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Membrane Anchor R9AP Potentiates GTPase-accelerating
Protein Activity of RGS11�G�5 Complex and Accelerates
Inactivation of the mGluR6-Go Signaling*□S
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Ikuo Masuho‡, Jeremy Celver§, Abraham Kovoor§1, and Kirill A. Martemyanov‡2

From the ‡Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455 and the §Department of
Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881

The R7 subfamily of RGS proteins critically regulates neuro-
nal G protein-signaling pathways that are essential for vision,
nociception, motor coordination, and reward processing. A
member of the R7 RGS family, RGS11, is a GTPase-accelerating
protein specifically expressed in retinal ON-bipolar cells where
it forms complexes with the atypical G protein � subunit, G�5,
and transmembrane protein R9AP. Association with R9AP has
been shown to be critical for the proteolytic stability of the com-
plex in the retina. In this study we report that R9AP can in addi-
tion stimulate the GTPase-accelerating protein activity of the
RGS11�G�5 complex at G�o. Single turnover GTPase assays
reveal that R9AP co-localizes RGS11�G�5 andG�o on themem-
brane and allosterically potentiates the GTPase-accelerating
function of RGS11�G�5. Reconstitution of mGluR6-G�o signal-
ing in Xenopus oocytes indicates that RGS11�G�5-mediated
GTPase acceleration in this system requires co-expression of
R9AP. The results provide new insight into the regulation of
mGluR6-G�o signaling by the RGS11�G�5�R9AP complex and
establish R9AP as a general GTPase-accelerating protein activ-
ity regulator of R7 RGS complexes.

Regulators of G protein signaling (RGS)3 are ubiquitous sig-
naling molecules that critically shape cellular responses medi-
ated byGprotein-coupled receptor (GPCR) pathways (1).Most
RGS proteins act by stimulating the rate of the GTP hydrolysis
of the � subunits of G proteins (G�), thus speeding up their
inactivation and limiting the duration ofGPCR signaling (2). R7
subfamily of RGS proteins plays a central role in regulating
fundamental neuronal functions including vision, nociception,

reward processing, and motor control (3–6). The subfamily
consists of four homologous proteins, RGS6, RGS7, RGS9, and
RGS11, that are enriched in the nervous system and share a
common multidomain architecture that, in addition to the
catalytic RGS domain, includes an N-terminal DEP/DHEX
(Dishevelled, EGL-10, Pleckstrin/DEP helical extension) mod-
ule and a GGL (G protein � subunit-like) domain (7).

In vivo, R7 RGS proteins are found in complexes with two
types of proteins that are becoming increasingly accepted as
their subunits. The GGL forms a complex with the atypical G
protein � subunit, G�5 (8). The DEP/DHEX module binds to
either R7BP (R7 family binding protein) or R9AP (RGS9 anchor
protein) (9, 10), a two-member family of small SNARE (soluble
N-ethylmaleimide factor attachment protein receptor)-like
proteins. Association with both G�5 (11, 12) and R7BP/R9AP
(13–15) protects complexes from proteolytic degradation and,
thus, plays an important role in regulating the expression levels
of the R7 RGS proteins. In addition, membrane proteins R9AP
and R7BP can localize R7 RGS proteins to cell membranes in
transfected cells and native neurons (16–18). Finally, R9AP
has been shown to enhance the GTPase-accelerating protein
(GAP) activity of RGS9-1 toward transducin, suggesting that
membrane anchors also play a role in regulation of R7 RGS
activity (10, 19–21). However, what remains unclear is (i) if the
potentiation of the GAP activity of R7 RGS members is a uni-
versal mode of action for the R9AP or R7BP membrane
anchors, (ii) whether R9AP can stimulate GAP activity of R7
RGS proteins at G proteins other than transducin, and (iii)
whether the stimulation of GAP function results simply from
the effect of concentrating R7 protein at the cell membrane or
from a more complicated mechanism, requiring additional
allosteric contributions.
Previously, R9AP has been shown to be expressed in retinal

photoreceptor cells where it regulates the photoreceptor-
specific R7 RGS protein complex, RGS9-1�G�5 (4, 14, 18).
Recently, we have discovered R9AP in a novel heterotrimeric
complex with another R7 RGS protein, RGS11 (23). The
R9AP�RGS11�G�5 complex is exclusively expressed in retinal
ON-bipolar neurons which relay the light-elicited signals from
the photoreceptors to ganglion cells in the circuit that connects
the photoreceptors to the brain (23–26). The complex is tar-
geted to the dendritic tips of the ON-bipolar neurons via the
association with the mGluR6 (23), a G�o-coupled GPCR, that
responds to light-induced changes in glutamate release from
the photoreceptor terminals (for review, see Ref. 27). Studies
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with knock-out mice suggest that RGS11 is involved in deter-
mining the kinetics of the overall synaptic transmission be-
tween photoreceptor and bipolar neurons (24) and that all sub-
units of the R9AP�RGS11�G�5 complex are indispensable for its
appropriate localization and expression in the bipolar neurons
(23).
In this study we have investigated the impact of R9AP on the

functional activity of the RGS11�G�5 complex. We show that
recruitment of RGS11�G�5 to the plasma membrane by R9AP
results in a substantial increase in the GAP activity of the com-
plex toward lipid-modified but not soluble G�o. We reconsti-
tuted the mGluR6-Go-RGS11 signaling cascade in Xenopus
oocytes and utilized the acceleration of the deactivation kinet-
ics of co-expressed G protein inwardly rectifying potassium
(GIRK) channels as ameasure of RGS11GAP function. Activity
of RGS11 in this assay system was discerned only when R9AP
was co-expressed. These results establish that membrane
anchoring by R9AP is a generalmechanism for regulating activ-
ity of R7 RGS complexes and, in the case of RGS11, is an essen-
tial prerequisite for controllingG�o signaling throughmGluR6.

EXPERIMENTAL PROCEDURES

Antibodies—The generation of rabbit anti-R9AP (against
amino-acids 144–223) (28), sheep anti-RGS11 CT (29), and
rabbit anti-RGS11 CT (30) antibodies has been described pre-
viously. Mouse monoclonal anti-His6 (Clontech), rabbit anti-
glutathione S-transferase (GST; Z-5; Santa Cruz Biotechnol-
ogy), and rabbit anti-G�o (K-20; Santa Cruz Biotechnology)
antibodies were purchased.
Protein Purification—Purification of RGS9-1�G�5L (31),

GST-R9AP�TM(19), and solubleG�o expressed inEscherichia
coli (32) was conducted as described previously. For the purifi-
cation of the RGS11�G�5S complex, Sf9 cells from 1 liter of Sf9
culture were harvested 48 h after co-infection with amplified
recombinant baculoviruses encoding His-tagged RGS11 and
G�5S, resuspended in 40 ml of lysis buffer (20 mM HEPES, pH
8.0, 100mMNaCl, 10mM imidazole, 5% glycerol, 10mM �-mer-
captoethanol), and then lysed by sonication. All purification
steps were conducted at 4 °C using ice-cold buffers supple-
mented with protease inhibitors. Lysates were centrifuged at
30,000 � g for 30 min, after which the supernatants were
diluted with 160 ml of lysis buffer and loaded onto a HisTrap
HP 1ml column (GE Healthcare) equilibrated with lysis buffer.
The columnwaswashedwith 10 volumes ofwash buffer (20mM

HEPES, pH 8.0, 400 mM NaCl, 20 mM imidazole, 5% glycerol,
10 mM �-mercaptoethanol), and the His-tagged RGS11�G�5S
complexes were eluted by generating increasing imidazole con-
centrations with wash buffer mixed with elution buffer (20 mM

HEPES, pH 8.0, 400 mM NaCl, 300 mM imidazole, 10 mM

�-mercaptoethanol, 5% glycerol). Peak fractions containing
RGS11�G�5S complexes were pooled, and a buffer exchange
was performed using a Zeba Desalt Spin Column (Thermo
Fisher Scientific) equilibrated with storage buffer (20 mM Tris-
HCl, pH 7.8, 300 mM NaCl, 10% glycerol).
Purification of Go from Sf9 cells was conducted as described

previously with modifications (33). Briefly, Sf9 cells from 1 liter
of culture were harvested 48 h after infection with recombinant
baculoviruses encoding rat G�oA, G�1, and His-tagged G�2,

resuspended in lysis buffer (20 mM HEPES, pH 8.0, 500 mM

NaCl, 2 mM MgCl2, 10 �M GDP, 20 mM imidazole, 10 mM

�-mercaptoethanol), and then lysed by sonication. Lysateswere
centrifuged at 30,000 � g for 30 min, and the resultant pellets
were washed with wash buffer (lysis buffer containing 1 mM

MgCl2). The pellets were resuspended in wash buffer. C12E10
detergent was added to a final concentration of 1% (w/v), and
themixturewas stirred for 1 h before centrifugation at 30,000�
g for 30 min. The supernatants were loaded onto a 1-ml nickel-
Sepharose High Performance (GE Healthcare) equilibrated
with buffer A (wash buffer containing 0.2% (w/v) C12E10). The
beads were washed with 25 volumes of buffer A and further
washed with 10 volumes of buffer B (wash buffer containing
0.2% (w/v) CHAPS and 1 mM �-mercaptoethanol). The Go was
eluted with elution buffer (wash buffer containing 500 mM im-
idazole, 0.7% (w/v) CHAPS, and 1 mM �-mercaptoethanol).
Fractions containing Go were pooled and concentrated to �10
mg/ml. Finally, buffer was exchanged to storage buffer (20 mM

HEPES, pH 8.0, 300 mM NaCl, 1 mM MgCl2, 1 �M GDP, 0.7%
CHAPS, 10% glycerol, 1 mM �-mercaptoethanol) by a Zeba
Desalt Spin Column (Thermo Scientific).
Membrane Preparations—Rod outer segments treated by

urea (uROS) and V8-uROS membranes were prepared as
described previously with minor modifications (20). For the
preparation of insect cell membranes, Sf9 cells and Sf9 cells
infected with amplified recombinant baculoviruses encoding
R9AP were sonicated in membrane preparation buffer (10 mM

Tris-HCl, pH 7.8, 100 mM NaCl, and 8 mM MgCl2), and crude
cellular debris was sedimented at 1200� g for 5min. Themem-
branes were then sedimented at 30,000 � g for 30 min and
washed 3 times with wash buffer (10 mM Tris-HCl, pH 7.8, 500
mM NaCl, and 8 mM MgCl2). The membranes were stored at
�80 °C in membrane preparation buffer containing 10% glyc-
erol. All steps were conducted at 4 °C using ice-cold buffers
supplemented with protease inhibitors. Total protein concen-
tration was determined by Bradford assay.
Single Turnover GTPase Assay—Single turnover GTPase

assays were conducted as described previously (34). Assays
were performed at room temperature in GTPase buffer (10mM

Tris-HCl, pH 7.8, 250 mM NaCl, 8 mM MgCl2, and 1 mM dithi-
othreitol). Illuminated uROS or V8-uROS were used as the
source of photoexcited rhodopsin required for G protein acti-
vation. The reaction was started by the addition of 10 �l of 200
nM [�-32P]GTP (�105 cpm/sample) to 20 �l of uROS or
V8-uROS membranes reconstituted with appropriate proteins
andmembranes fromSf9 cells. Final concentrations in the reac-
tions were 20 �M rhodopsin, 1.0 �M G�o�1�2 heterotrimer
purified fromSf9 cells or 1.0�MG�o (E. coli) reconstitutedwith
1.0 �M �1�1 complex, 180 nM RGS11�G�5, 0.68 �M GST, 0.68
�M GST-R9AP�TM, and 0.5 mg/ml Sf9 or R9AP-Sf9 mem-
brane preparations unless otherwise mentioned. The reaction
was stopped by the addition of 100 �l of 6% perchloric acid.
Phosphate released from hydrolyzed GTP was determined by
activated charcoal assay (35). Because high efficiency interac-
tions between RGS9-1�G�5L and G�o require the presence of
the � subunit of phosphodiesterase, type 6 (PDE�) (32, 36), we
conducted the assay in the presence of 1.0 �M PDE�. The rela-
tive amount of RGS9-1 andRGS11 used in the assays was deter-
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mined by Western blotting. Control experiments were per-
formed to ensure that single turnover conditions are
maintained and that GDP/GTP exchange does not limit the
GTP hydrolysis (see Refs. 34 and 35 for a description of the
criteria and supplemental Fig. 1 for results).
Membrane Binding Assay—A membrane binding assay was

performed as described previously (20). Briefly, all experiments
were conducted in GTPase buffer at 4 °C. Recombinant RGS9-
1�G�5L or RGS11�G�5S was mixed with membranes in the vol-
ume of 100 �l, and the mixture was loaded on a 50-�l cushion
containing 10% sucrose in GTPase buffer. The mixture was
sedimented at 120,000 � g for 15 min in a TL-100 ultracentri-
fuge (Beckman Instruments). Supernatants were collected,
whereas the sucrose cushions were discarded. The pellet was
washed once by GTPase buffer containing 1 M NaCl to reduce
nonspecific protein binding and once by GTPase buffer and
then resuspended in 100 �l of GTPase buffer. In some experi-
ments, when indicated, thewash stepwas skipped. Input, resus-
pended Ppt and Sup fractions were subjected to SDS-PAGE on
12.5% polyacrylamide gels, and the contents of RGS11�G�5S,
RGS9-1�G�5L, R9AP, andG�o in each sample were determined
by Western blot. For the membrane binding assays of G�o, 10
mM NaF, 20 �M AlCl3, and 10 �M GDP were added into all
buffers to activateG�o and release fromG�� so that we can test
membrane binding activity of free G� subunits. The final con-
centrations in the binding reactions were 50 nM RGS9-1�G�5L
complexes, 27 nM RGS11�G�5S, 1.0 �M GST, 1.0 �M GST-
R9AP�TM, 0.5 mg/ml Sf9 membranes, 0.5 mg/ml R9APmem-
branes, and uROS and V8-uROS containing 20 �M rhodopsin.
Oocyte Expression Assays—Publishedmethods were used for

these studies (37). cRNAwas synthesized in vitro fromplasmids
containing the cDNA and appropriate promoters for cRNA
transcription. Plasmids were linearized before cRNA synthesis,
and mMESSAGE MACHINE kits (Ambion) were used to gen-
erate capped cRNA. cRNA was injected into oocytes at a vol-
umeof 50 nl/oocyte using aDrummondmicroinjector.Oocytes
were maintained in a saline buffer (96 mM NaCl, 2 mM KCl, 1
mM MgCl2, 1 mM CaCl2, and 5 mM HEPES, pH 7.5) solution
supplemented with 5% (v/v) heat-inactivated horse serum,
sodium pyruvate (2.5 mM), gentamycin (50 �g/ml). A valve sys-
tem controlled by the data acquisition software pCLAMP 6
(Axon Instruments) was used to control solution changes and
to minimize washing and washout times. Two-electrode volt-
age clamp recordings of the oocytes were performed 36–72 h
after cRNA injection.Membrane potential was clamped at�80
mVusing a AxoClamp 900A amplifier (Molecular Devices) and
pCLAMP 6 software. Electrodes were filled with 3 M KCl and
had resistances of 0.5–1.5 megaohms. To reveal inward cur-
rents through the inwardly rectifying GIRK channels, record-
ings were performed in oocyte saline buffer with elevated (16
mM) KCl concentrations (other components were 82mMNaCl,
1 mM MgCl2, 1 mM CaCl2, and 5 mM HEPES, pH 7.5). After
electrophysiological recording, oocytes were sonicated in ice-
cold phosphate-buffered saline containing protease inhibitors.
30 �l of phosphate-buffered saline was added per oocyte. The
homogenate was centrifuged at 750 � g at 4 °C for 10 min, and
the resultant supernatant was used as a whole protein extract of
oocytes. To compare the expression levels of RGS11 proteins in

oocytes, Western blotting of the whole protein extracts was
performed using rabbit anti-RGS11 CT antibody.
Curve-fitting and Statistical Analysis—Kinetic analysis and

curve-fitting were performed using pCLAMP 6 software. Time
constants (�) were derived from the exponentials fitted to the
activation and deactivation phases of the GIRK currents. Cur-
sors were positioned at points on the activation and deactiva-
tion curves that corresponded to 20 and 80% of the maximum
equilibrium responses, and the exponentials were fitted to the
portions of the current trace between these two points. We
used Student’s t test for comparison of the independent means.
Two-tailed p value �0.01 is defined as significantly different.

RESULTS

R9AP Enhances GAP Activity of RGS11 by a Membrane-de-
limited Mechanism—Purified uROS have proven to be a valu-
able model for delineating activity regulation mechanisms of
RGS9-1, the closest homologue of RGS11 (34, 35). Because urea
treatment removes the G protein transducin (G�t) and associ-
ated GAPs but leaves endogenous R9AP and GPCR rhodopsin
intact (20), we used this preparation as an initial reagent to
study the effects of R9AP on the RGS11�G�5 complex. Previous
studies have shown that anchoring purified RGS9-1�G�5 by
native R9AP contained within the uROS preparation markedly
potentiates its GAP activity toward exogenously added G�t
(19–21). Because G�t is not the physiological substrate of the
RGS11�G�5 complex (23), we first demonstrated that the uROS
system could be exploited to study the effects of R9AP on the
GTP hydrolysis catalyzed by G�o, a G protein specifically co-
expressed with the RGS11 in the ON-bipolar neurons (23, 25,
26). The addition of increasing amounts of RGS9-1�G�5 to the
uROS membranes reconstituted with lipid-modified G�o,
expressed and purified from Sf9 cells, produced a typical bipha-
sic concentration dependence curve with an initial steep slope
of 0.09 � 0.01 s�1�M�1 catalytic activity rate followed by a
shallower slope defined by a specific activity of 0.020 � 0.003
s�1�M�1 (Fig. 1A). Previous studies have established that the
inflection point in the curve corresponds to the concentration
of active R9AP on the membranes (20, 21), and therefore, the
initial steeper slope is interpreted as the specific activity of the
R9AP-bound RGS complex, whereas the second shallower
slope reflects the specific activity of excess RGS that remains
free after all the R9AP in the reaction mixture has been bound
up. Comparison of the two slopes indicates that binding of
RGS9-1�G�5 to endogenous R9AP on the membranes can
potentiate its GAP activity toward G�o by �5-fold. Consistent
with this, we found that RGS9-1�G�5was efficiently recruited to
the uROSmembranes and that digestion of R9AP by V8 prote-
ase completely abolished association of RGS9-1�G�5 with the
V8-treated uROS membranes (V8-uROS) (Fig. 1B). Although
the magnitude of the stimulatory effect by R9AP is lower than
seen in the G�t-based system (21), the results clearly indicate
that this broken cell preparation can be used to assay the GAP
activity of R7 RGS proteins toward G�o, making this system
amenable for assaying the action of R9AP on the GAP function
of RGS11 toward G�o.
We found that recombinant RGS11�G�5 was also able to

strongly bind to native uROS membranes but not to the
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V8-uROS (Fig. 2A). As observed for RGS9-1,GTPase hydrolysis
rates of G�o showed biphasic dependence on the RGS11�G�5
concentration (Fig. 2B, open circles), and the biphasic concen-
tration dependence was completely abolished by the V8-medi-
ated proteolysis of R9AP (Fig. 2B, filled circles). Comparing the
specific activity rate of RGS11�G�5 in the fast phase (0.39� 0.02
s�1�M�1) to the slow phase (0.15 � 0.01 s�1�M�1) or to the
activity in the V8-treated system (0.16� 0.01 s�1�M�1) reveals
that R9AP enhances GAP activity of RGS11�G�5 by �2.5-fold.
Interestingly, when RGS11�G�5 was incubated with V8-uROS

and the mixture subsequently fractionated by centrifugation,
the RGS11 protein was not detected in either the Sup or Ppt
fractions (Fig. 2A). The absence of RGS11 in both V8-treated
fractions can be explained if the RGS11�G�5 complex can asso-
ciate directly (i.e. independently of R9AP) with the membranes
and sediment with the membrane pellet. The association is
weak enough, however, to be disrupted by the stringent condi-

tions under which the pellet is
washed (see “Experimental Proce-
dures”), resulting in the removal of
RGS11�G�5 complex from the
membrane pellet. Indeed, skipping
the washing steps resulted in a
robust detection of RGS11 in a pel-
let fraction (supplemental Fig. 2).
RGS9-1�G�5 is not targeted to the
V8-uROS membranes in this man-
ner (i.e. without R9AP, see Fig. 1B).
Consequently, the activity of non-
R9AP-bound, RGS11�G�5 (0.16 �
0.01 s�1�M�1, shallow slopes in Fig.
2B) was substantially higher than
that of free RGS9-1�G�5 (0.02 �
0.003 s�1�M�1, shallow slope in
Fig. 1A), suggesting that the activity
of RGS11�G�5 can be enhanced
by R9AP-independent membrane
association that brings it in the
vicinity of lipid-modified G�o.

To analyze the contribution of
such membrane localization to the
activity of the RGS11�G�5 complex,
the above assay was repeated with
a soluble G�o that was unable to
tightly associate with the uROS
membranes (Fig. 3A). This prepara-
tion of G�o was obtained by expres-
sion in E. coli known to produce
protein devoid of posttranslational
lipid modifications (40). The G�o
purified from E. coli showed intrin-
sic GTPase activity (kapp � 0.021 �
0.005 s�1) similar to that of the
lipid-modified G�o from Sf9 cells
(kapp � 0.027 � 0.007 s�1) that was
effectively accelerated by the addi-
tion of soluble RGS proteins (e.g.
RGS7, supplemental Fig. 1). How-

ever, the RGS11�G�5 GAP activity targeted to the soluble non-
lipid-modified G�o from E. coli was not biphasic. The entire
activity versus concentration plot (Fig. 3B) could be fittedwith a
single shallow slope characterized by a catalytic rate of only
0.043 � 0.003 s�1�M�1. This rate is closer to the GAP rate
displayed by the non-R9AP-bound form of RGS9-1�G�5
(0.02� 0.003 s�1�M�1), which does not exhibit intrinsic mem-
brane binding (Fig. 1B).
The role of membrane anchoring by R9AP in activity regula-

tion of RGS11�G�5 was further delineated using an R9AP dele-
tion mutant rendered soluble by deleting a transmembrane
region (R9AP�TM). Incubation with this construct prevented
association of RGS11�G�5 with the uROS membranes, and the
RGS11�G�5 complex remained in the supernatant after centri-
fugation of the reaction mixture (Fig. 4A). Concurrently,
R9AP�TM also dramatically reduced the GAP activity of
RGS11 (Fig. 4B). At the same time, R9AP�TMdid not have any

FIGURE 1. Membrane anchorage of RGS9-1�G�5 by R9AP enhances GAP activity toward G�o. A, single-
turnover GTPase assay was performed at a fixed concentration of uROS with increasing concentrations of
RGS9-1�G�5 as described under “Experimental Procedures.” The rate constant of G� GTPase measured in the
absence of RGS proteins (0.023 � 0.003) was subtracted from the value measured with RGS proteins, and the
resulting kGAP values were plotted on the graph. Lipid modified G�o purified from Sf9 cells was used. Two
independent experiments were conducted, and all of the obtained data are plotted in one graph. B, recombi-
nant histidine-tagged RGS9-1 expressed in and purified from Sf9 cells co-expressing G�5 protein was incu-
bated with uROS membranes and analyzed for the ability to co-sediment with the membranes. The presence
of RGS9-1 and R9AP protein in the total incubation mixture (Input) and the supernatants and membrane pellets
produced after centrifugation was determined by Western blotting. The top and bottom panels in B depict
Western blots (WB) with an anti-histidine tag antibody (�His) and with an anti-R9AP antibody (�R9AP), respec-
tively. In the bottom panel in B, the prominent higher molecular weight bands are full-length R9AP, and an
arrowhead indicates the degradation products of R9AP (observed only with V8-uROS).

FIGURE 2. Endogenous R9AP anchors RGS11�G�5 on the membranes and potentiates GAP activity
toward lipid-modified G�o. A, membrane binding assay was performed with RGS11�G�5 as described in the
legend for Fig. 1. WB, Western blot. B, single-turnover GTPase assays were performed at a fixed concentration
of uROS (E) or V8-uROS (F) with increasing concentrations of RGS11�G�5 as described in the legend for Fig. 1.
Lipid-modified G�o purified from Sf9 cells was used. The rate constants of G� GTPase measured in the absence
of RGS proteins (0.022 � 0.001 s�1 for uROS and 0.019 � 0.003 s�1 for V8 uROS) were subtracted from the
values measured with RGS proteins, and the resulting kGAP values were plotted on the graph. Three indepen-
dent experiments with each membrane preparation were conducted, and all of the obtained data are plotted
in one graph.
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effect on the G�o GTPase activity in the absence of RGS11�G�5
(supplemental Fig. 3). These observations indicate that mem-
brane anchoring of RGS11�G�5 enhances its GAP activity by
localizing it in close proximity to G�o.
To further prove that R9AP mediates the potentiation of

RGS11�G�5 GAP function, we have performed a reconstitu-
tion experiment. For this, membranes prepared from Sf9
insect cells expressing recombinant R9AP were added in
trans to the V8-uROS membranes. Data shown in Fig. 5A
demonstrate that the addition of the R9AP-expressing Sf9
membranes partitions recombinant RGS11�G�5 away from the
soluble fraction to the particulate fraction and increases its
activity by �2-fold, resulting in nearly complete restoration of
RGS11 activity lost upon the V8 treatment of the uROS mem-
branes (�2.5 times; Fig. 5B). At the same time, R9AP-contain-
ing Sf9 membranes did not change the basal rates of G�o
GTPase activity (supplemental Fig. 4). Taken together, these

findings indicate that specific
anchoring by R9AP potentiates the
activity of RGS11�G�5 via a mem-
brane-delimited mechanism.
R9AP Augments Regulatory

Activity of RGS11 on mGluR6-G�o
Signaling in Xenopus Oocytes—
Recent studies suggest that
RGS11�G�5�R9AP complex acts as a
GAP for G�o in retinal ON-bipolar
neurons where it is selectively
recruited to mGluR6, a G protein-
coupled receptor that is thought to
activate the G�o when the neurons
respond to glutamate released from
the photoreceptors (23–25). There-
fore, we have next sought to deter-
mine the effect of the R9AP on
RGS11 GAP function at a cellular

level in the context of this physiologically relevant receptor,
mGluR6, and the cognate G protein, G�o. We have reconsti-
tuted coupling between mGluR6 and G�o using a well estab-
lished Xenopus oocytes expression system and utilized co-ex-
pressed GIRK channels to study the kinetics of the
physiologically relevant coupling between mGluR6 and G�o.
The kinetics of the channel deactivation depend crucially on
the rate at which the free G�� is re-sequestered by inactive G�,
which in turn depends on GTPase activity of the G�. Thus, the
acceleration of the GIRK channel deactivation rate by co-ex-
pressed RGS proteins provides a convenient measure of the
GAP function of RGS protein in live cells that has with the high
sensitivity and temporal resolution (for review, see Ref. 37). The
contribution of endogenous Xenopus G proteins to our kinetic
measures was eliminated by co-expressing the catalytic subunit
of pertussis toxin (PTX) and by utilizing a pertussis toxin insen-
sitive G�o construct, G�oC351A. Consistent with an earlier
report (41), heterologous expression of mGluR6, PTX catalytic
subunit, PTX-insensitive G�oC351A, and GIRK1/GIRK4 sub-
units allowed for the detection of inward currents through the
GIRK channels (downward and upward deflections in current
traces depicted in Fig. 6A) in response to mGluR6 stimulation
by glutamate application and extinction upon glutamate
washout (shown in black in Fig. 6, A and B). No glutamate-
elicited currents were observed when the PTX catalytic sub-
unit was expressed in the absence of the PTX-insensitive
G�oC351A G protein subunit (data not shown). The injec-
tion of oocytes with cRNA for RGS11 and G�5 (2 ng each) did
not have any significant effect on the kinetics of the response
(blue versus black traces in Fig. 6, A and B) despite robust
expression of RGS11�G�5 in cells (Fig. 6C). However, co-
expression of RGS11�G�5 with R9AP dramatically acceler-
ated both the activation and deactivation kinetics of gluta-
mate-evoked GIRK currents (shown in red in Fig. 6,A and B),
which are the hallmarks of GIRK channel modulation by the
GAP activity of RGS proteins (38, 39, 42, 43). The apparent
acceleration of the activation kinetics are in fact an unsur-
prising and necessary consequence of the accelerated deac-
tivation kinetics; for most reversible reactions the time

FIGURE 3. Membrane anchoring of RGS11�G�5 does not change GAP activity toward soluble G�o.
A, membrane binding activity of G�o purified from E. coli or Sf9 cells were tested by incubating G�o with uROS
membranes, and Western blotting (WB) was performed with anti-G�o antibody (�-G�o). B, a single-turnover
GTPase assay was performed at a fixed concentration of uROS with increasing concentrations of RGS11�G�5 as
described in the legend of Fig. 1 but with soluble G�o purified from E. coli. The rate constant of G� GTPase
measured in the absence of RGS proteins (0.020 � 0.003 s�1) was subtracted from the value measured with
RGS proteins, and the resulting kGAP values are plotted on the graph. Two independent experiments with each
membrane preparation were conducted, and all of the obtained data are plotted in one graph.

FIGURE 4. Inhibition of RGS11�G�5 GAP activity by dominant-negative
soluble R9AP mutant. A, membrane binding was assayed by incubating
RGS11�G�5 with uROS membranes in the presence of GST or GST-R9AP�TM
and Input, Sup, and Ppt fractions were probed by Western blotting with anti-
RGS11 antibodies (�RGS11; upper panel). The solubilities of GST and the GST-
R9AP�TM proteins were evaluated by probing Input, Sup, and Ppt fractions
with an anti-GST antibodies (�GST; lower panel). WB, Western blot. B, GAP
activity of RGS11�G�5 was measured in the presence of GST or a GST fusion of
the soluble R9AP mutant (GST-R9AP�TM) by single-turnover GTPase assay
using a fixed concentration of RGS11�G�5 and lipid-modified G�o. The con-
centration of RGS11�G�5 at the inflection point (180 nM) in Fig. 1C was chosen,
and data are expressed as the means � S.E. from three independent experi-
ments. **, p � 0.01 (unpaired t test).
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required to reach equilibrium (i.e. the peak GIRK current
amplitude) after the forward reaction is set in motion is
shortened when either the forward or the backward rate of
the reaction (deactivation rate) is increased (see Ref. 39 for a
comprehensive account). Note that the averaged activation
and deactivation traces depicted in Fig. 6A have been nor-
malized against the peak level of GIRK current. The normal-
ization was performed so that the altered kinetics depicted
by the traces can be compared appropriately. Expression of
R9AP alone (i.e. in the absence of RGS11�G�5) had no effect
on GIRK kinetics (data not shown), indicating that the stim-
ulatory effect of R9AP is mediated through RGS11�G�5.
Comparison of the protein expression by Western blotting
showed a modest increase in RGS11 levels upon co-expres-
sion with R9AP (Fig. 6C), consistent with the role of R9AP in
protecting RGS11�G�5 from rapid proteolytic degradation (23).
However, this rather modest increase in RGS11�G�5 levels (not
exceeding 2-fold) cannot explain an all-or-nothing effect of
R9AP addition on the ability of RGS11�G�5 to accelerate acti-
vation and deactivation kinetics. In summary, these observa-
tions indicate that R9AP is necessary for the GAP function of
RGS11�G�5 protein complex on mGluR6-G�o signaling in a
cell-based system.

DISCUSSION

The main conclusion from our
study is that R9AP positively modu-
lates theGAP activity of RGS11�G�5
complex in vitro and is essential for
the ability of the RGS11 complex to
regulate mGluR6 signaling in cells.
In addition, we show that R9AP-
mediated acceleration of the GAP
activity is not confined to the RGS9-
transucin system but is likely to be a
more universal mechanism of R9AP
action. The stimulatory effect of
R9AP requires that it is localized at
the membrane with the � subunits
of the G proteins. Disruption of this
co-localization by either dominant
negative soluble R9AP or by the use
of non-lipid-modified G�o abol-
ished potentiation by R9AP, indi-
cating the critical contribution of
membrane association to the action
ofR9AP.Theseobservationsalso sug-
gest that changes in lipidmodification
status of G�o (for review, see Ref. 22)
would have profound consequences
on the acceleration of inactivation by
some R7 RGS family members. More
specifically, the duration of G�o sig-
naling in themGluR6 cascade ofON-
bipolar cells is expected tobesubstan-
tially influenced by dynamics of
palmitoylation and/or myristoylation
of G�o.

FIGURE 5. Membrane-bound recombinant R9AP potentiates GAP activity
of RGS11�G�5. A, membrane binding was assayed by incubating RGS11�G�5
with either Sf9 membranes or Sf9 membranes, expressing recombinant R9AP
(R9AP Memb.) and Input, Sup, and Ppt fractions were probed by Western blot-
ting with anti-RGS11 antibodies (�RGS11; upper panel). The expression of
R9AP in the membranes prepared from the Sf9 cells was evaluated by prob-
ing Input, Sup, and Ppt fractions with anti-R9AP antibodies (�R9AP; lower
panel). WB, Western blot. B, effects of control Sf9 membranes (Sf9 Memb.) or
Sf9 membranes expressing recombinant R9AP (R9AP Memb.) on GAP activity
of RGS11�G�5 (180 nM) were examined. GAP activity was measured by a sin-
gle-turnover GTPase assay using lipid-modified G�o and V8-uROS. Data are
expressed as the means � S.E. from three independent experiments. **, p �
0.01 (unpaired t test).

FIGURE 6. Association with R9AP is essential for RGS11�G�5-mediated regulation of mGluR6-G�o signal-
ing in Xenopus oocytes. Control oocytes were injected with cRNAs for mGluR6, G�oC351G, and GIRK1 and
GIRK4 subunits of heteromultimeric GIRK channels and with cRNA for the catalytic subunit of pertussis toxin to
eliminate coupling between mGluR6 and endogenous Gi/o G proteins. Some of these control oocytes were
subsequently injected with either water or one of the following cRNA combinations in addition to those
described above: (i) RGS11 and G�5 or (ii) RGS11, G�5, and R9AP. A, normalized averaged traces of glutamate
(10 �M) evoked GIRK currents. The figure shows activation (downward deflection, left) and deactivation
(upward deflection, right) phases of the glutamate-evoked GIRK currents in the three oocyte groups. B, a
comparison is shown of the activation and deactivation rate constants (1/�), where � is the time constant
derived from the exponential fits of the activation and deactivation phases of the GIRK currents in the
different oocyte groups. Data are expressed as the means � S.E. from 7–9 oocytes from the same donor.
The mean steady-state current amplitudes in nA � S.E. for the different oocyte groups were as follows:
control, 941 � 37; RGS11�G�5, 1024 � 255; RGS11�G�5�R9AP, 658 � 76. Similar results were obtained from
multiple oocyte donors. *, significantly different from control (p � 0.05 by Student’s t test). WB, Western
blot. C, whole protein extracts were prepared from oocytes after electrophysiological recording and
expression levels of RGS11 and R9AP were analyzed by Western blotting with specific antibodies or by
Coomassie Brilliant Blue (CBB) staining.
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Results of this study suggest that the stimulatory effect of R9AP
toward the RGS11�G�5 complex involves an allosteric enhance-
ment of GAP function acting in addition to the potentiation pro-
duced by membrane recruitment (see supplemental Fig. 5 for a
schematic illustration). First, we found that RGS11�G�5 has an
intrinsic propensity to associate directly and independently of
R9AP with the uROS membranes, a broken photoreceptor cell
preparation. However, recruitment of RGS11�G�5 to the same
membranes by R9AP produces greater potentiation of its GAP
activity that cannot be simply explained by the concentration of
the complex at the membrane. Furthermore, in a cellular system
reconstituted with the physiologically relevant receptor, mGluR6,
RGS11�G�5 did not detectably accelerate the GTPase activity of
the mGluR6-coupled G protein G�o unless R9AP was co-ex-
pressed and conferred strong GAP activity to the RGS11�G�5
complex. Interestingly, the R9AP-mediated enhancement of
RGS11�G�5 GAP function at G�o coupled to rhodopsin in the
uROS system was only �2.5-fold. This observation suggests that
the stimulatory effects of R9AP exhibit GPCR selectivity and, can-
not be solely explained by membrane recruitment. Finally, com-
paring the activity of the RGS9-1�G�5 complex in the same rho-
dopsin-based system reveals that despite equal membrane
recruitment, R9AP has much greater stimulatory effect toward
G�t (�70-fold; Ref. 21) as compared with G�o (�5-fold; this
study). Taken together, these observations indicate that the allo-
steric effects ofR9APat theR7RGSproteinsmight in fact contrib-
ute to the G protein and GPCR selectivity of the R7 RGS
proteins. In summary, our study establishes R9AP as a sub-
unit of R7 RGS complexes with a general function of GAP
activity modulator that acts by allosteric mechanisms in
addition to membrane recruitment.
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SUPPLEMENTAL FIGURE LEGENDS 
 

Supplemental Fig. 1. GTP hydrolysis rates of Gαo in the absence or presence of RGS7. A: Single 
turnover GTPase assay was performed as described under “Experimental Procedures” to measure 
GTPase activity of Go proteins purified from E. coli or Sf9 cells in the absence or presence of RGS7. 

RGS7 was chosen in control experiments due to its potent catalytic activity, solubility and inability to 
interact with R9AP. Reaction time courses were fitted with single exponents to derive the apparent 

rate constants (kapp) plotted in panel B. Both Go proteins show similar kapp, indicating functional Go 

proteins in both preparations are comparable. In the presence of RGS7 (1 μM for Go (E. coli) and 5 
μM for Go (Sf9)), Gαo purified from E. coli and Sf9 cells shows high kapp, 0.27 ± 0.05 and 0.39 ± 
0.01 respectively, setting ceiling values for the rates under which GDP/GTP exchange is not limiting 
the GTP hydrolysis. All rate constants measured in this study are substantially slower than the ceiling 
values obtained with saturating RGS7 concentration. 

 

Supplemental Fig. 2. RGS11 binds weakly to V8-uROS membranes. Membrane binding assay 
was performed as described under “Experimental Procedures” except that washing steps were skipped. 

The data shows that a significant amount of RGS11/Gβ5 was present in membrane pellets (Ppt.), 
which can be eliminated by washing with 1 M NaCl (see Fig. 2B), indicating RGS11/Gβ5  weakly 
associates with V8-uROS membranes in the absence of R9AP. 
 

Supplemental Fig. 3. Effects of soluble R9AP mutant R9APΔTM on the intrinsic and 
RGS11/Gβ5-stimulated GTPase activity of lipid-modified Gαo. A: Single turnover GTPase assays 
were performed with uROS membranes containing endogenous membrane-bound R9AP. Addition of 

excess amount of soluble GST-R9APΔTM ( ) did not affect the intrinsic GTPase activity of Gαo 
(Sf9) compared to the control experiment with GST ( ). However, in the presence of RGS11/Gβ5, 
GST-R9APΔTM ( ) but not GST ( ) markedly inhibited stimulated GTPase activity. Reaction time 
courses were fitted with single exponents to derive the apparent rate constants (kapp) plotted in panel B 
 

Supplemental Fig. 4. Effects of Sf9 membranes containing recombinant R9AP on RGS11/Gβ5 
GAP activity. A: Single turnover GTPase assay with lipid-modified Gαo (Sf9) was conducted with 
V8-uROS membranes, which lack endogenous R9AP. Intrinsic GTPase activity of Gαo in the 

absence of RGS11/Gβ5 were indistinguishable when either Sf9 cell membrane expressing R9AP 
(R9AP Memb.; ) or membranes from non-infected Sf9 cells (Sf9 Memb.; ) were added. However, 

when the reaction was supplemented with RGS11/Gβ5, GTPase activity was higher with the addition 
of the R9AP-containing Sf9 membranes ( ) than with membranes from non-infected Sf9 cells 
( ).Reaction time courses were fitted with single exponents to derive the apparent rate constants 

(kapp) plotted in panel B 
 



Supplemental Fig. 5. Membrane targeting and allosteric interactions contribute to regulation of 

RGS11/Gβ5 activity by R9AP. A: RGS11/Gβ5 is weakly associated with the membranes where it 
can stimulate the GTP hydrolysis on the lipid-modified Gαo. Dissociation of Gαo from the membrane 

disrupts their spatial co-localization and prevents efficient stimulation of Gαo GTPase by 
RGS11/Gβ5 complex. B: Interaction of RGS11/Gβ5 with R9AP strengthens membrane association 
and triggers conformational changes that result in stimulation of RGS11/Gβ5 GAP activity.  
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