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ABSTRACT. Estimating discrete choices under uncertainty is typically expressed through

the linear additive utility functions, which uses rule-based reasoning. We build on the dynamic

choice modeling literature by using a non-linear case-based reasoning approach that is based on

cognitive processes and forms expectations by comparing the similarity between past problems and

the current problem faced by a decision-maker. This study compares the empirical fit and predic-

tive capacity of both models using recreational fishers’ location choice behavior in Connecticut.

We find the case-based decision model does well in explaining the observed data and provides

value in explaining dynamic value of attributes. (JEL C25;Q22;Q50)
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1 Introduction
The random utility model (RUM) is the workhorse of discrete choice analysis in eco-

nomics, which includes but is not limited to location choice modeling, travel cost analysis, choice

experiments, and contingent valuation. RUM spans both revealed choice and stated choice re-

search across most disciplines of economics to explain choice behavior. The explosion in modeling

discrete choice behavior and estimating demand from these choices can be traced to the early

1970s, when luminaries such as Daniel McFadden pioneered work in discrete choice modeling

and economic choice (McFadden, 1974; Manski, 1977; McFadden, 2001). The stochastic utility

models underlying this literature, in practice, usually makes strong assumptions about ratio-

nality. When applying these approaches to empirical data, the general practice is to choose

models that exhibit high levels of rationality and are linear combinations of explanatory factors,

or a reduced form specification.1 These assumptions are justified in the sense that estimation

is easy to compute, the model is consistent with neo-classical theory, and the model is easy to

interpret. However, the functional form of the utility, linear or non-linear, is ideally based on

the assumptions about how people make a choice (Koppelman, 1981). The present work builds

on the dynamic choice framework by introducing a method of estimation based on case-based

decision theory to environmental and resource economics.

This paper introduces case-based decision theory (CBDT) to location choice modeling

and non-market valuation. Building upon Guilfoos and Pape (2020) we extend this framework

to non-market valuation and location choice modeling. We demonstrate how to apply CBDT to

a repeated choice empirical application outside a controlled environment, providing a framework

for other applied economic research. We find that this model suggests itself for more questions

in applied work with repeated choices in applied economics. Specifically, we find that CBDT fits

the data well and may be a complimentary way to interpret choice which provides information

about the dynamic elements of attributes.

This paper brings CBDT to the empirical analysis of location choice. Expected Utility

Theory (EUT) as a theory posits that decision makers conceptualize states of the world and

assign probabilities to each of those states, updating with Bayes rule. CBDT takes a different

approach where knowledge or beliefs of all states of the world are not necessary. Instead the

primitives of CBDT are the ‘problems’, ‘actions’, and ‘results’, which as a triplet are a ‘case’ in

CBDT. Information in CBDT enters through memory of the decision maker. Memory includes

the past cases. Problems in CBDT are the choice situations that describe the choice being made

along with any attributes to the decision problem. CBDT posits that decision makers use the

psychological concept of similarity between past problems in memory and the current decision
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problem to maximize utility. CBDT sums over cases to find the utility of different actions for a

given problem, while EUT sums over all state-spaces for each action.

In many decision problems for environmental and natural resource economics the prim-

itives of EUT may be unnatural to define and difficult to formulate. Take for example a recre-

ational outing to a beach. In EUT, the states of the world include all possible experiences

from the trip to a particular beach is a daunting task to define. Further, asking a beach goer

what their priors were over each possible outcome and relative states of the world is likely to be

unsuccessful. This does not seem like a plausible cognitive description of the decision problem.

CBDT instead supposes that decision makers under uncertainty ask how similar the trip is to

a reference trip, perhaps to other past trips to beaches. When faced with a new decision, the

decision maker’s memory is used to form expectations about the utility of a trip to the beach.

We can think about many environmental and natural resource decision problems that are similar

in complexity to the above example; location choice for recreation (surfing, birders, hiking, fish-

ing) or extractive natural resource decisions (irrigation, forestry, fisheries). For example, we can

use the CBDT framework to model crop and irrigation technology choice decisions for farmers

where the potential states of the world are difficult to define, yet history and experience may be

available to guide the researcher on defining memory.

In our paper, recreational fishers face a location problem of where to go fishing. The

EUT relevant state space would need to define all possible distributions of different species of

fish and probabilities of catching the target species. This includes all theoretical possibilities

as EUT is never surprised by the existence of a state space, rather anglers update priors about

the likelihood of them occurring. Then anglers would need to assign utility outcomes to each of

these state spaces, a considerable task. CBDT simplifies this task considerably and is a more

natural way to formulate the decision problem for an angler. Namely, they draw on experiences

to form expectations and use similarity between decision ‘problems’ to assess the utility of each

location under the conditions of the current decision ‘problem’.

There are a number of studies have relied on non-linear utility models to explain behav-

ior in discrete choice literature (Kim et al., 2014; Orro et al., 2005; Martínez-Espiñeira, 2006).

When choice data exhibit repeated choices studies have introduced state-dependence into the

controls (Smith, 2005; Cantillo et al., 2007; Abbott and Wilen, 2010). State dependence is a

specific way in which serial correlation is addressed (Heckman, 1981). Like state dependence,

CBDT is a dynamic choice framework that maps how past choices influence current choice be-

havior. The difference between conventional methods used in state dependence literature and

our study is that CBDT is context-specific and based on the agent’s experience of past trips,
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the attributes of those trips, the trips’ success, and how similar those trips are to the current

choice problem.

Two critical assumptions are required when modeling discrete choice with linear ad-

ditive parameters. First, individual choice is informed by all observations; in other words, an

individual’s memory is complete with all observable instances of the data. Second, individu-

als use rule-based reasoning to make decisions based on the functional form of utility, namely

that it is linear and additive in components. The individuals use rules that average the effect

of dependent variables on the choice variable across observations. Case-based reasoning posits

that individuals take cases from memory and compare the similarity of past problems to the

current decision problem to form an expected utility of choices. In other words, individuals rea-

son through analogies to make choices rather than reason through rules. Based on this notion,

individuals would expect similar problems to have similar outcomes (Gilboa and Schmeidler,

1995). There is support in psychology and economics for case-based reasoning that individuals

weigh their own experiences more than other available information which suggests that there

are apparent bounds of what is contained in an individual’s memory when making decisions,

in short, a reasonable constraint on human choice (Shepard, 1987; Pape and Kurtz, 2013; Ble-

ichrodt et al., 2017). Individuals may use rule-based reasoning or case-based reasoning or a

combination of the two in practice. Only careful inspection of observed choice can illuminate

the decision process.

The implications for employing the case-based reasoning framework on discrete choice

questions are twofold. First, if the data generating process that creates choice data is different

from the model used, we will be more likely to suffer in out-of-sample prediction. A model

consistent with what we know about choice behavior should be better at predicting out-of-

sample which are of particular importance to policy (i.e., climate change scenarios, hypothetical

scenarios, location closures).2 Second, using the wrong model for inference on choices will

impair our estimates for welfare. Therefore, a model that incorporates what we know about

the psychology of choice and explains the data well is likely to provide a better measure of

demand. Other researchers also make the argument that welfare analysis should be based on

our understanding of the behavioral processes that generate the data (Cerigioni, 2019; Rubinstein

and Salant, 2011; Manzini and Mariotti, 2014).

Several studies in the economics literature show that CBDT performs well in explaining

empirical data. Ossadnik et al. (2013) conduct a repeated choice experiment where individuals’

choice behavior was assessed based on an urn ball experiment using Maximin Decision Criteria,

Reinforcement Learning Model, and CBDT. The results revealed that CBDT explain the exper-
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imental data better than a maximin decision criteria model or a reinforcement learning model.

Guilfoos and Pape (2016) and Guilfoos and Pape (2020) finds that CBDT explain experimental

game theory behavior well in prisoner’s dilemma and mixed strategy equalibria games. Both

Pape and Kurtz (2013) and Kinjo and Sugawara (2016) show that CBDT explain data well with

respect to human classification learning and viewing decisions of Japanese TV dramas, respec-

tively. Case-based decision theory predicts decisions well in several empirical settings. However,

this theory has never been applied in non-market valuation studies or location choice modeling,

and welfare implications have not yet been explored. Further, CBDT has not been adapted to

empirical applications in dynamic choice environments, except for Guilfoos and Pape (2020) and

Pape and Kurtz (2013). Our paper builds on the estimation methods presented in Guilfoos and

Pape (2020) and applies CBDT to a dynamic empirical application on observed choices outside

a laboratory setting.

Location choice behavior is important for environmental policy and management. It

reveals preferences for attributes and can illuminate important policy choices for non-market

goods. We apply CBDT to a recreational fishermen data set. Recreational fishing, unlike com-

mercial, have varying motivations such as spending time with friends and family, catching a

trophy fish, deriving aesthetic pleasure, catching a target species and so on (Rubio et al., 2014).

Research on choice behavior of recreational fishers is essential as this activity contributes a value

addition of 38.7 billion dollars, generating more than 472 thousand employment opportunities

and provides 24.3 billion dollars as annual income in the United States as of the year 2016.3 As

a result, the conservation of fishing locations and maintaining an adequate level of fish popula-

tions to sustain recreational fishing is an essential economic incentive to the nation. Fisheries

management strive to conserve fishing areas, protect marine life, avoid fish stock depletion, and

administers policy changes that may cause unintended consequences, especially in the behavior

and distribution of recreational anglers (Pauly et al., 2005). However, choices made by fishers

are dependent on numerous factors, some of which are uncertain and unobservable to the re-

searcher (Holland, 2008). Therefore, a clear understanding of site selection behavior enables us

to design effective regulatory measures and understand how fishermen respond to management

policies (Cinti et al., 2010).

2 Rule-based and Case-based Reasoning in Location Choice
To clarify the differences between rule-based reasoning and case-based reasoning (rea-

soning by analogy), we provide an example of both. Suppose an individual is interested in

purchasing a boat and is deciding which boat satisfies her demand for certain attributes (size,

color, style) while constrained by a budget. A rule-based decision would reason "I want to buy a
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boat and boats cost $1,000 per additional foot of length", while reasoning by analogy would rea-

son "my friend’s boat cost $20,000 and I want to buy a boat of the same size and characteristics,

so it should cost a similar amount". The predictions of a rule-based reasoning and case-based

reasoning could be very similar, but the processes differ in the decision-making mechanisms. In

location choice modeling, reasoning by analogy is intuitive, as agents choose to visit locations

similar to past locations that generated high levels of utility. The same reasoning might present

itself negatively as well; "we had a horrible time at Beach A, and Beach Z is very similar to

Beach A, so we will not visit Beach Z." Case-based reasoning can also fit into the random utility

model, though CBDT suggests a specific functional form and draws its inference through the

concept of memory Guilfoos and Pape (2020). CBDT is a close relative of reinforcement learn-

ing, which draws on similar psychological support (Gilboa et al., 2007; Shepard, 1987; Guilfoos

and Pape, 2016, 2020).

CBDT was introduced in Gilboa and Schmeidler (1995). This decision theory captures

the thinking process of a decision-maker based on the similarity of circumstances. The CBDT

framework could be useful for exploring environmental and natural resource economics issues

because it provides a framework to estimate welfare for new hypothetical location choices. For

example, a new public park, the restoration of fishing ground, or other conservation initiatives

can change the set of possible locations in the choice set. This theory hypothesizes that decision-

makers rely on stored memory, experience, and reasoning by analogy to choose whether to visit

locations and how they derive value from that choice.

How a resource user chooses a location to visit is difficult to know and construct (Hess

et al., 2018). For example, fishers seem to qualitatively assess alternative locations to visit based

on intuition and experience. Ethnographic interviews conducted by Holland (2008) show that

fishers’ choice behavior often does not conform to the assumptions of expected utility. Some

of the anecdotal findings include that safe and consistent returns were preferred over maximum

fishing catch, weather conditions in However, as with other location choice modeling, fishing

location research has relied on LA models. Bockstael and Opaluch (1983) was one of the first

to incorporate uncertainty in fisher’s choice model via RUM. Mistiaen and Strand (2000) use

a mixed multinomial logistic model to understand the short-run heterogeneous risk preferences

in fishing choice behavior. Similarly, several other studies also use LA models to examine fisher

behavior when it comes to location choice preferences (Ran et al., 2011; Mistiaen and Strand,

2000; Smith, 2005).

The recreational fishing literature focuses on collecting all attributes that could poten-

tially influence behavior such as cost to travel to the fishing site, fishing quality, water quality,
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congestion in the site, expected catch, and site history (Train, 1998; Rubio et al., 2014; Morey

et al., 1991). We propose to characterize the same attributes through similarity from past ex-

periences to generate expectations and form utility, much like reinforcement learning, where

individuals choose locations based on expectations formed through case-based reasoning.

3 Methods
This section describes the methods to estimate both the LA and CBDT models using a

random utility model framework. We discuss the model components, the stochastic choice rule,

and how to apply the models to the data set.

3.1 Random Utility Theory

In random utility theory, an individual decision-maker faced with a finite choice set K

assigns a utility value to each choice (U1, U2, ..., UK) depending on a vector of individual-specific,

time-specific, and alternative specific characteristics denoted as X. The decision rule behind this

framework hypothesizes that the decision-maker would choose an alternative j ∈ K where the

utility derived from j is the maximum possible utility from the given choice set (McFadden,

2001; McFadden and Train, 2000). The probability of choosing the the alternative j is given in

equation 1:

Pr(j|K,X) : Pr(Uj > Ui) for all i 6= j ∈ K (1)

The random utility function Uj is the utility attained by the decision-maker given the

vector of attributes influencing her decision. This utility is a combination of both deterministic

as well as stochastic components (Uj((X; θ), εj)). The deterministic component contains the

observed vector of attributes, X, and θ is the parameter vector. εj , is the random component

of utility. The unobserved portion is assumed to be independently and identically distributed

(iid). Utility is then expressed in equation 2:

Unj = f(X;β) + εnj , (2)

where Unj is the utility function for the nth individual choosing the alternative j.

The functional form of utility could take many forms. The linear additive version takes

information about the decision-maker and site characteristics and uses equation 3 to model

location choice. We refer to this model as the LA RUM.

f(X;β) =
I∑

i=1

βiXi (3)

6



3.2 Case-based Decision Theory

In this section, we demonstrate how CBDT characterizes the deterministic part of the

RUM. CBDT is a behavioral model of decision making that we incorporate into the random

utility modeling approach. This theory measures utility by incorporating the similarity between

the current scenario and scenarios in memory, which are called cases. According to CBDT, every

individual has a memory (M ), which stores a set of cases (C ). Each case is a combination of a

set of problems (P), a set of actions (A) taken to resolve this problem, and the subsequent set of

outcomes or results (R) obtained from applying the action to the problem. CBDT assumes that

individuals refer to their memory of cases and form expectations based on the weighted similarity

of past cases and the current problem. A similarity function weighs the similarity between the

current problem (p) and past problems (q). Past problems, q, need not be drawn from the

decision-maker’s own experience. These memories could be drawn from outside observations,

or they could be hypothetical constructs. The expected utility is a combination of the cases in

memory and the results of those cases, weighed by the similarity function. Another component

considered in case-based decision theory is the aspiration level (H ). Aspiration denotes the

satisficing amount of utility the individual pursues. A combination of the above components,

that is, the similarity function, utility function, and aspiration level, provides the case-based

utility of an individual (Gilboa and Schmeidler, 1995).

In the recreational fisheries context, M is the set of fishing trips stored in the fisher’s

memory. The problem, P, is defined as each fishing trip’s attributes, such as weather conditions,

travel cost, or day of the week of the trip. The action, A, is the chosen fishing location of the

fisher. The result, R, is a binary indicator variable equal to one when the fisher catches his target

species and equal to zero otherwise.4 The aspiration level, H, for the fisher is the satisficing level

of utility derived from his fishing trip. According to this model, the weighted similarity index

between past (q) and current problems (p) of the fisherman and results of past trips will form

their expectations of utility.

We use the weighted summation of the inverse exponential function as the similarity

function to measure the distance between the two problems since it has been previously success-

ful in many other empirical applications (Pape and Kurtz, 2013; Guilfoos and Pape, 2016, 2020).

This function establishes the resemblance between past problems and the decision-maker’s cur-

rent problem. As per CBDT, each fisherman will have a set of cases stored in her memory, which

she will refer to, when making current decisions. The similarity function is given in equation 4.

s(w, p, q) =
1

exp(d(w, p, q))
, (4)
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where w is the estimated weight between a vector of information from the current case

(p) and past case (q). The greater the resemblance between information in the two cases, the

greater the estimated weight given to past case.

The psychology literature provides surprisingly specific guidance on the form of a sim-

ilarity function and measures of distance between information in the definition of the problem.

Shepard (1987) argues that a specific psychological function that generalizes distances in con-

ditions that can be invariant to monotonic transformations is desirable. He further argues that

this generalization is consistent with a general law of how any similarity between stimuli can

be experienced by individuals. His work suggests an exponential decay similarity function with

euclidean distance as an approximation of the general invariant monotonic function that gener-

alizes between stimuli. Shepard further argues that these measures have an evolutionary basis

and are found to be consistent with the learning data. While any similarity function that is

decreasing in distance measures in practice could be applied to the data, we choose one that

psychology has suggested emerges from the generalized learning responses from stimuli.

The consequent case-based utility (CBU) function is given in equation 5.

CBUijq =
∑

ijq∈M
s(w, p, q)[u(r)−H] (5)

In the above equation, the case-based utility for individual i for location choice j,

includes the similarity function s(w,p,q), the utility function, u(r), which denotes the utility

derived from the result, r, and H which is the Aspiration level. We have constrained the aspira-

tion level to be zero because identification is confounded when estimating the initial attractions

to locations and the aspiration level jointly.5 M denotes the level of memory the individual

has that includes all the cases involved with the chosen alternative j. The case-based utility is

then measured by taking the summation of the similarity function, weighted by the difference

between u(r) and H (Guilfoos and Pape, 2016). The maximum likelihood estimation procedure

estimates the most probable parameters to obtain the observed data.

3.2.1 Distance Measures

The approximation of similarity and distance measures that Shepard (1987) suggests is

the functional form we have used in equations 4 and 6, which uses a Euclidean distance measure

(Shepard, 1987; Nosofsky, 1992). The suggested approximation also works with a “city-block”

distance function (Shepard, 1964, 1987; Aulet and Lourenco, 2020), which we also estimate. The

distance function that follows the euclidean distance metric (d(w, p, q)) is given equation 6.
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d(w, p, q) =

√√√√ n∑
v=1

wv(pv − qv)2 (6)

In the above equation v denotes the explanatory variables used in the model. This

similarity functional form was used in Pape and Kurtz (2013) to describe data from a human

classification learning problem experiment. Guilfoos and Pape (2020) also used the same func-

tional form in mixed strategy equilibria games and found that it performed well in describing

the data from those experiments. The other measure of distance used in psychology is called

the city-block distance, given in equation 7.

d(w, p, q) =
n∑

v=1

wv|(pv − qv)| (7)

3.3 State Dependence Model

The conceptual understanding of state dependence as per Heckman (1981) is the influ-

ence of an individual’s past experience on their current decisions. The typical method to incorpo-

rate state dependence is to linearly add proxy variables that captures individual past experience

to the utility function. In order to evaluate the general performance of CBDT, we estimate a

model that is often used in the state dependence literature. Similar to Guadagni and Little (1983)

and Keane (1997), variables that are serial correlated measures of individual past choices are

included as controls in this model.

Apart from CBDT, we estimate two other models for comparison. The first model uses

the cross-sectional data to make predictions with a linear additive combination of controls (LA).

The second model includes the additional state dependence variables, the weighted average of

past location choices nested in the LA model.

xijt = α ∗ xijt−1 + (1− α) ∗ yijt−1 (8)

Equation 8 defines the state dependence variable xijt. The state dependence variable

is a dynamic measure of past location choices, where the variable α determines the weight on

past choices. The variable y equals one for a visit to site j at time t for individual i and

zero otherwise. The parameter α acts like a discount factor on past choices, similar to a recency

parameter in CBDT, which measures the distance between current choice and past choices in the

choice problem. We have set the parameter α = 0.5 for each fishing area instead of searching

for optimal parameters as over-fitting on the parameters is a concern. The state dependent

variable requires an initial value, which we set equal to zero. The combination of the LA model

with all the controls including the state dependent variables, henceforth referred to as the state
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dependence model (SD), is similar to models from Smith (2005) and Smith and Wilen (2002) in

the fisheries literature.

The choice of alpha could be optimized by the researcher, adding another degree of

freedom for model choice. In Appendix ??, we show a range of alphas and the resulting model

goodness of fit measures. We note that the state-dependence model fit does not vary much based

on the choice of alpha. The performance of the state-dependence model is slightly affected by

alpha when using out-of-sample measures. We use alpha = 0.50 in the main text as it performs

well in the out-of-sample tests. Our findings are robust to different values of alpha.

3.4 Stochastic Choice Rule

A common stochastic choice rule applied in discrete choice modeling literature is the

logit response model. The multinomial logistic model is used when the choice set faced by

an individual has multiple discrete alternatives (Sellar et al., 1986; Parsons et al., 1999). For

instance, recreational fishers have multiple fishing sites in their choice set. The choice probability

that a decision-maker chooses one of the alternatives, j ∈ K is given in equation 9.

Pnj =
exp(λ,Unj(β, xnj))
K∑
i=1

exp(λ,Uni(β,xni))

, (9)

where Unj(β, xnj) is the utility of alternative j for individual n, which is a linear addi-

tive function of attributes (x) in the LA model and a summation of utility weighted similarity

functions for CBDT. The sensitivity parameter, λ, which is assumed to be one in LA models,

are estimated in CBDT. λ is important to the estimation of learning models on laboratory data

of discrete choice and is considered in Guilfoos and Pape (2020). As λ approaches zero the

data appear to be completely random to the model predictions and as it approaches the model

appears to be more deterministic in fitting the data. The above choice rule implies that the

probability of a fisherman choosing site j from choice set K, is the exponential of the utility

from site j divided by the sum of all of the exponentiated utilities (Ben-Akiva et al., 1985;

McFadden, 1974).

An important critique against the multinomial logit choice model is the assumption of

Independence of Irrelevant Alternatives (IIA). This assumption implies that the utility from one

alternative is solely influenced by individual-specific characteristics which are constant across

alternatives (Train, 1998). To counter this limitation and to account for other considerations

such as heterogeneity and taste variations, other models such as nested logit, latent class, and

mixed multinomial logit are used. Such models rely on location-specific variation that involves

additional conditions to the multinomial choice probabilities (McFadden, 2001; Ben-Akiva et al.,
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1997). In this paper, we apply the original multinomial logit choice process to compare the linear

additive rule-based model with the case-based reasoning model, CBDT. It is important to note

that both models would suffer equally with such limitations.

4 Welfare Analysis with CBDT
In this section, we discuss welfare within the CBDT framework. Welfare estimation is

essential for policy evaluation; therefore, we need to understand how CBDT choice affects our

estimates of willingness to pay for goods. An important assumption when measuring welfare in

discrete choice models is the interpretation of the cost coefficient as the marginal utility from

income. This monetary value is then used to compute the fishers’ willingness to pay estimates

for a change in site attribute, holding all else constant (McConnell, 1995; Hanemann, 1983).

The theory of welfare valuation is unaffected by CBDT’s assumption of a functional

form of utility, but there are practical considerations to confront when implementing CBDT. For

instance, based on the assumptions we make regarding memory, we need to construct a history

of experiences that resemble a representative individual from the data to understand how the

payoffs from choices are incorporated into the choice set.

The conditional indirect case-based utility function (CBV) as defined in equation 10.

CBUij = CBVi(yi −Qj , xij) + ε (10)

where y denotes the income for individual i; Qj being the attribute for choice j and x

denotes other explanatory variables affecting utility. Equation 11, demonstrates how a change

in policy that alters the site attribute from Q0 to Q1 can be measured:

CSij =

ln
[ J∑
j=1

eCBV (Q1
j )
]
− ln

[ J∑
j=1

eCBV (Q0
j )
]

∂CBVij

∂y

(11)

To compute the value of a change (CS) in site attributes we need to make assumptions about

all site attributes. We have left aspiration levels out of our simulation since we did not estimate

them in the empirical section. It is worth noting that if included, aspiration levels would shift

welfare measures similar to intercept terms from a linear additive model. Similar to the linear

additive form of utility models when variables are held at their means in the numerator of

equation 11, in CBDT, we need to make assumptions on the values of variables in the similarity

function. When valuing a change in result, like catching a target species of fish, the similarity

function is held at some assumed value. On the other hand, when valuing a change in the

attribute, Q, in the similarity function, we must consider if the attribute affects the result, (r),
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as well as the similarity function. The indirect case-based utility as a function of a particular Q

is given in equation 12.

CBV (Q1
j ) =

1

e

√
w

Q1
j
(pQ1

j
−q

QA )2
u(r|Q1

j ) (12)

In CBV, we make assumptions about the past problems in memory, qQ, either by taking the

average distribution of past attributes (QA), or by another measure of a representative past.

Other possible choices for welfare calculations are calculating welfare for specific populations of

memory, or to calculate the distribution of welfare for the sample population. For instance, it

may be preferable to assume a specific memory distribution if attempting to obtain the welfare

gain or loss for a specific sub-population or type of angler. Assumptions are also required

regarding how Q1
j affects the result, r. To measure how attributes affect results we need to

establish a functional form, as provided in equation 13, that measures the effect of the attributes

on the results.

r(X) = f(βv, Xv) + ε (13)

We then use the predictions from equation 13 to construct the average result, r(Q1
j ), conditional

on attributeQ1
j for a particular site j and estimate location choice model using CBDT as outlined

in section 3.2. Lastly, we need a measure of the marginal utility of income, y to interpret the

effect of a change of in attribute on utility in dollar terms. We hypothesize that the marginal

utility of income could be rule-based or case-based. If rule-based, we would typically recover a

constant marginal utility of income. However if case-based, the derivative of CBU with respect

to cost (or measure of income) would potentially affect both the result, r, and the comparison

to past cases through the estimated weights in the similarity function. The estimates from the

location choice model and the predictions from equation 13 are used as inputs into the equation

12.

5 Data
We use data from Connecticut recreational fishers to test the empirical fit of case-

based reasoning versus rule-based reasoning. The data used in this study was obtained from the

Volunteer Angler Survey Program (VAS) provided by the Connecticut Department of Energy and

Environmental Protection (DEEP).6 Fishing trip and catch information are recorded in survey

logbooks by anglers voluntarily. The survey logbooks are provided to each angler participant,

and anglers are encouraged to send back in the completed logbooks via mail. Weather data

is obtained from the NOAA’s (National Oceanic and Atmospheric Administration) National

Centers for Environmental Information (NCEI)7 and joined to the trip data by day of the trip.

After accounting for missing values, the VAS data received has a total of 3,182 day trip records
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taken by 51 survey participants from the year 2013 to 2016. A concern with location choice data

is the potential for a selection problem of who goes fishing or which anglers choose to report

trips. This would need to incorporate a first-stage estimate to model the selection process, and

using a CBDT framework to model the data generating process of site selection as a second-

stage. Since the selection of our data is based on voluntary participation it may very well have a

selection bias which may interact with a travel cost coefficient; yet the model comparisons of the

second-stage would still be valid comparisons as all models in our paper use the same sample.

The area assigned to recreational anglers in Connecticut is appropriated into six area

codes. Each three digit area code denotes an area of the Long Island Sound defined by NOAA.8.

There are seven different areas within this region. Among them, five areas appear in in the

Fishing Vessel Trip Report and the map of areas. Observations recorded from the Long Island

Sound but not noted on the map have been grouped into a sixth area denoted as other. The

smallest unit of observation for location is the area codes used in our definition of location. It

is possible that fishing sites are aggregated, which could create aggregation bias (Parsons and

Needelman, 1992). Though all models would suffer from aggregation bias and it should not

affect model selection criteria. The trip report also contains the species caught, the number of

fish caught, and each catch’s weight and size.

Table 1 describes the variables provided in this data set. The variables described in

Table 1 are used to derive the key variables commonly used in fisheries literature (McConnell

et al., 1995; Hunt, 2005; Timmins and Murdock, 2007). The derived key variables of interest are

site congestion, expected catch rate, site history and period. The summary statistics of the same

are included in Table 2.

5.1 Expected Catch Rate

The expected catch represents the expected payout received in terms of fish caught per

unit effort from each site. We construct this variable based on multiple attributes of the trip. It is

estimated using the number of anglers, fishing hours, area, trip mode, weather variables, workday,

year, and month. This predicted measure for catch rate is estimated using a Poisson process

model, an approach popularized by McConnell et al. (1995). Further details and estimated

results of the Poisson process model are reported in Appendix A.

Weather is an important aspect of recreation behavior (Chan and Wichman 2020;

Dundas and von Haefen 2020). Two primary mechanisms that weather can affect angler behavior,

the extensive margin decision to go fishing on a particular day and which location will have a

higher expected catch. In our work we use weather as an input to expected catch. Aspects of

weather and climate (wind speed, temperature, and precipitation) are used to define expected
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catch for an area. Anglers may also make other adaptations to climate change, such as shift the

time of day as well to adjust to extreme temperatures (Dundas and von Haefen 2020).

5.2 Indexing Memory

In case-based decision theory, each case in the decision-maker’s memory, which are

previous fishing trips in this study, is chronologically ordered and indexed using a variable we

call period. This variable is a constructed variable which equals the accumulated number of trips

an angler takes. Period is a measure of recency in CBDT. A relatively recent case may have a

more considerable influence in the decision making process than an older case. To account for

this, we include period in the model as an attribute. In the LA model this variable acts as a

proxy for individual fishing experience within our sample size.

5.3 Site Congestion

The variable, site congestion, refers to the number of other fishers encountered during

the fishing trip. The effect of congestion as a site attribute is important when modeling location

choice preferences. The standard hypothesis is that congestion initially acts as a proxy for the

popularity of the site. However, beyond a certain degree, it is considered less desirable and acts

as a disutility in the site choice model (Timmins and Murdock, 2007). In this study, congestion is

the individual share of total fishing trips taken the previous year in the same month in the same

location. This approach where the share of a participant in proportion to the number of site

visitors measures the likelihood of running into others on a trip to a particular location. In this

method, we presume that fishers formed expectations regarding the congestion of a site while

they were making the site choice decision. Therefore, we use the fisher’s previous visitation

experience in that site to measure congestion. The share of each individual across total site

visitors gives us an insight into how much site space they occupy as well as the frequency of

encountering another fisher (Schuhmann and Schwabe, 2004). A smaller individual share implies

more congestion at the specific site. Also, considering the year before reduces the limitations of

recall memory and the same month is used to account for the seasonal nature of this recreational

activity (Kolstoe et al., 2018).

The construction of site congestion is based on the anglers in our dataset which acts

as a proxy for actual congestion. This variable therefore may contain measurement error in the

variation between the actual measure due to anglers that did not report their day trips.

5.4 Site History

The familiarity of the site is another attribute that may affect its utility. We use the

variable, site history, a binary indicator for whether the chosen site was visited in the previous
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period by the same individual to capture site history. This measure is a direct way to capture

the incidence of repeat visitation and its importance in site selection.

5.5 CBDT Variables
In the CBDT model, we use the variables period, site congestion, site history, and

expected catch rate to define the problem, (P). The result (R), or payout, is a binary indicator

of whether the targeted species was caught on the trip. The set of actions (A) are the locations

of the fishing areas.

6 Model Goodness of Fit Comparison
The in-sample quantitative fit of LA, CBDT, and SD models are compared using the

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). When com-

paring the information criteria for the estimated results, a relatively smaller AIC or BIC value

means that the model has better goodness of fit (Atkinson, 1981).

Out-of-sample predictions for all models are also conducted. For model selection, the

out-of-sample procedure is preferred since the in-sample fit can be more easily manipulated by

the addition of controls, which may mask how well the underlying model is performing. We use

a method of roll-forward samples to estimate out-of-sample fit as measured by log-likelihood. In

this approach, a percentage of decision-maker’s choice data, which comprises of cases ordered

chronologically, is used to predict the remaining hold-out sample. We conducted a rolling window

selection for out-of-sample fit comparison using 15, 25, 50, 75, and 90 percent of choice data for

all models.

Lastly, we will use a non-nested model selection test developed by Vuong (1989) to

evaluate if the models are statistically different from each other. The Vuong test determines if

the CBDT model is the preferred model using in-sample measures.

7 Results
First, we discuss the fit of each of the models considered. Table 3 reports the measures

of fitness for the LA, SD, and CBDT models. Using the in-sample goodness of fit, we find

that the SD model is the best model by all criteria. Despite having thirty parameters more

than CBDT, which has ten parameters, the BIC measure for both SD and CBDT model is

very similar. Therefore it suffices to say that the penalty for parameters from BIC makes the

models similar in in-sample goodness of fit. Both dynamic models outperform the LA model,

indicating that the dynamic history of behavior is important in this context. We find that model

selection using the Vuong non-nested model selection test (Vuong, 1989) favors the SD model

and is statistically significant at the 1% level (z-stat = 2.73).
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To guard against overfitting the models based on in-sample goodness of fit, we compared

the out-of-sample goodness of fit for all models. We compare the rolling out-of-sample goodness

of fit based on fishers’ memory. Table 4 reports the log-likelihood value for all models. CBDT

performs better than all other models in general, except for the 50% memory hold out sample.

We take this as an indication that the SD model may be overfitting the data and is not as

parsimonious as the CBDT model. Given the simpler and more intuitive model choice performs

well in this task, the results suggest CBDT as a model that explain the observed data well.

Next, we discuss the parameters from the CBDT model results. Table 5 contains

the coefficient estimates from the CBDT model. The coefficients for "Area i" are relative initial

attractions to the stated location areas. These parameters are similar to attractions to strategies

that learning rules accumulate in behavioral game theory (Guilfoos and Pape, 2020). This initial

attraction also serves a role similar to fixed effects in a LA model. Initial attractions to locations

and aspiration levels are not separable in estimation and therefore aspiration is left out.

The coefficients in the LA model are log odds ratios; with CBDT the coefficients are

the weights, wv given to that parameter in the similarity function as specified in equation 6.

The weights from the CBDT model, if positive, indicate a degree of similarity between current

and past cases. For instance, the estimated weight for site congestion is substantial, positive,

and statistically significant. It indicates a high degree of similarity between the congestion level

for the current and past locations. The variable, expected catch rate, although positive, has a

smaller weight and becomes insignificant when other key variables are included in the model. The

small weight indicates that when fishermen extrapolate from past experiences, they do not think

‘expected catch rate’ to be very useful in that extrapolation through similarity. The estimated

weight for the variable period accounts for recency. In other words, the similarity weight for

period accounts for the temporal distance between the current choice problem and trips that

occurred in the past. Trips further in the past are given less weight in forming expectations. All

the parameter estimates are logical and intuitive in interpretation.

It is worth noting that the weight for expected catch increases in statistical significance

using the city-block distance metric. Meaning that while model goodness of fit is robust to

different distance functions, the interpretation of individual pieces of the definition of the problem

are sensitive to the function.

The results estimated until now include all fish species and catching the target species (a

binary indicator) which specified by the individual fishers as the payout. We check the robustness

of our results by analyzing each target species separately. Table 6 reports the estimated weights

for the top four target species considered by recreational fishermen in our data set. The BIC
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model selection criteria show CBDT better fits the data than LA for all species. CBDT also has

a better fit than the SD model for striped bass, blue fish, and black sea bass but not fluke.

In terms of interpretation, the coefficient for expected catch shows significance for

striped bass and fluke. On the other hand, the estimated weight for site congestion is significant,

positive, and substantial for all target species, especially for black sea bass. This finding implies

that choice location weighs cases in the past with similar congestion very high when constructing

location preferences. This finding conforms to the existing literature regarding the importance

of including congestion effects when modeling recreational choice behavior (Schuhmann and

Schwabe, 2004; Bujosa et al., 2015; Timmins and Murdock, 2007).

Another point of interest is that the goodness of fit seems to favor CBDT in the

smaller samples for different species. These results suggest that heterogeneity plays an important

role in modeling decisions. The parameters in CBDT are significantly different and CBDT

performs better by in-sample fit compared to the other models. This shows the importance

of heterogeneity by species. Inclusion of interaction terms in the model by species or species

specific models may be more appropriate to estimating location choice for anglers.”

8 Simulation of Welfare Changes
We use simulated data to demonstrate the errors in estimating welfare when ignoring

non-linear aspects of dynamic choice when the data generating process is from a case-based

decision-maker. We conducted this simulation for two reasons. First, it allows us to add a

measure of marginal utility of money, which is lacking from our recreational fishing data. Second,

we can run controlled experiments with simulated data varying the relationships between random

variables.

The generated discrete choice data follows equation 14, where we index the current

period (t) to reference past periods (q), in memory. Decision-maker i, considers attributes,

k, for two locations j = [1, 2] with a random variable for travel cost, C. The site attributes

(k) are expected catch rate (ECR) and site congestion (SC), and the index for time (period).

Additionally, we assume the error term, ε, to be independent and identically distributed and

from the logistic function. Following the premise behind CBDT, memory is constructed on the

three previous periods, after which the fourth and subsequent periods are forgotten. The result

(or reinforcement mechanism) is a binary indicator that equates to one if the fisher caught their

preferred species at location j, referenced as catch.

CBVijq = β0j + β1 ∗ Cijt +
∑ catchijq

e
√∑

wk∗(pkijt−qkijq)2
+ εijt (14)
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Descriptive statistics for the parameters and the distributions of random variables are provided

in Table 7. Each simulation contains 400 observations, 20 time periods, and is repeated 1,500

times.

In Table 7, the correlation parameter describes the level of correlation between ECR

and C. After each simulation, we use the standard logistic model to estimate the coefficients

from equation 15. We then use a Wald test to assess if the recovered coefficients are equal to the

‘real’ coefficients that generated the data. The travel cost coefficient, β1, and the coefficient on

a prior catch at location j, β4, is used to assess how the marginal willingness to pay for a target

species is estimated. Since we assumed a linear additive cost structure, the ‘real’ coefficient

is equal to -0.15, which is the marginal utility of money. While the marginal increase in the

previous period catch is one over the average similarity function from the previous period, 0.418,

we can further accumulate the value of all past catches as far back as an individual’s memory

goes to assess the cumulative effects of catches at a particular location. Memory in this and

other empirical work (Pape and Kurtz, 2013; Guilfoos and Pape, 2016; Guilfoos and Pape,

2020) appears to be highly discounted. Using the assumption of only three periods in memory

is similar to highly discounting further periods. Willingness to Pay for a site is acquired in the

same manner, provided we assume a value for past catches or the expected value of catching the

preferred species.

CBVijq = β0j + β1 ∗ Cijt + β2 ∗ ECRijt + β3 ∗ SCijt + β4 ∗ Catchij,t−1 + εijt (15)

The error rate in identifying β1 is rather low (5%) with a p-value < 0.05. The error rate in

identifying the marginal value of a previous catch is high (24%) with a p-value < 0.05. The

linear additive model lacks precision as the standard errors of estimates are rather large. The

mode and mean of point estimates for β1 are systematically lower than the ‘true’ parameter,

which may inflate the willingness to pay of any attribute. As the correlation between a random

variable within the similarity function and the linear additive part of the data generating process

increases, so do the issues with precision around the marginal utility of money. As shown in

figure ??, the spread in recovered parameters for β1 increases with the increase in correlation

between travel cost, C, and expected catch rate, ECR. The range starts larger than the real

coefficient (-0.15) and increases to almost quadruple the actual coefficient size.

The marginal willingness to pay for a preferred species by construction is $2.79. The LA

model retrieves between $0.49 and an infinitely high number due to the small point estimate of

marginal effect of the cost of travel. This wide range of estimates from the LA model is troubling

because we may recover a wide range of welfare measures due to the estimates fragility.
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9 Discussion and Limitations
We find some support to recommend case-based reasoning to empirical location choice

data. First, our results show that CBDT does a good job explaining the data using out-of-

sample goodness of fit. CBDT does well in reproducing the choice data across different cutoffs.

Replicating the data generating process is of particular concern for the external validity of

estimates and welfare estimates when considering non-market valuation.

There are limitations to the CBDT approach. When applying models to empirical

data, the researcher often does not know about the choice data, such as preferences and the

experiences that shaped those preferences. Therefore, in constituting an individual’s memory

using CBDT, we may leave out or misconstrue what is in memory or how a particular memory

enters into utility. In panel data where repeat observations are available there is a natural

definition of the memory to draw on, the past experience of the decision maker. Though domain

specific knowledge about information available to decision makers should be used in defining all

primitives of the decision problem in empirical applications.

Exploration is another aspect of behavior that may be relevant for angler behavior.

In the deterministic formulation of CBDT not reaching a satisficing level of utility leads to

more exploration. There are three elements that affect this exploration behavior in our applied

setting that differ from this deterministic interpretation. First, we have a stochastic decision

process where the exploration may occur randomly. Second, we have few locations in the choice

set and estimate initial attractions to each, which may confound preferences for exploration

as ‘preferences’ for the areas. Third, if the coefficient weights in the similarity function are

estimated to be negative that would lead to greater exploration, or variety-seeking behavior in

those attributes of the problem.

One difficulty in measuring how a location choice enters into utility is the ‘result’ of a

particular choice. In our case, we use the catch that a recreational fisher gets as their reward

for fishing in a particular location. An ideal data set would be a panel of choice observations

where the information set and result is known to the researcher. The lack of a ‘result’ is a

limitation in most travel cost studies. CBDT suggests that this is a vital piece of information

that would reinforce choices in a repeated choice setting. In our setting, recreational fishers may

be motivated by the number of fish caught, type of fish, size of the fish caught, or spending

quality time with family. Information about the level of success attained due to a past choice

made is an essential determining factor behind how individuals make future decisions. We feel

that catching a target species is a good measure of the result, though, in other settings, a measure

of success of a choice may be difficult or impossible to know or omitted from survey data.
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Another limitation of this study is omitted variables. We lack information about fishers’

individual characteristics, such as income, education, and travel cost to the site. While we

contend that the omitted variables do not favor one model over the other, a complete set of

variables is desirable.

Fisheries economists have applied other models that incorporate alternative specific

characteristics into the model. A prospective future application in CBDT accounts for unob-

served heterogeneity by allowing parameters to vary across observations. Such a model would

be comparable to a latent class or mixed multinomial logistic model.

Our framework naturally suggests itself to panel data in which memory can be easily

defined. Much of the work done on location choice has used surveys in the past and oftentimes

it is not a panel of data. Yet, we imagine that other methods could be used to supplement

survey data or cross-sectional data to define memory or history. One potential method is to join

cell phone data that gives insight into location choice histories9. Another is to develop repeat

surveys with more extensive histories, ratings of past trips, or particularly salient experiences.

10 Conclusion
In this study, we find that case-based decision theory explains location choice behavior

well. We find in-sample goodness of fit favors a linear additive state dependence model, while the

out-of-sample goodness of fit favors CBDT. Using both models, or mixes of behavioral models

in investigating empirical choice can only give us more insight into the mechanisms for choice

and the importance of information to the decision-makers. Building upon the state-dependence

literature, our work confirms that dynamic elements in fishery location choice is extremely

important.

The compact and parsimonious CBDT model is promising for behavioral modeling of

discrete choice data. It may explain data better and adds an element of value in the dynamic

importance of information. Further research is needed to better match and collect data for

behavioral decision-making models such as CBDT. However, we can imagine future surveys’

future efforts may capture explicit measures of success of trips and aspiration values. Further

work may also find when or if this type of behavioral modeling is needed to understand the

observed choice.

Care needs to be taken when considering discrete choice modeling and non-market

valuation work. We demonstrate the potential for substantial differences in welfare from using

the wrong model. Using simulation data, we demonstrate the reduced form model’s potential

fragility, assuming that the data generating process is case-based.

This work and past empirical work on CBDT (Guilfoos and Pape, 2020; Kahneman,
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2003; Gilboa et al., 2007; Bleichrodt et al., 2017; Ossadnik et al., 2013) suggest themselves to

other applications outside of location choice modeling. Behavioral modeling is not limited to

the functional form of choice but can involve cognition, rationalization, or other psychological

aspects of choice. The extension of behavioral modeling, and specifically case-based reason

modeling, to other choice settings, may provide more accurate welfare estimates if the models

better match our understanding of how people make decisions.
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Tables

Variable Description

Work Day = 1 if the trip is taken on a weekday

Month and Year Yearly data from 2013 to 2016 and monthly data from April to

December is available.

Wind Speed Measures the daily average wind speed in meters per second.

Temperature The daily average temperature measured in Fahrenheit.

Precipitation = 1 if the daily average precipitation measure is greater than 0.005

inches.

Trace Precipitation = 1 if the daily average precipitation measure is less than or equal to

0.005 inches.

Angler Number The number of anglers recruited under a single participant identity.

Fishing Hours The number of hours spent fishing recoded under each participant

identity

Trip Mode This variable describes whether the angler was surveyed on a private

boat, charter boat, party boat, the shore or at the enhanced shore

fishing site.

Payout = 1 if the target species is caught by the fisher. This variable is used to

define the result or outcome of the case in case-based decision model.

Table 1: Description of Variables
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Variable Mean Std Dev Min Max

Expected Catch Rate 12.23 11.35 0.43 112.9

Period 100 120 1 502

Site Congestion 0.12 0.15 0 1

Site History (Yes = 1) 0.87 0.33 0 1

Payout 0.69 0.46 0 1

Table 2: Summary Statistics of Key Variables
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Log-Likelihood AIC BIC

Linear Additive Model -1194.66 2439.32 2590.95

CBDT Euclidean -928.31 1876.62 1937.28

CBDT City-Block -922.09 1864.18 1924.84

State Dependence Model -845.23 1748.45 1924.34

Table 3: Comparison of Model Selection Criteria. Notes: AIC and BIC denote Akaike Information

Criteria and Bayesian Information Criteria respectively. In the above model selection criteria, the smallest

represents the preferred model.
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Percentage of Memory

15% 25% 50% 75% 90%

Linear Additive Model -44247 -6543 -1643 -363 -163

CBDT Euclidean -961 -805 -447 -207 -85

CBDT City-Block -934 -788 -432 -209 -86

State Dependence Model -25081 -7379 -396 -252 -123

Table 4: Out-of-Sample Fit: Log-likelihood Comparison. Notes: In the above model selection criteria,

the largest log-likelihood represents the preferred model. Columns represents different percentage of decision-

makers memory used to predict the remaining percentage of choices.
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Fishing Area as Dependant Variable

Variables (1) (2) (3) (4) (5)

Area 1 (Initial Attraction) 2.99*** 0.56*** 0.35*** 0.29*** 0.26***

(0.38) (0.09) (0.06) (0.05) (0.05)

Area 2 (Initial Attraction) -1.23*** -0.24** -0.21** -0.18*** -0.16***

(0.52) (0.11) (0.08) (0.07) (0.06)

Area 3 (Initial Attraction) -2.54*** -0.49*** -0.41*** -0.33*** -0.30***

(0.66) (0.14) (0.11) (0.09) (0.08)

Area 4 (Initial Attraction) -3.45*** -0.67*** -0.58*** -0.48*** -0.44***

(0.78) (0.16) (0.13) (0.10) (0.10)

Area 5 (Initial Attraction) 5.02*** 0.99*** 0.64*** 0.49*** 0.45***

(0.48) (0.12) (0.08) (0.06) (0.06)

Sensitivity Parameter (λ) 41.7*** 207.9*** 267.2*** 333.2*** 358.05***

(2.99) (21.82) (25.52) (31.25) (34.36)

Expected Catch Rate 0.01*** 0.02*** 0.00* 0.00 0.03***

(0.00) (0.00) (0.00) (0.00) (0.01)

Period 0.068*** 0.065*** 0.043*** 0.20***

(0.01) (0.01) (0.01) (0.02)

Site Congestion 542.8** 412.2** 10.17***

(105.8) (84.8) (1.39)

Site History (Yes=1) 8.57*** 1.60***

(1.74) (0.18)

N 3182 3182 3182 3182 3182

AIC 2611.85 2413.51 2041.11 1876.63 1864.18

BIC 2654.31 2462.03 2095.69 1937.28 1924.84

Table 5: Estimated Parameters using CBDT. Notes: The first column lists the site choices and variables

used in the model. The respective parameter estimates for the areas, the sensitivity parameter as well as the

CBDT weights estimated for each variable for four CBDT models is mentioned in the subsequent columns.The

standard error and significance are given parenthesis. ***, ** and * denotes 1 percent, 5 percent and 10 percent

significance level. Columns 1 through 4 use Euclidean distance while column 5 used City-Block distance.
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Striped Bass Blue Fish Fluke Sea Bass

(i) Model Selection Criteria: BIC

LA 1387 727 862 506

SD 1053 620 724 434

CBDT 1034 566 739 392

N 1848 1027 964 413

(ii) Similarity Weights from CBDT

Expected Catch Rate 0.003* 0.002 0.008*** 0.001

Period 0.054*** 0.53*** 0.012** 0.12***

Site Congestion 24.14** 71.51** 256.61*** 882.9***

Site History 12.67** 1.27* 7.26*** 0.08

Table 6: Model Selection & Estimated Weights for Different Target Species. Notes: The four

columns represent the top four target species preferred by recreational fishermen in this data set.
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Variable Description

Period Takes values from 1 to 200.

Travel Cost (C) = N(2,0.5)

Expected Catch Rate (ECR) = N(2,0.2)

Site Congestion (SG) = 0.5 + U[0,1]

Catch = 1 if N(2,0.2) > ECR for sites visited.

Correlation Parameter In number range from 0 to 0.95

Intercept (β0) = 1 for site j=1 and =2 for site j = 2

Travel Cost Coefficient (β1) =-0.15

Recency Similarity Coefficient (w1) =0.60

ECR Similarity Coefficient (w2) =0.20

SG Similarity Coefficient (w3) =0.85

Table 7: Description of Simulated Data
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Notes
1There is a robust literature on learning models and Markov decision models that do not use these same

assumptions. However, these are typically not used in non-market valuation or location choice modeling.
2Behavioral anomalies can be important to model selection. For instance, if loss framing is important, then a

model based on prospect theory may be appropriate and performs better out-of-sample.
3The website https://www.fisheries.noaa.gov/content/fisheries-economics-united-states-2016
4There are many possible choices for the result which we explored. These could be the number of fish caught

or the weight of the accumulated catch. We find that the target species is a good proxy for the result in this

setting.
5This point is made in Guilfoos and Pape (2020).
6The website http://www.ct.gov/deep/cwp/view.asp?a=2696&q=322750 provides details about VAS program

in Connecticut.
7The website https://www.ncdc.noaa.gov/ provides details about the NCEI and details about how to obtain

weather data and information.
8The document https://www.greateratlantic.fisheries.noaa.gov/public/nema/apsd/vtr_inst.pdf is the

Fishing Vessel Trip Report Reporting Instructions for the Great Atlantic Region provided by NOAA. It provides

details about the areas appropriated into grid codes in the New England region.
9Safegraph or similar data companies could be used to mine data on visitations and potential representative

memories for defining the information of the problem. We thank an anonymous reviewer for this suggestion.
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Appendix A Poisson Model to Estimate Expected Catch
The variable expected catch rate is the predicted measure for fish caught per trip per

site and is estimated using a Poisson process model. This approach, popularized by McConnell

et al. (1995), assumes the number of fish caught to have a Poisson distribution. The explanatory

variables that influence fisher behavior are used to predict the expected catch. The variables

used in this model include area, workday, a binary indicator for a weekday; weather controls

such as wind speed, temperature, and precipitation (inches); fishing hours, used as a proxy for

fishing effort; the number of anglers per fisher identity (ID); fishing trip mode; year and month

fixed effects.
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Variables Number of Fish Caught as Dependent Variable

(1) (2) (3) (4)

Number of Anglers 0.092 0.079 0.069 0.102

(0.02)*** (0.02)*** (0.02)*** (0.02)***

Fishing Hours 0.209

(0.02)***

Log(Fishing Hours) 1.239 1.236 1.204

(0.06)*** (0.06)*** (0.07)***

Work Day (Yes=1) -0.020 -0.032 -0.051 -0.011

(0.06) (0.05) (0.06) (0.06)

Trip mode

(i) Party Boat -0.317 -0.291 -0.330 -0.316

(0.48) (0.49) (0.49) (0.46)

(ii) Private Boat -0.291 -0.179 -0.232 -0.089

(0.44) (0.45) (0.46) (0.43)

(iii) Shore -1.572 -1.302 -1.354 -1.118

(0.43)*** (0.45)*** (0.46)*** (0.43)***

(iv) Enhanced Fishing Site -0.819 -0.515 -0.580 -0.485

(0.44)* (0.46) (0.47) (0.43)

Weather Controls Yes Yes Yes Yes

Area Fixed Effects Yes Yes No Yes

Month and Year Fixed Effects Yes Yes Yes No

AIC 51068 48833 49804 51792

Table 8: Poisson Model to Estimate Expected Catch

Notes: N = 3, 182. Each column represents a new model with varying fixed effects. Model 2

with the relatively better model fit criteria is used to predict the expected catch rate in the

multinomial logistic models. Standard errors are given in parentheses. ***, ** and * denotes

significance at 1 percent, 5 percent and 10 percent.
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Appendix B Standardizing the Weight Coefficients
Table 9 (Column 1) reports the CBDT weights estimates after standardizing the vari-

ables. By standardizing the coefficients, we make the similarity weight estimates comparable

across variables. For instance, when comparing the weights, we find that period has a relatively

higher score than site congestion implying that fishers weigh recency more than maintaining

similar congestion/popularity levels when choosing a fishing site.

Fishing Area as Dependant Variable

Variables (1) (2)

Expected Catch Rate 0.118 0.001

(0.10) (0.00)

Period 623.6*** 0.043***

(96.68) (0.01)

Site Congestion 9.25*** 412.2***

(1.87) (84.8)

Site History (Yes=1) 0.98*** 8.57***

(0.20) (1.74)

Table 9: CBDT with Standardized Weight Coefficients. Notes: Column (1) reports CBDT weights

estimates after standardizing the variables and column (2) reports the estimates in the regular model

which is the same as Table 5. The parameter estimates for the areas, the sensitivity parameter as well

as the model comparison criteria is the same for both models.

Appendix C State Dependence Model Robustness
In this section we report the results of the goodness of fit for different choices of the α

in the state-dependence variables. Table 10 shows that the model fit is similar between values

of α. The parameter value of 0.70 shows the best goodness of fit among the models. We choose

the value of α = 0.50 due to its slight performance advantage in the out of sample goodness of

fit. α = 0.70 scores a log-likelihood of -418 and -267 in out of sample measures for 50% and

75% of memory, which is slightly worse than α = 0.50. This suggests that over optimizing on

parameters be researches with too many degrees of freedom in the choice of models may lead to

over fitting of the model.
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α Log-Likelihood AIC BIC

0.2 -891.85 1841.71 2017.60

0.3 -873.58 1805.15 1981.04

0.4 -857.70 1773.40 1949.29

0.5 -845.23 1748.45 1924.35

0.6 -837.53 1733.06 1908.95

0.7 -836.35 1730.70 1906.59

0.8 -843.78 1745.56 1921.45

Table 10: State Dependence Goodness of Fit. Notes: AIC and BIC denote Akaike Information Criteria

and Bayesian Information Criteria respectively. In the above model selection criteria, the smallest represents the

preferred model.

Appendix D Detailed Results of LA Model
The estimated regression coefficients for the LA model are reported in Table 11. The

five recorded location choices available to the recreational fishermen are listed column wise in

this table, and the sixth is the location category, referred to as ‘other’, acts as the reference.

The coefficients in the LA model are interpreted as log odds ratios. For instance, the

positive significance of the coefficient for variable, expected catch, implies that a unit more level

of expected catch would lead to an expected increase in the multinomial log odds by 0.105

relative to the referent site for the first site and 0.229 for the fourth site, holding all other

variables constant. The estimates for site congestion is statistically significant and negative

for four out of five areas. This elevated negativity represents the decreased individual share

indicating a preference for popular fishing sites compared to the referent site. The coefficients

for site history when positive implies that fishers are loyal to the previous site visited whereas

a negative sign implies a preference for variety. Significance is obtained only for the positive

coefficients. The variable period, acts as a proxy for individual fishing experience within our

sample size. Three out of five areas exhibit a significant and positive log odds for this variable,

implying that a more experienced fisher would visit these areas relative to the referent area.
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Variables Dependant Variable: Fishing Area

Area 1 Expected Catch Rate 0.105*** (0.02)

Site Congestion -5.92*** (0.66)

Site History (Yes=1) 1.54*** (0.33)

Period 0.016*** (0.00)

Area 2 Expected Catch Rate 0.007 (0.03)

Site Congestion -6.94*** (2.52)

Site History (Yes=1) -0.56 (0.51)

Period 0.015** (0.01)

Area 3 Expected Catch Rate 0.002 (0.03)

Site Congestion 0.25 (0.86))

Site History (Yes=1) -0.27 (0.68)

Period -0.005 (0.01)

Area 4 Expected Catch Rate 0.229*** (0.03)

Site Congestion -318.59*** (27.94)

Site History (Yes=1) -0.04 (0.79)

Period -0.055 (0.04)

Area 5 Expected Catch Rate 0.055*** (0.02)

Site Congestion -11.73*** (0.86)

Site History (Yes=1) 2.87*** (0.32)

Period 0.032*** (0.00)

Table 11: LA Model Results
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