
around as it was sewed onto the sleeve. Each sensor was placed into the sleeve

and hand stitched on top to enclose and lock the sensor into the sleeve. During

attachment to the sock, the side seam was reopened to enable flat sewing, with225

chock contours guides determined first on a model. Slits were cut in the material

and the sensors were channeled through them at each location, including the

dorsum of the foot, heel and ankle. Pressure and flex sensors were attached

using a 2mm stitch length. The pressure sensor was placed on the heal. Flex

sensors were placed on top of the foot at the arch. We then hand stitched Velcro230

to a 3D printed PCB mount using Velcro and stitched a Velcro strap to the sock

in order to attach the PCB to the sock itself. After sewing all the sensors and

Velcro to the sock, the raw cut edges of the sock were reattached with a double

stitch using the least amount of seam allowance possible with the fabric inside

out. Figure 5 shows the design iterations and improvements of the MagicSox.235

Figure 5: Design iterations of the MagicSox. The sensors and the microcontroller were stitched

directly to the sock in the Design 1, but sensor sleeves were used in the Design 2. Also, the

microcontroller is attached to the socks via velcro and a 3D printed shield.

3.2. Experimental Setup

The main goal of this paper is to distinguish between the normal gait and the

drop foot which, as mentioned earlier, is a gait abnormality caused by stroke

that happens because of the damage to the fibular nerve, sciatic nerve and

muscles in the anterior side of the lower leg.240
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In order to collect the data, we recruited 12 healthy subjects to walk in two

different situations, one is the normal gait and the other one is to simulate the

drop foot walking. The first 4 participants were asked to do the experiment

with the first batch of socks and the remaining 8 participants performed the

experiment with the newer version of the socks in order to compare the different245

versions of the sock and observe how design developments can change the results.

Both groups preformed the same two walking tests. Each participant was asked

to walk for 5 minutes in their normal gait and afterwards, they were asked to

simulate the drop foot walking for 5 minutes. Therefore, we have an overall of

10 minutes of data from each participant which is separated equally into normal250

gait and drop foot walking.

The data has been recorded from the accelerometer, gyroscope, pressure

sensor and two flex sensors. As mentioned previously, the flex sensors and the

pressure sensors are variable resistances. Static state for relativity is required

to measure this physical state. We accomplish this static state by introducing a255

standard resistor. To measure the relative change in state between the standard

resistor and flex or pressure sensors, we designed a voltage divider that allows

us to extrapolate the desired information using Ohm’s Law. One last challenge

on this setup is maximizing the voltage range to increase the signal to noise

ratio. We chose to use a standard 10kΩ resistor, which provides a potential260

voltage swing of approximately 1v. Therefore, the data that is recorded from

the pressure sensor and two flex sensors are the voltage across these sensors.

Since the accelerometer and gyroscope each have 3 different dimensions, we

have an overall of 9 attributes in the data. The data is recorded continuously

via Bluetooth to a smart phone by the sampling frequency of 10Hz for each265

data channel.
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4. Methods

4.1. Support Vector Machine (SVM)

After collecting the data, in order to distinguish between the normal gait

and drop foot walking, we used a Support Vector Machine (SVM). The SVM270

uses a nonlinear mapping to transform the original training data into a higher

dimension. It searches for the linear optimal separating hyperplane in this new

dimension (that is, a “decision boundary” separating the tuples of one class

from another). With an appropriate nonlinear mapping to a sufficiently high

dimension, data from two classes can always be separated by a hyperplane [20].275

SVMs are supervised learning models.

The general concept of the SVM is that the system trains itself based on a

training dataset which can be a part of the original dataset that is labeled into

two different categories. Then, after the system is trained, it will be tested on

the other part of the original dataset to predict the labels of the data, and by280

comparing the predicted labels and the original labels, we can find the accu-

racy of the system. In this study, we used several learning algorithms to be

implemented in the SVMs. It is possible to classify the datasets which are not

linearly separable by applying the Lagrangian optimization theory to a linear

support using the Kernel. While the nonlinear support vector machines retain285

the efficiency of finding linear decision surfaces, they allow us to apply them to

not linearly separable datasets. It is also possible to change the margins of the

classifiers and change the complexity and accuracy of the systems. In general,

large margins make the system less complex, but on the other hand, will let the

system generate more errors, resulting to lower accuracy. This can be achieved290

by changing a variable called Cost constant in the classifier models.

Figure 6 shows a concept of the SVM and its supporting hyperplanes that di-

vide two different classes and introduces the margin. When we make the margin

large, we allow some data points between the decision surface and the support-

ing hyperplanes, which at the end will result in false classification and reduce295

the accuracy.
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Figure 6: A concept of SVM and the terms of decision surface, supporting hyperplane and

margins.

Different types of SVM classifiers are applied on the data in order to compare

their performance. We have used 4 different types of Kernel functions all of them

with 3 different Cost constants of 1, 10 and 100. Table 1 shows different learning

algorithms that have been used in this study with their complexity index which300

we will refer to them later in the results section.
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Table 1: Different methods of classification used in this study.

Index Kernel Name Kernel Function Degree Cost Constant

1 Linear Kernel k(~x, ~y) = ~x · ~y – 1

2 Linear Kernel k(~x, ~y) = ~x · ~y – 10

3 Linear Kernel k(~x, ~y) = ~x · ~y – 100

4 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=2 1

5 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=2 10

6 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=2 100

7 Polynomial kernel k(~x, ~y) = (~x · ~y + c)d d=3 1

8 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=3 10

9 Polynomial kernel k(~x, ~y) = (~x · ~y + c)d d=3 100

10 Radial kernel k(~x, ~y) = e−(|~x− ~y|2/2σ2) – 1

11 Radial kernel k(~x, ~y) = e−(|~xx− ~y|2/2σ2) – 10

12 Radial Kernel k(~x, ~y) = e−(|~x− ~y|2/2σ2) – 100

Regarding the evaluation of the methods, we used 2 different evaluation

methods of 10-Fold Cross-Validation and Hold-Out method with the portion of

2/3 and 1/3 for training and evaluating respectively.

In this paper, we provided the raw data recorded from all the sensors to305

the classifier and compared the performance with the case where we used the

Multiplication of Backward Differences (MOBD) algorithm for the data recorded

from the pressure sensor which is a useful tool to determine the heel strike.

Determining the heel strike is useful here because in the drop foot walking, the

heel strike happens less or with a lower pressure compared to the normal gait.310

4.2. Multiplication of Backward Differences (MOBD)

The MOBD algorithm was developed in the efforts to create a better method

for detection of the large spikes in heart wave signal [21, 22]. Using the MOBD

algorithm for heel strike detection seemed applicable due to the fact that the

spike in heart wave and the impact transient of heel strike share that similar315

sharp waveform.
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The algorithm computes a backward derivative which in discrete time, a

derivative is well approximated by a difference. Those differences are then mul-

tiplied together, which in turn provides a robust peak detector.

Assuming p[n] be the pressure sensor data in time sample n, the first-order

backward difference at time n , x[n], is:

x[n] = p[n]− p[n− 1] (1)

Therefore, the N − th order MOBD nonlinear transform is as follow:

y[n] =

N−1∏
k=0

|x[n− k]| (2)

Also, y[n] is forced to be zero if the backward differences are not in agreement

with respect to sign.

y[n] = 0, if sgn(x[n− k]) 6= sgn(x[n− (k + 1)]) k = 0, 1, ..., N − 2

where the sgn(x) is the signum function.

At a given time, a sample from the pressure sensor is stored in the micro-

controller. At the next sample time, another sample from the sensor is stored.320

Those two samples are then subtracted and stored in its own variable. This is

then repeated two more times so that 3 differences have been collected. The

algorithm then checks for 3 consecutive positive or negative differences. When

climbing up a steep waveform, a peak, the algorithm will result in consecutive

differences in comparison to a waveform that has a more rounded shape to it. If325

3 consecutive differences are found, they are multiplied together and that value

is compared to a predefined threshold value. If the calculate value is greater

than the threshold value, the algorithm recognizes the detection of a heel strike.

The impact values of a heel strike are much larger than that of a non-heel

strike impact due to the distributions of forces along the foot for each strike. A330

threshold value was determined that allowed for the heel strike impact transient

to be detected while avoiding possible false peaks that could stem from various
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types of noise. Figure 7 shows the data from the pressure sensor along with the

MOBD results. The MOBD algorithm output would be 1 if it detects a heel

strike and 0 if there is no heel strike. As it can be seen from Figure 7, we have335

heel strike for normal walking, but no heel strike for drop foot walking.

Figure 7: The raw data from the pressure sensor (top panel) and the MOBD algorithm results

showing the heel strike (bottom panel).

4.3. Evaluation

Recalling from the explanation of the support vector machine, it needs to

divide the original dataset into two parts; one for training itself and one for

testing and providing the accuracy, which is called evaluation. On the evaluation340

aspect of the classification, we used two different methods of training and testing

the system which are Hold-Out and k-Fold Cross-Validation. The Hold-Out

method simply takes one portion of the dataset for the training and holds the

other portion for testing the accuracy. The ratio of these portions can be defined

by the user and we defined the portions to be 2/3 and 1/3 for training and345

testing, respectively. In k-Fold Cross-Validation, the system divides the dataset
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into k different folds which the length of each fold is the same as the others

and no folds have overlap with each other. The concept is that the system uses

each of these folds for testing while getting trained from the other folds, and

at the end, provides the accuracy of the system which is the average of all the350

accuracies on different folds. In this paper we used the Hold-Out method with

the portions to be 2/3 and 1/3, and k-Fold Cross-Validation with the number

of folds k equal to 10.

5. Results and Discussion

In this section, we report the results of the classification of the normal walk-355

ing and the drop foot walking and compare the performance of the classifier for

the two cases mentioned earlier.

1. Classifying the raw dataset

In this case, we labeled the data to 0 and 1 for the normal and drop foot

walk respectively and without any processing, sent the raw data to the360

classifier. Table 2 shows the performance of different SVM and evaluation

methods applied on the raw data.

2. Classifying the feature extracted dataset

In this case, we first applied the MOBD algorithm as explained in the

previous section in order to apply different types of SVM classifiers. The365

new dataset contains all the previous information, except the pressure

sensor data which is replaced by the results of MOBD algorithm.

After applying the MOBD algorithm and labeling the data to 0 and 1

for the normal walking and drop foot walking respectively, we applied

the dataset to the classifier in order to observe the performance. Table 3370

shows the accuracy of different SVM and evaluation methods applied on

the feature extracted dataset.

As it can be seen from Tables 2 and 3, the performance of the system im-

proves as we use more complex Kernel functions such as the Radial kernel or
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Table 2: The performance of different methods on the raw data from each of the participants.

Index Evaluation
MagicSox Design 1 MagicSox Design 2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

1
Hold-Out 63.16% 94.02% 53.93% 56.29% 82.91% 72.31% 76.53% 68.74% 72.36% 78.14% 80.09% 59.47%

10 Fold 63.46% 93.56% 51.39% 55.92% 82.49% 71.01% 76.17% 68.85% 72.41% 77.93% 80.03% 59.64%

2
Hold-Out 63.16% 95.03% 53.93% 56.29% 82.85% 72.36% 77.03% 69.92% 73.14% 79.26% 80.77% 59.47%

10 Fold 63.47% 94.69% 51.41% 55.62% 82.28% 71.24% 76.90% 69.75% 73.10% 78.83% 80.26% 59.66%

3
Hold-Out 62.80% 94.93% 54.08% 56.29% 82.85% 72.31% 77.19% 70.28% 73.84% 79.93% 81.14% 60.03%

10 Fold 56.00% 94.68% 50.83% 56.02% 82.33% 71.14% 77.09% 70.14% 73.56% 79.22% 80.94% 60.14%

4
Hold-Out 70.07% 87.58% 56.64% 57.19% 93.36% 84.16% 83.52% 79.24% 80.73% 88.47% 89.06% 73.13%

10 Fold 68.96% 86.83% 57.01% 58.08% 93.10% 84.18% 83.57% 79.02% 80.12% 87.98% 88.53% 73.24%

5
Hold-Out 68.50% 87.78% 56.34% 57.75% 94.25% 85.58% 83.47% 79.58% 80.82% 88.33% 88.92% 74.05%

10 Fold 68.93% 86.94% 57.59% 58.05% 94.91% 85.43% 83.52% 79.46% 80.34% 88.09% 88.51% 73.91%

6
Hold-Out 68.34% 87.88% 56.34% 57.70% 95.19% 86.83% 85.14% 81.39% 81.97% 89.46% 91.15% 76.32%

10 Fold 68.78% 86.94% 57.46% 58.02% 95.48% 85.99% 85.73% 81.65% 82.19% 89.07% 90.74% 77.20%

7
Hold-Out 72.36% 88.19% 65.36% 60.01% 92.78% 87.09% 83.96% 81.06% 81.44% 88.47% 91.07% 78.51%

10 Fold 72.52% 87.61% 64.73% 61.34% 96.75% 87.96% 84.01% 80.97% 81.73% 88.39% 90.83% 79.04%

8
Hold-Out 72.00% 92.60% 81.20% 61.62% 97.28% 90.22% 86.72% 83.71% 83.16% 90.07% 92.12% 80.02%

10 Fold 73.03% 92.22% 69.04% 62.93% 97.78% 91.37% 86.54% 83.48% 82.97% 89.73% 91.89% 79.97%

9
Hold-Out 71.59% 94.17% 82.91% 61.42% 97.69% 93.67% 87.19% 84.42% 84.41% 91.23% 92.84% 80.84%

10 Fold 73.22% 94.94% 73.26% 63.33% 98.24% 94.11% 87.33% 85.01% 84.29% 91.19% 92.47% 80.47%

10
Hold-Out 75.30% 95.79% 74.23% 65.69% 98.48% 93.68% 87.42% 85.72% 86.10% 91.96% 92.60% 79.19%

10 Fold 76.30% 95.71% 76.95% 67.41% 98.65% 94.25% 87.47% 85.87% 85.97% 92.01% 91.94% 78.93%

11
Hold-Out 75.35% 98.63% 88.67% 71.43% 98.90% 95.35% 89.19% 86.43% 87.49% 92.65% 93.69% 80.92%

10 Fold 76.38% 98.19% 89.42% 73.25% 98.86% 95.94% 88.97% 86.37% 87.21% 92.84% 92.19% 79.48%

12
Hold-Out 76.12% 98.68% 89.07% 73.44% 98.79% 96.34% 92.06% 89.74% 89.94% 94.15% 95.02% 82.06%

10 Fold 76.45% 98.38% 89.69% 74.37% 98.98% 96.36% 91.88% 89.91% 89.87% 94.71% 94.55% 81.93%

Polynomial Kernel with degree 3, and results in the accuracy of almost more375

than 80% for all the participants with the Radial Kernel function and the Cost

constant of 100. Figure 8 shows a comparison of the performance of the best

model which is the SVM with Radial Kernel and Cost constant of 100 evaluated

with the Hold-Out and 10-Fold Cross-Validation methods for all participants ap-

plied to both raw dataset and feature extracted dataset. It can be seen from380

the results that using the raw dataset and the feature extracted dataset will

lead to almost same performance of the classifier. It was also noticed that the

2 different evaluation methods of Hold-Out and 10-Fold Cross-Validation have

similar performance on the data, therefore, choosing either one will result in

mostly the same result. It is apparent from the results that the design improve-385

ments for the socks will result in better performances. It can be seen that the

results for participants 5 to 8 are more consistent and provide higher accuracies
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Table 3: The performance of different methods on the features extracted data from each of

the participants.

Index Evaluation
MagicSox Design 1 MagicSox Design 2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

1
Hold-Out 63.31% 93.30% 52.48% 54.32% 82.85% 72.04% 76.37% 68.59% 72.19% 77.95% 79.84% 60.14%

10 Fold 63.46% 93.54% 51.93% 55.55% 82.33% 71.83% 76.04% 68.63% 72.28% 77.43% 79.80% 59.86%

2
Hold-Out 63.41% 94.77% 52.48% 54.38% 82.85% 72.05% 76.91% 68.59% 73.10% 79.10% 80.23% 60.14%

10 Fold 63.41% 94.18% 51.48% 55.94% 82.37% 71.82% 76.83% 68.84% 73.19% 78.77% 80.09% 60.03%

3
Hold-Out 64.32% 94.72% 52.48% 54.38% 82.90% 71.99% 77.01% 70.12% 73.77% 79.84% 80.97% 60.74%

10 Fold 65.90% 94.17% 51.86% 55.94% 82.31% 71.57% 76.902% 70.01% 73.43% 79.09% 80.71% 60.62%

4
Hold-Out 72.30% 86.36% 54.98% 54.17% 90.38% 81.03% 83.40% 79.32% 80.71% 88.31% 88.12% 72.85%

10 Fold 72.82% 86.59% 53.31% 55.65% 92.05% 82.06% 83.52% 79.24% 80.01% 87.90% 87.74% 72.64%

5
Hold-Out 70.32% 86.06% 54.33% 55.13% 95.66% 86.52% 83.59% 79.63% 80.89% 88.30% 88.63% 73.84%

10 Fold 71.34% 86.29% 53.90% 55.80% 95.71% 87.33% 83.61% 79.56% 80.33% 88.01% 88.19% 73.69%

6
Hold-Out 69.97% 85.90% 55.04% 55.53% 97.64% 91.58% 85.22% 81.33% 82.01% 89.29% 90.92% 75.15%

10 Fold 70.88% 86.05% 54.28% 56.05% 96.86% 90.17% 85.91% 81.58% 81.94% 88.82% 89.48% 75.94%

7
Hold-Out 70.22% 87.38% 55.59% 59.15% 93.93% 85.47% 83.91% 81.12% 81.25% 88.71% 90.46% 77.14%

10 Fold 71.20% 87.46% 58.63% 61.65% 96.46% 85.59% 83.97% 81.09% 81.70% 88.25% 89.73% 78.01%

8
Hold-Out 73.32% 91.48% 65.26% 60.96% 97.07% 92.42% 85.92% 83.46% 83.19% 89.93% 91.83% 79.27%

10 Fold 73.86% 91.73% 68.51% 62.56% 97.12% 91.46% 86.47% 83.31% 83.02% 89.55% 91.71% 79.19%

9
Hold-Out 75.86% 91.58% 69.52% 62.37% 97.33% 93.67% 87.10% 84.20% 84.39% 91.15% 92.35% 80.20%

10 Fold 76.09% 92.66% 71.47% 64.36% 97.63% 93.01% 87.24% 84.89% 84.21% 90.97% 91.99% 79.97%

10
Hold-Out 76.01% 91.94% 72.33% 63.53% 98.41% 95.14% 87.29% 85.69% 85.98% 91.59% 92.47% 80.05%

10 Fold 76.42% 93.25% 75.48% 67.57% 98.57% 94.28% 87.33% 85.85% 85.91% 91.64% 92.04% 79.12%

11
Hold-Out 77.03% 94.78% 87.67% 73.04% 98.64% 96.55% 89.27% 86.41% 87.33% 92.49% 93.48% 80.74%

10 Fold 76.66% 95.60% 88.98% 73.19% 99.02% 95.97% 89.05% 86.39% 87.15% 92.63% 92.23% 79.57%

12
Hold-Out 75.81% 95.64% 87.97% 73.39% 98.95% 96.76% 91.94% 89.88% 89.75% 94.06% 94.76% 81.97%

10 Fold 76.88% 95.89% 88.65% 73.38% 98.90% 96.24% 91.90% 89.73% 89.81% 94.58% 94.51% 81.89%

compared to the first 4 participants. The first version of the socks provided the

average accuracy of 83.98% among all four participants, compared to the newer

version of the socks with the average accuracy of 92.24% among the rest of the390

participants.

As an example of the performance of the classifier, we show the actual labels

and predicted labels of the classifier applied to the whole length dataset of one

of the participants in Table 4. The table shows that we have 838 False Positives

and 146 False Negatives. Figure 9 shows a visual representation of the table395

for the first 600 samples and the zoomed-in picture of 50 samples. The white

color represent label 0 as normal walking, the blue color represents label 1 as

drop foot walking and the red color shows the error of the system in prediction,

which means that the actual labels are 0, but the classifier predicts them as 1
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Figure 8: Performance of the best model with Radial Kernel and Cost constant of 100 with

both evaluation methods applied to Case 1. Raw dataset and Case 2. Feature extracted

dataset, for all of the participants.

(False Positive).400

Table 4: The actual and predicted labels applied on the whole length dataset. We have 838

False Positives and 146 False Negatives.

Predicted 0 Predicted 1

Actual 0 2162 838 (FP)

Actual 1 146 (FN) 2854

6. Conclusion and Future Works

In this research article we introduced a novel wearable health monitoring

system, MagicSox, that fuses the capabilities of smart textiles with Internet-

of-things to detect and communicate gait abnormalities such as drop foot. We

provided a detailed technological architecture of MagicSox that can be divided405
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Figure 9: Actual labels and predicted labels of a 600 samples data and the zoomed in picture

of 50 samples. White color shows label 0 for normal walking, blue color shows label 1 for drop

foot walking and the red color shows the error while the actual label is 0 but the classifier

predicts as 1.

into three hardware layers: 1) multi-modal sensors including pressure sensor, 2

flex sensors, and an IMU, 2) an Intel Curie microcontroller with BLE, and 3)

an Android smart phone app to collect the data. We pursued experiments on

healthy individuals to evaluate the usability and performance of MagicSox. The

results showcase that MagicSox is a valuable and reliable tool in quantifying410

gait abnormalities such as drop foot. Although other studies on the wearable

devices for stroke rehabilitation provide 99% accuracy in posture and activity

detection [15], the combination of IMU, flex sensors and pressure sensor dis-

tinguishes the MagicSox from other devices. The MagicSox can provide more

detailed information about the gait cycle, ankle flexion and foot posture. The415

accelerometer and gyroscope can provide detailed spatial information such as

the orientation of the foot, how much swing has been in a gait cycle, how fast

or slow the person is walking, and how much they take the foot up in order

to complete a gait cycle. The pressure sensor on the heel reveals that if there

was a heel strike or not. As discussed earlier, heel strike is necessary for normal420

walking, and it is not happening in drop foot walking. The flex sensors provide
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information about the flexion of the ankle. During a gait cycle, the ankle flexes

and stretches and having these flexion and stretches reveals informations about

the gait cycle that can be used in rehabilitation to improve the gait cycle of

drop foot.425

Although our focus in this research was on the quantification of drop foot,

MagicSox can also be used for athletes to alert them whenever they have heel

strike which can cause serious injuries or pain. It also can be used as an activity

tracker to show how many steps a person has taken during the day, or how

much distance they have walked. As an immediate next step, we will pursue a430

pilot study on stroke patients who will wear MagicSox and help us evaluate the

system under a clinical setting.
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