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Fig. 8 Overlay operation on thin client environment in QGIS cloud [5].

installed and added in Quantum GIS desktop environment. This QGISCloud plugin has the unique capability of storing various

vector and raster data set. This plugin was linked with the cloud database for storing and performing overlay analysis. After

storing in desired cloud database, it generated the thin and mobile client link for visualization of both raster and vector data.

Figure 8 and Figure 9 shows the overlay analysis on thin and mobile clients respectively. In this way, the overlay analysis is an

useful and simple technique for geo-health data visualization. Next section describes better strategy for energy efficiency and

management in GeoFog4Health framework.

3.4 Energy Efficiency

In this section, an analytical model was introduced for the energy saving management of intermediate fog layer in Geo-

Fog4Health. Proposed framework investigated the energy saving management using finite buffer batch service buffering system

that can change over time and multiple vacations. We studied that the overall message delay in the uplink channel and perfor-

mance of mean number of data packets in the buffer, buffering delay and probability of blocking in the fog layer. Lots of energy

is required for handling heavy traffic of fog node data from fog and intermediate fog layer. With vacation mode operation, in-

termediate fog layer node does not listen to the node of fog layer continuously but it alternates the active state and the vacation

state. It has considered a finite buffer batch service buffering system with multiple vacation and changeover time.

Let, it has assumed a and b as the threshold values of activating the intermediate fog layer service and service capacity,

respectively. Whenever the intermediate fog layer node finished all its work, it goes to vacation, an internal timer that is expo-

nentially distributed with parameter θ is then started and the intermediate fog layer node awakes to check the buffer content of

the fog layer. When upon awaking the intermediate fog layer finds that there are still less than j(0 ≤ j ≤ a−2) data frames, it

goes to vacation again. If the number of data frames in the buffer of the fog layer is a−1 either at a service completion epoch

or at a vacation termination point, the intermediate fog layer service will wait for some more time that is called changeover
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Fig. 9 Overlay operation on mobile client environment in QGIS cloud [2].

time. The changeover time is exponentially distributed with parameter γ . If there is an arrival during the changeover time, the

intermediate fog layer service will start immediately, otherwise, it will go for a vacation period. If after a vacation period, the

intermediate fog layer finds a non-empty buffer, it serves all data frames present at that point and also all new data frames that

arrive while the intermediate fog layer service is working, until the buffer becomes empty again at the fog layer end and the

whole procedure is repeated.
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3.4.1 Analytical Model

It has considered a Markov chain with the state space {(i, j)|0≤ i≤ N, j = 0,1
⋃
(a−1,2)} where i gives the buffer size and j

represents the state of the server. The process is in the state (i,0) if there are i data frames waiting in the buffer and the server

is in sleep mode. It is in state (i,1) if there are i data frames waiting in the base station buffer and the mobile station service

unit is busy and it is in state (a−1,2) if there are a−1 data frames in the buffer and the server is waiting in the system. Using

probabilistic argument at steady state, we obtain the following system of equations

βP0,0 = αP0,1, (1)

βPi,0 = βPi−1,0 +αPi,1, 1≤ i≤ a−2, (2)

(β +θ)Pa−1,0 = βPa−2,0 + γPa−1,2, (3)

(β +θ)Pi,0 = βPi−1,0, a≤ i≤ N−1, (4)

θPN,0 = βPN−1,0, (5)

(β +α)P0,1 = βPa−1,2 +α

b

∑
s=a

Ps,1 +θ

b

∑
s=a

Ps,0, (6)

(β +α)Pi,1 = βPi−1,1 +θPi+b,0 +αPi+b,1, 1≤ i≤ N−b, (7)

Using normalization condition
N
∑

i=0
Pi,0 +

N
∑

i=0
Pi,1 +Pa−1,2 = 1 we recursively solved the equations

3.4.2 Performance Measures

The state probabilities of the incoming job request at arrival times are known, we can find out various performance measuring

parameters like average number of job requests in the buffer Lq , average time spending in the buffer Wq and the probability

of blocking (PBL). They are given by Lq = ∑
N
i=1 iPi,0 +∑

N
i=1 iPi,1 + (a− 1)Pa−1,2 . The probability of blocking is given by

PBL = PN,0 +PN,1 . The average time spending in the buffer using Little’s rule is Wq = Lq/β ′ , whereβ ′ = β (1−PBL) is the

effective arrival rate.

3.5 Cost Analysis

In this section, it has been determined that the expected cost per unit time and optimize the threshold values for activating the

server (a), batch service capacity (b) and service rate (µ) for downloading the data frame, so that the expected cost function can

be minimized. Here it has used the genetic algorithm to find out the minimized expected cost.

Let F be the total expected cost per unit slot. Using the definitions of each cost element and its corresponding system

characteristics, it has
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F =C1Lq +C2Pb +C3βPBL+C4α +C5γ +C6θ ;

C1= the cost of each slot for every incoming frame waiting in the base station buffer,

C2=fixed cost per slot when the base station buffer is blocked,

C3= fixed cost for each lost data frame when the base station is blocked,

C4= the transmission cost per slot when the mobile station is busy,

C5= fixed cost per slot when the mobile station is in change over time,

C6= fixed cost per slot when the mobile station is on sleep.

Among different technique used for optimizing, the genetic algorithm (GA) is an efficient optimization technique for find the

value based on process of natural selection process. This algorithm has implemented particular rule to minimize the parameter

based on some fit value. This algorithm was implemented by Holland in 1975. Some of the advantages of a GA has defined

below:

1. Provide efficient, effective techniques for optimization mainly in scientific and engineering application.

2. It is not using conventional derivative calculation for finding out the cost function.

3. There are many ways to speed up and improve a GA based application at the same time can search from large sampling

space.

4. Inherently parallel; easily distributed and can accommodate many number of variables.

5. Optimizes the variables values with highly complicated manner. In this algorithm best is not always picked, and worst is not

necessarily excluded.

6. Causes movement in the search space and and provides more than one optimum values. Restores lost information to the

population.

7. The optimization can be done by the genetic algorithm on encoded variables.

8. Gives satisfactory performances for engineering, scientific research and machine learning application.

9. Obtain the fitness value to determine solutions and no complicated mathematical computations are used. Mixture of greedy

exploitation and adventurous exploration.

In traditional methods have lots of disadvantages. Genetic algorithm overcome few of this and provide significantly improved

performance. Here the strings are mentioned in binary values and the bit value 0 and 1 represent the gene. The fitness value is

generated by the associated function and constraint checking has done.

From the above analysis, it has been found that suitable mathematical model has required for efficient energy management is

the need of the hours. But whenever, it will talk about processing of huge amount of real time data processing in GeoFog4Health,

it is required high batch processing infrastructure that has been discussed in the next section.
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Fig. 10 Effect of (ρ) on Wq with varying a .

3.5.1 Numerical Results

The main objective of this section is to demonstrate the relation between the different system parameters. Figure 10 shows the

effect of utilization factor(/rho) on the average number of packets waiting in the buffer or queue length (Wq) for different values

of a. From Figure 10, it can observe that for all values of a the Wq increases as utilization factor (ρ) increases and for higher

utilization factor delay in the buffer have reduced. We have observed that for higher value of a more buffer delay in the system.

The effect of buffer size(N) on loss probability for vacation and non-vacation is considered in Figure 11 . We observe that loss

probability monotonically increases with the increase of buffer size. Further, the loss probability in case of vacation is slightly

higher than the one obtained in case of non-vacation. It also illustrates dependence of the average waiting time on θ and γ .

We observe that for fixed service rate the average waiting time decreases as the arrival rate θ increases. Further with fixed θ it

increases when the service rateγ increases. Hence we can setup an admissible arrival rate and the sufficient service rate in the

system in order to have lower average waiting time.

Table 3 and 4 establish the impact of a and b on the cost function for different values of ρ , respectively. From Table 3, it can

visualize that the minimum expected cost first decreases, again it increases as ρ increases, for fixed value a. But for fixed ρ , the

minimum expected cost increases as a increases. Similarly, in Table 4 the minimum expected cost decreases as batch size (b)

increases, for fixed ρ . The minimum expected cost first decreases, again it increases as ρ increases, for fixed batch size b. Here

it has implemented the experiment by considering the batch size (b) in the range of 8 to 17 and utilization factor (ρ) from 0.1 to

0.9. We have seen that the lowest optimum cost is 459.44 at ρ = 0.5 and batch size (b = 17).

Figure 12 presents the number of iteration effect on the cost function. We find that average cost is more than minimum value
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Fig. 11 Impact of γ and α on (Wq).

Table 3 The optimal values a∗, F∗ for various values of ρ .

a

ρ 3 4 5 6 7 8 9 10

0.050000 1873.872 1886.680 1894.568 1897.380 1898.142 1898.263 1898.264 1898.271

0.100000 1021.619 1043.866 1071.289 1095.680 1112.885 1119.275 1119.339 1119.405

0.200000 642.155 682.434 728.687 780.731 837.031 874.026 875.247 876.578

0.300000 539.406 589.843 640.612 694.233 751.928 796.108 798.399 800.897

0.400000 498.252 549.769 599.219 649.409 702.090 746.139 748.970 752.037

0.500000 485.287 533.485 579.476 625.593 673.451 716.289 719.398 722.745

0.600000 490.683 533.916 575.690 617.734 661.351 702.648 705.899 709.383

0.700000 509.445 547.391 584.812 622.926 662.724 702.220 705.527 709.064

0.800000 538.259 571.186 604.427 638.827 675.128 712.605 715.910 719.444

0.900000 574.741 603.147 632.529 663.480 696.558 731.869 735.131 738.621

1.000000 617.134 641.575 667.474 695.265 725.380 758.452 761.640 765.059

for all iterations.

3.6 Scalability

Scalability is the ability of proposed GeoFog4Health architecture to handle a growing amount of geospatial big data for analysis

and visualization. In fog layer, it gives the horizontal scalability for processing of large amount of geospatial data. It also keeps

tracks of the proposed framework in cloud layer, it has implemented GeoSpark for scalability process within Hadoop Ecosys-
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Table 4 The optimal values b∗, F∗ for various values of ρ .

b

ρ 8 9 10 11 12 13 14 15 16 17

0.1 2086.34 1869.01 1695.75 1554.48 1437.16 1338.25 1253.82 1181.05 1117.92 1063.02

0.2 1117.44 1011.76 927.85 859.86 803.96 757.62 719.09 687.17 661.00 639.91

0.3 805.50 737.21 683.76 641.38 607.57 580.61 559.25 542.506 529.577 519.78

0.4 660.56 610.85 573.29 544.64 522.77 506.19 493.75 484.569 477.930 473.26

0.5 591.45 549.20 520.34 499.84 485.26 475.01 468.02 463.47 460.76 459.44

0.6 578.83 527.09 500.72 484.58 474.47 468.39 465.12 463.89 464.16 465.52

0.7 636.77 535.72 504.67 489.59 481.87 478.46 477.84 479.142 481.78 485.40

0.8 815.96 571.03 527.01 509.89 502.82 500.93 502.12 505.324 509.87 515.38

0.9 1218.08 629.03 563.98 542.13 534.25 532.91 535.23 539.82 545.87 552.92

Fig. 12 Impact of cost on number of iteration.

tem [24,40] in cloud. To handle large volume of geospatial data, we used GeoSpark as it is an in-memory cluster computing

system. It is an extension of Apache Spark that supports geospatial operations, indices and data types [25,64].

The architecture of GeoSpark consists of Geospatial Resilient Distributed Dataset Layer, Geospatial Query Processing Layer

and Apache Spark layer. Geospatial Resilient Distributed Dataset Layer extends the Spark. There are three types of Resilient

Distributed Dataset (RDD) in this layer i.e. Point, Rectangle and Polygon RDD. It contains geometrical operations library

for every RDD. Geospatial Query Processing Layer is used to perform different types of geospatial queries. Geospark uses

MapReduce framework derived from Apache Spark. Apache Spark consists of all the components present in Spark. It performs

loading and querying data. It is much faster than SpatialHadoop that is run in MapReduce framework. It is investigated that
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Fig. 13 Run time analysis comparison of SpatialHadoop and GeoSpark.

GeoSpark tool is powerful and handy to use and can efficiently handles geospatial big data analytics. It has the capability to

add more functionalities and operations in each of these tools as per the requirements. Figure 13 shows the runtime analysis

between SpatialHadoop and GeoSpark according to the cluster size. From the graph, it is clear that GeoSpark has the edge over

SpatialHadoop for geospatial big data analytics when the cluster size compared with time span for geospatial big data processing.

From the above analysis, we found that the addition of GeoSpark at Cloud-SDI layer shown greater processing power in terms of

real time geo-health data size. In GeoFog4Health, we observed that the fog node can be replace with Raspberry Pi for better run

time analysis of various data set. It reduces the analysis overhead to the cloud server as compare with Intel Edition as] discussed

in the next section.

4 Results & Discussions

4.1 Analysis of Computation Time

We used Intel Edition and Raspberry Pi as fog device in proposed GeoFog4Health architecture. Processing time of Intel Edison

is greater time than Raspberry Pi [20]. Intel Edison has processing time of order NLog(N) where N defines the size of dataset. We

found that Raspberry Pi completed the same process almost two times faster than Intel Edison. The main network was designed

in framework between the client-tier layer and the cloud layer. It is assumed that the mean arrival rate of transmitted data would

be once per minute assuming that the fog node is placed in the locations where only a small number of devices in that area

exist. The average waiting time for each fog node was calculated using the Littles Law [1]. We used malaria positive geospatial

data for the different bench-marking experiment. We calculated average memory load, CPU processing time in percentage and

power consumption (in Watt). Figure 14 shows performance comparison between Cloud-SDI and GeoFog4Health framework

using Intel Edition and Raspberry Pi processor. From the comparison analysis, it is clear that while running one set at a instant

of time, the average waiting time for Cloud-SDI framework is 189:45 seconds, and the average waiting time for GeoFog4Health

with Intel Edition processor is 73:57 seconds where as with Raspberry Pi has around 10:20 seconds. Also, the service rate with

Raspberry Pi is one third of Intel Edition in GeoFog4Health framework. We found that the GeoFog4Health framework with
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Table 5 Comparison of Cloud-SDI and proposed architecture.

Characteristics Cloud-SDI Proposed architecture

Bandwidth Requirements

and Internet Connectivity

In this framework, it requires clients

to have network connectivity to the

cloud server for the entire duration

of services and bandwidth require-

ments grow with the total amount of

geospatial data generated by differ-

ent varieties of clients.

In this framework, it operates au-

tonomously to provide uninter-

rupted services even no or intermit-

tent Internet connectivity and net-

work bandwidth requirements grow

with total the amount of data that

need to be process and sent to the

cloud server after being filtered by

the fog layer and intermediate fog

layer.

Size At cloud layer, processing has done

with large amount of geospatial

data at a time and each typically

contains tens of thousands of inte-

grated servers

At fog layer, a fog node in each lo-

cation can be small or as required to

meet another fog node for customer

or client demands.

Operation In Cloud-SDI framework, it oper-

ates in facilities and environments

selected by the specific domain with

well trained technical experts.

In GeoFog4Health framework, it

operates in environments that are

primarily determined by customers

or their requirements. The frame-

work may not be controlled or man-

aged by anyone and may not be op-

erated by technical experts.

Deployment It requires highly sophisticated and

suitable strategically planning for

deployment

It requires minimal planning for de-

ployment but challenges is to con-

nect with one fog node to other in-

termediate fog node.

Server Locations It requires centralized server in a

small number of big data centers

distributed environment

It often requires distributed servers

in many locations and over large

geographical areas, closer to users

along with fog-to-fog range or

cloud-to-thing range. Distributed

fog nodes and systems has been

controlled either in centralized

or distributed manners depending

upon the clients/fog node.
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Fig. 14 Performance comparison between Cloud-SDI and GeoFog4Health framework using Intel Edition and Raspberry Pi.

Raspberry Pi has consumed 199mW/s where as GeoFog4Health framework with Intel Edition has 522mW/s when both these

frameworks are in active states.

4.2 Comparison of Cloud-SDI and proposed architecture

Both Cloud-SDI and GeoFog4Health framework have specific meaning for a service range with in the cloud computing en-

vironment and client-tiers that provide the mutual benefit to each other and interdependent services that leads to the greater

storage capacity, control and communication possible anyplace within the specified range [18]. Table 5 outlines the comparison

characteristics of Cloud-SDI and GeoFog4Health framework.

5 Conclusions

In this study, we proposed and validated a Fog-based SDI framework for enhanced analysis of geo-spatial health data. Intel

Edison and Raspberry Pi were used as fog computers in developed prototypes of proposed architecture. Fog devices reduced the

storage requirements, transmission power leading to overall efficiency. Fog computing enhances the data analysis by increasing

the throughput and reducing the latency. Geo-health data of malaria vector borne disease positive maps of Maharastra state in In-

dia was used for case study. We analyzed the energy saving and cost analysis for proposed GeoFog4Health architecture. Further,
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the comparison of computation time showed the efficacy of proposed fog architecture over Cloud-SDI for enhanced analysis of

geo-health data. Thus, the fog devices add edge intelligence in geo-health data analysis by introducing local processing within

cloud computing environments.

In future, we would like to add intelligent processing functions and feasibility aspects of fog Layer within SDI framework

at national level in coastal, education, watershed, natural resource, energy and environmental monitoring sector. We plan to use

mist computing in proposed framework for geospatial data analysis and management.
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