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Abstract

Type I, bovine skin collagen was allowed to gel in the presence of various concentrations of a 

carbon nanotube material covered with a polystyrene/polyaniline copolymer, called a carbon 

nanobrush, CNB.  The rate of collagen gelation was enhanced by the presence of the CNB in a dose 

dependent manner. The extent of collagen gelation was due to the concentration of collagen and not the 

amount of CNB. Collagen D-periodicity, and average fibril diameter were unchanged by the CNB 

material as seen in transmission electron micrographs. Gel tensile strength was reduced by the presence 

of the the CNB in a dose related manner.  The collagen-CNB mixture may have a role in the repair and 

reconstruction of wounds or degenerated connective tissue.

Introduction

Type I collagen is the most abundant protein in the human body as well as in other vertebrates. 

Collagen is the major structural protein of skin, tendon, ligament, bone and artery walls. Native 

collagen is highly cross-linked in the tissues where it resides as part of the extra-cellular matrix. 

Fibroblasts embedded in the extra-cellular matrix synthesize and export collagen as a composite of 3 

alpha subunits, that form a single, linear collagen monomer with a triple, left handed helical twist that 

is about 300 nm long and 1.5 nm wide.  Multiple collagen monomers, self-associate in the extra-

cellular matrix to form longer and thicker structures called fibrils in skin, which in-turn can combine in 

tendons to form larger structures called fibers. Collagen structures resemble rope because of the 

alternating twist in the helical orientation, this provides strength and decreases unraveling under 

extension, [1].
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Type I collagen, in skin, forms fibrils in the presence of other extra-cellular matrix proteins 

especially proteoglycans which are comprised of a protein core surround by long chains of 

polysaccharides.  Although collagen, in vitro, self-assembles without the presence of these 

proteoglycans, it is thought that the presence of those large molecular weight proteoglycan molecules 

limit the in vivo size and orientation of collagen fibrils so that longer, wider fibers are not formed, [2]. 

Collagen monomers can be isolated from a number of tissues using pepsin treatment to breakup 

the cross-links.  Isolated collagen monomers can re-assemble in vitro to form fibrils that resemble those 

in living tissue, with a characteristic 67 nm periodic structure called a D-period.  [3,4]

There is much interest in carbon nanotubes as a reinforcement additive for tissue engineering 

materials such as collagen gels, and cartilagenous simulants, [5-9].  In the present work, results are 

presented showing the in-vitro fibril formation of pepsin treated collagen in the presence of carbon 

nanotubes coated with polystyrene/polyanaline side chains, which resemble, somewhat, proteoglycan 

macromolecules, [10]. 

Material and Methods

Collagen monomer solution, PureCol brand collagen, (type I, bovine skin, collagen solution, 3.0 

mg/ml, isolated by limited pepsin digestion) was purchased from Advanced BioMatrix, Inc (San Diego, 

CA).  Pepsin digest partially removes the telopeptides of native collagen, which allows the collagen 

cross-linkages to be broken and isolated from the native tissue.

Collagen fibril formation buffer,  All buffer chemicals were reagent grade or better. 2x PBS, 

gelation buffer contained 60 mM NaHPO4, 400 mM NaCl, 60 mM TES, with pH adjusted to either 7.0 

or 8.0 using 3.0 M NaOH. 

Carbon Nanobrush composite,  High purity, multiple wall carbon nanotubes (CNT) were 

purchased from NanoLab, Inc. (Waltham, Ma).  About 14 mg of carbon nanotube material was 
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sonicated in distilled water for 20 minutes to reduce the number of CNT self-attachments producing a 

CNT suspension. The carbon nanobrush was made by electrostatically attaching conductive polymer 

bristles to the central carbon nanotube core forming a conductive carbon nanobrush complex. The 

conductive polymer bristles were formed using template guided synthesis made by the association of 

polystyrene sulfonic acid and polyaniline to form a double stranded polymer.  To attach this conductive 

polymer to the carbon nanotubes, an aqueous solution of 56 mg of polystyrene sulfonic acid and 

polyaniline was added to the CNT to give a total volume of 40 ml.  This solution was sonicated for an 

additional 20 minutes at room temperature to produce the conductive nanobrush (CNB) in a 

homogeneously dispersed solution, which has a carbon nanotube at the core surrounded by helical 

bristles of polystyrene/polyanaline.  The 40 ml volume was dialyzed against 50 volumes of de-ionized 

water, over night, at room temperature to separated the excess, unattached bristles and any broken 

carbon nanotubes, [11]. The resulting carbon nanobrush material contains about 20% CNT and 80% 

plystyrene/polyanaline by mass. A working solution was made by diluting the dialysate to a 

concentration of 8.0 mg of CNB in 50 ml of de-ionized water.

Collagen fibril formation, Collagen gelation solutions were prepared one of two ways. First, by 

mixing 1 mL of collagen monomer stock solution, 3 mg/mL, with 0.9 ml of 2x PBS buffer, pH 7.0 and 

0-100 uL of CNB stock solution plus sufficient de-ionized water to make a 2.0 mL volume of working 

solution, 0.15 % w/v collagen.  Second, by mixing 1 mL of 2x PBS buffer, pH 8.0, with 0.9 mL of 

collagen monomer stock solution and 0 – 50 uL of CNB solution plus sufficient de-ionized water to 

make a 2.0 mL volume working solution, 0.135% w/v collagen. Gelation solutions were manually 

scanned every 6 minutes, in quartz cuvettes, at 354 nm using a Genesys-10 UV scanning 

spectrophotometer zeroed against the fibril formation buffer with no CNB. Temperature was regulated 

using a dry well electric heating block where the cuvettes incubated between UV readings.  This 
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method of heating the collagen solutions had  a temperature variation of ±2 °C.  Fibril formation 

kinetics were assessed at three temperature ranges 30-32,  33-35, 38-40 °C, using collagen solutions 

containing 50 ul of CNB stock solution.

Pseudo-kinetic parameters, OD(max) and T½  were determined with a 4 parameter, logistic 

regression fitting equation by plotting OD(354 nm) as a function of time and iterating to a minimal sum 

of squared errors using the non-linear Solver routine in a spreadsheet program.

OD(354 nm)  =  (  OD  (init)   - OD  (max)     )    + OD(max)                                       eq (1)
                                      (1 + (time/T½)^slope)

Where OD(init) is taken from the first reading of the sample.
  T½ was initially estimated as time to half the full OD from the raw data.
  Slope was initially estimated as 5 OD units/min.
  OD(max) is initially estimated at 3.0 OD units.
  ΔOD was equal to OD(max)  -  OD(init).

Transmission electron microscopy, Samples of collagen gel were examined by a Joel 

Corporation, JEM 2100 TEM operating at 0.2 Mvolts.  A 1% wt/v sodium phosphotungstate solution 

was used as a heavy metal counter stain to highlight the collagen fibril D-period bands, which were 

measured as well as the fibril widths.  Collagen gels formed with 1 mL of 2x PBS buffer, pH 8.0, and 

0.9 mL of collagen monomer stock solution were allowed to set overnight with 0 and 50 uL of CNB. 

Measurements of the D period and fibril widths were made manually from the photographic images 

using the magnification scale printed on the image, which was 200 nm in length.

Tensile strength measurements, Samples of collagen gel were examined by a Bohlin Instruments 

Model CVO rotational rheometer, operated at 23.5 ± 0.5 °C, with a set oscillation frequency of 1.0 hz. 

Collagen solutions were allowed to gel directly in the rheometer sample chamber at 35 °C by mixing 1 

part 10x PBS buffer with 8 parts PureCol collagen  plus enough 0.5 M NaOH to bring to pH 8.0 and 0, 
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50 or 100 uL of CNB depending on the run. Two different lots of collagen were utilized to form the 

gels. Lot 4060 was the same lot used in the kinetic and TEM examinations. Lot 6006 was a newer lot 

used to provide some measure of collagen monomer solution shelf-life stability. A modified Young's 

modulus was calculated as the slope of the shear stress (pa) plotted as a function of the strain. The 

Young's modulus was plotted as a function of the CNB addition volume in uL.

Results

Three sets of optical density experiments were conducted utilizing the CNB material.  The use 

of 354 nm as the wavelength to monitor collagen gelation was a compromise between the strong 

absorbance of the CNB, max 313 nm, and limitation of the spectrophotometer maximal optical density 

reading at 3.0 absorbance units.    

Collagen fibril formation at pH 7.0 with 0, 10, 25, 50 and 100 uL of the CNB material was 

found to accelerate the rate and extent of collagen gel formation in a dose dependent manner.  At pH 

7.0 the collagen-only sample did not form a solid gel even after 200 min, see Figure 1a. In previous 

gelation experiments that utilized collagen with the telopetides intact, these conditions would have 

resulted in gel formation in the collagen-only controls, [3,4]. 

Collagen fibril formation at pH 8.0, with 0, 5, 15, 30 and 50 uL of the CNB material was also 

found to accelerate the formation of a collagen gel in a dose dependent manner.  At pH 8.0 the 

collagen-only sample was able to form a solid gel with a T½ of 90.15 min, see Figure 1b.  Table 1, 

shows the comparison of these gelation experiments. The extent of collagen fibril formation, ΔOD,  is 

dependent on the initial concentration of collagen and not on the initial amount of CNB material.  This 

can be seen in the consistent ΔOD value reached at the end of each run. The mean ΔOD of the 1.5 

mg/mL collagen samples were significantly larger, (0.367 OD, p=0.004, df=8) than the corresponding
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mean of the 1.35 mg/mL samples, which was expected since there is more collagen in the earlier 

samples.  Speed of the fibril formation was found to depend on both pH and the initial amount of CNB 

material.  In general as the amount of CNB material increased the rate of fibrilogenesis increased.

Collagen fibril formation with bristle polymers only. Figure 2 shows the effect of adding only 

the helical bristles of polystyrene/polyanaline, (0, 25, 50 and 100, uL) to the collagen monomer 

solution.  This experiment was conducted at pH 7.0 PBS and as in Figure 1a above, the collagen-only 

sample failed to gel.  The positive control of the 50 ul of CNB sample was the only one to gel 

completely, (ΔOD = 2.229 and T½  = 50.69 min), both values are comparable to the 50 uL CNB shown 

in above, Table 1.  The polystyrene/polyanaline bristle samples showed a concentration dependent 

inhibition of collagen gelation, with a 50% inhibition dose of 40 uL, Table 2.

Effects of temperature on collagen fibril formation.  Figure 3 shows that collagen gelation 

occurred more quickly at higher temperatures. The slopes of the temperature vs CNB graphs were 

negative and had a steeper slope as CNB concentration increased and set temperature increase.  This 

means that the effect of the CNB to organize the collagen monomers to self-assemble was greatest at 

lower temperature and high CNB concentration. These lines to not include a collagen-only sample 

because there was no collagen fibril formation at temperatures below 38-40 °C.

Effects of CNB on collagen fibril TEM structure.  Figure 4 shows the images of collagen fibrils 

formed under two conditions. Figure 4, left, shows the collagen-only control and Figure 4, right, shows 

the collagen plus 50 uL of CNB. The scale bar under the left-hand image is 200 nm. Measurement of 

the D-period, which is the repeat distance between series of bands, is usually reported at 67 nm.  This 

demonstrated that there was no statistical difference between the D periods of the collagen fibrils 

formed in the presence of 50 uL of CNB samples, 65.9 ± 2.4 nm (mean ± std. dev) compared to the 

collagen-only control samples, 65.3 ± 8.8 nm.   Also there was no statistical difference between the 
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mean fibril widths; collagen plus 50 uL of CNB samples measured 79.8 ± 17.9 nm (mean ± std. dev, 

n= 20) compared to the control samples, 84.8 ± 46.0 nm, n=30. 

Tensile strength changes as a result of CNB addition. Figure 5 shows that the Young's modulus 

was reduced in a dose dependent manner as a function of CNB addition. The average of 6 

measurements at 0 uL CNB indicates that the Young's Modulus was 122.8 ± 9.8 pascals. This was 

significantly different than the average of 3 measurements at 50 uL CNB, Young's Modulus 96.6 ± 2.1, 

and 3 measurements at 100 uL, Young's Modulus 90.7 ± 10.4 pascals, (ANOVA, F = 16.6, p <0.001). 

The 50 uL CNB and 100 uL CNB samples were not significantly different, (Tukey HSD, p = ns). The 

reduction in Young's modulus was contrary to the original expectation that the CNB material would 

stiffen the collagen gel.

Discussion

Collagen fibril formation in-vitro has been well studied for over 50 years, [12, 13].  It has been 

found that when the collagen monomers are isolated from the parent tissue using mild, neutral salt 

extraction methods, the collagen has its non-helical terminal ends intact, [3,13,14].  When the collagen 

monomers are isolated using harsher, pepsin digestion methods, the collagen yield is higher but the 

cross-linkages sites at the non-helical, terminal ends are remove, [15,16,17].  Both neutral salt soluble 

and pepsin digest soluble collagen will form native-like fibrils in-vitro given the appropriate conditions 

of pH, temperature and solution ionic strength. In our hands, conditions for gelation of neutral salt 

soluble monomers is pH 7, and 20-23 °C and conditions for gelation of pepsin solubilized monomers is 

pH 8.0 and 35-37 °C.

When solution turbidity is monitored, collagen fibril formation consists of a lag phase followed 

by a growth phase that ends in a plateau region, [18]. During the lag phase of the time course, fibril 

assembly proceeds by nucleation events that do not change solution turbidity. During the growth phase, 
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lateral association of collagen monomers to the nuclei produce banded collagen fibrils and a rapid 

change in solution turbidity. The plateau phase is reached when all the monomers are incorporated into 

fibrils. The lateral aggregation during the growth phase is considered to be a hydrophobic, entropy-

driven process in which the net system increase in disorder is due to the release of associated water 

molecules, [19].

The collagen utilized in the current experiments was a pepsin solubilized material. This was 

reflected in the higher temperatures needed to promote gelation in the collagen-only samples.

The presence of the carbon nanobrush material had a strong promotion effect even to lower 

temperatures of 30 °C. No experiments were conducted at 20-23 °C, which is the temperature at which 

collagen isolated with the milder neutral-salt solution can for a gel.

Structurally, the carbon nanobrush resembles the proteoglycan molecule in so much as the 

carbon nanotube forms a rigid backbone like the protein core of the proteoglycan molecule and the 

polystyrene/polyanaline bristles of the CNB resemble the polyglycan side chains of the proteoglycan 

molecule.  We speculate that the polystyrene/polyanaline side chains are able to interaction with 

collagen monomers and act like a surface template to help guide the monomers to align themselves to 

form fibrils without having to form independent collagen-only nucleation centers, [20]

The most probable reason that the polystyrene/polyanaline side chains alone did not promote 

collagen gelation was because the bristle material was able to coat the collagen monomers and prevent 

other monomers from interacting.  This behavior is like that of other amphoteric molecules binding to 

collagen. Both the surfactant, sodium dodecyl sulfate and the soluble salt steroid, dexamethasone

disodium phosphate, inhibited collagen monomer interactions at high concentrations where non-

specific hydrophobic interactions occurred, acting to mask the collagen attachment sites, [4, 21].

It was seen by the TEM pictures that the native D-period was maintained in both the collagen-

only samples and the test collagen sample containing 50 uL of CNB.  This was anticipated that if the 
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fibrils were formed they would be native-like since similar results where seen in collagen gels formed 

in the presence of surfactants and soluble steroids, which act like a rigid surfactant, [4, 21]. It is 

probably that the carbon nanobrush material forms a core around which the collagen monomers 

associate, then additional collagen monomers add next to the first layer in their usual staggered 

orientations which produce the D-period in the native collagen material. 

The effects of temperature of collagen gelation show a Q10-like response so that the gelation 

events occur faster at higher temperatures and slow if at all, at lower temperatures.  The probable 

reason that the CNB material allowed the pepsin-treated collagen to form fibrils at the lower 

temperature is because without the telopeptide ends to help guide nucleation events, the collagen 

monomers simply associated with the CNB material.

The reduction in tensile strength, due to the addition of CNB material is more complex to 

explain.  Since one might expect that the CNB would act like a reinforcement, and stiffening bar in the 

collagen gel. It is generally thought that collagen gel strength is a result of collagen concentration and 

the extent of cross-linkages between the collagen fibrils, but also gel strength can be the result of the 

extent to which the individual fibrils are intertwined.  If the fibrils were all parallel, then strength of the 

gel would show little viscoelastic effects as strength would simply be a measure of the resistance to 

sliding past each other until the individual fibril would break.  But the fibrils in a gel do randomly fold 

over each other, which does produce a larger viscoelastic effect. The fibrils must first reorient along the 

direction of the stretch and then slide past each other and then finally break.

In the present case, where the collagen-only controls are stronger than the collagen with CNB 

material, it could mean that first, the collagen-only fibrils are bigger, forming more cross-linkages with 

their neighbors, or second, the fibrils are more intertwined.  Tensile tests alone can not distinguish the 

proportions of these two effects since strength is a combination of the two.  In this experiment, we did 
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not do any scanning electron microscopy, therefore we didn't measure the orientation or the extend of 

the s-shaped turns in individual fibrils. The TEM study shows that the collagen-only fibrils are non-

significantly larger than the 50 uL CNB containing gels.

Our future experiments will examine the orientation and the extend of s-shaped turns in the 

individual fibrils as a function of CNB concentration.  Also, we will explore the upper levels of 

collagen fibril formation (gelation) tolerance to CNB concentration.  It is assumed that at some high 

enough level, CNB will inhibit collagen fibril formation as the individual collagen monomers will be 

blocked from interacting because of their association with the CNB material. Finally, we plan to use 

these collagen gels, made in the presence of the CNB material as a fibroblasts culture media to 

determine the extent of collagen gel contraction induced by normal fibroblast activity.

The goal of this work is to produce a collagen hydrogel material that is fibroblast compatible 

and has a tensile strength that can be controlled by the amount of CNB added. Different types of tissue 

repair would require different types of collagen gel tensile strength.
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