(a)/dalo-o=Ja;

hence,
where J,=mJ, sim¥/29¥, cos¥=A. The A dependence of 5
S,(q,w) has already been investigated by several calcula- wy=wg =205, (3.9
tional technique$? No equivalent results exist for
S;40,w) in the extended parameter spack,{) or for B. Weak-coupling continued-fraction coefficients

Spp(Q,w) anywhere in this parameter space. Given the exact
solutions(3.1) and(3.2), the case\ = A =0 presents itself as

a convenient starting point for a weak-coupling continued-4
{Tgolnaﬁgﬂy's;l ?g the two dynamic structure factors at AZ(m) =32 (1+ 81, AP(m)=32, (3.10

The exact expressiort8.1) and(3.2) can be recovered for
=1 from the A, sequences

by direct evaluation of Eq2.9). TheseA values pertain to
A. Correlation exponent and spin velocity the infinite system. They are exactly reproduced up to
k=N/2—1 for S,(m,w) and up to k=N/2—-2 for
opo(7, ) by the recursion method applied to a chainNof

Haldane’s continuum analysipredicts that the exponents
d:ites with periodic boundary conditions.

which characterize the power-law decay of the spin an

. . . ZQZ N\ _(_ 1\~ 7y

dimer  correlation funct|cr)]nsi n§513+n> (h 1)'n= ", ~ Weak coupling [A|<1]A|<1) produces systematic de-
<DI_DI+n>_<DI|><D|I+_n>~(;_1) n 'k, are bt E hsaerne.k viations of theA,’'s from the reference sequencé3.10).
7;= 7p - A calculation taking into account both the back- oy are jllustrated in the four panels of Fig. 2 for both

scattering and the umklapp terms in the interaction leads t0 gynamic structure factors and both types of interaction. In
pair of scaling equations for the dependencezobnA and 51 case tha’'s for K ,<k=K,, exhibit a pseudoasymp-

A. If_the umklsapp terms are neglected, the analysis yields th?otic behavior. In panefa) it starts at< ,=2, in panel(b) at
explicit result; Ka=3, and in panelgc) and (d) at K,=1. The number
Kw marks the beginning of the crossover from zero growth

748, A)=2(m—8A)/(m+44). 34 tonower—Iaw growth, which is most conspicuously observ-
This expression is expected to be most accurate for the spable in paneld). K,y becomes smaller with increasing cou-
cial coupling ratioA/A=1/6, where the umklapp terms are Pling strength. When we hav&y=K,, we are in the
absent in the continuum Hamiltonian. Indeed the high accustrong-coupling reg|mé§? _ . o
racy of Eq.(3.4) is demonstrated by the fact that its value In the weak-coupling regime, the systematic deviations
7,=1.006 at the boundary to the “Ble phase from Eq.(3.10 are of two kinds(i) The A, sequence tends
(A=1, A=1/6) misses the supposedly exact valge=1 to converge toward a higher or lower valué™ ask in-
by less than 1%. It is not clear how accurate expres&of)  creases towarlly. (i) The A, and theA,,, approach the
is for coupling ratiosA/A#1/6. At A=0 it can be tested pseudoasymptotic valut™ from opposite sides. In Fig. 2
against the exact restft we observe that the direction of the shift, which changes with
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1.08 0.6
(a) A=0 O-© =001 (¢) A=0 ©© 4=0.0001
00 A=0.02 1 G5-0 4=0.0002
1.04 8 03]
. S
1 100 700
G —_
N<,;<‘. T \‘_:,
0.961 A5 —0.3 ) ) o
— FIG. 2. Continued-fraction coefficients for
3 if:g‘g? ] :: if:ggggf the dynamic structure factoS,(m, ) (left)
0-921 I 5 1 é_ .é 7 —0461 I 5 1 3 .é ; and Spp(m,w) (right) at T=0 in the weak-
coupling regime of Hamiltonian(1.1) with
k k A =0 (top) or A=0 (bottom. The energy unit
1.16 oo rcoor 1.6 50 A=0.0001 is J, =1. These coefficients have been pro-
1)y a=0 o2 L@ a=0 000z duced by the recursion algorith(Ref. 17 ap-
1084 2 ,ad plied to the wave functiorS:|®) (left) or
- S : D,|®) (right), where |®) is the finiteN
o ] X, \/0\,/0\./‘ ground-state wave function.
A 1.00 = 00
E —
N £
0.92] A2 —o0.8
A A=-0.02 T B8 A=-0.0002
0.84 : , |H 1|\=—0.(|)1 16 , , |H 11\=—0,(|)001
t 2 3 4 5 6 7 1 2 3 4 5 6 7
k k
the sign of either interaction, is the same for both dynamidhe coefficientsA,, ... ,As reproduceqvia Eq. (3.7)] the

structure factors but opposite for the two types of coupling.exact correlation function exponef&.5) with reasonable ac-
whereas the alternating pattern, which also changes with theuracy.
sign of either interaction, has the same direction for both The patterns in Fig. 2 make it clear that in th&,(\)
functions and for both types of coupling. _plane there are sectors with compressad§<0) and ex-
For a quantitative analysis of _the two pseudoasymptotlcpanded 0 wo>0) bandwidth, and sectors with divergent
effects we must select the string df’s carefully. In (30 and cusp g>0) singularities. We have determined
Spp(m,®), the valueK,y is considerably smaller than in a5 houndaries between the resulting four sectors near the
S, m w) for a given coupling strength, which restiicts the goq formion point A =0, A=0) by a systematic investiga-
\(/:voel?;i;rc]cg):plmg analysis @pp () to a narrower range of tion of the A, sequences along several lines in parameter
; . . space.
The shift of the pseudoasymptotic valné™) [effect (i)] pOne such series of sequencesSoy(, o) is displayed in
describes the renormalized bandwidik of the dynamically Fig. 3. Between A=—0.005 (bottor,n sequenge and

{)hrgdrzglino?r;t two-particle continuum of lattice fermions V'aA=0.006(top sequendeat fixed A = —0.001, we observe a
gradual reversal of both patterngi) and (ii). At

AW = wla. (3.1) A=-0.002, the averaga, goes from negative to positive,
implying a corresponding change in sign dfwg. At

A=0.002, the average df,,_1— A, goes from positive to

negative, implying a corresponding change in sign of the

infrared exponeng,. The two sequences closest to the pat-
tern changes are highlighted by full symbols.

The lines in parameter space on which the interaction
leaves the bandwidtl{ or the exponeng, unchanged de-

f pend somewhat on th&, strings used for the analysis. This
is illustrated in Fig. 4. The expectation is that the results
improve as we shift thd string to higher indice&, where

B nonasymptotic effects become weak®0Our best results, in-

A=A, 1_(_1)kF+ < (3.12  ferred from the strind\,, . .. ,A-, yield sector boundaries at
coupling ratiosA/A=0.52 for Awg=0 and A/A=—0.44

In Ref. 19 we proposed and tested two proced@sesrag- for 8,=0, in fair agreement with the corresponding sector

ing and extrapolation for extracting the exponent from a boundariesA/A=0.5 for Avg=0 and A/A=-0.5 for

finite A, sequence. For the NN casd €0, |A|<0.05), a A#7,=0, respectively, predicted by the continuum results

benchmark test showed that the expongntinferred from  (3.8) and(3.4) and shown as long-dashed lines in Fig. 4.

For pure NN coupling 4 =0, |A|<0.1), the band-edge fre-
qguency wq inferred from the average oh,,... A5 was
shown to reproduce the exact bandwidth(7)=2J, of the
spinon continuuni3.3) very accurately®

The alternating approach of thig’'s toward AW [effect
(ii)] describes an infrared singulari.6) in the two dy-
namic structure factors. For a truly convergéantsequence,
the singularity exponemn® is governed by the leading term o
the largek asymptotic expansioh-?°
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1.015 0.05

1 A=-0.001, A=0.006 : A AgAy
1— ﬁZ:n272
LOlO-‘)_/e/é\e/@\e/ 0.03-

€ N
N w0007
<l
~0.014
] [u}
—0.027 L0 r=0.01
—0.03{ ©p oo
00o®
—0.04 050
~0.05 -+ ————— ———r—— —————
0 90 180 270 360
k [
2.04
FIG. 3. Ay sequences for the dynamic spin structure factor ] g 8205 (b)
S,{m ») at A=—0.001,A=—0.005-0.004,...,0.006 as pro- 5034 & rea oo
duced by the recursion algorithifRef. 17. The energy unit is ] wERvs o (508
J,=1. The sequences fak=+0.002 are marked by solid sym- 2.02 A °
bols. 1
(o]
C. Infrared exponent and bandwidth
Figure 5a) shows the weak-coupling continued-fraction
results for the infrared exponenB,(A,A) at coupling
strengths along the circle
r=0.01
A=Tcoss, A=TI'sing, (3.13
with radiusI'=0.01 around the free-fermion point in the
(A,A) plane. The three data sets from differéqt string$”’ o6
o T 90 180 270 360
0.006 0

FIG. 5. (a) Infrared exponenB, of S,,(,w) and(b) renormal-
ized bandwidthw} of the two-spinon continuum at different cou-
pling ratios A/A=tand and fixed coupling strength
JAZ+A?=I'=0.01. The squares, circles, and triangles represent
the results of a weak-coupling continued-fraction analysis based on
three differentA strings. The solid lines ifa) and(b) are derived
from the continuum result&.4) and(3.8), respectively. The energy
unitisJ, =1.

0.004
0.002
A 0.000

~0.002+

fall onto sinelike curves in this representation, as does the
prediction inferred from the continuum resy8.4), shown
here as a solid line.
. , . : . The best overall agreement between our data and
-0.02 -0.01 0.00 0.01 0.02 Haldane’s result occurs at anglés-9.5°,189.5°, which cor-

A respond to the special coupling rat\d A=1/6 with vanish-
ing umklapp terms in the continuum Hamiltonian. However,

_ FIG. 4. The spin-fluid phase in the weak-coupling regime isthe agreement between the dashed line and the data set from
divided |r_1to f_our sezctors with |_nfra_red exponem_i§a_nd bandwidth 4 . ... A, which is least affected by nonasymptotic coef-
renormallzatlon‘Aa)0 of .opposne sign. The solid lines dfenote the ficients, is remarkably good at all angles.
sector boundaries derived from the strings, ... A5 (circles, . .

Aj, ... ,Ag (squares andA,, ... A5 (triangleg. One solid line is The dependenc_;e of t[he renorma“?ed bahdwmﬁh)n the
extended short-dashed into the weak—strong-coupling crossover ré@Me angular variablé is shown in Fig. &) in a compara-
gion of coefficient A;. The long-dashed lines with slope tive plot of three sets of weak-coupling continued-fraction
A/A==*1/2 are the sector boundaries predicted by the continuunglata and the prediction inferred via E®.9) from the con-
analysis. tinuum result(3.8) for the renormalized spin velocity. Again

—0.004




Bp* 1000

[&D-2]x1000

FIG. 6. (a) Infrared exponenpp of Spp(7,w) and (b) renor-
malized bandwidthw of the two-spinon continuum at different

coupling coupling strength Spp(7r) for fixed coupling strengthF =0.0001. Both quan-

ent Ay strings. The solid lines ifta) and (b) are derived from the

DIMER AND NEEL ORDER-PARAMETER FLUCTUATIONS . ..

0.4

0.3

0.2

(b)

r=0.0001

-0.4

ratios A/A=tand and
JAZ+AZ=T=0.0001. The squares and circles represent the resultities exhibit the characteristic sinusoidal behavior. The am-
of a weak-coupling continued-fraction analysis based on two differplitude is proportional td" in each quantity. Interestingly,

fixed
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The bandwidth data from two differeni, strings de-
picted in Fig. &b) are in near perfect agreement with each
other and with the result inferred from E(B.8). Likewise
the data for the exponemty as shown in Fig. @ exhibit
the same characteristic oscillation as already observed in Fig.
5(a) for B,. The phase of the oscillation predicted by Eg.
(3.4) is accurately reproduced by our data. There are signifi-
cant deviations in the amplitude, which are attributable to the
strongly nonasymptotic nature of the coefficieAts A 5, but
the trends indicated by the two data sets are in the right
direction.

The angular dependences of the exponent and bandwidth
data shown in Figs. 5 and 6 are observed to be out of phase
by some 55°, giving rise to the four sectors of weak-coupling
dynamical behavior discussed in the context of Fig. 4. This is
consistent with Haldane's predictiof3.4) and (3.8 for the
correlation exponent and the renormalized Fermi velocity,
respectively. These quantities have extreme values at
tand=2 and ta®=—2, respectively, which correspond to
angles 63.4° and 116.6°63.4°+53.2°.

The characteristic oscillations of the infrared-exponent
data are also expected to be pregarith the same phagén
the angular dependence of the static spin and dimer structure
factors at the critical wave numbge= 7. In the free-fermion
limit, the Fourier transform of the exact result3.5 and
(2.6) yields

|q

1
SAd=5_, Soo(®)= ;[Iql —|singl]. (3.19

Both functions have a cusplike maximum @i 7, which
reflects the critical spin and dimer fluctuations, respectively,
in the ground state. It is reasonable to expect that the varia-
tion of S,(7) andSpp(7) with the interaction in the weak-
coupling limit is synchronized with the variation of the cor-
relation exponentn,= np and, hence, with the infrared
exponent8,= Sp .

In Fig. 7 we have plotted th@ dependence d, (=) and

the phases are different. Where8sp(7) varies in phase

continuum result$3.4) and (3.8), respectively. The energy unit is with the infrared exponens, (=) does not.

J=1.

the agreement improves as thg string is shifted toward

D. Reconstruction of S, (7, w) and Spp (7, w)

higher indices, where it is less affected by nonasymptotic The third major featurdin addition to the renormalized
coefficients.

When the exponent and bandwidth are determined for ghape of the dynamic spin and dimer structure factors at the

bandwidth and the infrared expongoharacterizing the line

circle of much smaller radiud; =0.0001, we find the same critical wave numbem= = is the detailed spectral-weight
angular dependence @, and wg and the samdrescalell  distribution near the band edge. For the pure NN case
amplitude within a 5% margin of error. This confirms that (A =0), we found thatA #0 causes a redistribution of the
the A’'s used in this analysis are free of weak—strong-spectral weight inS,(m,w) near the band edge ar(or
coupling crossover effects. A <0 only) the appearance of a discrete spectral line outside

We have carried out the same analysis for the renormalthe band'® This discrete state was identifiélly Bethe an-
ized bandwidth wg and the infrared exponenBp of  sat? to belong to a branch of bound spin complexes.
Spp(g,w). The results for parameter values on a circular line  For the more general modél.1) with A+#0, it is not
with radiusT"=0.0001 are displayed in Fig. 6. This radius known for which parameter values such discrete states exist.
had to be chosen much smaller than in the case ofVe have investigated this question for parameter values
S,(m,w) in order to ascertain that at least the coefficients(A,A) on the circular line(3.13 by means of a weak-
A,, ... ,Ag are free of crossover effects. coupling continued-fraction reconstruction d,(m, )
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[S,,(m)—0.5]x10°
Syz(mw)/28,,(m)

[SDD(ﬂ)vl]XlO4

FIG. 7. Integrated intensities, () andSpp(7r) of the spin and
dimer order-parameter fluctuations, respectively, at different cou-
pling ratios A/A=tand and fixed coupling strength
I'=AZ+A?=0.0001 as derived from the ground-state wave func-
tion for N=16.

based on the coefficienta,, ... ,AKW and a termination

function which incorporates the renormalized bandwidfh
and the infrared exponemtt,. A detailed description of the
procedure can be found in Refs. 17 and 19.

The dependence on the angular parametef the recon-
structedS, (7, w) is displayed in Fig. 8. A® increases from
zero to 60 [panel(a)], the bandwidth shrinks and the infra-
red divergence gains strength. In addition to these two fea-
tures we observe the emergenc@atl5° of a discrete spec-
tral line above and outside the band. In the reconstructed 0.95-
relaxation function the discrete state is represented by an 2o
isolated pole. For= e—iw with e=0.0001 it has a nonzero
width. At §=15°, the discrete state is barely distinguishable
from the band edge.

Betweend=60° andf=120° the bandwidth continues to
shrink, while more and more spectral weight is transferred
from the continuum to the discrete state. The infrared diver-

S, (mw)/28,,(m)

25

§=195°

15

0.75

1
0.00 0.01

10

8,7 (m.w) /23, ()

gence, which has reached its maximum strength-a60°, |

weakens over this parameter range. The further evolution of 57

the line shapes near the band edge and at small frequencies is 6=240°

shown in panel(b). The infrared divergence disappears at e) oL
#=150° and turns into a cusp singularitgee inset The %55 156 197 158 190 zm0  zh1 2be

bandwidth of the continuum expands while the discrete state
moves closer to the band edge and slowly loses spectral
weight.

These trends continue betlweérfr 195° and6_= 240° as FIG. 8. Dynamic spin structure fact& (7, ) at different cou-
shown in pane(c). The depletion of spectral weight at small lng ratios A/A=tand and fixed coupling strength
® becomes more and more prounouced, and the discre&mzrzoml specifically for the angles (3
state merges with the band edge6at210°. Nothing dra-  y_g° 15° . 60°, (b) 6=135°,150°, ..,180°, and (c)
matic happens to the line shape on the last stretch of thggse 210° .. 240°. The main plot depicts the line shapes near the
circle. The range of parameter values where a discrete staffind edge and the inset the line shapes at low frequencies. All
is observed, 30% #<210°, roughly coincides with the range curves have resulted from a weak-coupling continued-fraction re-
where the renormalized bandwidth is compressed. In theonstruction based on the coefficierts, . .. ,A; and a compact

fermion representation, this is the region, where the Fermi terminator as explained in Refs. 17 and 19. The energy unit is
velocity is renormalized downward. J, =1.
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In the weak-coupling reconstruction 8f (7, ), which  ticular, the discrete state found B} ,(7,») does not carry
starts from the expressidB.2) and the constant, sequence any spectral weight iSyp(7,w). It does not play any role
(3.10, the effects of a weak interactio3.13 on the line in the dimer fluctuations.
shape are similar in two aspects yet different in a third as-
pect.(i) The low-frequency behavior is governed by a weak
infrared singularity which switches from a divergence to a
cusp in accordance with the exponent data presented in Fig. The work at URI was supported by the U.S. National
6(a). (i) The only noticeable change at the band edge is th&cience Foundation, Grant No. DMR-93-12252, and the
variation of the continuum boundary in accordance with thework at ORNL by the U.S. Department of Energy under
bandwidth data presented in Figbi (iii) However, no no- Contract No. DE-FG06-94ER45519. Computations were car-
ticeable rearrangement of spectral weight near the band edgied out at the National Center for Supercomputing Applica-
occurs unlike what has been observedSiY 7, w). In par-  tions, University of lllinois at Urbana-Champaign.
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260bviously, the weak-coupling continued-fraction results for the
infrared exponenB, and the renormalized bandwidéy, from a
string Ay, ... Ay, of coefficients are vulnerable to systematic
errors. The two main sources of systematic error are the follow-
ing: (i) If k; is chosen too smallk{<K,), then the first one or
severalA,’s are too strongly nonasymptotic in character and
introduce a bias into the pseudoasymptotic analysisIf k; is
chosen too highk;>Ky,), then the last one or several’s are
affected by the crossover to nonzero growth rate, which intro-
duces a different kind of bias.

?In Ref. 19 we showed that the accuracy of the weak-coupling
continued-fraction results for the case=0 can yet be im-
proved substantially if we usextrapolationinstead ofaverag-
ing. However, since the data do not lend themselves to extrapo-
lation for all coupling ratios, we employ the more robust
averaging method for all cases here.
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