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Quantum integrability and action operators in spin dynamics

Stefan Weigert! and Gerhard Miiller?

! Institut fir Physik, Universitit Basel, CH-4056 Basel, Switzerland.
2Department of Physics, University of Rhode Island, Kingston RI 02881-0814, USA.

A new formulation of the quantum integrability condition for spin systems is proposed. It elim-
inates the ambiguities inherent in formulations derived from a direct transcription of the classical
integrability criterion. In the new formulation, quantum integrability of an N-spin system depends
on the existence of a unitary transformation which expresses the Hamiltonian as a function of N
action operators. All operators are understood to be algebraic expressions of the spin-components
with no restriction to any finite-dimensional matrix representation. The consequences of quantum
(non-)integrability on the structure of quantum invariants are discussed in comparison with the
consequences of classical (non-)integrability on the corresponding classical invariants. Our results
indicate that quantum integrability is universal for systems with N = 1 and contingent for systems

with N > 2.

I. INTRODUCTION

In the early days of analytical dynamics, integrability
was understood to be primarily a question of the devel-
opment and application of adequate mathematical tools.
Gradually it became clear that it is, in fact, an intrinsic
property which some dynamical systems possess and oth-
ers lack. The emerging awareness that seemingly simple
dynamical systems will forever elude an analytical solu-
tion was painful to researchers at the time, only partly
alleviated by their accomplishment of having found a
general integrability condition for Hamiltonian systems.
This criterion made it possible to identify integrable sys-
tems by means which amount to less than an explicit
solution. [1]

In today’s world of high-speed computers, the question
of analytical solvability has lost much of its importance,
but the integrability condition as a discriminant between
two classes of systems with qualitatively distinct dynam-
ical properties has remained at the core of research in
nonlinear dynamics. The far-reaching implications of in-
tegrability and the dramatic consequences of nonintegra-
bility have been elucidated in great detail by a combina-
tion of analytical and numerical methods.[2]

For any given (integrable or nonintegrable) classical
Hamiltonian system, a family of quantum-mechanical
systems with corresponding dynamical variables can be
constructed by well-established procedures based on the
correspondence principle. This raises the question as to
what extent the classical attribute of integrability or the
lack of it is still reflected in the properties of the quan-
tized system.

Quantum chaos research has revealed a wealth of phe-
nomena which distinguish quantized nonintegrable sys-
tems from quantized integrable systems. [3-6] Are the
signatures of quantum chaos quantum manifestations of
classical nonintegrability or manifestations of quantum
nonintegrability? The second alternative implies the ex-
istence of a quantum integrability condition which can
stand on its own, i.e. which is not merely a classical
label attached to a quantized system.

The classical integrability condition for a system with
N degrees of freedom requires the existence of N func-
tionally independent analytic invariants in involution.
When this condition is translated offhandedly into the
requirement that there exist N independent commuting
operators, then it fails to state two important qualifica-
tions: (i) Which operators should be counted? (ii) What
makes two operators independent? Various attempts at
clarifying these points can be found in the literature, [7—
9] but none seems to be watertight. [10]

In this paper we present an alternative formulation of
the quantum integrability condition, which avoids known
loopholes and ambiguities. It does not lean on any clas-
sical concept, yet its predictions appear to be consistent
with the classical criterion in the sense that quantized
integrable systems are quantum integrable and quan-
tized nonintegrable ones quantum nonintegrable. The
notion of quantum nonintegrability as proposed here is
not linked to algorithmic complexity.[11] Its effects are
nevertheless compelling, as we shall see.

In order to achieve a simple and unified conceptual-
ization and notation, we focus the entire discussion on
(classical or quantum) spin systems. However, a tran-
scription of the essential features to systems involving
other types of degrees of freedom seems straightforward.

In Sec. II we paint the classical backdrop for the new
quantum integrability concept. The classical integrabil-
ity condition is reformulated in a way that provides a
more direct link to its newly proposed quantum coun-
terpart. We describe and employ a computational pro-
cedure for the construction of classical invariants, whose
properties depend sensitively on whether the underlying
Hamiltonian is integrable or not. [12, 13] In Sec. III we
propose the existence of a unitary transformation which
converts any quantum one-spin system into a function
of a single quantum action — an operator with specific
spectral properties. Such an expression defines quantum
integrability and implies that the time evolution of any
non-stationary operator can be determined explicitly. We
employ quantum invariants, constructed by a procedure
analogous to the one used previously for classical invari-
ants, [13] to produce analytical and numerical evidence in



support of the proposition that all one-spin systems are
quantum integrable. In Sec. IV we demonstrate by the
same methods that the spectral consequences of quan-
tum integrability are not common to all two-spin systems,
only to some. The implication is that a unitary trans-
formation expressing the quantum two-spin Hamiltonian
as a function of two action operators exists only in some
cases. In the concluding Sec. V, we outline possibili-
ties to further corroborate the findings presented here by
alternative methods based on perturbation expansions.

II. INTEGRABLE AND NONINTEGRABLE
CLASSICAL SPIN SYSTEMS

Consider a system of N classical spins length .S,

Sn = (Sn,amsn,yvsn,z)
= S (sind,, cos @y, sind, sin ¢, cos ) ,
n=1...,N. (1)

The classical spin length is an invariant of the motion.
The kinetics on the product of IV spheres with S = const
is governed by the Poisson brackets between spin compo-
nents,

{Smavsn’,ﬁ} = —nn Z EapySn,y - (2)

Y=T,Y,2

Each spin contributes one degree of freedom to the sys-
tem and can be described in terms of one pair of canonical
coordinates,

Pn = SCOS?gn y  4n = Pn . (3)

The associated 2/N-dimensional phase space is bounded.
[14] The value of the constant S is irrelevant for the issues
discussed here. Hence it will be suppressed in any list of
independent variables.

The algebra of dynamical variables for a system of
classical spins consists of all analytic (piecewise smooth)
phase-space functions. Any such function can be re-

garded as the Hamiltonian
H=H(Sy,...,Sn) (4)

of a dynamical system. In that role it determines the time

evolution of any other dynamical variable F/(Sq,...,Sy)
according to Hamilton’s equation of motion,
dF
— ={H,F}. 5
= {H,F} 5)

For a specific Hamiltonian H, there may exist phase-
space functions I(Sy,..., Sy) with the property
dl
— ={H,I} =0. 6
=T} (6)
These are analytic invariants or integrals of the motion.
Analyticity guarantees that {H, I'} is well-defined; invari-
ance (dI/dt = 0) then follows from {H,I} = 0. Nonana-
lytic invariants are functions I(Sy, ..., Sy) which satisfy

dI/dt = 0, but for which {H, I} cannot be evaluated due
to lack of smoothness. [12, 13]

The phase flow generated by a given Hamiltonian must
belong to one of two distinct types. (i) Regular flow:
The entire 2N-dimensional phase space is foliated into
N-dimensional tori; individual phase points wind around
these tori periodically or quasi-periodically. (ii) Irregular
flow: A fraction of phase points are not confined to N-
dimensional manifolds; their flow is chaotic. Important
for our study is that this clear-cut phenomenological clas-
sification of flows is rigorously related to an integrability
criterion for the flow-generating Hamiltonians.

A. Classical integrability condition

A classical system with N degrees of freedom, specified
by some Hamiltonian (4), is integrable if three conditions
are fulfilled. [15]

C1: There exist N analytic invariants I,(Si,...,Sy):
{H,I,}=0,n=1,...,N

C2: All pairs of these invariants are in involution:
{I,In} =0.

C3: The invariants I, are functionally independent, i.e.
the directions V1, are linearly independent almost
everywhere in phase space.

Otherwise the system is nonintegrable. It is impossible
to have more than N analytic invariants which are func-
tionally independent and in involution. Therefore, H is
either equal to one of the N invariants I,,, or else it can
be written as a smooth function H = H([;,...,Iy). A
set of N invariants I, satisfying conditions C2 and C3 de-
termine exactly one torus structure in phase space. Any
smooth function H (I3, ..., Iy) specifies a particular flow
on that same torus structure.

The action variables J,(S1,...,Sx) are a special set
of invariants. They represent N canonical momenta, for
which the conditions C2 and C3 are necessarily satis-
fied. If the flow is generated by an action, all trajec-
tories (except fixed points and separatrices) are closed
and have the same period in time. The time evolution of
any other dynamical variable F'(Sy, ..., Sy) for arbitrary
initial conditions is then also periodic, but (generally) an-
harmonic. The associated intensity spectrum consists of
a set of equidistant lines at integer frequencies.

The N actions J,, thus generate N periodic flows in
N linearly independent directions on each torus. The
flow of H = H(J1,...,Jn) can then be interpreted as
a superposition of these N fundamental periodic flows,
determined by the linear time dependence of the an-
gle variables, 0,(t) = w,t + 97(10); the characteristic
frequencies w,, = OH/9.J, vary from one torus to an-
other. The time evolution of a dynamical variable F' =
F(J1,01,...,JNn,0N) with initial conditions on a given
torus is generally quasiperiodic. Its intensity spectrum



CJ(N): A given Hamiltonian, H(Sq,..

consists of a superposition of lines at the sums and dif-
ferences of the frequencies w,,. Without loss of generality,
the classical integrability conditions C1 — C3 can be re-
placed by a single requirement:

.,Sn), is integrable
if there exists a canonical transformation which
converts it into a smooth function of N actions J,:
H = H(J1,...,Jn). The actions are a set of in-
variant canonical momenta, and each .J,, generates
a phase flow whose spectrum consists of uniformly
spaced lines.

This alternative integrability criterion is rarely used in
classical mechanics because the additional requirement
that the IV invariants be canonical momenta would make
any proof of integrability unnecessarily difficult. How-
ever, it is CJ(N) and not C1-C3 that can be translated
most directly into a meaningful quantum integrability
condition as we shall see. As a preparation to our main
theme (Secs. III and IV), we need to discuss a general
method for constructing invariants in classical systems
— a method which can also be adapted to quantum me-
chanics.

B. One degree of freedom

The Hamiltonian H(S) of a one-spin system is an an-
alytic invariant, the only one required to render the sys-
tem integrable. Further smooth invariants are necessar-
ily functionally dependent on H. Invariants can be con-
structed as the time average of an arbitrary dynamical
variable F'(S) over individual phase-space trajectories,

T T
[1(S) = (F) = lim %/O dQtF(S(t)) = %/ QF(S(H)),

T—o0 0
(7)

where the variable S on the left denotes the initial con-
dition of the path S(¢) in the integral on the right. The
third equality uses the fact that in one-spin systems the
time evolution is periodic on all trajectories except fixed
points and separatrices. The phase-space function [z
is an invariant by construction. This is an analytic in-
variant because the torus structure guarantees a smooth
dependence of the integral on the initial condition S, and
it is functionally dependent on H because both Ir and
H assume a unique value for all initial conditions on a
given torus: Ip = Ip(H) or H = H(Ir). For the spe-
cial dynamical variable F' = pg¢ with p,q from (3), the
integral (7) yields the action

Jz%fpdq=%<pd>7 (8)

again as a function of the energy. Conversely, we have
H = H(J) and, by implication, Ir = Zr(J).

C. Two degrees of freedom

The integrability of a two-spin system specified by
some energy function H(S1,S2) hinges on the existence
of a second independent analytic invariant I(S;,S3). For
an integrable system, this second invariant is not unique,
and no general prescription for obtaining an explicit ex-
pression for I is known. However, a general method ex-
ists for the evaluation of that invariant on a dense set of
phase points with full measure. This method was pro-
posed earlier,[12, 13] and its usefulness for practical ap-
plications was demonstrated by numerical implementa-
tions.

The method extends the prescription given in (7).
Choose an arbitrary dynamical variable F(S1,S2) and
determine its time average over phase-space trajectories
as a function of the initial conditions:

[0(S1,8s) = (F) = lim %/0 dt F(S1(1),Sa()) . (9)

T—o0

The four-dimensional phase space is foliated by two-
dimensional invariant tori. Therefore, the invariant (F)
represents a function of only two variables — the two ac-
tion coordinates J; and Js. They uniquely specify the
torus which contains the phase point (S1,S2). The func-
tion

Zr(J1,J2) = Ir(S1,S2) (10)

is an analytic invariant. Hence, it satisfies condition C1,
but it may or may not satisfy condition C3, while prop-
erty C2 is redundant for N = 2. The functional relation-
ship between the invariant Ir and the Hamiltonian H
can be identified in a plot of Ir versus H. If I is func-
tionally dependent on H, the graph is a piecewise smooth
line. Otherwise the points (Ir, H), each representing an
individual torus in phase space, fill a two-dimensional
region.

The existence of a smooth and functionally inde-
pendent second invariant, which is guaranteed by inte-
grability, can be visualized by a previously developed
construction.[13] Determine, via time average (9), two
analytic invariants Ir = Zp(J1, Jo) and I = Zg(J1, Jo)
which are functionally independent of H = H(Jy, J>) and
functionally independent of each other. The dependence
of these invariants on the actions Ji,Js is, in general,
not known explicitly, but for individual tori their numer-
ical values can be determined everywhere in phase space.
The points (H,Ip,Ig) then form a piecewise smooth
invariant-surface in a three-dimensional diagram. It is
an image of the (Jy, Jo)-plane in (H, Ip, Ig)-space. The
function

H=H(Ip,Ic) (11)

is piecewise smooth. Each invariant torus in phase space
determines a point on the invariant-surface and a point
in the plane of actions.



In the phase flow of a nonintegrable two-spin system
H(S1,8S5), a fraction of the invariant tori are destroyed.
The remaining ones are no longer dense anywhere, but
they still occupy a volume with nonzero measure. The
chaotic regions between intact tori exhaust the remaining
measure. Nonintegrability causes dramatic changes in
the structure of invariant-surfaces. Suppose that two in-
variants Ir and Ig have been determined which are func-
tionally independent of the Hamiltonian H and of each
other. The points (H, I, Ig) resulting from all invariant
structures in phase space (tori, cantori, chaotic regions,
periodic orbits) then form a strange invariant-surface,
an almost two-dimensional object in three-dimensional
space, pieces of which may look like a smooth surface on
a large scale. The function H = H(Ip,Ig) is nowhere
continuous. The differences between smooth and strange
invariant-surfaces will be illustrated in Sec. IV and com-
pared with the properties of corresponding quantum-
mechanical structures.

III. QUANTUM SPIN SYSTEMS: ONE DEGREE

OF FREEDOM

A quantum mechanical spin is described by a 3-
component vector operator S. Its components satisfy the
familiar commutation relations

[S\a,gg] =ih Z 80573\7 . (12)
Y=xYyz
The operator
Q2 _ Q2 , Q2 , Q2
S°=5;+5,+57, (13)

which represents the square of the quantum spin length,
commutes with any Hamiltonian of the form

H=H(S). (14)
or with any dynamical variable of this system as ex-
pressed by a (generally non-stationary) Hermitian oper-
ator

F=F(S). (15)
The representations of the spin algebra (12) can be la-
beled by the eigenvalues h?s(s + 1), s = 1/2,1,3/2,...
of the operator S2. Tor each value of s there is an irre-
ducible (2s + 1)-dimensional matrix representation I'y of
the group SU(2).

In the context of this study, any function of the spin
components such as H(S) or F(S) is defined as an opera-
tor on the full Hilbert space. This is equivalent to consid-
ering all subspaces I's simultaneously by expressing the
operators as infinite block matrices. A superscript s such
asin F* = F* (§) will mark any (2s+ 1)-dimensional ma-
trix representation of an operator. Operators acting in
the full Hilbert space are representation-independent and
will be called algebraic.

A. Unitary transformation and action operator

Any unitary transformation U=U (§) applied to a

spin operator S produces again a spin operator,
S'=USU'=8(S), (16)

i.e. it leaves the structure of the quantum spin algebra
(12) unchanged:

[Sh Shl =ih Y apy S,

y=xYyz

(17)

The rotations in spin space are a subset of these trans-
formations with a linear dependence on the spin com-
ponents.

Under U(S), the Hamiltonian (14) and the
dynamical variable (15) are transformed into algebraic

~ ~

expressions of the new spin vector: H(S) = H'(S’) and
F(S) = F'(S'), respectively.

Suppose there exists a special unitary transformation,
U = U(S) with

J=usut=13(8) (18)

which converts a given one-spin Hamiltonian H (§) into
a function of a single component of the transformed spin:

H(S) =H(J.). (19)
What are the consequences of such a transformation?
The operator J, is appropriately named action opera-
tor. Its eigenvalue spectrum in each subspace I'y consists
of 2s + 1 uniformly spaced levels,

+s
Js = Z |m, sy mh(m, s|.

m=—s

(20)

The operator J., is an invariant, [ﬁ , jz] = 0, and it shares
many properties with the classical action variable as will
be discussed. When the same transformation which pro-
duces (19) is applied to a (non-stationary) dynamical

~

variable F'(S), the resulting expression,

F(S) = F(J), (21)
depends not only on the quantum action J, but also on
the non-stationary components J,, J,. We shall see that
these two operators assume a role similar to that of a clas-
sical angle variable. On the basis of these properties we
propose the following quantum integrability condition:

QJ(1): A given one-spin Hamiltonian H=H (§) is quan-
tum integrable if there exists a unitary transforma-
tion 2/(S) which converts it into a function of the
action operator jz. The action operator is a quan-
tum invariant whose spectrum in any subspace I

consists of a set of 2s + 1 uniformly spaced levels.



The Elassical integrability of all one-spin Hamiltoni-
ans H(S) is an elementary result. The criterion CJ(1)
is satisfied universally. The canonical transformation
to action-angle coordinates leading to the expression
H(S) = H(J) for the Hamiltonian, and to F(S) =
F(J,0) for any dynamical variable of interest, can be es-
tablished by constructive methods.[2] Correspondingly,

we assert that all one-spin Hamiltonians H(S) are quan-
tum integrable, i.e. that the criterion QJ(1) is satisfied
universally. However, we have yet to design a construc-
tive method which leads to the expressions H(J,) and

F(J) for the Hamiltonian and a non-stationary operator,
respectively.

In the classical canonical transformation to action-
angle coordinates, the transformed Hamiltonian H(J)
may have an additional dependence on the (constant)
classical spin length S. Likewise, the algebraic expression
H(J,) resulting from the special unitary transformation

~

U(S) may contain an explicit dependence on the operator
S2=17J 2 which represents the (invariant) quantum spin
length. Since this invariant commutes with all operators
F(g), it has no bearing on the question of quantum in-
tegrability. It will therefore be suppressed in any list of
independent variables, as was the classical spin length.

B. Quantum invariants

In the absence of a general recipe for determining the
relation (19) between Hamiltonian and quantum action
in one-spin systems, we provide various kinds of indi-
rect evidence which support the postulate of universal
quantum integrability in these systems, and we show that
the consequences of quantum integrability have much in
common with those of classical integrability. Part of this
evidence can be inferred from relations between invari-
ants as obtained via time average of dynamical variables,
analogously to the classical construction presented in Sec.
11

Consider a Hamiltonian H(S) and a dynamical vari-

~

able F(S).

motion,

The solution of the Heisenberg equation of

i[9, &

~

is a one-parameter family of operators, S(t), and the time

~

average of the operator F(S(t)) defines an operator,

. ~ 1 (7 ~
Ip=(F)= lim = th(St), 23
r= ()= im 7 0). @3
which is an invariant by construction. In the subspace
of I'y, the dynamical variable F' is given by a matrix F'*
with elements

v (1) = (m, s| F¥|m' ) expli(E5, — Eg)t/h], (24)

mm/’

in the energy representation
H®|m,s) = E2, |m, s) . (25)

Taking the time average of F* then amounts to setting
all its off-diagonal matrix elements equal to zero. If de-
generate energy levels occur, the eigenvectors |m, s) can
be chosen in such a way that no time-independent off-
diagonal matrix elements remain.

If our postulate is correct, then any quantum invariant
obtained from the time average of a dynamical variable
must also be expressible as a function of the quantum
action J,. In systems where the Hamiltonian is already
given as a function of J,, the time average (23) can be
carried out analytically, producing invariants in the form
of explicit functions of J,.

C. Dynamics of H = H(S.): exact calculation

Consider a quantum spin in a constant magnetic field
pointing in z-direction. With S = j, ie. U = 1, the
Hamiltonian is a linear function of the action:

ge
2mce

H=—

BS, = —wpJ, = H(J.). (26)

The equations of motion (22) for the components of J or
the associated ladder operators Ji = J, £ iJ, are then
readily solved algebraically:

Ji(t) = J(0)exp[tiwgt/h],
A, (27)
= J.(0).
The harmonic time dependence of the operators Jy indi-
cate their kinship to a classical angle variable. The time
evolution of an arbitrary dynamical variable F' = F(g) =
F(J) (here with F' = F) is then obtained by insertion of
(27). As in classical mechanics (Sec. II), the dynam-
ics generated by an action is universally periodic. Given
the explicit time-dependence of F(J), we can evaluate
its time average. For a simple illustration, consider the
dynamical variable

F=J2J,+J.J2, (28)
rewritten in the form
~ o A A 1 A N - A A A
P (32-02) dot g [(B24+2) ot g (24 2)]
(29)
for easy insertion of the solutions (27). The time average

leaves the first term intact and wipes out the second one.
The resulting invariant,

Ip = (3= J2) J. = Zp(J2). (30)

is indeed a function of the action operator as we claim it
must necessarily be.



This result holds for arbitrary operators F expressible
as power series in Jg, Jy, J,. For example, the nt? power

of jx has the form

. 1 & SO
Ji(t) = 32 Yo BE (s J- ) expl-itn - 2k)wpt/n],
k=0

(31)
where P'(J4,J_) is a polynomial of order n containing
all possible orderings of k powers of J_ and (n—k) powers

of j+. The time average vanishes unless n is even, and
then the only surviving term is the one with k& = n/2:

- 1 PO
(J26)) = 5P (Jos -
which is a sum of monomials O, = [] J gt ez gte

witha =ay+as+...=n/2and b=b;+by+... =n/2.
By virtue of the relations

n even, (32)

Jode =3 —JP+nhJ,, JJr=JoJ. £h]s, (33)

each term @n is a function of the quantum action J..
We can use the same argument to determine (J;'()) and,
more generally, time averages of polynomials and power
series of Jg, Jy,J.. The final result is the time average
of the non-stationary operator F expressed as an explicit
and unique function of the action operator:

Ir = (F(1)) = Tr(J2). (34)

Turning the argument around, we conclude that if the
operator F= ]—'(j) happens to be an invariant, then it
must be expressible as a function of J,. All this reflects
the existence of some algebraic dependence between any
two invariants. It corresponds to the functional depen-
dence between any two analytic invariants of a classical
one-spin model (Sec. II.B).

Suppose the quantum one-spin Hamiltonian is given as
a nonlinear function of a single spin component. A rota-
tion in spin space turns that component into the quantum
action:

H=mH(J.). (35)

In this case, the equation of motion has explicit solutions
of the form

Jo(t) = expliH(J,)t/h] J+(0) exp[—iH(J.)t/h],
.(t) = J.(0). (36)

The operators Jy still vary harmonically in time, but
now the frequency is a function of the energy. This is also
true for the angle variable of the corresponding classical
system.

Given the solutions (36), it can still be shown that
theAtime average of an arbitrary dynamical variable F=
F(S) = F(J) becomes a function of .J, as in (34), and if

6

F is known as a polynomial or power series, then Ip(jz)
can be determined as a polynomial or power series. Also,

if any operator F(S) is an invariant, it can b e reduced to
the form F(J,). What remains to be shown is that an ar-

~

bitrary one-spin Hamiltonian H(S) can be brought into
the form ’H(jz) by means of a unitary transformation.
For that task we do not yet have a general prescription.
However, the following results of a first-order perturba-
tion calculation (Sec. III.D) and those of a numerical
calculation (Sec. IILE) provide evidence that the under-

lying hypothesis is reasonable.

D. Dynamics of H = Ho(5.) + eH,(S): perturbation
calculation

For a one-spin Hamiltonian of the form
H(S) = Ho(5:) + ¢Hi(S) (37)

with € < 1, the unitary transformation U (§) which turns

H(S) into a function of the action operator, H(.J,), can
be determined perturbatively. The prescripton for a first-
order calculation is simple and transparent. We apply the
unitary transformation to the original Hamiltonian (37),
expand it to leading order in ¢,

UM HES)U = HS) - e u(8). HE)+0(),  (38)

~

and determine the operator u(S) such that the off-
diagonal parts of the commutator term and of the original
Hamiltonian cancel each other. The remaining diagonal
terms represent the Hamiltonian as a function of the ac-

~

tion operator. Inserting u(S) into the expansion of (18),
i

Fu(8).8] +0(),  (39)

J=USU" =S +¢
yields an operator J whose components satisfy the spin
commutation relations (12) to O(e?). For a simple illus-
tration, consider the one-spin Hamiltonian,

H(S) = §Z+§§§ - §Z+§(§2—§§)+§(§i+§3) , (40)
which we have rewritten, in the last equation, as the sum
of a diagonal and an off-diagonal term. The operator
u(S) which diagonalizes (38) to O(e) is found to have the
form

u(S) = =(52 - 52). (41)

The resulting diagonal Hamiltonian reads

mﬂ®a=@+g@—@> (42)

or, in terms of the transformed spin Usut =3 ,

H(S) =H(J.) = J.+ {37 - 12). (43)



~

Note that the transformation generated by u(S),

Ji = Si+ 4—;(&@ +5.55) + O()

J, = §f%<§i+§3>+0(e2)7 (44)

is not just a rotation in spin space. Once the Hamiltonian
has been brought into the form (43), we have reduced the
problem to the one solved in Sec. III.C.

E. Dynamics of H = H(§): numerical calculation

For generic one-spin Hamiltonians such as (37) with
unrestricted €, we can produce numerical results for
quantum invariants.  Their characteristic properties
strongly support the existence of an action operator. We
discuss the salient features in the context of a specific
example. Consider the Hamiltonian

~ o~ 1 A~
H:SZ+§S§, (45)

and the invariant I, r determined via time average from
the dynamical variable

F=85.5.+8.5;. (46)
N
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FIG. 1: The three quantum invariants H=28.+ §§/2 (en-
ergy), J. (action), and Ir = (F) determined via time average
from the non-stationary operator F= §§§Z + §Z§§, plotted
one versus the other in the subspace I's with s = 50 and with
h = 1/4/s(s+1). Each data set consists of 2s +1 = 101
points, of which every fifth is marked by a distinctive symbol
(see legend).

In Fig. 1 we have compiled three sets of data for this
model in the subspace of I'y with s = 50. The pri-
mary data obtained from the numerical calculation are
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the energy eigenvalues ES = (n, s|H®|n, s) and the values
It = (n, s|F*|n, s) of the invariant ffp The set of points
(E7,I},), marked by open squares, exhibits two charac-
teristic7properties that reflect the universal integrability
of quantum one-spin systems. (i) They fall onto a line
which is smooth on a scale much larger than the average
spacing between neighboring points. (ii) The sequence of
successive spacings is smooth on the same large scale.

Property (i) suggests a natural sequential labeling,
Jn/h=—s, —s+1, ..., +s, of the points (E}, [ ) along
that smooth line. These labels represent the eigenvalues
of the action operator J, in the subspace I'y. Property
(ii) then implies that the two sets of points (J;, If,,) and
(Ez, J:), marked by open and closed circles, respectively,
also fall onto smooth lines. This is indeed the case. The
smooth lines of points are strongly indicative of the alge-
bAraic dependeAnce between any two of the three operators
If, :fp7 aEd g, i.g. indicative of the algebraic relations
H = H(J,) and Ir = Zr(J,) which imply quantum in-
tegrability of this model system.

IV. QUANTUM SPIN SYSTEMS: TWO
DEGREES OF FREEDOM

Consider a two-spin Hamiltonian defined as an alge-
braic expression

H=H(S,,S,). (47)

The components of the two spins satisfy the commutation
relations

[Sjar Ska] = ihdje Y €apySin

y=xYyz

jk=1,2. (48)

The operators, /S\% and /8\37 which represent the lengths of
the two spins, commute with each other, with the Hamil-
tonian (47), and with any dynamical variable,

F=F(5,8,). (49)

With little loss of generality, we set §% = §% = S? and
obtain, for each eigenvalue h2s(s + 1) of 82, a (2s + 1)-
dimensional product representation I'y = I'1; ® I'gg of
the two-spin algebra (48). Any such representation of
operators is again marked by a superscript s.

A. Quantum integrability condition

For the formulation of a quantum integrability condi-
tion applicable to two-spin systems, we consider unitary
transformations U = U(gl, §2) of the most general type.
They transform the original spins /S\h §2 into a new pair
of spin operators,

S, =US,;U" =8/(S1,8:), j=1.2, (50)



i.e. into operators whose components satisfy the same
basic commutation rules

[t Skgl = ih8jk > €apy S,

Y=TYz

Jik=1,2. (51)

They convert the algebraically defined operators (47)
and (49) into algebraic expressions of the new spin
operators: H(S1,S;) = H'(S},S}) and F(S,S,) =
F'(S},S}). Such transformations are not restricted to
products U;(S1) Us(Ss) of single-spin transformations.
In generalization of the criterion QJ(1) for one-spin sys-
tems as stated in Sec. III, we propose the following quan-
tum integrability condition for two-spin systems:

QJ(2): A given two-spin Hamiltonian H = H(§1,§2) is
quantum integrable if there exists a unitary trans-
formation U(S1,S2) which converts the spin oper-
ators S;, j = 1,2, into new spin operators,

I =USUt = Jk(51,82),  j=1,2, (52)

such that the Hamiltonian turns into a function of
two action operators,

H(S1,S2) = H( 1z, Jaz) - (53)

The eigenvalue spectra jlz, jgz in each subspace
I's consist of 2s 4+ 1 uniformly spaced levels:

+s
Ji. = Z |m, n, s) mh (m,n, s|,
mn=—s
+s
jiZ: Z |m,n, s) nh(m,n,s|. (54)
m,n=—s

If a given Hamiltonian can be brought into this form,
then the time evolution of the non-stationary spin com-
ponents, Jiz, Jiy, K = 1,2, can be stated explicitly and
inserted into the transformed algebraic expression of any
dynamical variable

F(81,8:) = F(31,35). (55)

It is straightforward to generalize QJ(2) to the integra-
bility condition QJ(N) for an N-spin system. The quan-
tum integrability condition QJ(V) is a more or less direct
translation of the classical criterion CJ(N) as defined in
Sec. ILLA. It circumvents a technical difficulty that has
plagued previous attempts at translating the classical cri-
teria C1-C3 into quantum mechanics.[10] The difficulty
has been to discriminate between two kinds of commut-
ing operators — those that have a bearing on the question
of integrability and those that do not.

Granted that all one-spin systems are quantum inte-
grable as we have asserted in Sec. III, then quantum sep-
arability implies quantum integrability. Therefore, any
system in which the two degrees of freedom are already

separated, is quantum integrable. A two-spin Hamilto-
nian, for example, which can be expressed as the sum or
as the product of two one-spin Hamiltonians,

Hs = Hi(S1) + H2(S2) , Hp = Hi(S1) Ha(S2), (56)

can be converted into the form (53) by means of a product
unitary transformation 2 (S1)Us(S2). Are quantum in-
tegrable systems limited to cases that are obviously quan-
tum separable? Do quantum nonintegrable systems ex-
ist at all? As a partial and preliminary answer to these
questions, we present some numerical evidence for the
distinctive spectral consequences of quantum integrabil-
ity and nonintegrability. This numerical evidence will be
inferred, as in Sec. III for one-spin systems, from re-
lations between quantum invariants obtained from time
averages of dynamical variables.

B. Integrable two-spin system

The existence of the special unitary transformation
Z/{(gl,gg) which expresses a given integrable two-spin
Hamiltonian as a function of two action operators as in
(53) implies that the same is true for any other stationary
operator, 1(S1,S,) with [I, H] = 0:

I(§17§2) =T(J1z, Joz) . (57)

Quantum invariants can be constructed from time av-
erages of an arbitrary dynamical variable (55), and the
result must be a function of the two action operators:

Ir = (F(S1,8)) = (F(J1,32)) = Tp(J1z, Jo.) . (58)

The last equation in (58) can be established via a system-
atic process of elimination of the non-stationary compo-
nents Ji, Jiy, £ = 1,2, whose time evolution is known
for a given H(jlz,jzz). In Sec. III.C we have outlined
this process of elimination for a one-spin system.

Our aim here is to show evidence that the expressions
H= H(jlz, jgz) and fp = Ip(jlz, jgz) do exist in inte-
grable two-spin systems. An actual calculation of these
algebraic expressions via the special unitary transforma-
tion 2/(S1,S5) is a much more ambitious goal, which is
generally out of reach. In classical mechanics our aim is
tantamount to showing evidence that the phase flow has
an intact torus structure, which implies that the Hamil-
tonian can be expressed as a function of two action vari-
ables Ji,Js. The more ambitious goal translates into
finding the actual functional dependence of ‘H on Ji, Jo
via the special canonical transformation which eliminates
the non-stationary canonical coordinates from the Hamil-
tonian. That goal is not within reach either, in most
applications.

In Sec. IIL.E the existence of the action operator as
a special invariant in generic one-spin systems has been
inferred indirectly from the properties of other quantum



invariants that are either given, such as H=H (§), or can
be constructed via time average from non-stationary op-
erators, such as Ir = (F(S)). The necessary algebraic de-
pendence of any quantum invariant on the action opera-
tor J, has been corroborated from the manifest alggbrAaic
dependence of any two quantum invariants (e.g. H, )
and from the regular pattern of points (Ej, and I3, ) in
any I'y subspace (see Fig. 1).

InA a Ewo—spin sAystem, tWAo unantum invariants, Iz F =
(F(S1,S2)) and I = (G(S1,S2)), may or may not be
algebraically dependent, no matter whether the system is
quantum integrable or not. If the two invariants happen
to be algebraically dependent, then the points (I}, ,, I )
lie again on a line that is smooth on a scale lar;ge com-
pared to the average spacing but, unlike in the one-spin
system, the spacings between successive points will be
irregular.

If the two-spin system is integrable, QJ(2) implies
that any invariant can be expressed as a function of the
two quantum actions. Hence, if we. pick three quan-
tum invariants, Ip = IF(jlz,jQZ), Ig = I(;(jlz,jgz),
IAH = IH(jlz,jgz), that are pairwise algebraically in-
dependent, then the two action operators imply that
there exists an algebraic dependence between the three
of them. Therefore, the points (I} ,I& \, I3 ) plotted
in a 3-dimensional diagram must lic on a surface that is
smooth on a scale large compared to the average spacing
and must form a regular pattern reflecting the character-
istic spectral properties (54) of the two action operators.

For a demonstration of quantum integrability in a non-
trivial application, we consider the two-spin model

(1—7)81y82,] (59)

with an integrable classical counterpart.[14] The three

quantum invariants used here are the energy ff,y and the
stationary operators

A [~ — 1 ~ ~
I,u = <M;%>7 M;t = §(Sl,y+52,u)v w=1xz, (60)

derived from time averages of non-stationary operators.
In Fig. 2(a) we have plotted the eigenvalues I , of

H,(81,85) = —[(1 4 7)812554 +

the invariant 1. versus the energy eigenvalues E$. [16]
The open squares and full circles represent all (common)
eigenstates with negative energy for spin quantum num-
ber s = 35 and specific transformation properties under
the (discrete) symmetry group of ﬁv- [13] The arrange-
ment of points (EY, I7 ) reflects the algebraic indepen-

dence of the two quantum invariants ﬁv and :fz On
the other hand, if interpreted as the projection of the
points (E5,I?,,I ) onto the (H,,I,)-plane, they illus-
trate the algei)raic’ dependence of the three quantum in-
variants I;E,, :fz, :fz

Not only are the points (E3,I: ,I; ) located on a
surface that is smooth on a large scale compared to the
average distance between them, but the spacings be-
tween neighboring points on that surface are themselves

QUANTUM
1.0

CLASSICAL
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025 0.35

ViuZy

0.6

v <M22>}\
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FIG. 2: (a) Quantum invariant I, = \/(]T/[?) versus en-
ergy at E > 0 for two symmetry classes of states (full cir-
cles and opens squares) of the integrable quantum two-spin
model H., with v = 0.2 in the subspace I's with s = 35
and with h = 1/4/s(s+1). (b) Classical invariant-surface

E(\/(M2),+/(M2)) projected onto the (F,/(M2))-plane of

the same model in the classical limit s — oco. The inset shows

invariant /(M2) versus invariant y/(M2)) at energy F = 0.2.
The data points represent time averages over individual tra-

jectories for initial conditions randomly chosen in phase space
(main plot) or on the energy hypersurface (inset) (adapted
from Ref. 16).

smoothly varying along two linearly independent direc-
tions. The regular pattern is compelling evidence for the
existence of two natural quantum numbers A = (m,n),
reflecting the eigenvalues of two action operators (54) in
the subspace I's—_35.

Our conclusion, therefore, is that the two-spin system
(59) satisfies the quantum integrability condition QJ(2).
In Ref. 14 it was proven that the classical counterpart
of (59) satisfies the integrability criteria C1-C3, which
is equivalent to the condition CJ(2). However, a con-
structive proof of CJ(2) for this model may be about as
challenging as a a proof of QJ(2).

The characteristic signatures of quantum integrability
in invariants as described in the context of Fig. 2(a) are
perfectly in line with those of classical integrability ex-
pected in the corresponding classical invariants. The lat-
ter are plotted in Fig. 2(b) in exactly the same represen-
tation as their quantum counterparts. For a large number
of randomly chosen initial conditions (S1,S2) in phase
space, we have determined the energy E by insertion into
the (stationary) Hamiltonian H,(S1,S2), and the invari-
ants y/(M2), \/(M2) via time average (9) from the (non-
stationary) dynamical variables M, = (51, + S2..)/2.

For reasons stated in Sec. II.C, classical integrabil-
ity implies that the points (F,/(M2),\/(M?2)) lie on a

piecewise smooth invariant-surface. A projection of that



surface onto the (E, y/(M?2))-plane is shown in Fig. 2(b).
The section at £ = 0.2 of the unprojected surface is a
piecewise smooth line as shown in the inset. [16]

Each point on the invariant-surface of Fig. 2(b) rep-
resents an invariant torus in phase space, specified by
two action coordinates. Likewise, each point on the
invariant-web of Fig. 2(a) may be said to represent a
quantized torus specified by the (discrete) values of two
action operators in the given I'y subspace. In the classical
system, the smoothness of the invariant-surface guaran-
tees integrability and hence the existence of action co-
ordinates. However, knowledge of classical integrability
alone does not provide a general recipe for an analytic so-
lution of the equations of motion. Likewise, the smooth-
ness and regularity of the invariant-web is the hallmark of
quantum integrability and hence the existence of action
operators, but neither does the knowledge of quantum in-
tegrability provide a recipe for an analytic solution of the
equation of motion. In classical mechanics, any analytic
solution is equivalent to finding the canonical transfor-
mation which expresses the Hamiltonian as a function of
action coordinates, while in quantum mechanics, any an-
alytic solution is equivalent to finding the unitary trans-
formation which expresses the Hamiltonian as a function
of action operators.

C. Nonintegrable two-spin system

We have yet to demonstrate that quantum noninte-
grability as implied by the condition QJ(2) is associated
with distinctive spectral properties. The two-spin Hamil-
tonian,

Ha(§1,§2) = — 51,5, — §1y§2y
a T~ ~ ~ ~

has exactly the same symmetries as H7(§1, S,) defined
in (59), [13] but its classical counterpart is known to
be chaotic for o # 0,%1. [14] The impact of non-
integrability on both the quantum invariant-web and
the classical invariant-surface is conspicuously displayed
in Fig. 3. For the classical case we pick three in-
variants E,/(M2),\/(M2) by the same rule as in
Sec. IV.B, but now applied to the energy function
H,(S1,S2). The lack of a fully intact torus structure
in phase space for any nonintegrable model destroys the
smoothness of the invariant-surface formed by the points
(E,\/(M2),/{M2)) as explained in Sec. II.C.

Figure 3(b) shows the projection of the strange
invariant-surface onto the (E,+/(M?2))-plane, as gener-
ated from a large number of randomly chosen initial
phase points. The section at £ = 0.2 of the unprojected
object is plotted in the inset. The pieces (a), (b), (c)
of the invariant-surface represent three different types
of tori. They have been identified and visualized on a
Poincaré map in a previous study. [16] The large inter-
ruption separating the fragments marked (a) and (b) is
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CLASSICAL

VA(MZ)

FIG. 3: (a) Quantum invariant I. =/ (]/\4:2) versus energy
at E > 0 for the same two symmetry classes of states as in
Fig. 2(a) but for the nonintegrable quantum two-spin model
ﬁa with @ = 0.7 in the subspace I's with s = 90 and with
h = 1/y/s(s+1). The inset shows the same quantities for
states within a window of given size, and for spin quantum
number s = 45. (b) Remnant of the classical invariant-surface

E(\/{M2),/(M2)) projected onto the (E,/(M2))-plane of

the same model in the classical limit s — co. The inset shows

invariant +/(M2) versus invariant /(M2)) at energy E = 0.2.
The data points represent time averages over individual tra-

jectories for initial conditions randomly chosen in phase space
(main plot) or on the energy hypersurface (inset) (adapted
from Ref. 16).

due to a band of chaos along a separatrix between re-
gions with an abundance of intact tori. A third major
fragment of the invariant-surface, marked (c), has its ori-
gin in island chains of tori populating the large chaotic
band. For initial conditions within that chaotic region,
the points (\/(M2),/(M2)) tend to cluster at (d) in
the gap. Strictly speaking, any initial point within that
region should yield the same time average. Because of
slow convergence, the numerical analysis yields a clus-
ter of points instead. The characteristic pattern is that
fragments of the strange invariant-surface are interrupted
by gaps, and the gaps are populated by isolated points
and smaller fragments of the strange surface. Upon mag-
nification, each fragment reveals its own composition of
points and yet smaller fragments ad infinitum.

The signature of quantum nonintegrability in this rep-
resentation is no less dramatic than that of classical non-
integrability as can be observed in Fig. 3(a). What has
been a perfect invariant-web in the integrable case (Fig.
2(a)) now has its fabric torn into pieces. Comparison
between the two sides of Fig. 3 reveals a remarkable cor-
respondence between the irregularities in the invariant-
web and the fragmentation of the invariant-surface. For
example, the two disconnected regions (a) and (b) of the



intact web in the inset to Fig. 3(a) correspond to two
regions with abundant intact tori on opposite sides of a
(chaotic) separatrix, and the region (c) of the intact web
corresponds to secondary KAM tori within that chaotic
band. This correspondence between quantum noninte-
grability effects and well-understood phenomena of clas-
sical Hamiltonian chaos has been analyzed in greater de-
tail in a previous study. [13, 16] All the available evidence
for the two-spin model (61) strongly indicates that none
of the quantum invariants is a function of two action op-
erators.

Two quantum states which are physically close are also
nearby on the invariant-web. When the energies of two
such states happen to be nearly degenerate, the conse-
quences depend sensitively on the integrability status of
the Hamiltonian. In an integrable model, such as I?,Y, the
two nearly degenerate states differ in at least one of the
two quantum numbers m, n pertaining to the quantum
actions (54). Hence the positions of the two states in the
web is not at all affected by their near-degeneracy. The
fabric stays intact.

In a nonintegrable model, such as ﬁa, the natural
quantum numbers m, n do no longer exist, and two nearly
degenerate states which are also sufficiently close on the
web undergo a resonance. The resonance is a form of
hybridization, which makes them physically even more
alike. The main effects of the resonance as observable in
the web are that the two states move closer vertically by
a considerable amount and further apart horizontally by
a small amount (level repulsion). The fabric is torn as a
result of this effect. The degree of near-degeneracy which
is needed to trigger an observable resonance is higher in
regions of the invariant-web that correspond to regions
on the invariant-surface with many intact tori compared
to the degree of near-degeneracy needed in those parts of
the web that correspond to widespread chaos. This type
of resonances and their impact on the level statistics have
been investigated more systematically in a recent study
of the spin-boson model. [17]

The numerical evidence for the nonintegrability of a
classical two-spin system as derived, for example, from
a Poincaré map or a strange invariant-surface, is virtu-
ally unmistakable if carried out with sufficient circum-
spection, even though it is not rigorous. Formal proofs
of nonintegrability are scarce, essentially limited to sys-
tems that are as non-generic as integrable ones are. We
maintain that the numerical evidence for quantum nonin-
tegrability which can be inferred from studies of quantum
invariants is equally compelling if carried out systemati-
cally and with due care. Formal proofs of quantum non-
integrability in the sense of QJ(2), if they can be estab-
lished at all, will probably be limited to a class of highly
non-generic systems as in the classical case.

11
V. OUTLOOK

In this paper we have proposed a quantum integra-
bility condition for N-spin systems that promises to be
meaningful insofar as it claims to discriminate between
two classes of systems whose spectral properties, as ex-
emplified in the invariant-web, differ dramatically. We
have shown or cited compelling numerical evidence that
none of the two classes is empty. Even though there are
strong formal similarities between the quantum integra-
bility condition proposed here and the well-established
classical integrability condition, the former does not lean
on the latter by way of the correspondence principle. In
fact, our strategy has been to avoid a direct translation
of the classical integrability criterion in its standard for-
mulation, C1-C3, in order to eliminate the technical dif-
ficulties that have haunted previous attempts. The price
we have to pay for closing those loopholes is that the new
criterion, QJ(NNV), or its classical counterpart, CJ(IV), is
considerably harder to verify in most applications. The
evidence strongly suggests that the observed phenomena
of quantum chaos are indeed manifestations of quantum
nonintegrability, not merely quantum manifestations of
classical nonintegrability.

The quantum mechanical action operator J was in-
troduced in the early days of quantum mechanics as a
natural consequence of Bohr’s quantization rule, [18-20]
§pdg = nh,n =1,2,.... Problems with the quantum
action do not arise unless we insist on interpreting it as a
quantized (stationary) canonical momentum, which calls
for a conjugate angle operator. It appears that there is
no consensus about how to define such an operator in
a satisfactory way.[21-24] However, in our approach the
action operator is defined solely on the basis of its spec-
tral properties, and the existence of an angle operator is
not required.

However convincing the numerical evidence in support
of the meaningfulness and usefulness of the proposed
quantum integrability condition may be, it can only serve
as a first step in the process of establishing this idea on
firm ground. The logical next step, already alluded to
in Sec. III.D, would be to test this proposition in the
context of a perturbation expansion. A continuation of
this study in that direction is currently in progress. The
prospects for significant new results may be judged from
the following concluding remarks.

In classical mechanics, a generic perturbation of an
analytically solved system with one degree of freedom,
Ho(J), introduces a dependence on the angle coordinate
# into the Hamiltonian. The perturbative transformation
to new action-angle variables shifts the angle-dependence
systematically to higher orders in the expansion param-
eter. In this process, a series of generating functions for
successive canonical transformations is determined. Each
generating function contains a factor equal to the inverse
of a multiple nw of the frequency w = dHy/dJ of the
unperturbed system. This process is known to converge
under some restrictions.



The situation is drastically different in systems with
two degrees of freedom. There exist two fundamental fre-
quencies in the unperturbed system, Ho(Ji, Jo), namely
wy = OHo/0J1, wa = OHp/OJ2. The basic procedure of
the perturbation series remains unchanged: calculate a
sequence of generators of infinitesimal canonical trans-
formations which remove the dependence on the angle
coordinates 61, 05 from the perturbed Hamiltonian order
by order. The integrals required to determine the genera-
tors are now found to contain factors equal to the inverse
of nyw1+nows with integer coefficients. Any such denom-
inator can take on arbitrarily small values, and thus has
the potential for destroying the convergence of the per-
turbation series. This situation is known in classical me-
chanics as the problem of small denominators. The KAM
theorem provides information about which tori survive a
specific perturbation. [25]

Van Vleck’s formulation of quantum-mechanical per-
turbation theory, [26, 27] which is akin to the Lie trans-
form method, [28] seems to be suitable for the implemen-

tation of the diagonalizing unitary transformation U for
a one-spin system. Here the strategy is to systematically
remove the (off-diagonal) creation and annihilation op-
erators (or spin ladder operators) from the Hamiltonian
in increasing orders. In this process the generators of in-
finitesimal unitary transformations contain again factors
equal to the inverse of multiples of the frequencies of the
unperturbed system.

In quantum systems with two or more degrees of free-
dom, however, the Van Vleck perturbation expansion
may very well be subject to the problem of small de-
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nominators, possibly in a modified form. In leading
order, the generators are indeed found to contain fac-
tors equal to the inverse of linear combinations of the
unperturbed frequencies with integer coefficients. The
associated problems of convergence are known to occur
in various perturbational approaches, including transfor-
mations to the quantum mechanical Birkhoff-Gustaffson
normal form[29], algebraic quantization,[30] and quasi-
degenerate perturbation theory.[26, 27] From the vantage
point of a quantum-mechanical notion of integrability,
the lack of convergence of the perturbational schemes
now appears in a new light. It may open an avenue to
test the criterion QJ(NN) of quantum integrability for a
given system on a rigorous basis.

Acknowledgments

Prior collaborative work with C. Kaufman, E. Mag-
yari, N. Srivastava, H. Thomas, and R. Weber on the
dynamics of spin clusters provided much of the initial mo-
mentum for this study. We are particularly indebted to
N. Srivastava for the production of Figures 2 and 3. The
research done in Basel was supported by Schweizerischer
Nationalfonds and the research done at URI by the U.
S. National Science Foundation, Grant DMR-93-12252.
S.W. acknowledges support by Freiwillige Akademische
Gesellschaft (Basel). The computations were carried out
at the National Center for Supercomputing Applications,
University of Illinois at Urbana-Champaign.

[1] Goldstein, M.: Classical Mechanics. New York: Addison-
Wesley 1950
[2] Lichtenberg, A.J. and Liebermann, M.A.: Regular
and Stochastic Motion. New York, Heidelberg, Berlin:
Springer-Verlag 1983
[3] Eckhardt, B.: Phys. Rep. 163 (1988) 205
[4] Chaos and Quantum Physics. Giannoni, M. J., Voros,
A. and Zinn-Justin, J. (Eds.) Les Houches 1989, North-
Holland 1992
[5] Chaos and Quantum Chaos. Heiss, W. D. (ed.) Lecture
Notes in Physics, Vol. 411. Berlin: Springer-Verlag 1992
[6] The Transition to Chaos in Conservative Classical Sys-
tems: Quantum Manifestations. Berlin: Springer-Verlag
1992
[7] Hose, G., Taylor, H.S. and Tip, A.: J. Phys. A 17 (1984)
1203
[8] Hietarinta, J.: J. Math. Phys. 25 (1984) 1833
[9] Elyutin, P.V.: Sov. Phys. Usp. 31 (1988) 597
[10] Weigert, St.: Physica D 56 (1992) 107
[11] Ford, J. and Ilg, M.: Phys. Rev A 45 (1992) 6165
[12] Srivastava, N., Kaufman, C., Miller, G., Weber, R. and
Thomas, H.: Z. Phys. B 70 (1988) 251
[13] Srivastava, N. and Miiller, G.: Z. Phys. B 81 (1990) 137
[14] Magyari, E., Thomas, H., Weber, R., Kaufman, C. and
Miiller, G.: Z. Phys. B 65 (1987) 363

[15] Perelomov, A.M.: Integrable Systems of Classical Me-
chanics and Lie Algebras I. Basel: Birkhauser 1990

[16] Srivastava, N., Kaufman, C. and Miiller, G.: Comput.
Phys. 4 (1990) 549; 5 (1991) 239; 6 (1992) 84

[17] Cibils, M., Cuche, Y. and Miiller, G.: Z. Phys. B (to be
published)

[18] Dirac, P.A.M.: Proc. R. Soc. London, 110 (1926) 561

[19] London, F.: Z. Phys 37 (1926) 915

[20] Wentzel, G.: Z. Phys 37 (1926) 80

[21] Newton, R. G.: Ann. Phys. (N.Y.) 124 (1980) 327

[22] Luis, A. and Sanchez-Soto, L.L.: Phys. Rev. A. A (1993)
752

[23] Pegg, D.T. and Barnett, S.M.: Europhys. Lett. 6 (1988)
483

[24] Lévy-Leblond, J.M.: Ann. Phys. (N.Y.) 101 (1976) 319

[25] Thirring, W.: Lehrbuch der Mathematischen Physik, I
New York, Heidelberg, Berlin: Springer-Verlag 1988

[26] Shavitt, I. and Redmon, L.T.: J. Chem. Phys. 73 (1980)
5711

27] Sibert 111, E.L.: J. Chem. Phys. 88 (1988) 4378

28] Cary, J.R.: Phys. Rep. 79 (1981) 131

29] Eckhardt, B.: J. Phys. A 19 (1986) 2961

30] Fried, L.E. and Ezra, G.S.: J. Phys. Chem. 92 (1988)
3144



	Quantum integrability and action operators in spin dynamics
	Citation/Publisher Attribution

	Quantum integrability and action operators in spin dynamics
	Terms of Use

	tmp.1405530520.pdf.7IjAG

