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Hamiltonian Chaos IV

Nicolas Regez∗, Wolfgang Breymann∗, Stefan Weigert∗,
Charles Kaufman†, and Gerhard Müller†

∗Institut für Physik, Universität Basel, CH-4056 Basel, Switzerland
†Department of Physics, University of Rhode Island, Kingston, RI 02881-0817

Configuration space, phase space, Hilbert space. Where is the real world?
Where are the laws of physics at work? Is chaos a question of the space just as
“high treason is a question of the date” (Talleyrand)?

Consider a double pendulum. The two-dimensional (2D) configuration space
is a disk-shaped rink. The inner pendulum bob moves forward or backward on
a circular path, regularly or irregularly in time, while the outer bob traces a
complicated figure that may reach any point on the disk. In 4D phase space
the two bobs are represented by a single phase point. This point moves forward
at all times and never intersects its own path. It may trace a closed trajectory
(1D object), an invariant torus (2D object), or a more complicated structure
that does not fit on any 2D manifold. In Hilbert space the dimensionality is
infinite, and the state of the double pendulum is represented by a unit vector
performing an elaborate pirouette.

Trajectories that look messy in configuration space may or may not have
that appearance in phase space. The term chaos is reserved for a jumble in
phase space. In part I of this series1 we employed classical Poincaré surfaces
of section in order to describe chaos in phase space. In parts II and III we
investigated Hamiltonian chaos from a global perspective by using classical and
quantum invariants as computed from trajectories in phase space or from state
vectors in Hilbert space, respectively.

In this fourth part of the series, we adopt a more local perspective by using
a suitable phase space description of quantum states. We shall study quan-
tum Poincaré surfaces of section for individual eigenstates of an integrable or
nonintegrable system with two degrees of freedom. The eigenstates will be rep-
resented in the form of Husimi distributions in phase space. Husimi distributions
of quantum states in turn will be constructed from coherent states. In the fol-
lowing, we introduce these concepts on an elementary level and then tackle the
systems we discussed in parts I–III, namely two-spin clusters.

Consider the quantum harmonic oscillator,

Ĥ =
p̂2

2m
+

1
2
mω0

2q̂2 = ~ω0(â†â+
1
2

) . (1)

The position and momentum operators with [q̂, p̂] = i~ and the bosonic creation
and annihilation operators with [â, â†] = 1 are linearly related to each other:
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q̂ =
√

~/2mω0(â† + â), p̂ = i
√

~mω0/2(â† − â). The states |n〉, n = 0, 1, 2, . . .,
defined by the relations â†|n〉 =

√
n+ 1|n + 1〉, â|n〉 =

√
n|n − 1〉, are the

eigenstates of (1): Ĥ|n〉 = ~ω0(n+ 1
2 )|n〉.

Because the operators p̂, q̂ do not commute, their values in any given state
of the system are subject to the Heisenberg uncertainty relation,

〈(∆p̂)2〉〈(∆q̂)2〉 = (〈p̂2〉 − 〈p̂〉2)(〈q̂2〉 − 〈q̂〉2) ≥ 1
4
|〈[p̂, q̂]〉|2 =

1
4

~2 . (2)

Therefore, the closest thing to a phase point we can express in quantum me-
chanical terms is a wave function that is localized in both the position and
momentum representations such that (2) is satisfied with the equality sign. Co-
herent states are a set of states with this minimum-uncertainty property.

The ground state |0〉 of the harmonic oscillator is a coherent state. The
minimum-uncertainty property can be verified by using, for example, the famil-
iar ground-state wave function in the q-representation,

ψ0(q) =
(mω0

π~
) 1

4 e−mω0q
2/2~, (3)

which has the form of a Gaussian localized at q = 0 in configuration space. In
the p-representation, it also is a Gaussian, localized at p = 0. The phase space
coordinates of the peak position provide a natural specification of this coherent
state: |n = 0〉 = |q = 0, p = 0〉. All the other coherent states can be generated
from this particular one by a translation which shifts the average position 〈q̂〉
and the average momentum 〈p̂〉 from (0, 0) to an arbitrary point (q, p) in phase
space. This transformation is implemented by an operator in the form of an
exponentiated creation operator,2

|q, p〉 = e−
1
2 |z|

2
ez̄â

†
|0, 0〉. (4)

The endpoint of the shift is specified by the complex number z =
[
q
√
mω0 −

ip/
√
mω0

]
/
√

2~ (see Problem 1). For the evaluation of expectation values we
expand the exponential operator in a power series to obtain

|q, p〉 = e−
1
2 |z|

2
∞∑
n=0

1√
n!
z̄n|n〉 , (5)

where z̄ is the complex conjugate of z.
The Husimi distribution in phase space of any (stationary or nonstationary)

quantum state |ψ〉 is defined by its overlap with the two-parameter family of
coherent states:

Wψ(q, p) = |〈q, p|ψ〉|2 . (6)

For the eigenstates |n〉 of the harmonic oscillator, we obtain

Wn(q, p) =
1
n!
|z|2ne−|z|

2
. (7)
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We have plotted Wn in Fig. 1a for the ground state and two excited states
of the harmonic oscillator. Since the eigenstates are stationary, their Husimi
distributions are time-independent.

Recall that the classical phase portrait of the harmonic oscillator is a dense
set of ellipses with the fixed point at the center representing the classical ground
state. The Husimi distribution of the quantum ground state is a 2D Gaussian
centered at the same point. The nonzero width of the distribution reflects the
quantum uncertainty requirement (2). The Husimi distributions of the excited
states are rim-like objects with their ridges along the classical trajectories. These
phase space structures may be called quantized invariant tori as discussed in part
III.

Unlike the eigenstates |n〉, the coherent states |q, p〉 are generally nonsta-
tionary. The time-dependent Husimi distribution of the nonstationary coherent
state

|q0, p0, t〉 = e−
1
2 |z0|

2
∞∑
n=0

1√
n!
z̄n0 e
−i(n+ 1

2 )ω0t|n〉 (8)

reads
Wq0,p0(q, p, t) = |〈q, p|q0, p0, t〉|2 = e−|z−z0e

iω0t|2 . (9)

The peak of this localized distribution travels on a closed elliptic path with
period 2π/ω0, much like the corresponding classical phase point. Note that
the distribution (9) does not diffuse (see Problem 2). Figure 1b depicts three
snapshots of one coherent state taken at successive times (see Problem 3).

When this analysis is carried out for an anharmonic oscillator, the calcu-
lational demands increase substantially. Equation (5) for the coherent state
|q, p〉 remains unchanged, but the harmonic oscillator states |n〉 are no longer
eigenstates. We express the new eigenstates in the form |ψl〉 =

∑∞
n=0 cln|n〉,

l = 0, 1, 2, . . . The resulting (time-independent) Husimi distributions can be
written in the form

Wl(q, p) =

∣∣∣∣∣
∞∑
n=0

cln√
n!
zn

∣∣∣∣∣
2

e−|z|
2
. (10)

Under anharmonic time evolution, coherent initial states lose the minimum-
uncertainty property. If our goal is to determine the (time-dependent) Husimi
distribution for a state |q0, p0, t〉 which is coherent at t = 0, we need to express
the (nonstationary) harmonic oscillator states |n, t〉 in terms of the eigenstates
|ψl(t)〉 = e−iElt/~|ψl〉 (see Problem 4).

In preparation of our main theme, the investigation of the eigenstates of two-
spin clusters by means of quantum Poincaré maps of their Husimi distributions,
we present here a brief introduction to coherent spin states. Consider a spin
~̂σ = (σ̂x, σ̂y, σ̂z) with quantum number σ = 1

2 , 1,
3
2 , . . . in a constant magnetic

field in the z-direction,

Ĥ = −~ω0σ̂z, ω0 =
ge

2mc
B . (11)

The spin components satisfy [σ̂α, σ̂β ] = iσ̂γ for (αβγ) = cycl(xyz). The eigen-
states |m〉, m = −σ,−σ + 1, . . . , σ of (11) are defined by the relations σ̂z|m〉 =

3



m|m〉, σ̂±|m〉 =
√

(σ ∓m)(σ ±m+ 1)|m±1〉, where σ̂± = σ̂x± iσ̂y. The quan-
tum spin length ~

√
σ(σ + 1) is determined by the relation ~̂σ2|m〉 = σ(σ+1)|m〉.

A natural parametrization of spin coherent states is provided by the angu-
lar coordinates (ϑ, ϕ) of the mean spin direction as inferred from the relation
(〈σ̂x〉, 〈σ̂y〉, 〈σ̂z〉) = σ(sinϑ cosϕ, sinϑ sinϕ, cosϑ). The lowest and highest spin
eigenstates | ± σ〉 happen to be stationary coherent spin states, and for the
ground state of (11) we write3 |m = +σ〉 = |ϑ = 0, ϕ = 0〉. All other coherent
spin states can be generated from this state by a rotation of the (mean) spin
direction away from the north pole to an arbitrary direction specified by the
polar angle ϑ and the azimuthal angle ϕ. This rotation is implemented by a
unitary operator of the form4

|ϑ, ϕ〉 = e−iϑ(σ̂x sinϕ−σ̂y cosϕ)|0, 0〉. (12)

In analogy to (5), it is useful to express the rotated coherent state as a linear
combination of the spin eigenstates:

|ϑ, ϕ〉 =
+σ∑

m=−σ
dm(ϑ, ϕ)|m〉,

dm(ϑ, ϕ) =

√
(2σ)!

(σ +m)!(σ −m)!
e−iϕ(σ−m)[sin

ϑ

2
]σ−m[cos

ϑ

2
]σ+m . (13)

Husimi distributions for arbitrary spin states |ψ〉 are calculated as in (6)
for the oscillator case: Wψ(ϑ, ϕ) = |〈ϑ, ϕ|ψ〉|2. For the eigenstates |m〉 of (11),
we obtain stationary Husimi distributions of the form Wm(ϑ, ϕ) = |dm(ϑ, ϕ)|2,
which are independent of the azimuthal angle ϕ. These distributions are best
visualized as the height above sea level on a globe (see Problem 5).

The nonstationary coherent spin states |ϑ0, ϕ0, t〉 for the simple model (11)
can be determined analogously to (8). Their time-dependent Husimi distribu-
tions all have exactly the same shape, namely that of the state |0, 0〉, but are
rotated to the initial angular position (ϑ0, ϕ0). They all move rigidly and syn-
chronously at constant latitude around the globe. The minimum-uncertainty
property is again preserved in time.

In a generic one-spin Hamiltonian, the spin states |m〉 are not stationary.
With the eigenvectors |ψl〉 =

∑+σ
m=−σ clm|m〉, l = 0, . . . , 2σ, and their energy

eigenvalues El obtained from a numerical diagonalization, we can express the
Husimi distributions Wl(ϑ, ϕ) analogously to (10) in terms of the expansion
coefficients clm. If we use the matrix {γlm}, the inverse of the matrix {clm}, to
express the time evolution of the basis vectors |m, t〉 =

∑2σ
l=0 γml e

−iElt/~|ψl〉,
and use (13), we can write the time evolution of the state |ϑ0, ϕ0, t〉 as

|ϑ0, ϕ0, t〉 =
∑
ml

dm(ϑ0, ϕ0)γmle−iElt/~|ψl〉. (14)

Note that |ϑ0, ϕ0, t〉 starts out at t = 0 as a coherent state centered at (ϑ0, ϕ0).
We can then determine the time-dependent Husimi distributionWϑ0,ϕ0(ϑ, ϕ, t) =
|〈ϑ, ϕ|ϑ0, ϕ0, t〉|2.
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As an illustration, we consider the one-spin Hamiltonian

Ĥ = ~ω0(σ̂y − σ̂z)− ~2Dσ̂2
x . (15)

Its classical counterpart, H = ω0(Sy−Sz)−DS2
x, generates an anharmonic time

evolution of the spin components (Sx, Sy, Sz) = s(sinϑ cosϕ, sinϑ sinϕ, cosϑ),
which is specified (for ω0 = 1, D = 1) by the equations of motion

dSx
dt

= Sz + Sy,
dSy
dt

= −Sx + 2SxSz,
dSz
dt

= −Sx − 2SxSy. (16)

In Fig. 2a we show several trajectories generated by (16). The phase points
move in the direction of the arrows. The four fixed points (where dSx/dt =
dSy/dt = dSz/dt = 0) are readily identified in this phase portrait: two elliptic
points at (60◦,−35.3◦) and (60◦,−144.7◦) with clockwise flows around them;
one hyperbolic point between the two at (45◦,−90◦); and a third elliptic point
at (135◦, 90◦) with anticlockwise flow around it. Classical trajectories are lines
of constant energy. When interpreted as a contour plot of the classical energy,
Fig. 2a depicts a landscape with a mountain peak of height E =

√
2 on the lower

right and two ocean troughs of depth E = −3/2 on the upper left, separated by
a saddle point at E = −

√
2.

We can construct the corresponding quantum phase portrait by mapping
out the (ϑ, ϕ)-strip according to the average energy,

〈ϑ, ϕ|Ĥ|ϑ, ϕ〉 =
∑
l

El|
∑
m

dm(ϑ, ϕ)γml|2 (17)

of the coherent state peaked at (ϑ, ϕ). Figure 2b shows contours of this function
for four values of σ. The four panels reproduce the classical energy topography
of Fig. 2a with different degrees of resolution. The double well, for example, does
not exist on the quantum energy topographic map for very small spin quantum
numbers. The limited resolution is attributable to quantum uncertainty.

To complete the quantum phase diagram, we need to attribute a sense of
direction to any line segment of constant average energy. We choose a coherent
state centered at some point on a given line of constant average energy and
determine the direction in which the peak of its Husimi distribution moves
in time. This determination cannot be done without ambiguity, again due to
quantum uncertainty. Figure 3 depicts snapshots at successive times of Husimi
distributions corresponding to three initial coherent states.

Consider the state initially centered at (40◦, 120◦). Its Husimi distribution,
shown in the form of a color-coded density plot, remains localized during the
time interval shown. The peak position follows the line of constant average
energy very closely. It undergoes a periodic motion very much like the corre-
sponding classical phase point and with almost the same period. Very similar
observations are made if we pick the initial coherent state at (126◦, 74◦). The
Husimi distributions of this state at four successive instants are shown by the
contour plots on the lower right of Fig. 3. A different scenario arises if we
pick the initial coherent state at (46◦,−86◦) near the classical separatrix. This
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Husimi distribution does not stay localized as time evolves. Different parts of it
move along lines of constant average energy on opposite sides of the hyperbolic
point as shown by the contour plots on the upper left of Fig. 3.

The flow of the Husimi distribution is akin to that of a classical phase space
density with a comparable degree of localization. The quantum flow pattern for
initial coherent states suggests a sense of direction along the lines of constant
average energy in Fig. 2b which is consistent with the classical flow pattern in
Fig. 2a, but the quantum uncertainty imposes an intrinsic limit to the degree
of localization.

These results demonstrate that the universal integrability of autonomous
(classical) systems with one degree of freedom is reflected with remarkable clarity
in individual stationary and nonstationary states of the corresponding quantum
systems. The Husimi distributions of energy eigenstates tend to be concentrated
in the immediate vicinity of the classical torus for that energy, and the Husimi
distributions of (initially) coherent states tend to stay localized and move with
a velocity similar to that of a classical phase point on the torus of the same
energy. However, the quantum uncertainty requirements render this correspon-
dence fuzzy in those regions of phase space where the classical time evolution is
most sensitive to small changes in initial conditions.

Now we turn to systems with two degrees of freedom, which may or may not
be integrable. Integrability guarantees a fully intact 2D torus structure in the
4D phase space. Nonintegrability implies that a fraction of the tori is destroyed
and replaced by chaotic trajectories. By what characteristic patterns does the
classical integrability or nonintegrability manifest itself in the Husimi distribu-
tions of eigenstates of the corresponding quantum system? By what kind of
graphical representation can these patterns be displayed for direct comparison
with classical Poincaré maps, where the effects of integrability and nonintegra-
bility are clear cut and readily verified?

To answer the second question, we use a quantum Poincaré map, which in
essence is a classical Poincaré map applied to the (smooth) Husimi distribution
Wl(q1, p1, q2, p2) of a quantum eigenstate in contrast to the (highly singular)
phase space density P (q1, p1, q2, p2) of a single classical trajectory. The classical
Poincaré map chosen here for comparative purposes is implemented as follows:
Any given initial phase point (q1, p1, q2, p2) traces a trajectory on the 3D energy
hypersurface H(q1, p1, q2, p2) = Ecl = const. This invariant reduces the number
of independent coordinates in the phase space density P (q1, p1, q2, p2) from four
to three. A further reduction from three to two is imposed by considering
only those points where a trajectory intersects the 3D hyperplane p2 = 0 with
ṗ2 < 0. These points are plotted in a diagram of the two remaining independent
coordinates (q1, p1). Each dot in such a diagram can be interpreted as a δ-
function contribution to the Poincaré map of the phase space density of a single
trajectory. For regular trajectories the dots tend to accumulate along piecewise
smooth lines, whereas for chaotic trajectories they tend to spread in a 2D region
of the (q1, p1) diagram (see parts I and II).

For direct comparison with these classical structures, individual eigenstates
|ψl〉 of the corresponding quantum Hamiltonian are graphically represented by
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applying the same reduction of variables to their Husimi distributionsWl(q1, p1, q2, p2).
As in the one-spin problem, we use angular coordinates ϑ, ϕ in place of the
canonical variables q, p. Hence, we express the quantum Poincaré map as
W l(ϑ1, ϕ1) = Wl(ϑ1, ϕ1, ϑ2 = π/2, ϕ2 = ϕ̄2), where ϕ̄2 is determined by the
(classical) requirements Ecl = const and ϑ̇2 > 0. The function Wl(ϑ1, ϕ1, ϑ2, ϕ2)
can be determined from the spin coherent states |ϑ1, ϕ1, ϑ2, ϕ2〉 and the spin
eigenstate |ψl〉 by a straightforward generalization of the procedure outlined in
the context of the one-spin model.

Panels (a)–(c) of Fig. 4 show density plots of the quantum Poincaré map
W l(ϑ1, ϕ1) for three eigenstates |ψl〉 of the integrable two-spin Hamiltonian

Ĥγ = ~2
[
(1 + γ)σ̂1xσ̂2x + (1− γ)σ̂1yσ̂2y

]
(18)

with γ = 0.5 and for spin quantum number σ = 151/2. Panel (d) depicts the
classical Poincaré map of several trajectories at energy Ecl = −0.1 for the same
model. The three quantum eigenstates have energies very close to Ecl. Note
the similarity in shape of the corresponding classical and quantum stationary
objects in this common representation. The eigenstates accurately outline the
shapes of the invariant tori.5 In panel (a) we have chosen the eigenstate with the
largest (squared) projection |〈ψl|ϑ1, ϕ1, π/2, ϕ̄2〉|2 onto the spin coherent state
centered at the location of the four elliptic fixed points on the line ϑ1 = π/2
belonging to one (stable) periodic trajectory. The eigenstate selected for panel
(b) is the one with the largest value W l(ϑ1, ϕ1) at the two hyperbolic fixed
points located on the same line (ϑ1 = π/2) and belonging to a single (unstable)
periodic trajectory. The eigenstate depicted in panel (c) traces an invariant
torus far from any fixed point.

The Husimi distributions of the eigenstates of Ĥγ tend to remain localized
near the corresponding classical invariant tori. In part II we pointed out that
each classical torus in a fully intact foliation is specified by two global action
coordinates. In part III we used quantum invariants to show that eigenstates
of an integrable two-spin model are naturally labeled by two quantum num-
bers representing quantized actions. The results of Fig. 4 now demonstrate the
close relationship between quantum eigenstates and classical invariant tori on
an individual basis.

Different structures in quantum Poincaré maps are expected for the nonin-
tegrable two-spin Hamiltonian

Ĥα = ~2
[
σ̂1xσ̂2x + σ̂1yσ̂2y +

1
2
α{(σ̂1x)2 − (σ̂1y)2 + (σ̂2x)2 − (σ̂2y)2}

]
. (19)

Our results for α = 0.5 and α = 0.7 are displayed in Figs. 5 and 6, respectively.
We have used the same combination of plots as in Fig. 4. The classical Poincaré
map of Fig. 5d shows that chaos is conspicuous but considerably constrained by
intact tori. There exists a broad band of chaos around the regular island centered
at the primary elliptic fixed points and connecting the primary hyperbolic fixed
points on the line ϑ1 = π/2. Within that chaotic region, we can detect four
regular islands of intact tori winding around secondary elliptic fixed points.
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How clearly are these prominent classical structures reflected in the quantum
Poincaré maps of individual eigenstates at nearby energies? The states shown
in Figs. 5a and 5b are the ones with maximum projection onto the coherent
states centered at the above mentioned primary and secondary elliptic fixed
points, respectively. Their distributions W l(ϑ1, ϕ1) stay localized around these
(stable) fixed points. The eigenstate shown in Fig. 5c, by contrast, which has
the strongest overlap with the coherent state centered at the primary hyperbolic
fixed point of Fig. 5d, has a much less localized distribution W l(ϑ1, ϕ1). It
spreads into a region on the quantum Poincaré map which outlines the range of
the chaotic region on the classical Poincaré map in remarkable detail.

At α = 0.7 the classical phase flow of Ĥα is considerably more widespread
than at α = 0.5, as can be seen on the classical Poincaré map depicted in
Fig. 6d. Most of the invariant tori which were still present at α = 0.5 have now
melted into a wide sea of chaos interspersed with small islands of tori around
certain elliptic fixed points. Even under these very chaotic circumstances there
are quantum eigenstates that are localized tightly near these islands of stability.
Figs. 6a and 6b show the quantum Poincaré maps of two such states. But then
there are other eigenstates at almost the same energy which spread to nearly
all regions on the quantum Poincaré map. The distribution W l(ϑ1, ϕ1) of the
state depicted in Fig. 6c has its largest value at the (unstable) hyperbolic fixed
point.

The coexistence of two kinds of eigenstates in nonintegrable quantum sys-
tems, namely those which are akin to quantized tori and those which resemble
chaotic trajectories on the Poincaré map, have also been identified in parts II
and III. There the torus structure was represented quantum mechanically by an
invariant-web. In the integrable model Ĥγ , all states were found to be part of
the fully intact fabric, whereas in the nonintegrable model Ĥα, the fabric was
shown to be partially torn. By means of the Poincaré maps of Figs. 5 and 6, we
now have a close-up view of these two kinds of eigenstates and their properties
in a phase space representation. Chaos is not a question of how the state of the
system is represented, but the analytical and graphical instruments required to
recognize and explore chaos vary widely in different representations.
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Suggested Problems for Further Study

1. The definition of the operator for a general translation in the (q, p)-plane is
T̂ = ei(pq̂−qp̂)/~. Show that the application of this operator on the ground
state of the harmonic oscillator yields Eq. (4) after normalization of the
resulting state.

2. Determine the expectation values 〈q̂〉, 〈p̂〉, and the uncertainty product
〈(∆p̂)2〉〈(∆q̂)2〉 for the coherent state (8) of the harmonic oscillator from
the Husimi distribution (9). Compare the result for 〈(∆p̂)2〉〈(∆q̂)2〉 with
the right-hand side of (2). Also determine the uncertainty product for
the coherent state |ϑ0, ϕ0〉 of the one-spin Hamiltonian (11) by the same
method. In this case the integral is over a sphere and the integration
variables are p = s cosϑ, q = ϕ.

3. On the phase plane with rescaled axes q̃ = q
√
mω0/2~, p̃ = p/

√
2~mω0,

the peak of the Husimi distribution (9) traces a circle. Relate the radius
for the classical oscillator to the average energy of the coherent state.
Establish the corresponding relation between the energy and the radius of
the classical oscillator. Compare the two relations.

4. Consider the anharmonic oscillator Ĥ = p̂2/2m+(mω2
0/2)q̂2[α+βmω0q̂

2/~].
Use the harmonic-oscillator states |n〉 as a basis for the matrix represen-
tation of this Hamiltonian. Find the eigenvectors and eigenvalues for the
matrix truncated at nT = 10, 20, . . . With increasing nT there will be a
growing number of eigenvalues, El, l = 1, . . . , lT , which are very little af-
fected by the truncation of Ĥ. Pick a coherent state |q0, p0〉 whose average
energy is well within the range of energy eigenvalues for which truncation
is not a problem. Use the procedure described in the text to calculate the
time-dependent Husimi distribution in a suitable representation. Inter-
pret the time evolution of the coherent state in light of the classical phase
portrait. Carry out the calculation and analysis for several different initial
coherent states and for parameter values of Ĥ which include single-well
and double-well potentials.

5. Plot the Husimi distribution Wm(ϑ, ϕ) for various eigenstates |m〉 of the
one-spin model (11) in a spherical representation. The state |σ〉 will be rep-
resented by a localized peak at the north pole and states with −σ < m < σ
by ring-shaped bulges at constant latitude. Demonstrate that the angular
width of these structures decreases with increasing spin quantum number
and goes to zero in the classical limit, ~→ 0, σ →∞, ~

√
σ(σ + 1) = s.
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Figure 1: (a) 3D plot of the Husimi distributions (7), expressed as functions
of rescaled coordinates for the ground state (n = 0) and two excited states
(n = 5, 9) of the quantum harmonic oscillator. (b) 3D plot of the Husimi
distributions (9) for the coherent state with initial condition q

√
mω0/2~ = 10,

p/
√

2~mω0 = 0 at three successive times ω0t = 0, 2, 4 of the same model.
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Figure 2: (a) Classical phase portrait of the one-spin model H = Sy − Sz − S2
x

with s = 1. Each trajectory on the (ϑ, ϕ)-strip has been obtained by numer-
ical integration of Eq. (16) for some initial point. (b) Contours of constant
average energy of the coherent states |ϑ, ϕ〉 for the quantum one-spin model
(15) with ω0 = 1, D = 1, ~ = 1/

√
σ(σ + 1), and the spin quantum numbers,

σ = 1/2, 1, 10, 60.
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Figure 3: Husimi distributions for three nonstationary states at several suc-
cessive times of the quantum one-spin model (15) with σ = 60 and ~ =
1/
√
σ(σ + 1). The initial states are coherent and centered at (46◦,−86◦),

(126◦, 74◦) (contour plots), and (40◦, 120◦) (color-coded density plot).
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Figure 4: Quantum and classical Poincaré maps at ϑ2 = π/2, ϑ̇2 > 0 for the
integrable two-spin model (18) with γ = 0.5. Panel (d) [from Ref. 6] represents
several classical trajectories at Ecl = −0.1. Panels (a)–(c) [from Ref. 7] represent
Husimi distributions for σ = 151/2 of three eigenstates with energies En very
close to Ecl.
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Figure 5: Quantum and classical Poincaré maps at ϑ2 = π/2, ϑ̇2 > 0 for
the nonintegrable two-spin model (19) with α = 0.5. Panel (d) [from Ref. 6]
represents several classical trajectories at Ecl = −0.1. Panels (a)–(c) [from
Ref. 7] represent Husimi distributions for σ = 151/2 of three eigenstates with
energies En very close to Ecl.
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Figure 6: Quantum and classical Poincaré maps at ϑ2 = π/2, ϑ̇2 > 0 for
the nonintegrable two-spin model (19) with α = 0.7. Panel (d) [from Ref. 6]
represents several classical trajectories at energy Ecl = −0.1. Panels (a)–(c)
[from Ref. 7] represent Husimi distributions for σ = 151/2 of three eigenstates
with energies En very close to Ecl.
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