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Abstract 22 

Adelges tsugae Annand (Hemlock Woolly Adelgid) is a small piercing-sucking insect that 23 

feeds on hemlock trees (Tsuga spp.). Native to Asia and the Pacific Northwest, the Hemlock 24 

Woolly Adelgid is invasive in the eastern United States where it attacks Tsuga canadensis 25 

(Eastern Hemlock) and T. caroliniana (Carolina Hemlock). It is currently found in 19 eastern 26 

states and has caused extensive mortality to hemlock forests. The ecological and economic 27 

impacts of this pest are significant, widespread, and often difficult to quantify. As the Hemlock 28 

Woolly Adelgid continues to disperse throughout the range of Eastern and Carolina Hemlocks, 29 

management techniques aimed at controlling it are being researched, implemented, and assessed. 30 

This introductory paper provides an overview of the biology, life cycle, ecology, and history of 31 

this pest in the eastern US as a foundation for this special issue. 32 

 33 

Introduction 34 

Adelges tsugae Annand (Hemlock Woolly Adelgid) is a small (~3 mm adult) piercing-35 

sucking insect that feeds on conifers in the genus Tsuga and Picea (Havill and Foottit 2007). The 36 

population invasive to the eastern US is native to Japan (Havill et al. 2006). Although it has 37 

minimal impact on its native host plants (McClure 1997), it has become a major pest in the 38 

eastern US. In the eastern US, the adelgid feeds on T. canadensis Carrière (Eastern Hemlock) 39 

and T. caroliniana Engelmann (Carolina Hemlock), two hemlock species that have little or no 40 

defense against this insect (Montgomery et al. 2009). The resulting loss of hundreds of thousands 41 

of trees from forests ranging from Georgia to Massachusetts has profoundly affected both local 42 

communities and the associated ecosystems (Ellison et al. 2005).  43 
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This special issue of Northeastern/Southeastern Naturalist explores the adelgid's impacts and 44 

the challenges posed by its invasion. It contains articles surveying the wide range of adelgid-45 

related questions researchers are addressing throughout the invaded range. In the following 46 

pages, we provide an overview of adelgid biology, its interactions with and impacts on other 47 

species at the community and ecosystem level, and the current status of control efforts. 48 

Biogeography and history of the invasion 49 

Hemlock Woolly Adelgid was first described as a species in the early 1920’s from 50 

infestations on T. heterophylla Sargent (Western Hemlock) in the northwestern US (Annand 51 

1924). The adelgid is genetically diverse throughout its native range, with different lineages 52 

associated with particular regions and host plant species. Hemlock Woolly Adelgid in the 53 

northwestern US is genetically different from the population native to Asia and the invasive 54 

population in the eastern US, which originated from low-elevation populations infesting Tsuga 55 

sieboldii Carrière (Southern Japanese Hemlock) in central Japan (Havill et al. 2006). Hemlock 56 

Woolly Adelgid in the eastern US was first reported in the early 1950s near Richmond, Virginia 57 

(Souto et al.1996). Although it was initially thought to be mainly a pest of ornamentals, by the 58 

1980s the adelgid had also begun to harm forest hemlock. It is currently found in 19 eastern 59 

states, ranging from northern Georgia to southern Maine (USFS 2012). 60 

Life cycle 61 

The Hemlock Woolly Adelgid has two generations per year in the invaded range (Figure 1). 62 

In the early spring, first-instar nymphs of the spring generation (progrediens, plural 63 

progredientes) emerge and seek out suitable feeding sites in the leaf cushion at the base of 64 

hemlock needles (McClure 1989, Oten et al. 2012). These first-instar nymphs are known as 65 

crawlers and can either move actively upon their natal host or be dispersed passively by wind, 66 
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birds, deer, or humans (McClure 1990, Turner et al. 2011). Once the crawlers find an appropriate 67 

feeding site, they settle permanently and use their feeding stylet bundle to probe and feed from 68 

xylem ray parenchyma cells (Young et al. 1995). Adelgids go through four larval instars before 69 

maturing into adults; because Hemlock Woolly Adelgid in the invaded range reproduces 70 

asexually, each mature individual is theoretically capable of producing 20-30 summer-generation 71 

(sistens, plural sistentes) offspring in early summer (McClure 1989, Paradis 2011). After the 72 

summer-generation crawlers settle at the base of new-growth hemlock needles, they aestivate 73 

until late fall, when they begin to feed. They feed throughout the winter, and each adult is 74 

theoretically capable of producing 50-100 offspring the following spring (Paradis 2011).  75 

While the spring generation is the same in the adelgid's native and invaded range, the 76 

summer generation differs substantially between the two areas. Summer-generation eggs hatch 77 

into either wingless asexual progrediens that feed on hemlock or winged sexually-reproducing 78 

sexuparae that feed on Picea torano Carriere (Tiger Tail Spruce) in the native range (Sato 1999). 79 

In the invaded range, however, there are no suitable spruce hosts and the sexuparae perish 80 

without reproducing. As a result, HWA in the eastern US is obligately asexual and genetic 81 

variability is limited. Despite this lack of genetic recombination, however, there is evidence for 82 

adaptive genetic variation in cold tolerance in the invaded population (Butin et al. 2005). 83 

Population ecology 84 

Although mature adelgids can produce a large number of offspring, both juvenile and adult 85 

adelgids also experience high mortality rates (McClure and Cheah 2002). The dispersing 86 

crawlers are wingless, passively dispersed, and stand a high probability of ending up in 87 

unsuitable habitat. Even under ideal conditions, early-instar mortality rates can approach 90% 88 

(Paradis 2011), and adults are susceptible to extreme heat in the summer and periods of intense 89 
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cold in the winter (Trotter and Shields 2009). Because even low adelgid densities substantively 90 

affect tree health, its survival is highly density-dependent (McClure 1991), with the previous 91 

generation’s density being the strongest predictor of survival (Paradis 2011). In the invaded 92 

range, this density-dependent mortality is compounded by the fact that sexuparae production 93 

increases in populations feeding on unhealthy or declining hosts. Both Eastern and Carolina 94 

Hemlocks are, however, higher-quality host plants for the invasive adelgid population than many 95 

hemlock species that have co-evolved with other lineages of the adelgid (Montgomery et al. 96 

2009). This may provide one explanation for why the adelgid is so abundant in its novel range. 97 

Community ecology 98 

The Hemlock Woolly Adelgid has numerous predators in its native range ( Cota Vieira et al. 99 

2013, Hakeem et al. 2011, McClure and Cheah 1999), but no predators native to the invaded 100 

range appear capable of reducing adelgid densities sufficiently to consistently prevent hemlock 101 

decline and death (Havill et al., 2012). As a result, its most important intraspecific interactions 102 

likely involve those herbivores that co-occur on its host plant. Although Lambdina fiscellaria 103 

Guenee (Hemlock Looper) has historically been considered a major hemlock pest (Trial and 104 

Devine 1995), its densities appear to have declined in southern New England (E. Preisser, 105 

personal observation). In this region, the most commonly co-occurring hemlock herbivore is 106 

another invasive hemipteran, Fiorinia externa Ferris (Elongate Hemlock Scale) (Preisser et al., 107 

2008). This sessile armored scale feeds on the underside of hemlock needles, reproduces 108 

sexually, and has one generation per year in the northeastern US and two generations in the 109 

South (Abell and Van Driesche 2012, McClure 1978). Its dispersing crawler stage settles on 110 

hemlock foliage in late spring, approximately one month after HWA crawlers have begun 111 

feeding; because of this, the adelgid was predicted to competitively exclude the scale from 112 
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hemlock (McClure 1997). In reality, however, both the range and population density of the scale 113 

have increased sharply in adelgid-invaded areas of southern New England (Preisser et al. 2008).  114 

Because the adelgid and elongate hemlock scale are both sessile and feed on different plant 115 

structures, they interact via their impact on the shared host plant. This fact is important because 116 

the two species have very different impacts on plant health; both experimental research (Miller-117 

Pierce et al. 2010, Miller-Pierce and Preisser 2012, Preisser and Elkinton 2008) and landscape 118 

surveys (Preisser et al. 2008, 2011) have found that while the scale can reach higher densities 119 

than the adelgid, the adelgid has a greater impact on plant health. Experimental work assessing 120 

their interactions on hemlock branches found that each species decreased the other species’ 121 

density by ~30% relative to when the species occur by themselves (Preisser and Elkinton 2008); 122 

at the whole-tree level, however, intraspecific competition is only measurable when one species 123 

arrives several years earlier than the other (Miller-Pierce and Preisser 2012). In such a scenario, 124 

HWA densities are 40% lower when settling on trees previously infested with the scale; by 125 

contrast, the prior presence of HWA does not significantly reduce scale densities (Miller-Pierce 126 

and Preisser 2012). Most recently, experimental work found that HWA crawlers avoided settling 127 

on EHS-infested branches, a finding supported by surveys showing that crawlers avoid settling at 128 

the base of EHS-infested needles (Gomez et al. 2013). These findings suggest that EHS, despite 129 

its apparent disadvantages, may actually be competitively dominant over HWA. 130 

Interaction with hemlock 131 

While HWA is capable of quickly killing hemlock trees (McClure 1991, Orwig et al. 2002), 132 

the mechanism underlying such rapid HWA-mediated mortality has only recently begun to be 133 

addressed. Following initial infestation, the tree declines in health. This period is marked by 134 

needle drop, bud abortion, and inhibition of new growth (McClure 1991). A healthy hemlock can 135 
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be killed in as little as four years, with many trees (especially in warmer climates) dying within 136 

ten years of infestation (McClure 1987, 1991; see the following 'larger-scale effects' section, 137 

below, for a more detailed description of adelgid-induced tree mortality). Some scientists 138 

hypothesized that hemlocks died from resource depletion; large numbers of adelgids essentially 139 

‘starved’ the tree of nutrients (McClure 1991). This explanation was challenged by work that 140 

used scanning electron microscopy to identify the adelgid's precise feeding mode and cellular-141 

level impact (Young et al. 1995). Because these researchers found that adelgid feeding caused 142 

relatively little cellular damage, they proposed that the adelgid’s impact on tree health was better 143 

explained by ‘toxicity’: fluids secreted by feeding adelgids, or the plant’s response to the 144 

feeding, had a disproportionately large impact on plant health. This explanation gained credence 145 

with the large increase in elongate hemlock scale densities in southern New England; similarly-146 

sized to adelgids but more abundant (Preisser et al. 2008), these scales nonetheless had less 147 

impact on hemlock growth and survival (Miller-Pierce et al. 2010, Miller-Pierce and Preisser 148 

2012, Preisser and Elkinton 2008, Preisser et al. 2008, 2011).  149 

The large amount of damage induced by HWA feeding appears linked to a hypersensitive 150 

response in hemlock. The presence of HWA at the base of a needle causes extensive damage 151 

(measured by the presence of hydrogen peroxidase) to the needle itself as well as to nearby ‘new 152 

growth’ foliage that had not been colonized by HWA crawlers (Radville et al. 2011). The 153 

hypersensitive response acts to isolate sessile herbivores by killing nearby tissue and starving the 154 

feeding insect (Fernandes 1990, Fernandes and Negreiros 2001). In the case of HWA, the 155 

hypersensitive response causes the induction of ‘false growth rings’ in infested stems that 156 

interfere with solute transport and prevent the stems from obtaining the water necessary for 157 

photosynthesis (Domec et al. 2013, Gonda-King et al. 2012). As a result, the plant may 158 
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experience chronic water stress and eventually be unable to carry out photosynthesis (Domec et 159 

al. 2013). Despite widespread cell death, induction of the hypersensitive response appears to 160 

cause relatively little harm to feeding adelgids. On the contrary, HWA may themselves 161 

biochemically manipulate the plant to induce this response. HWA possesses several enzymes 162 

similar to those used by related insects to feed upon and influence their host plants (Oten 2011). 163 

A detailed analysis of herbivore-mediated changes in hemlock amino acid concentrations found 164 

that adelgids actually induced substantial increases in local nutrient levels (Gómez et al. 2012). 165 

This manipulation may be similar to that occurring in galling insects, where sessile herbivores 166 

manipulate plant physiology to build protective structures (i.e., galls) that serve as both food and 167 

protection (Havill and Foottit 2007).  168 

Larger-scale effects 169 

The Hemlock Woolly Adelgid has killed so many hemlocks in the eastern US that the 170 

International Union for Conservation of Nature (IUCN) recently labeled Eastern Hemlock 'near 171 

threatened' and placed it on the Red List of Threatened Species (Farjon 2013). At the local level, 172 

adelgid-induced hemlock mortality has substantially impacted many natural areas; Virginia's 173 

Shenandoah National Park, for example, has lost ~90% of its mature hemlocks (Townsend and 174 

Rieske-Kinney 2006). While noticeable hemlock mortality and decline continues, however, the 175 

initial predictions of complete mortality of Eastern and Carolina Hemlock have not been realized 176 

(Preisser et al. 2008). Especially in the northeastern US, a substantial number of infested trees 177 

continue to persist: a long-term study in Delaware Water Gap National Park (located on the NJ-178 

PA border) found that 73% of hemlocks survived for longer than ten years (Eschtruth et al., 179 

2013). A recently-published analysis of Forest Inventory Analysis (FIA) data for 432 US 180 

counties made a similar point (Trotter et al., 2013). It found little evidence for large-scale decline 181 



9 
 

and a slight increase in median live hemlock basal area between 1985 and 2005, a fact it 182 

attributed to the positive effects of reforestation and regeneration overwhelming the more recent 183 

negative impacts of the adelgid.  184 

Even if Eastern and Carolina Hemlock persist in eastern US ecosystems, the large losses 185 

caused by adelgid infestation will substantially alter eastern forest ecosystems. Hemlocks are a 186 

shade-tolerant 'foundation' species that shade and cool headwater streams that are home to trout 187 

and a wide variety of aquatic invertebrates (reviewed in Ellison et al. 2005, Orwig and Foster 188 

2000). They also assist in soil stabilization and controlling hydrologic regimes (Ford and Vose 189 

2007). Over a nine-year period, adelgid-induced hemlock decline in the Delaware Water Gap 190 

National Recreational Area (NJ) more than doubled understory light levels, increased vascular 191 

plant cover nearly fourfold, and led to invasive plants colonizing 35% of the surveyed plots 192 

(Eschtruth et al. 2006). Hemlock stands are also critical habitat for a number of bird species 193 

(Rabenold et al. 1998), and the loss of hemlocks can substantially affect invertebrate community 194 

composition (Adkins and Rieske 2013, Dilling et al. 2007, Ingwell et al. 2012). 195 

There are 274 cultivars of eastern hemlock, “making it one of the most cultured and 196 

cultivated landscape tree species” (Quimby 1996, Swartley 1984) that is often used as a hedge 197 

because of its response to shearing (Swartley 1984). It is also desired for its color, graceful habit, 198 

and, until recently, its freedom from disease and insects. According to 1995 nursery inventories 199 

in Tennessee and North Carolina, the value of eastern hemlock was approximately $34 million 200 

(J.R. Rhea, personal communication, cited in Bentz et al. 2002). The invasion of the adelgid has 201 

reduced the importance of native hemlocks for ornamental use and will likely also affect the 202 

more than 4 million cubic feet of timber produced in the region annually (Rhea 1995, Woodsen 203 

2001). Land values also deteriorate as a result of adelgid infestations. A study in residential New 204 
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Jersey found that 25-50% hemlock defoliation by the Hemlock Woolly Adelgid led nearby 205 

property values to decline by an average of more than $7,000.00 (Holmes et al. 2005). The future 206 

use of hemlocks as ornamentals relies in part on the ability to effectively manage the adelgid. 207 

Management methods 208 

Chemical control. Management of the Hemlock Woolly Adelgid is largely focused on 209 

biological control and chemical control (McClure 2001, McClure and Cheah 1999, Montgomery 210 

1999, also see Onken and Reardon 2011). Chemical control is currently the most effective 211 

method and is widely used in ornamental and landscape settings, but it is generally impractical in 212 

forest settings due to prohibitive costs and the potential environmental impacts of wide-scale use 213 

(Cowles 2009, McClure 1992). The biggest limiting factor is cost. Trees must be treated 214 

individually, often leading managers to target a series of ‘high value’ trees for treatment. 215 

Because chemicals degrade over time, they must be periodically re-applied to ensure continued 216 

control; in addition, there is the potential for non-target environmental impacts. The water-217 

solubility of systemic insecticides allows for rapid uptake and internal transportation of the 218 

chemical throughout the tree, but also allows them to impact aquatic organisms in nearby water 219 

bodies. Imidacloprid, for example, has been detected in water at sites with low soil organic 220 

matter (U.S. EPA 2003). The mode of chemical application may also affect hemlock forest-221 

associated fauna. Soil injections of imidacloprid, for example, can cause significant declines in 222 

the abundance and richness of soil-dwelling springtails and other non-target organisms 223 

(Reynolds 2008). Forest applications may be limited due to geographical and logistical 224 

constraints such as difficulties in bringing equipment into a forest (Cowles et al. 2006). Lastly, 225 

pesticides are not a fail-proof method. In Joyce Kilmer Memorial Forest (NC), for example, 226 

pesticide applications appear relatively ineffective in reducing adelgid populations (Bompey 227 
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11/08/2010). Despite these concerns, research into chemical treatment options has decreased 228 

their environmental impacts while increasing their efficacy (e.g., Cowles 2009). While chemicals 229 

are often the best option in ornamental settings, they are generally impractical in forests as a 230 

stand-alone management tool. Sustainable long-term adelgid management in forest settings will 231 

likely require an integrated pest management program incorporating multiple management 232 

techniques (Bentz et al. 2002, Del Tredici and Kitajima 2004, McClure and Cheah 1999).  233 

Biological control. There appear to be no predators native to the invaded range capable of 234 

consistently lowering adelgid densities sufficiently to prevent tree decline and death 235 

(Montgomery and Lyon 1996, Wallace and Hain 2000, Havill et al. 2012). Researchers searching 236 

for effective adelgid predators began to explore Asia and northwestern North America, the native 237 

range of the Hemlock Woolly Adelgid, for organisms useful in a classical biological control 238 

program. Since the 1990s, biological control has been a major focus of adelgid research and 239 

management (McClure and Cheah 2002, Onken and Reardon 2011), an effort that expanded 240 

considerably with the development of the Hemlock Woolly Adelgid Initiative in 2003. The 241 

current program includes 28 federal and state agencies, 24 universities, seven institutions in 242 

China and Japan, and numerous private industries (Onken and Reardon 2011).  243 

Several beetle species have been released in hopes of controlling the Hemlock Woolly 244 

Adelgid. The first was a coccinellid beetle, Sasajiscymnus tsugae Sasaji and McClure, that is 245 

native to Japan and was first released in 1995 (Cheah 2008, 2011; Cheah and McClure 1998). 246 

Since then, there have been more than two million S. tsugae released on more than 400 sites in 247 

16 states (Cheah 2011, Grant et al. 2010, Salom et al. 2008). It successfully reproduces and 248 

disperses following release, and is capable of surviving extreme climatic events (Cheah 2011).  249 
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Between 2004 and 2011, more than 61,000 individuals of Scymnus sinuanodulus Yu and 250 

Yao, another coccinellid beetle native to China, have been released (Montgomery and Keena 251 

2011). Because research suggests that this species is most climatically suited to the southern 252 

portion of the hemlock range in the eastern US (Salom et al. 2008), most of these releases have 253 

occurred in Georgia, North Carolina, and Tennessee. When released in these areas, the species 254 

does not seem to require additional efforts to assist in its establishment (Montgomery and Keena 255 

2011). Other beetles in the same genus have also been (S. ningshanensis Yu and Yao) or are 256 

currently being pursued (S. coniferarum Crotch and S. camptodromus Yu and Liu) as biological 257 

control agents. Native to western North America, the beetle S. coniferarum seems especially 258 

promising since its feeding habits temporally complement that of Laricobius nigrinus Fender 259 

(discussed in the next paragraph). Releases of S. coniferarum have begun, and research and 260 

efficacy trials continue (Montgomery et al. 2011). Initial problems in rearing S. camptodromus 261 

slowed this species' evaluation, but it is still being pursued because it diapauses at the same time 262 

as the adelgid, has a broad geographic distribution, and is active during a critical period in the 263 

adelgid life cycle (Montgomery and Keena 2011).  264 

Laricobius nigrinus (Coleoptera: Derodontidae), a specialist adelgid predator native to 265 

Oregon and Washington (Kohler et al. 2008), shows particular promise as a biological control 266 

agent. Since its initial release in 2003, more than 380,000 beetles have been released throughout 267 

the eastern US (Mausel et al. 2011, Salom et al. 2008). While its role as a biological control 268 

agent seems promising given its field recovery success and ability to reduce adelgid populations, 269 

it is hybridizing with a native beetle, L. rubidus LeConte (Klein et al. 2010), with unknown 270 

consequences (Havill et al. 2012). This native beetle, which feeds primarily on Pineus strobi 271 

Hartig (Pine Bark Adelgid), can be found feeding on Hemlock Woolly Adelgid in areas where 272 
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white pine and hemlock co-occur (Montgomery and Lyon 1996, Wallace and Hain 2000). The 273 

fact that L. nigrinus feeds exclusively on spring-generation eggs and nymphs (Kohler et al. 2008, 274 

Zilahi-Balogh et al. 2002) suggests that it will be most effective as part of a suite of predators. 275 

Another beetle in the same genus that is native to Japan, L. osakensis Montgomery and Shuyake, 276 

is also being researched and released. This beetle is especially important since is native to the 277 

region where the invasive lineage of the adelgid also occurs (Havill et al. 2006, Lamb et al. 278 

2011). In 2012, 2000 L. osakensis were released (K. Mooneyham, pers. comm.) and research and 279 

releases continue. 280 

A number of other organisms also have potential as biological control agents. Leucopis spp. 281 

flies (Diptera: Chamaemyiidae) prey on Hemlock Woolly Adelgid in northwestern North 282 

America, but a lack of rearing methods and difficulty in species identification have slowed their 283 

development as control agents (Ross et al. 2010). A fungal agent, Lecanicillium muscarium Zare 284 

and Gams, is also under investigation (Salom et al. 2008). It is commercially available as 285 

Mycotal, a biopesticide. Some formulations of this fungal agent, which has been approved for 286 

use in the US and can already be found in eastern US hemlock forests, can reduce adelgid 287 

populations by up to 75%; research into the challenges posed by harsh abiotic conditions and the 288 

need for mass deployment is ongoing (Costa 2010, 2011).  289 

While biological control agents may help manage Hemlock Woolly Adelgid populations, the 290 

high susceptibility of Eastern and Carolina Hemlock to the adelgid means that these agents must 291 

cause extremely high adelgid mortality in order to be successful (McClure 1996). This level of 292 

adelgid suppression will likely require a suite of predators (Cheah et al. 2004, Montgomery and 293 

Lyon 1996); biological control agents may ultimately be most successful when incorporated into 294 

a well-rounded integrated pest management program. 295 
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Host-plant resistance. When grown in the eastern US and experimentally infested with the 296 

Hemlock Woolly Adelgid, hemlock species native to Asia and the Pacific Northwest are tolerant 297 

of and/or resistant to this pest (Bentz et al. 2002, 2007; Del Tredici and Kitajima 2004; Jetton et 298 

al. 2008; Oten 2011). This suggests that host-plant factors may play a role, perhaps in concert 299 

with natural enemies and the scattered distribution of hemlocks, in keeping adelgid densities low 300 

in the native range (Montgomery and Lyon 1996).  301 

Interspecific variation in hemlock resistance to the Hemlock Woolly Adelgid is well-302 

documented and continues to be pursued as a key component in a long-term, integrated approach 303 

to adelgid management. Hybrid crosses between adelgid-resistant T. chinensis (Franch.) Pritzel 304 

ex Diels and the adelgid-susceptible Carolina Hemlock produce progeny that are more adelgid-305 

resistant than Carolina Hemlocks (Montgomery et al. 2009). Similar hybridization attempts with 306 

Eastern Hemlock have been unsuccessful (Bentz et al. 2002, Pooler et al. 2002), but advances in 307 

hybridization methodology may assist in overcoming this obstacle.  308 

There have also been reports of a few Eastern Hemlocks growing in heavily adelgid-309 

damaged regions that appear to have remained healthy and vigorous. Their existence and 310 

continued vigor, despite coexisting with the Hemlock Woolly Adelgid for more than 20 years, 311 

suggests the potential for some degree of adelgid resistance/tolerance in Eastern and Carolina 312 

Hemlocks (Caswell et al. 2008). When cuttings from these putatively-resistant trees were grown 313 

and evaluated in conjunction with cuttings from known adelgid-susceptible trees, the putatively-314 

resistant cuttings had lower adelgid settlement and higher adelgid mortality than did control 315 

cuttings (Ingwell and Preisser 2011).  316 

While the development of resistant hemlocks suitable for forest restoration in the eastern US 317 

is a long process, initial investigations look somewhat promising. A long-term and sustainable 318 
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approach to adelgid management will likely incorporate chemical control, biological control, and 319 

host-plant resistance into an integrated management program. 320 

Conclusion 321 

The past decades have seen substantial progress towards a better understanding of adelgid 322 

ecology and management. These accomplishments notwithstanding, we have yet to develop a 323 

long-term and cost-effective management strategy for the Hemlock Woolly Adelgid. It is our 324 

hope that the articles contained in this special feature move us closer to this goal, and to the 325 

preservation of our native hemlock trees.  326 
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Figure 1: Hemlock Woolly Adelgid life cycle. In Japan, the adelgid alternates between Hemlock 611 

and Tigertail Spruce. Tigertail Spruce supports a sexual generation and gall formation. In the 612 

eastern United States there are only two generations on Hemlock, because winged migrants do 613 

not find suitable spruce species on which to complete the entire life cycle. The letters ‘A’ and ‘B’ 614 

refer to where the cycle begins again. Vince D’Amico and Nathan Havill created the artwork for 615 

this figure. 616 
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