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ABSTRACT 

Porewater inorganic carbon concentration and total alkalinity from deeply buried 

marine sediment reflect biological activity, mineral diagenesis, sedimentary processes 

and past bottom ocean water composition. Reliable interpretation of these data is often 

complicated and/or limited due to (i) major physical environment changes taking place 

during sediment core retrieval, and (ii) the resulting precipitation of calcium carbonate 

(CaCO3) in the course of sample collection, processing and storage. Here we describe 

a robust method for quantifying the in-situ porewater carbonate system chemistry in 

deepsea sediment cores. The method relies on the over-determination of the dissolved 

carbonate system by measuring three of its parameters, and explicitly assumes CaCO3 

saturation in the sediment and equilibrium conditions in-situ. The principles of the 

method are presented. 

We experimentally test the proposed approach using concentration profiles of 

dissolved carbonate system components collected from the Integrated Ocean Drilling 

Program (IODP) Site U1368 in the Southern Pacific. Our results show that this 

method can be used to accurately reproduce the in-situ aqueous carbonate system 

chemistry if dissolved inorganic carbon, total alkalinity and calcium concentration are 

measured simultaneously. The method is well suited for use over a broad range of 

porewater chemistry and applicable for sediment over ca. 50% of the seafloor.
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PREFACE 

This master thesis is written in manuscript format as I intend to submit this work 

to the scientific journal Elsevier. Following authors are involved in the publication of 

the manuscript: Justine Sauvagea, Arthur J. Spivacka, Richard W. Murrayb and Steven 

D’Hondta. 

a Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 

02882, USA. 

b Department of Earth and Environment, Boston University, Boston, MA 02215, USA. 

The manuscript is currently being reviewed by co-authors involved in the project. 

Submission of the manuscript to the journal is estimated by summer 2013.  

An appendix was added next to the manuscript and should provide the reader with 

all information required to get a thorough understanding of the project. The Matlab 

code associated with the method we developed in this project is planned to be 

accessible online in the form of an electronic annex upon acceptance of the 

manuscript. 
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INTRODUCTION 

 

Throughout the past 50 years of scientific ocean drilling, profiles of many 

dissolved chemicals derived from extraction and analysis of sedimentary interstitial 

water on deepsea drilling expeditions have significantly contributed to major advances 

in climatic and oceanographic sciences (Gieskis, 1975). The marine carbonate system 

was and remains an extensively studied subject that will bring new insights into a wide 

range of oceanographic disciplines. Two new areas that the study of dissolved 

inorganic carbon (DIC) and total alkalinity (TA), two major parameters of the 

carbonate system, can contribute to are (i) secular changes in the carbonate system of 

ocean bottom waters, and (ii) subseafloor microbial activity. 

The marine carbonate system is a crucial component in controlling the pH of the 

world’s oceans and reflects the variable distribution of CO2 between the ocean and the 

atmosphere (Sigman and Boyle, 2000; Elderfield, 2002; Yu et al., 2010). DIC and TA 

reconstructions in deep subseafloor sediment have the potential to supply fundamental 

information for our understanding of the ocean's role in the global carbon cycle and 

climate. Particularly interesting in this respect is the reconstruction of past preformed 

carbonate ([CO3
2-]PF) of the ocean’s interior. Preformed nutrients represent that 

fraction of unutilized nutrients in surface waters that gets transported into the interior 

ocean (Ito and Follows, 2005). Because of the generally inverse relationship between 

preformed carbonate ([CO3
2-]PF) and the surface seawater CO2 content, reconstruction 

of past preformed carbonate through the Last Glacial Maximum (LGM) [24 to 18 

thousand years ago] can help to constrain the CO2 equilibration history of the ocean 
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and the atmosphere and hence provide clues to the causes of atmospheric CO2 

concentration variations on these time scales. Stephens and Keeling (2000) suggested 

that low glacial atmospheric CO2 levels resulted from reduced air-sea gas exchange 

due to increased sea-ice cover at high southern latitudes. If true, glacial [CO3
2-]PF 

should be lower compared to modern equivalents. In contrast, assuming that 

atmosphere and surface oceans could equilibrate during glacial periods, we expect 

higher preformed CO3
2- concentrations. Highly important in this matter is the 

precision and accuracy of the measurements involved in the reconstruction of 

preformed nutrients. Assuming equilibrium between surface oceans and atmosphere, 

Yu and colleagues (2010) calculated that the change in [CO3
2-]PF during the LGM 

should be on the order of 60 µmol kg-1 higher compared to modern equivalents (i.e. ca. 

250 µmol kg-1) (Yu et al., 2010; Williams and Follows, 2011). Therefore, in the 

endeavor of reconstructing past [CO3
2-]PF using pore fluid chemistry, precise 

measurements of carbonate-related chemicals are necessary because the expected 

changes in [CO3
2-]PF are subtle and thus prone to lie within the analytical uncertainty 

margin of the reconstructed preformed nutrients. 

Also, DIC (CO2 + HCO3
- + CO3

2-) is a major metabolic product of microbial 

respiration, and quantification of its abundance in deepsea sediment is essential to 

understand the metabolic activities and biogeochemistry of the marine sedimentary 

biosphere (D’Hondt et al., 2002; D’Hondt et al., 2004; D’Hondt et al., 2009).  

 

Shipboard measured values of TA and DIC of the interstitial water using standard 

techniques often do not match actual in-situ abundances (Sayles and Manheim, 1975; 
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Berner, 1980). Pioneering work of the Ocean Drilling Program showed the occurrence 

of significant variation in the abundance of DIC, TA and other related constituents in 

interstitial water [e.g. calcium (Ca2+), phosphate (PO4
3-), magnesium (Mg2+) and 

sulfate (SO4
2-)] with varying storage time prior to analysis (Paull et al., 1996). This 

change in pore fluid composition is attributed to drastic modification of the physical 

environment during core retrieval and storage. Decompression and warming of the 

sediment during core recovery, followed by core handling on deck and storage, 

induces precipitation of carbonate due to pressure and temperature dependent 

solubility of carbonate minerals (Paull et al., 1996). Therefore, shipboard measured 

DIC and TA are commonly lower than in-situ values. In general, the longer it takes for 

interstitial water samples to be extracted and analyzed post-core recovery, the more 

offset from in-situ values are the measurements. The sample-handling-and-processing 

routine on scientific drilling vessels frequently results in samples being stored for 

hours (sometimes days) prior to analysis, leaving ample time for carbonate 

precipitation. Consequently, for accurate use of carbonate-related interstitial water 

chemistry data, it is critical to develop a method for correcting the measured 

abundances to in-situ values.  

Here, we present a rigorous technique to quantify the in-situ dissolved inorganic 

carbon system chemistry in subseafloor marine sediment. This technique does not 

require significant additional drilling and processing time. We provide experimental 

validation of the proposed approach using sedimentary pore fluid concentration 

profiles of DIC, TA, calcium, and other dissolved species collected during Integrated 

Ocean Drilling Program (IODP) Expedition 329 to the South Pacific Gyre. 
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THEORY OF THE METHOD 

 

Conceptual framework 

The central concept upon which this method is built is that by measuring three 

parameters of the carbonate system (i.e. DIC, TA and Ca2+) in the porewater we 

mathematically over-determine that system which allow us to solve for the amount 

carbonate precipitation taking place during the sample recovery process, and thus 

determine the complete set of in-situ carbonate system parameters (Park, 1969). This 

reasoning is only valid if carbonate is saturated throughout the sediment and the 

dissolved carbonate system is at equilibrium in-situ. In other words, at equilibrium, if 

the concentrations of DIC, TA, and Ca2+ are measured, in-situ pH, total un-ionized 

dissolved carbon (CO2(aq)), bicarbonate (HCO3
-), and carbonate (CO3

2–) 

concentrations are mathematically over-determined if carbonate is saturated in-situ. 

Over-determination of the carbonate system allows the amount of carbonate 

precipitated during core recovery, sampling, and storage to be uniquely determined. 

By calculating the amount of carbonate lost during sample recovery from the seafloor, 

we can correct the measured dissolved [DIC] and [TA] (with [ ] denoting the 

concentration of the referred species) to actual in-situ values. Once in-situ [DIC] and 

[TA] are known, in-situ pH, in-situ concentrations of the remaining carbon system 

components (i.e. [CO2(aq)], [HCO3
-], [CO3

2-], etc.) and in-situ concentrations of the 

pH-dependent minor species included in the alkalinity term (i.e. B(OH)4
- , SiO(OH)3

-, 

PO4
3-, HSO4

- etc.) can be quantified. The fundamentals of this approach were first put 

forward by Wang et al. (2010); they are revisited, revised and tested in this study. 
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Iteration process 

Based on measured [TA], [DIC] and [Ca2+] (i.e. [TA]measured, [DIC]measured and 

[Ca2+]measured, respectively) we solve for the amount of carbonate, referred to as XCaCO3 

(in the case of a calcitic phase) in moles per mass of pore fluid, that precipitated 

during core recovery and handling, together with the complete in-situ aqueous 

carbonate system chemistry and related chemical species. While there is more than 

one way to solve this set of simultaneous equations we use a simple iterative method. 

A combination of mass balance relationships, equilibrium reactions between species in 

solution, and thermodynamics relationships forms the core of the iteration algorithm. 

 

Mass balance relationships for DIC and TA:  

[DIC] ≡ [H2CO3] + [HCO3
-] + [CO3

2-]               (1) 

[TA] ≡ [HCO3
-] + 2[CO3

2-] + [B(OH)4
-] + [OH-] + [HPO4

2-]+ 2[PO4
3-] + [SiO(OH)3

-] 

+ [NH3] + [HS-] +… - [H+]f  - [HSO4
-] - [HF] - [H3PO4] - …               (2) 

 

For algebraic simplicity we combine all the components of minor contribution to the 

DIC and TA mass balance relative to that of HCO3
-, CO3

2- and B(OH)4
- into a 

fictitious species, labeled minor species: 

[minor species] = [H2CO3] - [OH-] - [HPO4
2-] - 2[PO4

3-] - [SiO(OH)3
-] - [NH3] - [HS-] 

+ [H+]f  + [HSO4
-] + [HF] + [H3PO4]                      (3) 
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In-situ abundances of the three measured components (i.e. [DIC]in_situ, [TA]in_situ, and 

[Ca2+]in_situ) are parameterized as:  

[DIC]in_situ = [DIC]measured + XCaCO3                      (4) 

[TA]in_situ = [TA]measured + 2XCaCO3                                 (5) 

[Ca2+]in_situ = [Ca2+]measured + XCaCO3           (6) 

 

By assuming calcium carbonate (CaCO3) saturation in-situ and referring to Eq. (6) for 

the expression of in-situ calcium abundances we have:  

[CO3
2-]([Ca2+]measured + XCaCO3) = K*

sp (calcite)
                                                                              (7)  

with K*
sp_(calcite), the solubility product constant of calcite at in-situ temperature, 

salinity and pressure. 

 

Substituting Eq. (3) through Eq. (6) into the DIC and TA mass balance expressions 

(i.e. Eq. (1) and Eq. (2), respectively) and subtracting [DIC]in_situ and [TA]in_situ by 

each other, and vice versa, we derive: 

[TA]measured - [DIC]measured + XCaCO3 = [CO3
2-] + [B(OH)4

-] - [minor species]             (8) 

2[DIC]measured - [TA]measured = [HCO3
-] + [H2CO3] - [B(OH)4

-] + [minor species]       (9)   

 

Rearranging and combining Eq. (8), Eq. (9) and Eq. (7) we formulate a 2nd order 

polynomial of the form A(XCaCO3)2 + B(XCaCO3) + C = 0 with following coefficients: 

A = 1                                                              (10) 

B = α + [Ca2+]measured                                (11)  

C = -1 [(1 + [B(OH)3] K*
B) / (K*

2 [HCO3
-])] K*

sp_(calcite) + α [Ca2+]measured                 (12)   
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with: 

α = [TA]measured - [DIC]measured + [minor species]                      (13) 

and K*
B  and K*

2  equilibrium reaction constants, calculated at in-situ salinity, 

temperature and pressure, for the dissociation of borate and bicarbonate, respectively. 

 

Eq. (1) through Eq. (13) form a determined system that can be solved for XCaCO3 and, 

subsequently, the complete carbonate system chemistry based on equilibrium 

relationships between the concentrations of the various dissolved species. To simplify 

the solution, the iteration procedure neglects the minor species [i.e. Eq. (3)] for the 

initial iteration. In the second iteration step the minor species, determined in the first 

iteration, are incorporated into the equation set. The following iterations subsequently 

refine the calculated species concentrations until a stable solution is attained. Applying 

this iteration algorithm, and most importantly, explicitly solving for the carbonate and 

borate system in the first iteration (i.e. explicitly leaving HCO3
-, CO3

2- and B(OH)4
- 

out of the minor species term), results in a stable solution for the abundance of in-situ 

carbonate system species and other related components regardless of the relative size 

of the measured [DIC] and [TA] values. Moreover, use of a 2nd order polynomial 

within the algorithm highly improves the efficiency of this calculation method, leading 

to rapid convergence (i.e. within a few iterations) of the species’ concentrations to a 

stable solution. We give a detailed description of the method in the Appendix. 
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Thermodynamic considerations 

We take the aqueous chemistry of carbon dioxide, silica, boron, phosphate, and 

sulfate into consideration to characterize the complete carbon system in a sample of 

porewater at a particular temperature and pressure (Dickson, 2007). We calculate 

equilibrium and solubility constants for the acid dissociation reactions in the porewater 

at in-situ salinity, temperature and pressure to account for the change in physical 

environment during core retrieval. Expressions of equilibrium constants as a function 

of salinity and temperature, derived from the Total Hydrogen ion Scale by Millero et 

al. (2006) and Dickson et al. (2007), are used in this study. The effect of pressure on 

the equilibrium constants is taken into account (Millero, 1983; Zeebe and Wolf-

Gladrow, 2001). The detail of the calculation steps for the determination of in-situ 

equilibrium constant is given in the Appendix. 
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ASSESSMENT 

 

Conceptual reliability test 

To validate the method computationally and conceptually, we applied the 

approach to modern water column chemistry. Concentration profiles for DIC, TA, 

silica, and phosphate, together with salinity and temperature data, extracted from the 

Hydrographic Atlas of the World Ocean Circulation Experiment, WOCE, are used 

(Talley, 2007). If the algorithm works properly and has correctly calculated the 

thermodynamic constants, then we should calculate XCaCO3 to be zero mol kg-1 at the 

carbonate saturation horizon (above this depth XCaCO3 will be negative and below it 

positive). 

For sites located near the center of the South Pacific Gyre, the algorithm correctly 

positioned the level of the calcite saturation horizon at a water depth of ca. 3000 m 

(Peterson, 1966; Williams and Follows, 2011). At that level, the variable XCaCO3 

reaches a value of zero mol kg-1. Water at depths above and below that level are 

increasingly calcite-supersaturated and calcite-undersaturated, respectively. This result 

agrees with the proposed conceptual framework. Samples below the calcite saturation 

horizon are undersaturated with respect to calcite, resulting in a positive XCaCO3 value. 

Therefore to restore equilibrium, an a priori assumption of the approach, calcite 

precipitation has to take place. The inverse is true for water samples located above the 

calcite saturation horizon.  
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Experimental reliability test 

Interstitial water collection and analytical methods 

The method was tested using published data of pore fluid concentration 

profiles from IODP Expedition 329 to the South Pacific Gyre (Expedition 329 

scientists, 2011). The data we used was collected at IODP Site U1368, located near the 

center of the gyre (27°55'S, 123°10’W) in water of 3740 m depth (Figure 1). This site 

is within a region of seamount topography, where there is some possible evidence of 

original abyssal hill seafloor fabric. It is located within magnetic polarity Chron 

5ABn, resulting in a basement age of ca. 13.36-13.0 Ma (Gradstein et al., 2012). The 

slowly deposited sediment (i.e. 0.1 to 1 meter per million years) at Site U1368 consists 

of a 16-m sequence of calcareous ooze, pelagic clay and lithic sand (D’Hondt et al. 

2009). Smear slide analysis revealed nannofossils, together with red-brownish semi-

opaque oxides and foraminifers, as the principal components of the ooze. The clay-

rich and sandy intervals contain a wide variety of minerals (e.g. albite, anorthite, 

calcite and hematite). The sediment sequence is differentiated into three lithologic 

units based on compositional and textural characteristics: (i) an upper nannofossil-rich 

ooze and marl unit, (ii) a middle dark color nannofossil-bearing clay unit and (iii) a 

hematitic nannofossil-bearing clay unit intercalated with sandy intervals in the 

lowermost part of the sequence (Expedition 329 scientists, 2011). Calcium carbonate 

is abundant throughout the site. 

Interstitial water of the Site U1368 sediment was extracted by squeezing ca. 

10-cm long whole-core rounds using Manheim squeezers (Manheim, 1966). For the 

purpose of this study, two core handling-and-storage procedures were adopted. In one 
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method we did not try to minimize storage and handling time of whole-round samples 

before interstitial water extraction. We refer to this as the ‘conventional process’. In 

contrast, we designed the second method to minimize the time between core retrieval 

and interstitial water extraction. The goal was to minimize the lapse of time during 

which carbonate precipitation might occur. We refer to this as the ‘rapid process’.    

Time records of the consecutive steps of sample storage and handling for each 

whole-core round sample were documented. Sample handling and laboratory storage 

time for the conventional processed samples varied from a couple of hours to as long 

as seven hours. The rapid process samples were stored for less than 2 hours before 

extraction (Figure 2A; Expedition 329 scientists, 2011). For both procedures, 

sedimentary core samples that couldn’t be processed by the biogeochemistry 

laboratory right away were stored in a 4°C refrigerator until they could be squeezed 

and analyzed. Characteristic prevailing temperature, pressure and salinity laboratory 

conditions were 20°C, 1 Atm and 34.7 ppt, respectively.  

Interstitial waters from 33 whole-round samples from Site U1368, Hole C, 

were collected and analyzed by the shipboard scientific party. The samples were 

obtained at a spatial resolution of approximately one sample every 50 cm. Eleven of 

the whole-round samples taken for interstitial water chemistry were rapid process 

samples (Expedition 329 scientists, 2011).  

 

Interstitial water analyses that were key for this study included concentration 

measurements of DIC, TA and calcium, chloride, sulfate, phosphate, silica and Mg2+ 

along with other cations (Table 1-2). A glass electrode was used for pH measurement, 
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total alkalinity was determined by Gran titration utilizing an autotritrator (Metrohm 

809 Titrando), and DIC was measured with an Aurora 1030 total organic carbon 

analyzer. Sulfate and chloride concentrations were quantified with a Metrohm 861 

Advanced Compact ion chromatograph, and phosphate and dissolved silica 

concentrations were determined using an OI analytical discrete analyzer (DA3500) 

spectrophotometer. Cation concentrations in the pore fluid were obtained by 

inductively coupled plasma-emission spectrometry (ICP-AES) with a Teledyne 

Prodigy high-dispersion ICP spectrometer.  

The standard deviation of alkalinity measurements on standard seawater (i.e. 

CRM94, with TA = 2.3 mM) was 0.018 mM, resulting in a 0.78% precision for the 

measured TA. The average standard deviation of triplicate DIC measurements of 

samples at Site U1368 was 0.015mM, resulting in a 0.59% precision for the measured 

DIC. The standard error on chloride and sulfate measurements was 0.09% and 0.05%, 

respectively, as estimated based on duplicate analyses of all samples involved in the 

study. The precision of the cation measurements were: 0.6% of the measured Ca 

value, 0.7% of the measured Mg value, 0.5% of the measured Na value and 0.6% of 

the measured K value, as quantified by triplicate analyses of the IAPSO standard 

seawater and other internal matrix matched standards (Shipboard Scientific Party, 

2011). A detailed description of the shipboard pore fluid geochemical campaign, 

including details of the method is found in the Proceedings of IODP, Volume 329 

(2011).  

We used the measured in-situ bottom water temperature and thermal gradient 

of Site U1368 (i.e. 1.6 °C and 113 °C km-1, respectively) to calculate in-situ 
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temperature. We assumed the in-situ pressure to be hydrostatic and it was calculated 

from the water and sediment depth, considering average ocean water density. 

Downhole salinity was inferred based on measured interstitial water chloride (Table 

3-4). Equilibrium and solubility constants for the acid dissociation reactions in the 

porewater are calculated for in-situ temperature and salinity and are corrected for in-

situ pressure conditions (Table 5-8). 

 

Data description 

Figure 2 (B through D) illustrates the shipboard measured [DIC], [TA] and 

[Ca2+] data for the studied site (conventionally and rapidly processed samples). Total 

alkalinity and dissolved inorganic carbon in the interstitial water exhibit similar 

behavior with depth, starting at 2.682 and 2.553 mmol kg-1, respectively, and 

gradually decreasing with depth to a value of ca. 2.427 and 2.373 mmol kg-1, 

respectively, at the bottom of the sequence. The general downhole pattern of the DIC 

and TA profile for the conventional samples at Site U1368 clearly deviates from the 

smooth profile generated by diffusive transport you would expect for sediment of that 

age and characterized by equilibrium conditions in-situ. The presence of multiple and 

irregular offsets in the carbonate chemistry profiles for conventional samples 

emphasize the significant impact of alteration on the measured chemistry and thus the 

need to correct these biased measurements for accurate use of this data. In contrast, the 

DIC and TA profile resulting from the rapid sampling process more closely leans 

toward a smooth diffusive downhole profile. 
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We assessed the impact of storage time by comparing catwalk versus 

conventional porewater chemistry data throughout the analyzed sequence. TA and 

DIC abundances of core samples that were handled with the conventional process 

were consistently lower compared to the rapidly processed samples (i.e. 0.172 mmol 

kg-1 and 0.126 mmol kg-1 lower concentration, respectively, as averaged over the 

entire sequence). These differences reflect more important carbonate precipitation in 

sediment before interstitial water squeezing in the case of conventionally handled 

samples.  

Alteration of interstitial water chemistry was not uniformly distributed 

throughout the cored sequence. [DIC] is strongly altered in the interval between 8 and 

11 meter below seafloor (mbsf), where [DIC] from rapidly processed samples is ca. 

0.215 mmol kg-1 higher than [DIC] from conventionally processed samples. A local 

minimum (i.e. 0.075 mmol kg-1 higher [DIC]rapid compared to [DIC]conventional) and a 

local maximum (i.e. 0.208 mmol kg-1 higher [DIC]rapid compared to [DIC]conventional) in 

alteration occur at 12.2 mbsf and 14 mbsf, respectively. Chemical alteration of [TA] 

due to storage time is variable throughout the sequence, with pronounced minima in 

alteration at 7.8 and 15.5 mbsf, characterized by a ca. 0.028 and 0.016 mmol kg-1, 

respectively, higher TA for rapidly processed samples compared to the conventionally 

processed samples. Storage effects on the measured calcium abundances are unclear 

given the precision of the available measurements (i.e. the Ca2+ concentration 

difference between rapidly and conventionally processed samples lies within the 

analytical uncertainty margin of the calcium measurement). Abundances of other 

dissolved species, including the remaining cations (i.e. magnesium, sodium and 
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potassium), silica, chloride, sulfate and phosphate, do not visibly differ between 

rapidly squeezed samples and conventionally processed ones. The occurrence and 

variability of storage effects on [DIC] and [TA] illustrates the need to quantify these 

effects by performing post-expedition thermodynamic calculations.  

 

Method validation strategy 

Calcium carbonate is present throughout the core and is between 61.3 and 87.4 

wt% (Figure 3). Also, calcareous microfossils, including planktonic foraminiferal 

assemblages, have been observed throughout the sequence (Shipboard Scientific Party, 

2011). The lack of Mg variation between rapidly and conventionally processed 

samples implies that dolomite formation isn’t significant during core recovery and 

interstitial water extraction (given the precision of the measurement). Other carbonate 

phases of importance in this study (e.g. SrCO3) are unstable throughout the range of 

conditions considered and thus do not need to be accounted for. Therefore, the 

carbonate formed at Site U1368 is presumed to be predominantly calcitic and 

consistent with the thermodynamic stability of calcite relative to aragonite in-situ and 

during core recovery. This supports our assumption of calcite saturation in-situ.  

If our methodology and assumptions for correcting for carbonate precipitation are 

valid, calculated in-situ [DIC], [TA], and [Ca2+] of the conventionally processed 

samples (long storage time) and rapidly processed samples (short storage time), are 

expected to be indistinguishable and to produce a smooth depth profile due to 

diffusion. Corrected DIC and TA abundances for rapid process and conventional 

interstitial water samples that are indistinguishable would imply that the variance 
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between these samples is due to greater extent of carbonate precipitation following 

recovery and prior analysis. The availability of both sample types at a relatively high 

resolution throughout a deep sediment column that is dominated by carbonate-rich 

material and characterized by equilibrium conditions in-situ makes Site U1368 an 

ideal test for the application and validation of the proposed method.  

 

Experimental assessment results 

Based on the in-situ temperature and pressure and dissolved chemical 

concentration data measured shipboard for Site U1368, we calculate the in-situ 

abundances of the measured components (i.e. DIC, TA, and Ca2+, Figure 4, Table 10 

& 12) together with the complete set of associated species involved in the carbonate 

system and in-situ pH that weren’t measured shipboard (i.e., CO3
2-, H+, OH-, HCO3

-, 

H2CO3, B(OH)4
-, HPO4

2-, etc.). Averaged XCaCO3 values for conventionally and rapidly 

processed samples are on the order of 0.109 mmol kg-1 and 0.060 mmol kg-1, 

respectively (Table 9). More precisely this figure shows that, on average, ca. 4.4% of 

the measured [DIC] and [TA] was lost to calcium carbonate precipitation in 

conventionally sampled interstitial water, relative to ca. 2.4% in the case of the rapidly 

processed samples.  

To place the obtained results by this newly developed method into a concrete 

evaluation context we performed a full error analysis of the reconstructed in-situ 

chemistry parameters. This was done in two distinct steps: (i) characterization of the 

analytical precision associated with the reconstructed parameters of the carbonate 
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system, followed by (ii) a statistical assessment of the precision with which we can 

reconstruct the in-situ carbonate chemistry.  

The analytical error on the measured DIC, TA and Ca2+ was propagated on the 

calculated XCaCO3 by taking the sum of the squares of the analytical error on each 

measurement: 

σ2
X_CaCO3 = (∂f/∂TA)2 σ2

TA + (∂f/∂DIC)2 σ2
DIC + (∂f/∂Ca)2 σ2

Ca                          (14) 

 

Where f represents a function to quantify XCaCO3 based on the three measured 

parameters (i.e. XCaCO3 = f [TA, DIC, Ca]) and σ, the precision of the considered 

measurement:        

σTA (%) = 0.78% of the measured value 

σDIC (%) = 0.59% of the measured value       

σCa (%) = 0.60% of the measured value       

 

We solve equation (14) numerically: 

σ2
X_CaCO3 = (ΔXCaCO3/ΔTA)2 σ2

TA + (ΔXCaCO3/ΔDIC)2 σ2
DIC  + (ΔXCaCO3/ΔCa)2 σ2

Ca )  

(15) 

 

We further propagate the analytical uncertainties (i.e. associated with the 

measured parameters and the calculated XCaCO3) on the reconstructed in-situ DIC, TA 

and Ca2+: 

σ2
DIC_reconstructed_in_situ = [1 + 2(∂f/∂DIC)]* σ2

DIC_measured + σ2
X_CaCO3                           (16) 

σ2
TA_reconstructed_in_situ = [1 + 4(∂f/∂TA)]* σ2

TA_measured + 2*σ2
X_CaCO3               (17) 
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σ2
Ca_reconstructed_in_situ = [1 + 2(∂f/∂Ca)]* σ2

Ca_measured + σ2
X_CaCO3                  (18) 

 

The error propagation analysis resulted in analytical uncertainty estimates (1σ) 

on the order of 2.195E-2 mmol kg-1, 1.811E-2 mmol kg-1, 6.239E-2 mmol kg-1, and 

6.551E-2 mmol kg-1 for calculated XCaCO3 and in-situ DIC, TA, and Ca2+ abundances, 

respectively (Figure 4, Table 11 & 13).  

The precision with which we can reconstruct in-situ parameters of the 

carbonate system using the proposed method was quantified based on pooled standard 

deviations calculations for so called ‘duplicate runs’. In this study we consider (1) the 

reconstructed conventional samples results and (2) the reconstructed rapid process 

samples results as duplicates runs of the in-situ carbonate chemistry. The pooled 

standard deviation for each species considered (i.e. DIC, TA and calcium) was 

estimated using equation (McNaught and Wilkinson, 1997): 

Sp =  [(xi1-xi2)2/2k]1/2                          (19) 

 

Where Sp is the pooled standard deviation, xi1 and xi2 duplicate measurement 

(with i = DIC, TA, or calcium) and k the number of series of measurement. 

Performing the calculation for Site U1368, eleven (i.e. coinciding with the number of 

rapid process samples) measurement series were delineated. For this end, each rapid 

process sample (i.e. xi1 in Eq. 19) was bracketed by its surrounding conventionally 

measured samples (i.e. conventional interstitial water sample taken above and below 

the rapid process one). The average of the two conventional sample values that bracket 

each rapid process sample was used as xi2. 
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Applying this approach we obtained a pooled standard deviation of 8.427E-2 

mmol kg-1, 7.952E-2 mmol kg-1and 0.160 mmol kg-1 for the in-situ [DIC], [TA], and 

[Ca2+] calculations, respectively (Table 14). The pooled standard deviation between 

reconstructed in-situ DIC, TA and Ca2+ for conventionally and rapidly processed 

samples exceeds the analytical error associated with each of the reconstructed DIC, 

TA and Ca2+, respectively. These results provide quantitative evidence that our 

approach is reasonable for the quantification of the in-situ interstitial water carbonate 

chemistry throughout deeply buried sediment given the analytical precision of the 

available measured parameters.  

We ultimately quantify the uncertainty associated with the application of the 

proposed approach by subtracting the pooled standard deviation estimate of a species 

by the propagated analytical uncertainty associated with the reconstructed in-situ 

concentration of that species. This uncertainty estimate is thus purely methodological 

and separate from the source of uncertainty due to the analytical precision limitations 

of the available measurements. The methodological uncertainty amounts 6.617E-02 

mmol kg-1, 1.713E-02 mmol kg-1, and 9.509E-02 mmol kg-1 for the reconstruction of 

DIC, TA, and Ca2+ respectively. These uncertainties encompass possible gas exchange 

during the core retrieval process, impact of processes affecting alteration intensity 

unaccounted in this method, etc. We argue that by increasing the number of samples 

analyzed we could improve these statistics by averaging out the remaining offsets 

found in the reconstructed carbonate chemistry (e.g. between 6-11 mbsf for 

reconstructed [TA]). 
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APPLICATION OF THE APPROACH 

 

The method that we describe is applicable for measurements that span a broad 

range of interstitial water chemistries and environments. The requirements are that 

there is carbonate saturation in-situ, that [DIC], [TA] and [Ca2+] are measured and that 

temperature is known. We performed iteration stability experiments of the method by 

applying it to minimum and maximum interstitial water DIC and TA abundances, as 

encountered throughout the marine subseafloor. Results show that the simple 

algorithm we developed for calculating the extent of precipitation is stable for any 

expected range of DIC, TA and Ca2+. This constitutes a major improvement over the 

method by Wang et al. (2010), which is unstable in many situations, for example when 

[TA]measured < = [DIC]measured. Our technique is also widely applicable: it requires only 

limited calculation time and requires no additional shipboard and/or drilling for its 

application. Finally, our results clearly demonstrate that use of routinely generated 

shipboard carbonate-system chemical data must take alteration into account to avoid a 

biased view of in-situ DIC, TA, pH and Ca2+ concentration.  For example, we show 

that in the case of Site U1368 the measured DIC and TA abundances were offset by up 

to four percent from in-situ values by adopting a conventional sampling protocol. Such 

bias has the potential to strongly lower estimates of subseafloor metabolic activities or 

provide poor constraints for the reconstruction of past deep ocean chemistry.  

Application of the approach at Site U1368 didn’t generate the smooth profile 

you observe in other sedimentary environment where you don’t have to cope with 

these alteration issues. However, application of the approach visibly diminished 
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downhole offsets is carbonate chemistry and the variability between rapid and 

conventional process samples, providing a less biased representation of the in-situ 

chemistry. Remaining offsets in the reconstructed DIC, TA and calcium can be partly 

justified by the analytical uncertainty associated with the measured parameters this 

reconstructed carbonate chemistry is based on. We argue that application of the 

proposed approach generates a much more accurate view of the in-situ chemistry 

relative to the measured one. Correcting for alteration is rather straightforward if 

[DIC], [TA] and [Ca2+] are measured for the same sample, and both equilibrium and 

calcium carbonate saturation conditions prevail in-situ. Because carbonate-bearing 

sediment characterizes about 50% of the seafloor (Schulz, 2000), we argue that this 

method is widely applicable.  

An indirect application of the approach involves the detection of minor traces 

of calcium carbonate. Detection of low concentrations of CaCO3 is often challenging 

with routinely used instruments. Downhole calcium saturation being a critical 

requirement for the successful application of the approach, we suggest that this 

method could be used to effectively evaluate the carbonate content of sediment cores. 

For carbonate under-saturated sediment, application of the approach will result in the 

development of many method related artifacts downhole (i.e. profile obviously 

deviating from a smooth trend) as the basic requirement for the correct development of 

the iteration won’t be fulfilled. In contrary, for carbonate-saturated columns like Site 

U1368, application of the method will result in an improvement of the measured 

downhole chemistry porfiles by smoothening out possible offsets in the measured 

carbonate chemistry.
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COMMENTS AND RECOMMENDATIONS ON THE METHOD 

 

Our method calculates in-situ carbonate system porewater chemistry in deeply 

buried marine sediment. For this end it assumes a priori calcium carbonate saturation 

in the sediment and equilibrium in-situ.  The method successfully deals with any 

relative size of [DIC] and [TA] input values and incorporates physical environment 

information that affect the carbonate-related porewater chemistry upon core retrieval.  

Although our approach has the potential to effectively quantify the complete 

in-situ dissolved carbon system of deeply buried marine sediment, it has limitations. 

The first limitation is the assumption that the calcite is the dominant carbonate phase. 

In the case of a different carbonate phase or the co-occurrence of multiple phases 

throughout the sediment, the iteration algorithm would have to be adapted to 

incorporate this more complex carbonate speciation. A second limitation is that 

roughly half of the seafloor is not characterized by carbonate-bearing sediment. 

Alteration effects in carbonate-free sediment are unclear and further experiments are 

required to explore the influence of these effects. Finally, our approach assumes a 

priori equilibrium conditions in-situ. This is generally true but close scrutiny should be 

applied to this assumption in high sedimentation environments, and other subseafloor 

environments characterized by not fully equilibrated systems. 
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CONCLUSION 

 

         Our approach successfully quantifies the in-situ dissolved carbonate system 

chemistry of subseafloor sediment based on measured concentrations of dissolved 

carbonate system constituents that have been altered by core recovery and handling.        

        The method accounts for variations in temperature, chemical gradients, and 

physical context during the core retrieval and sample handling process. We illustrate 

the use of our method by applying it to IODP Site U1368. The results quantitatively 

demonstrate that chemical alteration associated with the core retrieval and handling 

processes can be significant, especially in low sedimentation rate environments like 

the South Pacific Gyre. For correct use of this data the method described here should 

therefore be implemented when the necessary interstitial water chemistry data is 

available and the two requirements for the application of the method are fulfilled.  

         Our example of Site U1368 illustrates that this approach is also an effective tool 

for inferring concentration profiles of dissolved carbonate-related chemicals that have 

not been measured on the ship.  

         Application of our approach will contribute to a better assessment of microbial 

metabolic activity rates in subseafloor environments and improve quantitative 

reconstructions of deep ocean chemistry through the last glacial-interglacial cycle. 
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FIGURES 

 

 

 

 

Figure 1. Location of IODP Site U1368 in the South Pacific Gyre. 
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Figure 2. Depth profiles of measured pore water chemical concentrations related to the 

carbonate system at Site U1368. Total time span for each sample from Hole U1368 C 

to get from sample recovery stage to squeezing and analysis stage for conventionally 

processed samples () and rapid process samples () (A). Depth is in units of meters 

below seafloor (mbsf). Depth profiles of measured total alkalinity (B), dissolved 

inorganic carbon (C), and calcium abundances (D) at Site U1368, for conventional 

samples () and rapid process samples (). Measurement data are from Expedition 329 

Shipboard Scientific party (2010). 
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Figure 3. Solid phase analysis of the sediment at site U1368, hole B. Calcium 

carbonate content, expressed as weight percent (wt%). Measurement data are from 

Expedition 329 Shipboard Scientific party (2010). 
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Figure 4. Depth profiles of calculated in-situ TA, DIC and Ca2+ abundances with error 

analysis (1σ) for conventional () and rapid process ()	   sampling procedures at Site 

U1368, hole C.  
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TABLES 

 
Depth TA DIC pH Cl- SO4

2- Tot_P 
(mbsf) (mol kg) (mol/kg)   (mol/kg) (mol/kg) (mol/kg) 

       
0.55 2.513E-03 2.534E-03 7.76 5.405E-01 2.796E-02 1.741E-06 
1.05 2.493E-03 2.516E-03 7.77 5.409E-01 2.798E-02 1.728E-06 
2.05 2.503E-03 2.486E-03 7.75 5.413E-01 2.800E-02 1.387E-06 
2.55 2.483E-03 2.509E-03 7.77 5.400E-01 2.793E-02 1.286E-06 
3.55 2.429E-03 2.427E-03 7.95 5.420E-01 2.803E-02 1.144E-06 
4.05 2.471E-03 2.485E-03 7.75 5.402E-01 2.794E-02 1.021E-06 
5.05 2.520E-03 2.522E-03 7.76 5.417E-01 2.802E-02 1.691E-06 
5.55 2.498E-03 2.535E-03 7.76 5.412E-01 2.799E-02 9.032E-07 
6.55 2.460E-03 2.488E-03 7.78 5.406E-01 2.796E-02 9.579E-07 
7.05 2.567E-03 2.544E-03 7.75 5.411E-01 2.799E-02 9.579E-07 
7.76 2.624E-03 2.544E-03 7.74 5.411E-01 2.799E-02 9.453E-07 
8.45 2.392E-03 2.397E-03 7.76 5.406E-01 2.796E-02 7.685E-07 
9.05 2.405E-03 2.426E-03 7.74 5.407E-01 2.797E-02 8.173E-07 

10.05 2.437E-03 2.392E-03 7.76 5.424E-01 2.806E-02 1.203E-06 
10.55 2.437E-03 2.422E-03 7.77 5.425E-01 2.806E-02 8.147E-07 
11.55 2.405E-03 2.436E-03 7.72 5.410E-01 2.798E-02 9.926E-07 
12.05 2.370E-03 2.419E-03 7.80 5.409E-01 2.798E-02 7.666E-07 
13.05 2.349E-03 2.380E-03 7.77 5.418E-01 2.803E-02 1.014E-06 
13.55 2.334E-03 2.327E-03 7.78 5.396E-01 2.791E-02 8.764E-07 
14.55 2.318E-03 2.291E-03 7.80 5.417E-01 2.802E-02 1.025E-06 
15.05 2.324E-03 2.332E-03 7.81 5.408E-01 2.798E-02 1.210E-06 
15.48 2.412E-03 2.320E-03 7.92 5.416E-01 2.801E-02 1.569E-06 

 Table 1. Measurement data of pore water chemical concentrations at Site U1368, hole 
C for conventionally handled pore water samples. Dissolved chemical 
concentrations are from Expedition 329 Shipboard Scientific Party (2010). 
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Depth Tot_Si Ca2+ Na+ K+ Mg2+ 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 

      
0.55 2.198E-04 1.030E-02 4.647E-01 1.075E-02 4.954E-02 
1.05 2.354E-04 1.014E-02 4.592E-01 1.054E-02 4.949E-02 
2.05 2.451E-04 1.009E-02 4.582E-01 1.028E-02 4.982E-02 
2.55 2.381E-04 1.022E-02 4.609E-01 1.060E-02 4.936E-02 
3.55 2.118E-04 1.011E-02 4.612E-01 1.038E-02 5.146E-02 
4.05 2.248E-04 1.002E-02 4.589E-01 1.030E-02 5.038E-02 
5.05 2.826E-04 1.027E-02 4.632E-01 1.050E-02 4.950E-02 
5.55 2.510E-04 1.054E-02 4.613E-01 1.063E-02 4.943E-02 
6.55 2.453E-04 1.022E-02 4.635E-01 1.082E-02 4.987E-02 
7.05 2.479E-04 1.045E-02 4.617E-01 1.077E-02 4.901E-02 
7.76 2.512E-04 1.042E-02 4.610E-01 1.068E-02 4.962E-02 
8.45 2.272E-04 1.010E-02 4.635E-01 1.044E-02 5.129E-02 
9.05 2.165E-04 9.907E-03 4.582E-01 1.024E-02 5.076E-02 

10.05 2.421E-04 9.829E-03 4.585E-01 1.039E-02 5.138E-02 
10.55 2.343E-04 9.869E-03 4.619E-01 1.036E-02 5.108E-02 
11.55 2.610E-04 9.718E-03 4.590E-01 1.041E-02 5.060E-02 
12.05 2.229E-04 9.548E-03 4.595E-01 1.034E-02 5.056E-02 
13.05 2.209E-04 9.530E-03 4.569E-01 1.026E-02 5.066E-02 
13.55 2.344E-04 9.549E-03 4.576E-01 1.016E-02 5.098E-02 
14.55 2.169E-04 9.823E-03 4.596E-01 1.051E-02 5.159E-02 
15.05 2.363E-04 9.468E-03 4.583E-01 1.026E-02 4.998E-02 
15.48 1.964E-04 1.004E-02 4.604E-01 1.027E-02 5.145E-02 

Table 1. (continued). 

 

Depth TA DIC pH Cl- SO4
2- Tot_P 

(mbsf) (mol/kg) (mol/kg)   (mol/kg) (mol/kg) (mol/kg) 
       
0.05 2.682E-03 2.554E-03 7.67 5.411E-01 2.799E-02 2.236E-06 
1.45 2.701E-03 2.562E-03 7.61 5.406E-01 2.796E-02 1.759E-06 
2.95 2.656E-03 2.588E-03 7.69 5.407E-01 2.797E-02 1.425E-06 
4.45 2.696E-03 2.653E-03 7.67 5.412E-01 2.799E-02 1.625E-06 
5.95 2.605E-03 2.634E-03 7.74 5.415E-01 2.801E-02 8.722E-07 
7.45 2.652E-03 2.652E-03 7.77 5.407E-01 2.797E-02 1.313E-06 
9.45 2.645E-03 2.625E-03 7.73 5.405E-01 2.796E-02 8.933E-07 

10.95 2.638E-03 2.597E-03 7.71 5.398E-01 2.792E-02 9.566E-07 
12.45 2.525E-03 2.494E-03 7.76 5.407E-01 2.797E-02 9.482E-07 
13.95 2.535E-03 2.517E-03 7.74 5.403E-01 2.795E-02 9.958E-07 
15.45 2.427E-03 2.374E-03 7.82 5.416E-01 2.802E-02 1.236E-06 
15.48 2.682E-03 2.554E-03 7.92 5.411E-01 2.799E-02 2.236E-06 

Table 2. Measurement data of pore water chemical concentrations at Site U1368, hole 
C for rapidly handled pore water samples. Dissolved chemical concentrations are 
from Expedition 329 Shipboard Scientific Party (2010). 
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Depth Tot_Si Ca2+ Na+ K+ Mg2+ 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 

      
0.05 2.317E-04 9.793E-03 4.626E-01 1.099E-02 4.983E-02 
1.45 2.310E-04 1.011E-02 4.572E-01 1.044E-02 4.979E-02 
2.95 2.421E-04 1.034E-02 4.613E-01 1.060E-02 4.933E-02 
4.45 2.825E-04 1.029E-02 4.617E-01 1.044E-02 5.020E-02 
5.95 2.501E-04 1.009E-02 4.601E-01 1.045E-02 4.983E-02 
7.45 3.121E-04 1.035E-02 4.598E-01 1.049E-02 4.869E-02 
9.45 2.536E-04 1.007E-02 4.600E-01 1.035E-02 5.048E-02 

10.95 2.480E-04 9.991E-03 4.584E-01 1.031E-02 5.110E-02 
12.45 2.533E-04 9.817E-03 4.577E-01 1.013E-02 5.103E-02 
13.95 2.497E-04 9.830E-03 4.607E-01 1.033E-02 5.145E-02 
15.45 2.270E-04 9.883E-03 4.571E-01 1.017E-02 5.107E-02 
15.48 2.317E-04 9.793E-03 4.626E-01 1.099E-02 4.983E-02 

Table 2. (continued). 

 

Depth Temperature Salinity Density Pressure 
(mbsf) (°C) (ppt) (kg m-3)  (Bar) 

     
0.55 1.60 34.52 1027.61 378.77 
1.05 1.72 34.54 1027.62 378.82 
2.05 1.83 34.57 1027.64 378.92 
2.55 1.89 34.49 1027.57 378.97 
3.55 2.00 34.61 1027.66 379.07 
4.05 2.06 34.50 1027.57 379.12 
5.05 2.17 34.59 1027.63 379.22 
5.55 2.23 34.56 1027.60 379.27 
6.55 2.34 34.52 1027.56 379.37 
7.05 2.40 34.55 1027.58 379.42 
7.76 2.48 34.55 1027.57 379.49 
8.45 2.55 34.52 1027.54 379.56 
9.05 2.62 34.53 1027.54 379.62 

10.05 2.74 34.64 1027.62 379.73 
10.55 2.79 34.64 1027.62 379.78 
11.55 2.91 34.55 1027.53 379.88 
12.05 2.96 34.54 1027.52 379.93 
13.05 3.07 34.60 1027.56 380.03 
13.55 3.13 34.46 1027.45 380.08 
14.55 3.24 34.60 1027.54 380.18 
15.05 3.30 34.54 1027.49 380.23 
15.48 3.35 34.59 1027.52 380.27 

Table 3. The in situ condition and density of the conventionally sampled pore waters 
at Site U1368. 
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Depth Temperature Salinity Density Pressure 
(mbsf) (°C) (ppt) (kg m-3)  (Bar) 

     
0.05 1.60 34.55 1027.64 378.72 
1.45 1.76 34.52 1027.60 378.86 
2.95 1.93 34.52 1027.60 379.01 
4.45 2.10 34.56 1027.61 379.16 
5.95 2.27 34.58 1027.61 379.31 
7.45 2.44 34.53 1027.56 379.46 
9.45 2.67 34.52 1027.53 379.66 

10.95 2.84 34.48 1027.48 379.82 
12.45 3.01 34.53 1027.51 379.97 
13.95 3.18 34.51 1027.47 380.12 
15.45 3.35 34.59 1027.53 380.27 

Table 4. The in situ condition and density of the rapidly sampled pore waters at Site 
U1368. 
 
 
 
 
Depth K1 K2 KW KB KP1 

      
0.55 8.019E-07 4.319E-10 5.866E-15 1.279E-09 2.473E-02 
1.05 8.048E-07 4.342E-10 5.945E-15 1.284E-09 2.474E-02 
2.05 8.077E-07 4.365E-10 6.022E-15 1.289E-09 2.475E-02 
2.55 8.085E-07 4.367E-10 6.053E-15 1.290E-09 2.474E-02 
3.55 8.121E-07 4.400E-10 6.139E-15 1.297E-09 2.476E-02 
4.05 8.127E-07 4.399E-10 6.168E-15 1.297E-09 2.475E-02 
5.05 8.160E-07 4.428E-10 6.253E-15 1.303E-09 2.476E-02 
5.55 8.172E-07 4.435E-10 6.289E-15 1.305E-09 2.476E-02 
6.55 8.196E-07 4.452E-10 6.365E-15 1.309E-09 2.476E-02 
7.05 8.212E-07 4.465E-10 6.407E-15 1.312E-09 2.477E-02 
7.76 8.231E-07 4.480E-10 6.464E-15 1.316E-09 2.477E-02 
8.45 8.248E-07 4.491E-10 6.516E-15 1.318E-09 2.477E-02 
9.05 8.265E-07 4.505E-10 6.566E-15 1.321E-09 2.478E-02 

10.05 8.300E-07 4.537E-10 6.657E-15 1.328E-09 2.480E-02 
10.55 8.314E-07 4.548E-10 6.699E-15 1.330E-09 2.480E-02 
11.55 8.335E-07 4.559E-10 6.774E-15 1.333E-09 2.479E-02 
12.05 8.348E-07 4.569E-10 6.815E-15 1.336E-09 2.479E-02 
13.05 8.379E-07 4.596E-10 6.905E-15 1.341E-09 2.481E-02 
13.55 8.384E-07 4.592E-10 6.934E-15 1.342E-09 2.479E-02 
14.55 8.420E-07 4.627E-10 7.033E-15 1.348E-09 2.481E-02 
15.05 8.430E-07 4.632E-10 7.071E-15 1.350E-09 2.481E-02 
15.48 8.445E-07 4.646E-10 7.113E-15 1.353E-09 2.482E-02 

Table 5. Thermodynamic constants calculated at standard Temperature (20°C), 
salinity (34.7 ppt) and pressure (1 Atm) for the conventional samples (Equilibrium 
constants are expressed on the Total Hydrogen Scale). 
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Depth KP2 KP3 KSi K1S Ksp 
      
0.55 6.577E-07 4.479E-10 1.461E-10 2.619E-01 4.227E-07 
1.05 6.600E-07 4.509E-10 1.470E-10 2.606E-01 4.231E-07 
2.05 6.622E-07 4.537E-10 1.479E-10 2.594E-01 4.236E-07 
2.55 6.627E-07 4.559E-10 1.482E-10 2.581E-01 4.224E-07 
3.55 6.655E-07 4.580E-10 1.492E-10 2.576E-01 4.242E-07 
4.05 6.659E-07 4.605E-10 1.495E-10 2.561E-01 4.227E-07 
5.05 6.685E-07 4.628E-10 1.504E-10 2.554E-01 4.240E-07 
5.55 6.693E-07 4.646E-10 1.509E-10 2.545E-01 4.236E-07 
6.55 6.711E-07 4.681E-10 1.517E-10 2.529E-01 4.231E-07 
7.05 6.724E-07 4.694E-10 1.521E-10 2.524E-01 4.236E-07 
7.76 6.738E-07 4.717E-10 1.528E-10 2.515E-01 4.236E-07 
8.45 6.750E-07 4.741E-10 1.533E-10 2.504E-01 4.232E-07 
9.05 6.763E-07 4.760E-10 1.539E-10 2.496E-01 4.233E-07 

10.05 6.791E-07 4.782E-10 1.548E-10 2.490E-01 4.249E-07 
10.55 6.801E-07 4.798E-10 1.553E-10 2.484E-01 4.250E-07 
11.55 6.816E-07 4.839E-10 1.561E-10 2.465E-01 4.237E-07 
12.05 6.826E-07 4.855E-10 1.565E-10 2.458E-01 4.236E-07 
13.05 6.850E-07 4.883E-10 1.575E-10 2.449E-01 4.245E-07 
13.55 6.851E-07 4.911E-10 1.578E-10 2.433E-01 4.225E-07 
14.55 6.881E-07 4.933E-10 1.588E-10 2.429E-01 4.245E-07 
15.05 6.887E-07 4.954E-10 1.592E-10 2.419E-01 4.237E-07 
15.48 6.899E-07 4.964E-10 1.596E-10 2.416E-01 4.244E-07 

Table 5. (continued). 

 

 

Depth K1 K2 KW KB KP1 
      
0.05 8.021E-07 4.323E-10 5.869E-15 1.279E-09 2.473E-02 
1.45 8.058E-07 4.348E-10 5.973E-15 1.286E-09 2.474E-02 
2.95 8.099E-07 4.379E-10 6.086E-15 1.293E-09 2.475E-02 
4.45 8.142E-07 4.413E-10 6.204E-15 1.300E-09 2.476E-02 
5.95 8.184E-07 4.446E-10 6.322E-15 1.307E-09 2.477E-02 
7.45 8.222E-07 4.472E-10 6.437E-15 1.314E-09 2.477E-02 
9.45 8.275E-07 4.511E-10 6.597E-15 1.323E-09 2.478E-02 

10.95 8.313E-07 4.538E-10 6.717E-15 1.329E-09 2.478E-02 
12.45 8.358E-07 4.576E-10 6.848E-15 1.337E-09 2.480E-02 
13.95 8.398E-07 4.605E-10 6.973E-15 1.344E-09 2.480E-02 
15.45 8.445E-07 4.645E-10 7.111E-15 1.353E-09 2.482E-02 

Table 6. Thermodynamic constants calculated at in-situ temperature and salinity for 
the rapidly processed samples (Equilibrium constants are expressed on the Total 
Hydrogen Scale). 
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Depth KP2 KP3 KSi K1S Ksp 

      
0.05 6.580E-07 4.476E-10 1.461E-10 2.622E-01 4.233E-07 
1.45 6.607E-07 4.523E-10 1.473E-10 2.599E-01 4.228E-07 
2.95 6.638E-07 4.568E-10 1.486E-10 2.579E-01 4.230E-07 
4.45 6.671E-07 4.612E-10 1.499E-10 2.560E-01 4.236E-07 
5.95 6.703E-07 4.657E-10 1.512E-10 2.541E-01 4.239E-07 
7.45 6.730E-07 4.709E-10 1.525E-10 2.518E-01 4.233E-07 
9.45 6.771E-07 4.774E-10 1.542E-10 2.490E-01 4.231E-07 

10.95 6.799E-07 4.826E-10 1.555E-10 2.467E-01 4.226E-07 
12.45 6.833E-07 4.869E-10 1.569E-10 2.452E-01 4.235E-07 
13.95 6.862E-07 4.921E-10 1.582E-10 2.431E-01 4.231E-07 
15.45 6.899E-07 4.963E-10 1.596E-10 2.417E-01 4.244E-07 

Table 6. (continued). 

 

 

Depth K*
1 K*

2 K*
W K*

B K*
P1 

      
0.55 1.207E-06 5.629E-10 8.766E-15 2.055E-09 3.108E-02 
1.05 1.211E-06 5.659E-10 8.880E-15 2.062E-09 3.108E-02 
2.05 1.215E-06 5.689E-10 8.991E-15 2.070E-09 3.109E-02 
2.55 1.216E-06 5.691E-10 9.035E-15 2.071E-09 3.107E-02 
3.55 1.221E-06 5.733E-10 9.159E-15 2.081E-09 3.109E-02 
4.05 1.222E-06 5.732E-10 9.201E-15 2.081E-09 3.107E-02 
5.05 1.227E-06 5.770E-10 9.323E-15 2.090E-09 3.109E-02 
5.55 1.228E-06 5.779E-10 9.375E-15 2.093E-09 3.108E-02 
6.55 1.232E-06 5.801E-10 9.483E-15 2.098E-09 3.107E-02 
7.05 1.234E-06 5.818E-10 9.544E-15 2.102E-09 3.108E-02 
7.76 1.237E-06 5.837E-10 9.626E-15 2.107E-09 3.108E-02 
8.45 1.239E-06 5.851E-10 9.701E-15 2.111E-09 3.107E-02 
9.05 1.241E-06 5.868E-10 9.772E-15 2.115E-09 3.107E-02 

10.05 1.246E-06 5.910E-10 9.904E-15 2.125E-09 3.109E-02 
10.55 1.248E-06 5.924E-10 9.964E-15 2.128E-09 3.109E-02 
11.55 1.251E-06 5.938E-10 1.007E-14 2.133E-09 3.107E-02 
12.05 1.253E-06 5.951E-10 1.013E-14 2.136E-09 3.107E-02 
13.05 1.257E-06 5.986E-10 1.026E-14 2.144E-09 3.108E-02 
13.55 1.258E-06 5.981E-10 1.030E-14 2.144E-09 3.106E-02 
14.55 1.263E-06 6.026E-10 1.044E-14 2.154E-09 3.108E-02 
15.05 1.264E-06 6.032E-10 1.050E-14 2.156E-09 3.107E-02 
15.48 1.266E-06 6.051E-10 1.056E-14 2.160E-09 3.107E-02 

Table 7. In-situ apparent thermodynamic constants for the conventional samples 
(Equilibrium constants are expressed on the Total Hydrogen Scale). 
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Depth K*
P2 K*

P3 K*
Si K*

1S K*
sp 

      
0.55 9.448E-07 6.829E-10 1.684E-10 3.476E-01 9.016E-07 
1.05 9.477E-07 6.872E-10 1.694E-10 3.459E-01 9.014E-07 
2.05 9.505E-07 6.912E-10 1.704E-10 3.442E-01 9.015E-07 
2.55 9.511E-07 6.944E-10 1.708E-10 3.425E-01 8.986E-07 
3.55 9.548E-07 6.973E-10 1.719E-10 3.418E-01 9.015E-07 
4.05 9.551E-07 7.009E-10 1.723E-10 3.399E-01 8.978E-07 
5.05 9.586E-07 7.042E-10 1.734E-10 3.388E-01 8.997E-07 
5.55 9.596E-07 7.068E-10 1.739E-10 3.377E-01 8.985E-07 
6.55 9.619E-07 7.118E-10 1.748E-10 3.355E-01 8.965E-07 
7.05 9.635E-07 7.137E-10 1.754E-10 3.348E-01 8.970E-07 
7.76 9.653E-07 7.169E-10 1.761E-10 3.336E-01 8.965E-07 
8.45 9.669E-07 7.204E-10 1.768E-10 3.320E-01 8.950E-07 
9.05 9.685E-07 7.231E-10 1.774E-10 3.310E-01 8.948E-07 

10.05 9.722E-07 7.262E-10 1.785E-10 3.302E-01 8.973E-07 
10.55 9.735E-07 7.284E-10 1.790E-10 3.294E-01 8.971E-07 
11.55 9.753E-07 7.344E-10 1.800E-10 3.267E-01 8.934E-07 
12.05 9.765E-07 7.367E-10 1.805E-10 3.258E-01 8.929E-07 
13.05 9.797E-07 7.407E-10 1.815E-10 3.246E-01 8.938E-07 
13.55 9.797E-07 7.448E-10 1.819E-10 3.225E-01 8.892E-07 
14.55 9.836E-07 7.478E-10 1.831E-10 3.219E-01 8.924E-07 
15.05 9.844E-07 7.509E-10 1.836E-10 3.206E-01 8.904E-07 
15.48 9.860E-07 7.523E-10 1.841E-10 3.202E-01 8.914E-07 

Table 7. (continued). 

 
 
 
Depth K*

1 K*
2 K*

W K*
B K*

P1 
      
0.05 1.208E-06 5.634E-10 8.770E-15 2.056E-09 3.108E-02 
1.45 1.213E-06 5.667E-10 8.920E-15 2.064E-09 3.108E-02 
2.95 1.218E-06 5.707E-10 9.083E-15 2.075E-09 3.108E-02 
4.45 1.224E-06 5.751E-10 9.253E-15 2.085E-09 3.108E-02 
5.95 1.230E-06 5.793E-10 9.423E-15 2.096E-09 3.108E-02 
7.45 1.235E-06 5.826E-10 9.587E-15 2.105E-09 3.108E-02 
9.45 1.243E-06 5.877E-10 9.817E-15 2.118E-09 3.107E-02 

10.95 1.248E-06 5.912E-10 9.989E-15 2.127E-09 3.106E-02 
12.45 1.254E-06 5.960E-10 1.018E-14 2.138E-09 3.107E-02 
13.95 1.259E-06 5.997E-10 1.036E-14 2.148E-09 3.106E-02 
15.45 1.266E-06 6.050E-10 1.055E-14 2.160E-09 3.107E-02 

Table 8. In-situ apparent thermodynamic constants for the rapidly processed samples 
(Equilibrium constants are expressed on the Total Hydrogen Scale). 
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Depth K*
P2 K*

P3 K*
Si K*

1S K*
sp 

      
0.05 9.451E-07 6.824E-10 1.684E-10 3.480E-01 9.027E-07 
1.45 9.485E-07 6.892E-10 1.698E-10 3.449E-01 9.004E-07 
2.95 9.525E-07 6.957E-10 1.713E-10 3.422E-01 8.995E-07 
4.45 9.567E-07 7.019E-10 1.728E-10 3.397E-01 8.994E-07 
5.95 9.608E-07 7.084E-10 1.743E-10 3.371E-01 8.987E-07 
7.45 9.643E-07 7.158E-10 1.758E-10 3.339E-01 8.961E-07 
9.45 9.695E-07 7.251E-10 1.778E-10 3.302E-01 8.941E-07 

10.95 9.730E-07 7.326E-10 1.793E-10 3.271E-01 8.916E-07 
12.45 9.775E-07 7.388E-10 1.809E-10 3.250E-01 8.922E-07 
13.95 9.812E-07 7.462E-10 1.824E-10 3.222E-01 8.902E-07 
15.45 9.859E-07 7.521E-10 1.840E-10 3.203E-01 8.915E-07 

Table 8. (continued). 
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Conventional process samples  Rapid process samples 

Depth (mbsf) XCaCO3 (mol kg-1) Depth (mbsf) XCaCO3 (mol kg-1) 
0.55 1.227E-04 0.05 -9.629E-06 
1.05 1.290E-04 1.45 -2.640E-05 
2.05 9.194E-05 2.95 3.551E-05 
2.55 1.286E-04 4.45 5.762E-05 
3.55 1.078E-04 5.95 1.281E-04 
4.05 1.215E-04 7.45 9.670E-05 
5.05 1.059E-04 9.45 8.132E-05 
5.55 1.332E-04 10.95 6.369E-05 
6.55 1.308E-04 12.45 8.038E-05 
7.05 7.662E-05 13.95 9.114E-05 
7.76 2.430E-05 15.45 6.216E-05 
8.45 1.140E-04 
9.05 1.302E-04 

10.05 7.246E-05 
10.55 9.799E-05 
11.55 1.427E-04 
12.05 1.628E-04 
13.05 1.472E-04 
13.55 1.129E-04 
14.55 9.184E-05 
15.05 1.286E-04 
15.48 2.601E-05 

Table 9. Amount of calcium carbonate precipitation post sample recovery for 
conventionally and rapidly sampled pore waters. 
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Depth XCaCO3 TA DIC Ca2+ H2CO3 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 

0.55 1.227E-04 2.759E-03 2.656E-03 1.043E-02 3.465E-05 
1.05 1.290E-04 2.751E-03 2.645E-03 1.027E-02 3.391E-05 
2.05 9.194E-05 2.687E-03 2.578E-03 1.018E-02 3.193E-05 
2.55 1.286E-04 2.741E-03 2.637E-03 1.035E-02 3.413E-05 
3.55 1.078E-04 2.644E-03 2.535E-03 1.022E-02 3.105E-05 
4.05 1.215E-04 2.714E-03 2.606E-03 1.014E-02 3.271E-05 
5.05 1.059E-04 2.732E-03 2.628E-03 1.038E-02 3.409E-05 
5.55 1.332E-04 2.764E-03 2.668E-03 1.068E-02 3.629E-05 
6.55 1.308E-04 2.722E-03 2.619E-03 1.035E-02 3.395E-05 
7.05 7.662E-05 2.720E-03 2.620E-03 1.053E-02 3.459E-05 
7.76 2.430E-05 2.672E-03 2.569E-03 1.045E-02 3.301E-05 
8.45 1.140E-04 2.620E-03 2.511E-03 1.022E-02 3.086E-05 
9.05 1.302E-04 2.666E-03 2.556E-03 1.004E-02 3.145E-05 

10.05 7.246E-05 2.582E-03 2.465E-03 9.901E-03 2.878E-05 
10.55 9.799E-05 2.633E-03 2.520E-03 9.967E-03 3.038E-05 
11.55 1.427E-04 2.691E-03 2.579E-03 9.861E-03 3.162E-05 
12.05 1.628E-04 2.696E-03 2.582E-03 9.711E-03 3.124E-05 
13.05 1.472E-04 2.644E-03 2.527E-03 9.678E-03 2.982E-05 
13.55 1.129E-04 2.560E-03 2.440E-03 9.662E-03 2.782E-05 
14.55 9.184E-05 2.502E-03 2.383E-03 9.915E-03 2.722E-05 
15.05 1.286E-04 2.581E-03 2.460E-03 9.597E-03 2.815E-05 
15.48 2.601E-05 2.464E-03 2.346E-03 1.007E-02 2.685E-05 

Table 10. Results of the calculated in situ pore water chemical concentration at Site 
U1368 for the conventionally handled samples. The amount of precipitation of 
calcium carbonate (XCaCO3) we had to correct for to reconstruct in-situ abundances is 
also reported. 
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Depth HCO3
- CO3

2- OH- H+ pH 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg)  

0.55 2.535E-03 8.648E-05 5.312E-07 1.650E-08 7.782 
1.05 2.524E-03 8.776E-05 5.456E-07 1.627E-08 7.788 
2.05 2.458E-03 8.855E-05 5.694E-07 1.579E-08 7.802 
2.55 2.516E-03 8.681E-05 5.477E-07 1.650E-08 7.783 
3.55 2.415E-03 8.819E-05 5.833E-07 1.570E-08 7.804 
4.05 2.485E-03 8.856E-05 5.720E-07 1.609E-08 7.794 
5.05 2.507E-03 8.670E-05 5.588E-07 1.668E-08 7.778 
5.55 2.548E-03 8.416E-05 5.359E-07 1.750E-08 7.757 
6.55 2.498E-03 8.658E-05 5.665E-07 1.674E-08 7.776 
7.05 2.500E-03 8.523E-05 5.591E-07 1.707E-08 7.768 
7.76 2.450E-03 8.582E-05 5.777E-07 1.666E-08 7.778 
8.45 2.393E-03 8.762E-05 6.071E-07 1.598E-08 7.796 
9.05 2.435E-03 8.915E-05 6.096E-07 1.603E-08 7.795 

10.05 2.345E-03 9.063E-05 6.476E-07 1.529E-08 7.815 
10.55 2.400E-03 9.001E-05 6.308E-07 1.580E-08 7.801 
11.55 2.457E-03 9.060E-05 6.255E-07 1.610E-08 7.793 
12.05 2.459E-03 9.194E-05 6.365E-07 1.592E-08 7.798 
13.05 2.405E-03 9.235E-05 6.582E-07 1.559E-08 7.807 
13.55 2.320E-03 9.203E-05 6.832E-07 1.508E-08 7.822 
14.55 2.266E-03 9.001E-05 6.885E-07 1.517E-08 7.819 
15.05 2.339E-03 9.278E-05 6.902E-07 1.521E-08 7.818 
15.48 2.230E-03 8.855E-05 6.928E-07 1.524E-08 7.817 

Table 10. (continued). 
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Table 10. (continued). 
 
 

 

 

 

 

 

 

 

 

 

 

 

Depth H3PO4 H2PO4
- HPO4

2- PO4
3- B(OH)4

- SiO(OH)3
- 

(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 
0.55 1.525E-14 2.871E-08 1.644E-06 6.804E-08 4.597E-05 2.220E-06 
1.05 1.467E-14 2.801E-08 1.631E-06 6.887E-08 4.668E-05 2.425E-06 
2.05 1.104E-14 2.173E-08 1.308E-06 5.727E-08 4.811E-05 2.617E-06 
2.55 1.118E-14 2.105E-08 1.214E-06 5.110E-08 4.630E-05 2.440E-06 
3.55 8.958E-15 1.774E-08 1.079E-06 4.790E-08 4.857E-05 2.294E-06 
4.05 8.393E-15 1.621E-08 9.628E-07 4.195E-08 4.755E-05 2.383E-06 
5.05 1.491E-14 2.778E-08 1.596E-06 6.737E-08 4.621E-05 2.907E-06 
5.55 8.756E-15 1.555E-08 8.531E-07 3.447E-08 4.435E-05 2.469E-06 
6.55 8.472E-15 1.573E-08 9.037E-07 3.843E-08 4.624E-05 2.536E-06 
7.05 8.798E-15 1.602E-08 9.041E-07 3.780E-08 4.552E-05 2.521E-06 
7.76 8.249E-15 1.539E-08 8.915E-07 3.836E-08 4.661E-05 2.628E-06 
8.45 6.152E-15 1.196E-08 7.239E-07 3.264E-08 4.844E-05 2.486E-06 
9.05 6.573E-15 1.274E-08 7.698E-07 3.473E-08 4.839E-05 2.369E-06 

10.05 8.759E-15 1.781E-08 1.132E-06 5.374E-08 5.063E-05 2.792E-06 
10.55 6.323E-15 1.244E-08 7.669E-07 3.536E-08 4.929E-05 2.626E-06 
11.55 7.995E-15 1.543E-08 9.345E-07 4.262E-08 4.855E-05 2.884E-06 
12.05 6.024E-15 1.176E-08 7.215E-07 3.340E-08 4.911E-05 2.499E-06 
13.05 7.607E-15 1.517E-08 9.534E-07 4.530E-08 5.019E-05 2.543E-06 
13.55 6.149E-15 1.267E-08 8.231E-07 4.066E-08 5.168E-05 2.795E-06 
14.55 7.248E-15 1.485E-08 9.629E-07 4.747E-08 5.161E-05 2.586E-06 
15.05 8.599E-15 1.756E-08 1.137E-06 5.612E-08 5.153E-05 2.818E-06 
15.48 1.117E-14 2.277E-08 1.473E-06 7.273E-08 5.153E-05 2.344E-06 
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Table 11. Analytical uncertainty estimates (1σ) associated with the calculated in situ 
pore water chemical concentration at Site U1368 for the conventionally handled 
samples. 
 

 

 

 

 

 

 

 

 

 

 

Depth XCaCO3 TA DIC Ca2+ 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 

     
0.55 2.298E-05 6.466E-05 1.882E-05 6.751E-05 
1.05 2.281E-05 6.427E-05 1.869E-05 6.659E-05 
2.05 2.265E-05 6.345E-05 1.841E-05 6.603E-05 
2.55 2.273E-05 6.405E-05 1.864E-05 6.700E-05 
3.55 2.207E-05 6.202E-05 1.800E-05 6.606E-05 
4.05 2.255E-05 6.348E-05 1.844E-05 6.575E-05 
5.05 2.292E-05 6.431E-05 1.870E-05 6.722E-05 
5.55 2.294E-05 6.464E-05 1.884E-05 6.890E-05 
6.55 2.253E-05 6.354E-05 1.849E-05 6.696E-05 
7.05 2.320E-05 6.475E-05 1.883E-05 6.814E-05 
7.76 2.338E-05 6.466E-05 1.879E-05 6.776E-05 
8.45 2.177E-05 6.128E-05 1.778E-05 6.591E-05 
9.05 2.198E-05 6.204E-05 1.801E-05 6.499E-05 

10.05 2.186E-05 6.110E-05 1.768E-05 6.419E-05 
10.55 2.205E-05 6.189E-05 1.794E-05 6.462E-05 
11.55 2.203E-05 6.234E-05 1.810E-05 6.402E-05 
12.05 2.183E-05 6.200E-05 1.800E-05 6.311E-05 
13.05 2.152E-05 6.099E-05 1.768E-05 6.281E-05 
13.55 2.114E-05 5.960E-05 1.724E-05 6.260E-05 
14.55 2.088E-05 5.864E-05 1.695E-05 6.393E-05 
15.05 2.114E-05 5.976E-05 1.729E-05 6.223E-05 
15.48 2.135E-05 5.918E-05 1.711E-05 6.494E-05 
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Depth XCaCO3 TA DIC Ca2+ H2CO3 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 

      
0.05 -9.629E-06 2.663E-03 2.544E-03 9.784E-03 2.967E-05 
1.45 -2.640E-05 2.649E-03 2.536E-03 1.008E-02 3.054E-05 
2.95 3.551E-05 2.727E-03 2.623E-03 1.037E-02 3.383E-05 
4.45 5.762E-05 2.811E-03 2.710E-03 1.035E-02 3.618E-05 
5.95 1.281E-04 2.861E-03 2.762E-03 1.022E-02 3.724E-05 
7.45 9.670E-05 2.845E-03 2.749E-03 1.045E-02 3.789E-05 
9.45 8.132E-05 2.808E-03 2.706E-03 1.015E-02 3.580E-05 

10.95 6.369E-05 2.765E-03 2.660E-03 1.005E-02 3.440E-05 
12.45 8.038E-05 2.686E-03 2.575E-03 9.898E-03 3.172E-05 
13.95 9.114E-05 2.717E-03 2.609E-03 9.921E-03 3.280E-05 
15.45 6.216E-05 2.552E-03 2.436E-03 9.945E-03 2.863E-05 

Table 12. Results of the calculated in situ pore water chemical concentration at Site 
U1368 for the rapidly handled samples. The amount of precipitation of calcium 
carbonate (XCaCO3) we had to correct for to reconstruct in-situ abundances is also 
reported. 
 

 

 

Depth HCO3
- CO3

2- OH- H+ pH 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg)  

      
0.05 2.422E-03 9.227E-05 5.930E-07 1.479E-08 7.830 
1.45 2.416E-03 8.930E-05 5.819E-07 1.533E-08 7.814 
2.95 2.503E-03 8.672E-05 5.515E-07 1.647E-08 7.783 
4.45 2.587E-03 8.689E-05 5.404E-07 1.712E-08 7.766 
5.95 2.637E-03 8.794E-05 5.425E-07 1.737E-08 7.760 
7.45 2.625E-03 8.579E-05 5.378E-07 1.783E-08 7.749 
9.45 2.582E-03 8.810E-05 5.699E-07 1.723E-08 7.764 

10.95 2.537E-03 8.868E-05 5.905E-07 1.692E-08 7.772 
12.45 2.453E-03 9.014E-05 6.275E-07 1.622E-08 7.790 
13.95 2.486E-03 8.972E-05 6.232E-07 1.662E-08 7.779 
15.45 2.318E-03 8.965E-05 6.749E-07 1.564E-08 7.806 

Table 12. (continued). 

 

 

 

 
 



 

47 
 

 
 
 
 
 
 
 
 
 

Table 12. (continued). 
 
 
 

Depth XCaCO3 TA DIC Ca2+ 
(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 

     
0.05 2.361E-05 6.497E-05 1.882E-05 6.417E-05 
1.45 2.373E-05 6.509E-05 1.888E-05 6.587E-05 
2.95 2.374E-05 6.579E-05 1.912E-05 6.748E-05 
4.45 2.425E-05 6.741E-05 1.961E-05 6.754E-05 
5.95 2.385E-05 6.712E-05 1.956E-05 6.668E-05 
7.45 2.410E-05 6.744E-05 1.965E-05 6.802E-05 
9.45 2.392E-05 6.679E-05 1.943E-05 6.630E-05 

10.95 2.373E-05 6.607E-05 1.920E-05 6.570E-05 
12.45 2.275E-05 6.361E-05 1.845E-05 6.448E-05 
13.95 2.292E-05 6.419E-05 1.863E-05 6.467E-05 
15.45 2.172E-05 6.060E-05 1.753E-05 6.438E-05 

Table 13. Analytical uncertainty estimates (1σ) associated with the calculated in situ 
pore water chemical concentration at Site U1368 for the rapidly handled samples.  
 
 
 
 
 
 
 
 
 
 
 

Depth H3PO4 H2PO4
- HPO4

2- PO4
3- B(OH)4

- SiO(OH)3
- 

(mbsf) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) (mol/kg) 
       
0.05 1.568E-14 3.296E-08 2.106E-06 9.716E-08 5.065E-05 2.609E-06 
1.45 1.321E-14 2.679E-08 1.658E-06 7.452E-08 4.927E-05 2.530E-06 
2.95 1.233E-14 2.326E-08 1.345E-06 5.682E-08 4.644E-05 2.492E-06 
4.45 1.513E-14 2.746E-08 1.534E-06 6.290E-08 4.507E-05 2.823E-06 
5.95 8.321E-15 1.489E-08 8.237E-07 3.359E-08 4.469E-05 2.485E-06 
7.45 1.316E-14 2.293E-08 1.241E-06 4.981E-08 4.383E-05 3.047E-06 
9.45 8.304E-15 1.498E-08 8.429E-07 3.548E-08 4.544E-05 2.590E-06 

10.95 8.538E-15 1.568E-08 9.019E-07 3.906E-08 4.636E-05 2.601E-06 
12.45 7.732E-15 1.481E-08 8.927E-07 4.066E-08 4.835E-05 2.794E-06 
13.95 8.497E-15 1.588E-08 9.378E-07 4.211E-08 4.751E-05 2.711E-06 
15.45 9.273E-15 1.842E-08 1.161E-06 5.585E-08 5.037E-05 2.640E-06 
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Depth DIC TA Ca2+ Brackets for pooled 
standard deviation 

(mbsf) (mol/kg) (mol/kg) (mol/kg)   
      

0.05 2.544E-03 2.663E-03 9.784E-03 
  
  

 
0.55 2.656E-03 2.759E-03 1.043E-02   
1.05 2.645E-03 2.751E-03 1.027E-02   

  
  

1.45 2.536E-03 2.649E-03 1.008E-02   
2.05 2.578E-03 2.687E-03 1.018E-02   
2.55 2.637E-03 2.741E-03 1.035E-02   

  
  

  
2.95 2.623E-03 2.727E-03 1.037E-02   
3.55 2.535E-03 2.644E-03 1.022E-02   
4.05 2.606E-03 2.714E-03 1.014E-02     

  
  

4.45 2.710E-03 2.811E-03 1.035E-02   
5.05 2.628E-03 2.732E-03 1.038E-02   
5.55 2.668E-03 2.764E-03 1.068E-02   

  
  

  
5.95 2.762E-03 2.861E-03 1.022E-02   
6.55 2.619E-03 2.722E-03 1.035E-02   
7.05 2.620E-03 2.720E-03 1.053E-02     

  
  
  

7.45 2.749E-03 2.845E-03 1.045E-02   
7.76 2.569E-03 2.672E-03 1.045E-02   
8.45 2.511E-03 2.620E-03 1.022E-02   
9.05 2.556E-03 2.666E-03 1.004E-02   

  
  

  
9.45 2.706E-03 2.808E-03 1.015E-02   

10.05 2.465E-03 2.582E-03 9.901E-03   
10.55 2.520E-03 2.633E-03 9.967E-03     

  
  

10.95 2.660E-03 2.765E-03 1.005E-02   
11.55 2.579E-03 2.691E-03 9.861E-03   
12.05 2.582E-03 2.696E-03 9.711E-03   

  
  

  
12.45 2.575E-03 2.686E-03 9.898E-03   
13.05 2.527E-03 2.644E-03 9.678E-03   
13.55 2.440E-03 2.560E-03 9.662E-03     

  
  

13.95 2.609E-03 2.717E-03 9.921E-03   
14.55 2.383E-03 2.502E-03 9.915E-03   
15.05 2.460E-03 2.581E-03 9.597E-03   

  
  

  
15.45 2.436E-03 2.552E-03 9.945E-03   
15.48 2.346E-03 2.464E-03 1.007E-02   

      
POOLED 

ST. 
DEV. 

8.428E-05 7.953E-05 1.606E-04 
  

Table 14. Results of the pooled standard deviation calculation of the in-situ calculated 
abundances of DIC, TA and Ca between conventionally and rapidly processed 
samples at Site U1368. 
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APPENDIX  

Iteration method for the calculation of the in-situ concentration of carbonate 

system components 

 
A.1. Conceptual Framework 

An iteration method was developed to characterize the in-situ pore water 

carbonate system based on shipboard measured concentrations of [DIC], [TA], and 

[Ca2+]. This iteration method is based on two assumptions: the dissolved carbonate 

system is at equilibrium in-situ and CaCO3 (calcite) is saturated in the sediment. The 

central concept upon which the method is built, is that at equilibrium, if [DIC], [TA], 

and [Ca2+] are measured, in-situ pH, [CO2(aq)], [HCO3
-], and [CO3

2–] are 

mathematically over-determined if carbonate is saturated in-situ. This over-determined 

state of the carbonate system allows an additional variable, in this case the amount of 

CaCO3 precipitated during core recovery, sampling, and storage, to be uniquely 

determined. By calculating the amount CaCO3 lost during sample recovery from the 

seafloor, we can correct the measured [DIC] and [TA] to actual in-situ values. Once 

in-situ [DIC] and [TA] are known, in-situ pH, the remaining carbonate-system 

components (i.e. [CO2(aq)], [HCO3
-], [CO3

2-], etc.) and the pH-dependent 

concentrations of minor species included in the alkalinity term (i.e. 𝐵(𝑂𝐻)4! , 

𝑆𝑖(𝑂𝐻)3! , 𝐻𝑆𝑂4
! , etc.) can be solved for. 
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A.2 Method 

We consider following set of chemical reactions to predominate in the 

porewater: 

CO2
∗ + H2O  

K1
∗

H! +   HCO3
!                                (1) 

HCO3
! K2

∗

H! +   CO3
2!                                 (2) 

H2O
Kw∗

H! +   OH!                           (3) 

CaCO3
Ksp(calcite)
∗

Ca2! +   CO3
2!                  (4) 

B(OH)3 +   H2O
KB
∗

H! +   B(OH)4!                         (5) 

HSO4
! KS

∗

H! +   SO4
2!                     (6) 

Si(OH)4
KSi
∗

H! +   SiO(OH)3!                                (7) 

H3PO4
K1P
∗

H! +   H2PO4
!              (8) 

H2PO4
! K2P

∗

H! +   HPO4
2!                        (9) 

HPO4
2! K3P

∗

H! +   PO4
3!                               (10) 

 
With 𝐶𝑂2

∗, a hypothetical chemical species grouping the unionized dissolved 

carbon species. K1
*, K2

*, KW, KB
*, KS

*, KSi
*, K1P

*, K2P
* and K3P

* represent the apparent 

dissociation constants of the considered species at in-situ temperature, salinity and 

pressure. And Ksp(calcite)∗  is the apparent solubility constant of calcite at in-situ 

temperature, salinity and pressure. 

 
By measuring three parameters of the carbonate system (i.e. [DIC], [TA], and 

[Ca2+]) the system is over-determined in the field, allowing a third variable ‘x’ to be 

uniquely determined. We define x (in moles/mass of pore fluid) as the amount of 
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CaCO3 that precipitated during sediment recovery from the seafloor and sample 

handling. In that case in-situ [DIC], [TA] and [Ca2+] can be expressed as:  

[DIC] = [DIC]measured + x                               (11) 

[TA] = [TA]measured + 2x                   (12) 

[Ca2+] = [Ca2+]measured + x                   (13) 

 
Where [DIC me]measured, [TA]measured and [Ca2+]measured represent asured values 

in the sample pore fluid. Additional constraints to above set of equations are provided 

by assuming CaCO3 saturation in the sediment and equilibrium conditions in-situ: 

 
[CO3

2-]*([Ca2+]measured + x) = Ksp(calcite)∗                        (14) 

CO3
2! =    K2

∗ HCO3
!

H!
                      (15) 

H2CO3 =    H! HCO3
!

K1
∗                                (16) 

OH! =    Kw∗

H!
                     (17) 

B(OH)3 = B T
KB
∗

H!
!1

                    (18) 

B(OH)4! = B T −    B(OH)3                      (19) 

HPO4
2! =    P TK1P

∗ K2P
∗ H!

H!
3
!  K1P∗ H!

2
!K1P∗ K2P

∗ H! !K1P∗ K2P
∗ K3P

∗         (20) 

H2PO4
! =    P TK1P

∗ H!
2

H!
3
!  K1P∗ H!

2
!K1P∗ K2P

∗ H! !K1P∗ K2P
∗ K3P

∗         (21) 

H3PO4 =    P T H!
3

H!
3
!  K1P∗ H!

2
!K1P∗ K2P

∗ H! !K1P∗ K2P
∗ K3P

∗         (22) 

PO4
3! =    P TK1P

∗ K2P
∗ K3P

∗

H!
3
!  K1P∗ H!

2
!K1P∗ K2P

∗ H! !K1P∗ K2P
∗ K3P

∗                  (23) 

Si(OH)3! =    Si T

(1! H!

KSi
∗ )

              (24) 

HSO4
! =    H! SO4

2!

KS
∗            (25) 



 

52 
 

H! free =    H! − HSO4
! =    H!

(1!
SO4

2!

KS
∗ )

                        (26) 

 

Where 𝐵 !, 𝑃 ! and 𝑆𝑖 ! represent the total concentration of boric acid, 

phosphate and silicic acid, respectively.  

 
We solve for x and the remaining chemical species of interest using a 

combination of mass balance, equilibrium reactions between species in solution and 

thermodynamics relationships. Following equations describing these relationships 

form the core upon which the iteration method is based: 

 
Mass balance of dissolved inorganic carbon species: 

[DIC] ≡ [H2CO3] + [HCO3
-] + [CO3

2-]                 (27) 

 
Expression of total alkalinity as defined by Dickson (2007): 

[TA] ≡ [HCO3
-]+ 2[CO3

2-] + [B(OH)4
-] + [OH-] + [HPO4

2-]+ 2[PO4
3-] + [SiO(OH)3

-] + 

[NH3] + [HS-] +… – [H+]f  - [HSO4
-] – [HF] – [H3PO4] – …               (28) 

 
For ease of representation we group some of constituents of [TA] in Eq. (28) 

that are assumed to be of minor contribution to the total alkalinity, relative to the 

contribution of [HCO3
-] and [CO3

2], into a so-called fictitious minor species term: 

 
[minor species] = [H2CO3] – [OH-] – [HPO4

2-] – 2[PO4
3-] – [SiO(OH)3

-] – [NH3] – 

[HS-] + [H+]f  + [HSO4
-] + [HF] + [H3PO4]                          (29) 

 
Reorganizing Eq. (11) through Eq. (13) and Eq. (27) through Eq. (29): 

[TA]measured–   [DIC]measured   +   𝐱   =    CO3
2! +    [B(OH)4!]− minor  species             (30) 
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2[DIC]measured   −    [TA]measured =    HCO3
! + H2CO3 − B OH 4

! + minor  species   

(31) 

 
Reorganizing Eq. (30): 

γ =    [TA]!"#$%&"'–   [DIC]!"#$%&"'                      (32) 

α =   γ+    minor  species                      (33) 

α+ x = CO!!! + B(OH)!!             (34) 

β =    HCO!!             (35) 

α+ x =    β!!
∗

!!
+ !(!")! !!

∗

!!
          (36) 

 
           Reorganizing Eq. (31): 

β = 2[DIC]!"#$%&"' − [TA]!"#$%&"' − H!CO! + [B(OH)!!]− minor  species    (37)         

 
Eliminate 𝐻!  in Eq. (36) and Eq. (14) and set them equal to each other: 

Ca!! !"!"#$%& + 𝐱 β
!!∗

!!"(!"#!$%&)
∗ = β!!∗!   !(!")! !!

∗

α!𝐱         (38) 

 
Eq. (11) through Eq. (38) form a determined system that can be solved for x. 

Reorganizing Eq. (38) results in a 2nd order polynomial of the form  

Ax(x²)+Bx(x)+Cx =0 with following coefficients: 

 
Ax = 1              (39) 

Bx =   α+    Ca!! !"#$%&"'                               (40) 

 Cx =   −1
!! ! !" ! !!

∗

!!∗β
K!"(!"#!$%&)∗ + α Ca!! !"#$%&"'       (41) 

 
This polynomial can be solved for x: 
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𝐱 =   !!"!(!!
!!!"#$#)!/!

!"#
                      (42) 

 
To avoid enormous polynomials we develop an iteration procedure that 

neglects the minor species in the first iteration round. In the second iteration step, 

minor species determined in this first iteration will be incorporated in the equation set. 

The following iterations will subsequently refine the calculated species concentrations 

until a stable solution is attained. 

 

First iteration: 

(1) An initial estimate of the in-situ hydrogen concentration is obtained by inputting a 

ballpark estimate of the in-situ pH: H! ! =   10!!".  

(2) Ignoring the minor species term in Eq. (31) results in a first estimate of the in-situ 

bicarbonate concentration: HCO!! ! = 2 DIC !"#$%&"' −    TA !"#$%&"'. 

(3) Based on the obtained H! ! and HCO!! ! we solve for the remaining species (i.e. 

H!CO! , OH! , B(OH)!!  etc.) using expressions that assume equilibrium between 

species in solution (Eq. (15) through Eq. (26)).  

 (4) Adding the minor species concentrations up results in a first estimate of the minor 

species term (i.e. minor  species !). In the case of Site U1368 (see manuscript) we 

assume [NH3], [HF-] and [HS] to be negligible and therefore not solved for.  

(5) Solve for 𝐱 ! based on Eq. (30). 
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Second and subsequent iterations: 

(6) From the left hand side of Eq. (38) and from 𝐱 ! we can refine our hydrogen 

concentration estimate: 

 H! ! = Ca!! !"#$%&"' +    x ! β
!!∗

!!"(!"#!$%&)
∗                                        (43) 

(7) Solve for bicarbonate including the minor species concentrations, Eq. (37), 

determined in the former iteration step:  

HCO!! ! = 2 DIC !"#$%&"' −    TA !"#$%&"'   −    H!CO! ! − minor  species !    (44) 

(8) Solve for remaining species as in step (3). 

(9) Solve for 𝐱 ! (Eq. (30)) including the refined estimates of the minor species. 

(10) Repeat steps 6 to 9 until there is convergence. We regard the obtained solution as 

stable as the difference in 𝐱  between former and subsequent iterations is not greater 

than 0.000001. Such stable solution was obtained in less than 15 iterations in the 

example discussed in the paper. 

 

We validate the result of the iteration algorithm by checking that mass balance 

relationships for [DIC] and [TA] are conserved: 

[DIC] = [DIC]measured + [x]stable = [H2CO3]stable + [HCO3
-]stable + [CO3

2-]stable             (45) 

[TA] = [TA]measured+ 2[x] stable = [HCO3
-]stable + 2[CO3

2-]stable + [B(OH)4
-]stable + [OH-

]stable + [HPO4
2-]stable + 2[PO4

3-]stable + [SiO(OH)3
-]stable – H! fstable - [HSO4

-]stable – 

[H3PO4]stable                       (46) 
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A.3. Data and Parameters 

 

Shipboard data: pH, [DIC] (mM), [TA] (mM), [Ca2+] (mM), [Cl-] (mM), [SO!!!] 

(mM), [P]T (µM) and [Si]T (µM) measurements are provided by the Shipboard 

Scientific Party (2011) of IODP Leg 329. Physical property data include bottom water 

temperature (°C) and the sediment thermal gradient (°C/km). 

 
Laboratory conditions: We assume room temperature (~20°C), standard atmospheric 

pressure (~ 1 Atm) and a salinity value of 34.7 psu as characteristic laboratory 

conditions. 

 
In-situ temperature, density, salinity, and pressure calculation of the pore water:  

The in-situ downhole temperature (t,°C) is given by: 

t °C =    t!"##"$%&#'( °C +    t!"#$%&'_!"#$%&'(
°!
!"

∗ z(km)       (47) 

Where z is de sediment depth in meter below seafloor  (mbsf). 

 
In-situ pressure (P) is assumed to be hydrostatic and approximated by: 

P (Pa) = Patm + Phydrostatic + g ρpore water z         (48) 

 
In-situ pore water salinity is approximated based on shipboard measured 

chloride concentration (mM) and calculated in-situ density values. Therefore, an 

iteration procedure was developed to simultaneously calculate the in-situ density, 

followed by the in-situ salinity of the porewater: 
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(1) Based on expressions derived by Pilson (1998) we first determine the in-situ pore 

water density, ρ(S, t, P) in kg/m3, from the in situ temperature (t, °C), pressure (P, 

bars), and a salinity (S) of 34.7 psu: 

ρ S, t,P = ρ !,!,!

!! !
! !,!,!

                                 (49) 

With : 

ρ(S, t, 0) = 999.842594 + 6.793952 t/102 – 9.095290 t2/103 +1.001685 t3/104 –

1.120083 t4/106 + 6.536332 t5/109 + (8.24493/10 – 4.0899 t/103 + 7.6438 t2/105 – 

8.2467 t3/107 + 5.3875 t4/109) S + (-5.72466/103 + 1.0227 t/104 – 1.6546 

t2/106)  S!/! + 4.8314 S2/104                                (50) 

 
K(S, t, P) = K(S, t, 0) + AP + BP2         (51) 

Where: 

K(S, t, 0) = 19652.21 + 148.4206 t – 2.327105 t2 + 1.360477 t3/102 –5.155288t4/105  

+ (54.6746 – 0.603459 t + 1.09987 t2/102 – 6.1670 t3/105) S + (7.944/102 + 1.6483 

t/102 – 5.3009 t2/104)  S!/!                     (52) 

A = 3.239908 + 1.43713 t/103 + 1.16092 t2/104 – 5.77905 t3/107 + (2.2838/103 – 

1.0981 t/105 – 1.6078 t2/106) S + 1.91075                            (53) 

B = 8.50935/105 – 6.12293 t/106 + 5.2787 t2/108 + (-9.9348/107 + 2.0816 t/108 + 

9.1697 t2/1010) S;                     (54) 

(2) Based on the obtained in-situ density, the in-situ salinity (S) is calculated: 

S =   35.453 Cl!    !"""
ρ(!,!,!)

!"""
!!".!"

                      (55) 

(3) Based on the new in-situ salinity estimate we refine the in-situ pore water density 

ρ(S, t, P) by substituting S into Eq. (49).  
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(4) Substitute the new ρ(S, t, P) into Eq.  (55) to recalculate S; 

(5) Repeat Steps (3 and 4) until ρ(S, t, P) converges, in which case the difference 

between ρ(S, t, P) calculated in the former and subsequent iteration is negligible (~ < 1 

kg m-3).  

 

Calculation of the apparent equilibrium constants at in-situ conditions 

Equilibrium constants (i.e. K1, K2, KW, KSp, KB, KS, KSi, K1P, K2P, and K3P) 

were first determined at in-situ temperature and salinity based on expressions 

formulated on the total hydrogen scale by Dickson (2007): 

 
ln !!

!!
= − !"!!.!"

!
+   61.2172− 9.67770 ln T + 0.011555S− 0.0001152S²   (56) 

 
ln !!

!!
= − !"#.!"

!
− 25.9290+ 3.16967 ln T + 0.01781S− 0.0001122S²   (57) 

ln !!
!!

=

  − !"#$%.!"
!

+ 148.952− 23.652 ln T + !!".!"
!

− 5.977+ 1.0495ln  (T) S!/! −

0.01615S             (58) 

ln !!
!!

=

!!"###.!"!!"#$.!"!!/!!!!.!"#$!!.!!"!!/!!!.!""#$²
!

+ 148.0248+ 137.1942S
!
! +

1.62142S + −14.4344− 25.08S
!
! − 0.2474S ln T + 0.053105S

!
! − 0.01615S 

(59) 
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lgK!"(!"#!$%&) =

  −171.9065− 0.077993T+ !"#$.!"#
!

+ 71.595 lg T +

−0.77712+ 0.0028426T+ !"#.!"
!

S!.! − 0.07711S+ 0.0041249S!.!           (60) 

ln !!"
!!

=   − !"#$.!"#
!

+ 115.525− 18.453 ln T + − !"#.!"#
!

+ 0.69181 S
!
! +

− !.!"!#$
!

− 0.01844 S             (61) 

ln !!"
!!

= − !!"#.!"#
!

+ 172.0883− 27.927 ln T + − !"#.!"#
!

+ 1.3566 S
!
! +

!.!"!!#
!

− 0.05778 S             (62) 

ln !!"
!!

= − !"#".!"
!

− 18.141+ !".!"#$%
!

+ 2.81197 S
!
! + − !!.!!"#$

!
+ 0.09984 S 

(63) 

ln !!"
!!

=   − !"#$.!
!

+ 117.385− 19.334 ln T + − !"#.!"
!

+ 3.5913 !
!!

!
+

ln  (1− 0.001005S)          (64) 

 
ln !!!

!!
=

  − !"#$.!
!

+ 141.328− 23.093 ln T +

− !"#$%
!

+ 324.57− 47.986 ln T !
!!

!/!
+

!"#$#
!

− 771.54+ 114.723 ln T !
!! − !"#$

! !
!!

!
!
+ !""#

! !
!!

! + ln  (1− 0.001005S)    

(65)  
 

 

Secondly, apparent equilibrium constants were adapted to account for in-situ 

pressures using the general formulation derived by Millero (1983): 

 
ln !!∗

!!_!"#
= −   ∆! !,!!"#

!"
P−   P!"# +

!.!∆κ !,!!"#
!"

(P− P!"#)²              (66) 
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With: 

K!∗  : The dissociation constant of species x at the reference pressure P!"# (1bar). 

K!_!"#: The dissociation constant of species x at in situ pressure P.  

∆V T,P!"# : The change in partial molar volume for the reaction in seawater under the 

condition T,P!"# . 

∆κ T,P!"# : The change of partial molar compressibility of the reaction in seawater 

under the condition T,P!"# . 

R: the gas constant (83.144 cm3 bar mol-1 K-1). 

Expressions for ∆V T,P!"#  and ∆κ T,P!"#  can be found in Millero (1983) and Zeebe 

and Wolf-Gladrow (2001). 
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