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Incipience of quantum chaos in the spin-boson model

Michel Cibils,1 Yvan Cuche,2 and Gerhard Müller3
1 Institut de Physique Théorique Ecole Polytechnique Fédérale de Lausanne

PHB-Ecublens, CH-1015 Lausanne, Switzerland
2 Istituto Nazionale di Ottica Largo E. Fermi 6, 50125 Firenze, Italy

3 Department of Physics, University of Rhode Island, Kingston RI 02881, USA

The peculiar spectral properties of the spin-boson model make it suitable for an investigation of
quantum nonintegrability effects and level statistics from a new perspective. For fixed spin quantum
number s, its energy spectrum consists of 2s + 1 sequences of levels with no upper bound. These
sequences are identified and labelled consecutively by means of a quantum invariant calculated from
the time average of a non-stationary operator. For integrable cases, level repulsion (on the energy
axis) is limited to states within each sequence. From the observed spectral properties, we infer a
series of s-dependent level-spacing distributions. They converge towards a Poisson distribution for
s→∞. For nonintegrable cases, level repulsion becomes a universal phenomenon, but the amount
of repulsion between two states decreases with increasing separation (in label) of the two sequences
to which they belong. For small s, the quantum nonintegrability effects are compelling but not
at all chaotic. Nevertheless, they contain all the ingredients necessary to produce the symptoms
commonly described as indicators of quantum chaos. In this model, we can observe quantum chaos
in the making under very controllable conditions.

I. INTRODUCTION

The spin-boson model has been investigated in a va-
riety of different contexts (atomic physics, solid state
physics, quantum optics) and, until recently, mostly for
purposes unrelated to quantum chaos (see references in
[1, 2, 3, 4]). Existing quantum chaos studies of the spin-
boson model have focused primarily on properties of the
flow in the classical phase space and on quantum me-
chanical representations thereof (coherent-state represen-
tation, Husimi distributions [3, 4, 5], dynamics of level
occupation probabilities [1], and energy-level statistics
[6, 7, 8]. The purpose of this study, which is based on
the methods of analysis introduced in [9, 10, 11] for a
two-spin system, is the investigation of nonintegrability
effects in quantum invariants of the spin-boson model and
their implications for the level statistics. The spin-boson
Hamiltonian considered in this work reads :

H = ~ωBa†a+ ~ωSSz

+

√
~
2

~
Λ
2
{
S+a+ S−a

† + ε
(
S+a

† + S−a
)}

, (1)

where a†, a are boson creation and annihilation opera-
tors with [a, a†] = 1 of a quantum harmonic oscillator,
and S± = Sx ± iSy, Sz are dimensionless operators with
[Sx, Sy] = iSz etc. of a spin with quantum number s.

In the absence of any interaction, both subsystems
have equidistant and non-degenerate levels, with spac-
ings ~ωB for the boson levels and ~ωS for the 2s+ 1 spin
levels. Λ is the spin-boson coupling constant, and ε in-
terpolates between the Jaynes-Cummings model (ε = 0)
and the standard spin-boson model (ε = 1). The Hamil-
tonian (1) plays an important role in the nonrelativis-
tic theory of interaction between atoms and a radiation
field. In that context, the boson represents one mode of
the electromagnetic field and the coupling term in (1) its

interaction with a (2s+ 1)-level atom.

In the limit ~ → 0, s → ∞, ~s = S = const, H
turns into the energy function H of an autonomous clas-
sical Hamiltonian system of two degrees of freedom [2, 3,
12] – a classical harmonic oscillator coupled to a three-
component vector of fixed length S. For ε = 0 only, a
second integral of the motion (in addition to H) exists,
and guarantees integrability. For ε > 0, the phase flow is
chaotic. Chaos is widespread for ε = 1 and Λ sufficiently
large [12, 13], and becomes increasingly constrained by a
growing measure of intact tori as ε approaches zero. This
justifies the name integrability parameter for ε.

The (formal) quantum counterpart of the second clas-
sical integral of the motion is the operator

I = ~
(
a†a+ Sz

)
, (2)

which commutes withH only for ε = 0. However, it is not
a priori clear, what the impact of [H, I] 6= 0, i.e. ε 6= 0,
might be on the spectral properties of (1) for small values
of the spin, s = 1/2 and s = 1, in particular. These sys-
tems have little in common with two classical degrees of
freedom, for which an integrability criterion with clear-
cut consequences exists. The phenomena of quantum
nonintegrability indeed turn out to be dramatic even for
small spin quantum numbers. Although distinct from
the commonly used indicators of quantum chaos, the ob-
served effects contain the building blocks that produce
them. Hence the name incipient quantum chaos. Its
manifestations in the spin-boson model with s = 1/2, s =
1, and s > 1 will be discussed in Secs. III, IV and V, re-
spectively, following a brief introduction to the method
of analysis in Sec. II.



2

II. QUANTUM INVARIANTS

For all integrable cases (ε = 0), the energy spectrum
Eλ of the spin-boson Hamiltonian (1) consists of 2s + 1
infinite sequences of levels. The eigenstates |λ 〉 are nat-
urally labelled by a pair of quantum numbers λ = (µ, ν),
where µ = −s,−s+ 1, . . . ,+s specifies the sequence, and
ν = 0, 1, 2, . . . the position in that sequence. For the non-
interacting case Λ = 0, these two natural quantum num-
bers are the spin z-component σ = 〈λ |Sz |λ 〉 ≡ 〈Sz 〉λ
and the boson occupancy n = 〈 a†a 〉λ, respectively.

In the presence of a spin-boson interaction (Λ 6= 0), the
two operators Sz and a†a are no longer invariant under
time evolution, but their time averages as represented by
the diagonal matrices { 〈Sz 〉λ}, { 〈 a†a 〉λ} are new invari-
ant operators. Their matrix elements are then no longer
integers or half-integers, but the points with coordinates
( 〈Sz 〉λ, 〈 a†a 〉λ) still form 2s + 1 infinite strands. That
is also the case if we plot the matrix elements of an ar-
bitrary operator, 〈A 〉λ, versus those of the Hamiltonian,
Eλ = 〈H 〉λ [9]. The perfectly regular arrangement of
the points ( 〈A 〉λ, Eλ) reflects a “ smooth ” dependence
of these quantum invariants on two quantized actions.

For nonintegrable cases (ε 6= 0) indeed some dramatic
changes in pattern take place in the ( 〈A 〉λ, Eλ)-plane as
we shall see. These changes depend strongly on the spin
quantum number, at least for small s, but they are all
connected with the loss of one of the two natural quantum
numbers identified above.

This type of quantum chaos study based on invariants
determined via time averages of non-stationary opera-
tors was introduced in the context of the study of a two-
spin model with a nontrivial integrability condition for
the purpose of establishing a direct link between the de-
struction of invariant tori in the classical phase flow and
the appearance of defects in the configuration of points
( 〈A 〉λ, Eλ) [9].

Here we use the quantum invariants 〈A 〉λ, Eλ in or-
der to understand the peculiar level-spacing distributions
of the spin-boson model (1). Throughout this study we
shall use the operator A = a†S− for that purpose, but
this choice is by no means essential for the conclusions
that will be reached. Even though a†S− is not hermitian,
the matrix elements 〈 a†S− 〉λ happen to be real for all
eigenstates of (1). In the basis built from the eigenstates
|n, σ 〉 of the noninteracting system (see Sec. II), both
H and a†S− are real matrices, and the eigenvectors of H
have real coefficients. In all our numerical calculations
we have set ~ = 1/s, which yields a classical spin length
S = 1 in the limit s→∞.

III. SPIN s = 1/2

The extreme quantum case (s = 1/2) of the spin-boson
model (1) is only very remotely related to a classical sys-
tem with two degrees of freedom, for which the integra-
bility condition is directly linked to drastic consequences.

One might think that the quantum integrability condi-
tion, which is basically a classical notion formally trans-
lated into quantum mechanics in the form of the com-
mutativity requirement [H, I] = 0 of operators (1) and
(2), has little if any impact on the spectral properties
in the spin-boson model for small s, and that noninte-
grability effects begin to be noticeable for large s only,
where the correspondence principle comes into play. Con-
trary to this expectation, we demonstrate that integra-
bility and nonintegrability have clear-cut consequences
even for s = 1/2, leading, for example, to well-defined
and distinct level-spacing distributions. For that demon-
stration, we investigate the eigenvalues of two quantum
invariants as described in Sec. II.

A. [H, I] = 0

Figure 1 shows a plot of the invariant 〈 a†S− 〉λ versus
the invariant Eλ (energy) for an integrable case (ε = 0) of
the s = 1/2 spin-boson model. We observe two strands of
states that live in different worlds. The levels within each
strand have nearly uniform spacings, but the spacings on
one strand are completely unaffected by the levels on the
other strand. For a close view, we show in the inset part
of the same data on an expanded energy scale and with
successive levels connected by dashed lines. The arrow
marks one location on the energy axis, where levels from
different strands are nearly degenerate. Strong intra-
strand level repulsion combined with zero inter-strand
level repulsion is the hallmark of integrability in the spin-
boson model – also for s > 1/2 as we shall see.

FIG. 1: Invariant 〈 a†S− 〉λ versus energy eigenvalue Eλ for the
eigenstates of parity +1 of the (integrable) s = 1/2 spin-boson
model (1) with ~ = 1/s = 2, ωB = ωS = 1, Λ = 1, and ε = 0,
over an energy range of given size. A subset of these states
(full circles) is shown again in the inset on an expanded energy
scale and with consecutive levels connected by dashed lines.
The arrow indicates a point of inter-strand near-degeneracy.
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What kind of level-spacing distribution does this two-
strands configuration of eigenstates produce? Toward a
quantitative analysis of that question, we have plotted in
Fig. 2 the sequence of successive energy-level spacings,
∆Eλ = Eλ − Eλ−1 versus Eλ over the same interval as
the levels themselves were shown in Fig. 1. Almost all
spacings are of the inter-strand type and fall alternat-
ingly onto one of two piecewise smooth curves. They are
well approximated by triangular functions with the same
amplitude and period, but with opposite phases. The lo-
cation of one near-degeneracy (the same as in Fig. 1) is
again marked by an arrow.

FIG. 2: Sequence of successive spacings ∆Eλ = Eλ − Eλ−1

between the energy levels shown in Fig. 1 for the (integrable)
s = 1/2 spin-boson model (1), with ~ = 1/s = 2, ωB = ωS =
1, Λ = 1, and ε = 0. The spacings fall alternatingly onto one
or the other of two piecewise smooth curves (shown as dashed
and solid lines) The arrow indicates the location of the same
inter-strand near-degeneracy as in Fig. 1.

If we ignore the slowly varying period and amplitude
of the two curves in Fig. 2, the resulting level-spacing
distribution is rectangular,

P2 (∆E) =
1

∆ES
Θ (∆E) Θ (∆ES −∆E) . (3)

The maximum spacing ∆ES is equal to the intra-strand
spacing, here assumed to be nearly the same in both
strands. The rectangular function (3) provides a fairly
accurate description of the actual spacing distribution of
the energy levels for this system as shown in Fig. 3. In
order to avoid the strong nonuniformities at the lower end
of the spectrum and the inevitable truncation effects that
impact upon the highest levels obtained by numerical di-
agonalization, we use only the levels from a certain inter-
mediate energy interval for the level statistics. Over that
interval the density of levels is nearly constant. There-
fore no unfolding is necessary in the statistical analysis.
The rectangular distribution is characteristic for the in-
tegrable s = 1/2 spin-boson model, but only for non-zero

interaction (Λ 6= 0). In the absence of spin-boson cou-
pling (Λ = 0), the level spacings become all equal (see
[6]).

FIG. 3: Level-spacing distribution of the states shown in Fig.
1, but over the extended energy range 99 ≤ Eλ ≤ 1130 (515
levels), of the (integrable) s = 1/2 spin-boson model (1) with
~ = 1/s = 2, ωB = ωS = 1, Λ = 1, and ε = 0 (histogram).
The dashed line represents the rectangular distribution (3),
which is predicted by a simple phenomenological model as
described in the text.

For a simple model of the two-strands level-sequence
that characterizes the integrable s = 1/2 spin-boson
model, consider two 1D lattices with incommensurable
spacings b1 = b < b2. The superposition of the two
lattices yields an inhomogeneous array of sites, and the
spacings x between successive sites satisfy the distribu-
tion

p2(x) = (1− u2) p̃2(x)Θ(x)Θ(b− x) + u2δ(x− b) , (4)

where p̃2(x) = const = 1/b, and where the second term
represents the fraction of intra-lattice spacings that sur-
vive the superposition. For small differences b2 − b1 = η
in lattice spacings, we have u2 ∝ η. In the spin-boson ap-
plication of Fig. 3, the peak predicted at the band edge is
insignificant relative to the statistical fluctuations in the
histogram. The lattice model will be generalized later
to describe the level spacings of the integrable s > 1/2
spin-boson model.

B. [H, I] 6= 0

What is the impact of nonintegrability (ε 6= 0) on the
configuration of states depicted in Fig. 1 for ε = 0 ? The
answer is shown in Fig. 4. The two strands are still there,
but now they “ interact ” in the vicinity of each inter-
strand near-degeneracy. This happens at fairly regular
intervals and gives rise to a standing-wave like pattern
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FIG. 4: Invariant 〈 a†S− 〉λ versus energy eigenvalue Eλ over
a certain energy range for the eigenstates of parity +1 of the
(nonintegrable) s = 1/2 spin-boson model (1), with ~ = 1/s =
2, ωB = ωS = 1, Λ = 1, and ε = 0.7. The arrow indicates
the location of one near-degeneracy between energy levels.

in the configuration of points ( 〈 a†S− 〉λ, Eλ). One such
occurrence in Fig. 4 is marked by an arrow.

This “ interaction ” between nearly degenerate strand
states will be called a resonance. It is a form of hybridiza-
tion and involves two major effects that are relevant in
the context of this study:

(i) The resonating states are physically much less dis-
tinct than the original strand states. They pro-
duce expectation values 〈 a†S− 〉λ that are more
alike than those of pure strand states. In the ab-
sence of integrability, there is no longer that second
quantum number which keeps states from different
strands in different worlds.

(ii) In a resonance, one of the two states involved is
pushed to a slightly lower energy and the other
one to a slightly higher energy. This level repul-
sion, although undetectably small on the energy
scale of Fig. 4, produces a major change in the
level-spacing distribution.

The level repulsion near resonances is best visible in the
sequence ∆Eλ of successive spacings as shown in Fig. 5.
The spacings fall again, as in Fig. 2, alternatingly onto
one of two nearly periodic curves, but now these curves
have round minima and maxima, and the minima are
nonzero by a significant amount. Very small spacings are
eliminated completely by the resonances.

In an idealized model for the observed level-spacing
sequences, we may approximate the two curves in Fig. 5
by two simple harmonic functions with equal amplitudes
and periods, but opposite phases. Under the assumption
that the density of levels is constant on each strand, this

FIG. 5: Sequence of successive spacings ∆Eλ = Eλ−Eλ−1 be-
tween the energy levels shown in Fig. 4 for the (nonintegrable)
s = 1/2 spin-boson model (1), with ~ = 1/s = 2, ωB = ωS =
1, Λ = 1, and ε = 0.7. The spacings fall alternatingly onto
one or the other of two smooth curves near-degeneracy as in
Fig. 4.

yields a spacing distribution of the form

P 2 (∆E) =
Θ (∆Emax −∆E) Θ

(
∆E −∆Emin

)
π
√

(∆Emax −∆E)
(
∆E −∆Emin

) .

(5)
It is equivalent to the density of states of a cosine-like
dispersion branch with a gap in a 1D system. The actual

FIG. 6: Level-spacing distribution of the states shown in Fig.
4, but over the extended energy range 100 ≤ Eλ ≤ 1130 (515
levels), of the (nonintegrable) s = 1/2 spin-boson model (1)
with ~ = 1/s = 2, ωB = ωS = 1, Λ = 1, and ε = 0.7
(histogram). The dashed line represents the distribution (5),
which is predicted by a simple phenomenological model as
described in the text.
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level-spacing distribution for this nonintegrable s = 1/2
case is plotted as a histogram in Fig. 6. The charac-
teristic properties which distinguish it from that of the
integrable case are the complete absence of very small
spacings and the marked enhancements near the band
edges. Both properties are reasonably well represented
by the model distribution (5), which is shown dashed in
Fig. 6 with fitted parameter values. A more realistic
model should take into account the slow amplitude mod-
ulations in the curves of Fig. 5. Level-spacing sequences
and distributions for the s = 1/2 spin-boson model were
previously investigated by Kuś [8], but only for the case
ε = 1 and with no conclusive evidence for quantum non-
integrability effects.

IV. SPIN s = 1

No matter how compelling the nonintegrability effects
are that we have identified in the s = 1/2 spin-boson
model, it would be incorrect to see in them already man-
ifestations of quantum chaos, but the resonance between
nearly degenerate energy eigenstates represents an im-
portant building block thereof. The same basic ingredi-
ent comes into play also in the s = 1 spin-boson model.
Here it produces effects of increased complexity includ-
ing disorderly level repulsion, which is a characteristic
signature of quantum chaos.

A. [H, I] = 0

The spectrum (〈 a†S− 〉λ, Eλ) of the integrable s = 1
spin-boson model consists of three strands of levels as
shown in Fig. 7. The two natural quantum numbers
µ = −1, 0, +1 and ν = 0, 1, 2, . . . are suggested by the
smoothly varying separation between strands and by the
nearly uniform intra-strand level spacings, respectively,
and also by the fact that states belonging to different
strands do not resonate. Three occurrences of nearly
degenerate levels can be observed in the inset to Fig. 7.

Upon projection of the three strands of states onto
the energy axis, the level spacings fall cyclically onto
one of three nearly periodic curves as shown in Fig. 8.
The short-dashed curve describes spacings between states
from nearest-neighbor (nn) strands at all energies. The
other two curves change slope midway between a max-
imum and a minimum. Any portion above the bend
describes spacings between states from nn-strands, and
any portion below the bend spacings between states from
next-nearest-neighbor (nnn) strands.

The spacing sequences of Fig. 8 yield the spacing dis-
tribution shown as a histogram in Fig. 9. It is signifi-
cantly different from the s = 1/2 case (Fig. 3). Within
the given statistical uncertainties, the histogram is con-

FIG. 7: Invariant 〈 a†S− 〉λ versus energy eigenvalue Eλ over
a certain energy range for the eigenstates of parity +1 of the
(integrable) s = 1 spin-boson model (1), with ~ = 1/s =
1, ωB = ωS = 1, Λ = 1, and ε = 0. A subset of these
states (full circles) is shown again in the inset on an expanded
energy scale and with consecutive levels connected by dashed
lines. The arrows mark three successive locations of near-
degeneracies between levels of different strands.

FIG. 8: Sequence of successive spacings ∆Eλ = Eλ − Eλ−1

between the energy levels shown in Fig. 7 for the (integrable)
s = 1 spin-boson model (1), with ~ = 1/s = 1, ωB = ωS =
1, Λ = 1, and ε = 0. The spacings fall cyclically onto one of
three piecewise smooth curves (shown by long-dashed, short-
dashed and solid lines). The arrows mark the same inter-
strand near-degeneracies as in Fig. 7.

sistent with the triangular distribution

P3 (∆E) =
2

∆ES

(
1− ∆E

∆ES

)
Θ (∆E) Θ (∆ES −∆E) ,

(6)
which is shown dashed for a fitted value of the band width
∆ES .
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FIG. 9: Level-spacing distribution of the states shown in Fig.
7, but over the extended energy range 32.5 ≤ Eλ ≤ 377.0 (515
levels), of the (integrable) s = 1 spin-boson model (1) with
~ = 1/s = 1, ωB = ωS = 1, Λ = 1, and ε = 0 (histogram).
The dashed line represents the triangular distribution (6),
which is predicted by a simple phenomenological model de-
scribed in the text as a limiting case. The inset illustrates
how that distribution varies with the parameter η of that
phenomenological model. The four solid lines in the order of
increasing intercept pertain to η = 0.5, 0.2, 0.1, 0.01 and the
dashed line represents the limiting function p̃3(x) = 2(1− x).

This function is obtained as a limiting case from the
lattice model for level configurations which we have al-
ready used in Sec. III.A. Consider the superposition of
three 1D lattices with incommensurable lattice spacings
b1 ≡ b < b2 < b3. The resulting distribution of spacings
x between successive sites is then of the form

p3(x) = (1− u3) p̃3(x)Θ(x)Θ(b− x) + u3δ(x− b) , (7)

where the continuous part p̃3(x) and the fraction of intra-
lattice spacings x = b depend on the values of b2 and b3.
We have performed a numerical analysis of this lattice
model based on 5 × 106 consecutive spacings for b1 =
1, b2 = 1 + η

√
2, b3 = 1 + η

√
3 and a range of η-values.

The conclusions from that analysis are as follows:

(i) The weight of the δ-function in (7) grows more slowly
than in the s = 1/2 case: u3 ∼ η2 for η � 1.

(ii) The continuous part of (7) is trapez-shaped as shown
in the inset to Fig. 9 and approaches the triangular
function p̃3(x) = (2/b)(1− x/b) for η → 0.

(iii) This limiting distribution is universal, i.e. it obtains
for arbitrary incommensurable lattice spacings b1 <
b2 < b3 with very small differences.

B. [H, I] 6= 0

The impact of nonintegrability on the three strands of
eigenstates depicted in Fig. 7 for the s = 1 case shares

FIG. 10: Invariant 〈 a†S− 〉λ versus energy eigenvalue Eλ
over a certain energy range for the eigenstates of parity +1
of the (nonintegrable) s = 1 spin-boson model (1), with
~ = 1/s = 1, ωB = ωS = 1, Λ = 1, and ε = 0.4. The
arrows mark the locations of one near-degeneracy between
states from nearest-neighbor strands (left) and one between
states from next-nearest-neighbor strands (right).

many attributes with the s = 1/2 scenario, but there are
additional features. States from nn-strands are undergo-
ing resonances at fairly regular intervals. This causes the
three strands to be twisted into a single braid, as shown
in Fig. 10. In the s = 1/2 case, nn-resonances were the
only nonintegrability effect. Here, in the s = 1 case, they
remain dominant, but the additional possibility of reso-
nances between states from strands that are not adjacent
in the (〈 a†S− 〉λ, Eλ)-plane (nnn-resonances) moves the
system one step closer to quantum chaos. These nnn-
resonances, several of which can be observed in Fig. 10,
introduce a certain amount of disorder into the picture
that was totally absent in the s = 1/2 case. They are gen-
erally weaker than nn-resonances in the sense that two
states must be closer in energy to produce a comparable
effect on the matrix element 〈 a†S− 〉λ. The amount of
level repulsion is correspondingly smaller between states
from nnn-strands.

The different degrees of level repulsion are best demon-
strated in Fig. 11, which depicts the sequence of level
spacings ∆Eλ for the states of Fig. 10. As in Fig. 8 (in-
tegrable case), the spacings fall onto three nearly periodic
curves with similar properties. The short-dashed curve
describes spacings between states from nn-strands only,
while the solid and dashed lines describe nnn-spacings
on any stretch below the bend and nn-spacings above
the bend. All nn-resonances observable in Fig. 10 co-
incide with a minimum of the short-dashed line in Fig.
11. One occurrence is marked by an arrow (left) in both
plots. These minima are nonzero by a significant amount
similar to the ones observes in Fig. 5 for the s = 1/2 case.

The spacings between nnn-strands, on the other hand,
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FIG. 11: Sequence of successive spacings ∆Eλ = Eλ − Eλ−1

between the energy levels shown in Fig. 10 for the (noninte-
grable) s = 1 spin-boson model (1), with ~ = 1/s = 1, ωB =
ωS = 1, Λ = 1, and ε = 0.4. The spacings (circles) fall cycli-
cally onto one of three piecewise smooth curves (shown by
long-dashed, short-dashed and solid lines). The arrows mark
the same inter-strand near-degeneracies as in Fig. 10.

experience a degree of level repulsion that is imperceptly
small on the scale of Fig. 11. One nnn-resonance is
marked by an arrow (right). The spacing sequence of
Fig. 11 yields the spacing distribution shown in Fig. 12.
The probability of very small spacings is considerably
suppressed with respect that found in the integrable case
(Fig. 9), but that suppression is far less complete than
that observed in the s = 1/2 case (Fig. 6).

FIG. 12: Level-spacing distribution of the states shown in Fig.
10, but over the extended energy range 32.5 ≤ Eλ ≤ 377.0
(515 levels), of the (nonintegrable) s = 1 spin-boson model
(1) with ~ = 1/s = 1, ωB = ωS = 1, Λ = 1, and ε = 0.4.

V. SPIN s = 3/2, . . .

The phenomena described in the Secs. III and IV for
the s = 1/2 and s = 1 spin-boson model have all been
based on two elements: (i) the general multi-strand struc-
ture of the spectrum, (ii) the presence of inter-strand res-
onances for ε 6= 0. In systems with as few as two or three
strands of states, these elements give rise to special level-
spacing distributions, which we have been able to analyse
and interpret quantitatively, at least to a certain extent.

Our numerical evidence suggests that the same pic-
ture obtains for arbitrary spin quantum numbers. Fig.
13 shows the four well-separated strands of states in the
(〈 a†S− 〉λ, Eλ)-plane for the integrable s = 3/2 spin-
boson model (dotted lines). As the spin-boson coupling
is made nonintegrable, the nn-resonances cause the four
strands to form the familiar braid. The resulting config-
uration is further perturbed by nnn-resonances. Further-
neighbor resonances are too weak to be discernible in this
plot.

FIG. 13: Invariant 〈 a†S− 〉λ versus energy eigenvalue Eλ over
a certain energy range for the eigenstates of parity +1 of the
(nonintegrable) s = 3/2 spin-boson model (1), with ~ = 1/s =
2/3, ωB = ωS = 1, Λ = 1.5 and with ε = 0 (integrable case,
dots) and ε = 0.4 (nonintegrable case, open circles).

The level-spacing distribution inferred from the four
strands of states of the integrable s = 3/2 spin-boson
model is shown as a histogram in Fig. 14. In spite of
the statistical fluctuations, we can see that this result
is one step closer to the Poisson distribution than the
s = 1 result of Fig. 9 and two steps closer than the
s = 1/2 result of Fig. 3. The Poisson distribution is the
default expectation for a generic integrable model with
two degrees of freedom in the semiclassical regime.

What are the predictions of our simple lattice model
for the general spin-s case of the integrable spin-boson
model? Consider the superposition of n = 2s + 1 1D
lattices with incommensurable lattice spacings b1 ≡ b <
b2 < . . . < bn. The general form of the spacing dis-
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FIG. 14: Level-spacing distribution of the states shown in
Fig. 13, but over the extended energy range 16 ≤ Eλ ≤ 189
(515 levels), of the (integrable) s = 3/2 spin-boson model (1)
with ~ = 1/s = 2/3, ωB = ωS = 1, Λ = 1.5 and with ε = 0
(histogram). The inset illustrates how the continuous part
p̃4(x) of the distribution (8) of the phenomenological lattice
model described in the text varies with the parameter η. The
four solid lines in the order of increasing intercept pertain to
η = 0.5, 0.2, 0.1, 0.01 and the dashed line represents the
limiting function p̃4(x) = (3/b)(1 − x/b)2 with b = 1. The
same function with b adjusted to fit the histogram is shown
dashed in the main plot.

tribution is found to be the same as we have already
established for s ≤ 1:

pn(x) = (1− un) p̃n(x)Θ(x)Θ(b− x) + unδ(x− b) . (8)

The continuous function p̃n(x) is non-universal (i.e. de-
pendent on b1, . . . , bn) if n ≥ 3. However, for very
small differences in lattice spacings that dependence dis-
appears.

The results of our numerical analysis of the n = 4 case
based on 5 × 106 consecutive spacings for b1 = 1, b2 =
1+η
√

2, b3 = 1+η
√

3, b4 = 1+η
√

5, are displayed in the
inset to Fig. 14 for a range of η-values. For η → 0, the
solid curves converge towards the dashed curve, which
represents the limiting function p̃4(x) = (3/b)(1 − x/b)2
with b = 1. The same function with b adjusted fits the
spin-boson data reasonably well (see dashed line in the
main plot of Fig. 14).

The continuous part p̃n(x) of the spacing distribution
(8), which is universal for very small differences in lattice
spacings, is found to be the following general expression
[14]:

p̃n(x) =
n− 1
b

(
1− x

b

)n−2

. (9)

As η → 0, the mean level spacing becomes x = b/n. Af-
ter the variable change x′ = x/x in p̃n(x)dx = p̃′n(x′)dx′
we obtain, in the limit n → ∞, the Poisson distribution

p̃′∞(x′) = e−x
′
, as is expected. The limiting case of su-

perimposed 1D lattices was previously discussed in Ref.
[15].

Our method of analysis has thus yielded a fairly com-
prehensive picture of the s-dependent level statistics for
the integrable spin-boson model. In addition to that, we
have demonstrated that nonintegrability effects can be
identified and described in quantitative terms even for
the smallest spin quantum numbers.

What has yet to be accomplished is the construction
of a modified lattice model for the nonintegrable cases
of the spin-boson model – a model that is again based
on the multi-strand spectrum, but that takes also into
account inter-strand resonances. Our only result in that
category thus far is expression (5) for the s = 1/2 case.
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