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Hamiltonian Chaos

Niraj Srivastava, Charles Kaufman, and Gerhard Müller

Department of Physics, University of Rhode Island, Kingston, RI 02881-0817.

Cartesian coordinates, generalized coordinates, canonical coordinates, and,
if you can solve the problem, action-angle coordinates. That is not a sentence,
but it is classical mechanics in a nutshell. You did mechanics in Cartesian
coordinates in introductory physics, probably learned generalized coordinates in
your junior year, went on to graduate school to hear about canonical coordinates,
and were shown how to solve a Hamiltonian problem by finding the action-angle
coordinates. Perhaps you saw the action-angle coordinates exhibited for the
harmonic oscillator, and were left with the impression that you (or somebody)
could find them for any problem. Well, you now do not have to feel badly if you
cannot find them. They probably do not exist!

Laplace said, standing on Newton’s shoulders, “Tell me the force and where
we are, and I will predict the future!” That claim translates into an important
theorem about differential equations—the uniqueness of solutions for given ini-
tial conditions. It turned out to be an elusive claim, but it was not until more
than 150 years after Laplace that this elusiveness was fully appreciated.

In fact, we are still in the process of learning to concede that the proven
existence of a solution does not guarantee that we can actually determine that
solution. In other words, deterministic time evolution does not guarantee pre-
dictability. Deterministic unpredictability or deterministic randomness is the
essence of chaos. Mechanical systems whose equations of motion show symp-
toms of this disease are termed nonintegrable. Nonintegrability is not the result
of insufficient brainpower or inadequate computational power. It is an intrinsic
property of most nonlinear differential equations with three or more variables.

In principle, Newton’s laws can predict the indefinite future of a mechanical
system. But the distant future of a nonintegrable system must be “discovered”
by numerical integration, one time step after another. The further into the
future that prediction is to be made, or the more precise it is to be, the more
precise must be our knowledge of the initial conditions, and the more precise
must be the numerical integration procedure. For chaotic systems the necessary
precision (for example, the number of digits to be retained) increases exponen-
tially with time. The practical limit that this precision imposes on predictions
made by real, necessarily finite, computation was emphasized in a recent article
in this column.1

In the Hamiltonian formulation of classical dynamics, a system is described
by a pair of first-order ordinary differential equations for each degree of freedom
i. The dynamical variables are a canonical coordinate qi and its conjugate
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momentum pi for each degree of freedom. For a particle of mass m moving
along the x-axis and subject to a force F (x) = −dV (x)/dx, the position x and
the momentum p = mẋ are a pair of canonically conjugate variables. The same
particle moving in three-dimensional Euclidean space and subject to the force
~F (~r) = −~∇V (~r) represents a system with three degrees of freedom, describable
in terms of three pairs of canonical coordinates (x, px), (y, py), (z, pz). For
such non-constrained mechanical systems, the Hamiltonian is simply the total
energy expressed in these variables, H = (p2

x + p2
y + p2

z)/2m + V (x, y, z). In
many mechanical systems the Cartesian coordinates are subject to constraints
and, as we will see, the canonical coordinates qi, pi must then be determined by
a more complicated procedure.

For any given Hamiltonian H(q1, . . . , qN , p1, . . . , pN ), the time evolution of
the canonical coordinates is determined by the 2N canonical equations

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
, i = 1, . . . , N. (1)

The canonical coordinates might not be the most suitable set of variables in
which to numerically integrate a dynamical system. If a noncanonical set is
used, the canonical coordinates should be monitored to analyze the underlying
physics.

The canonical coordinates of a dynamical system with N degrees of freedom
span a 2N -dimensional space called the phase space of the system. A state of
the system is specified by a single point in that space. As the system evolves in
time, the point traces out a trajectory in phase space. These trajectories have
two general properties that are important for our discussion. They cannot inter-
sect each other or themselves, a direct geometrical implication of the uniqueness
theorem mentioned previously. For autonomous Hamiltonian systems, the Li-
ouville theorem further implies that a volume element in phase space cannot
become smaller or larger as the points within it evolve in time. The flow of
phase points resembles that of an incompressible fluid. There are no attractors,
strange or otherwise. Hamiltonian chaos must have a different signature.

First consider a system with one degree of freedom, specified by a Hamil-
tonian H(q, p) representing the conserved energy of the system. The equa-
tion, H(q, p) = const, completely determines the trajectory in (q, p)-space. For
bounded motion, all trajectories are closed, and the motion along any trajec-
tory is periodic in time. (The period diverges for special trajectories, located
on separatrices.) There is no room for chaos in 2d phase space.

Now consider a system with two degrees of freedom, specified by the Hamil-
tonian H(q1, q2, p1, p2). In this case the single equation H = const does not
determine the course of a trajectory in 4d phase space, but imposes a much
weaker constraint. It defines a 3d hypersurface in 4d phase space on which all
trajectories for a given energy are confined. If this constraint is the only one, the
trajectories can easily avoid themselves or each other, and the nonintersection
requirement does not restrict the degree of possible complexity of individual
trajectories.
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The existence of a second independent conserved quantity, I(q1, q2, p1, p2),
specifies another 3d hypersurface that is invariant under time evolution. I is
referred to as an integral of the motion or analytic invariant. Any given tra-
jectory lies on the intersection of the two surfaces specified by H = const and
I = const, a 2d surface in 4d space. It is less obvious to show but important
for our discussion that this surface has the topology of a torus (the invariant
torus).2 Since it is difficult to visualize objects in 4d space, even 2d objects, we
wish to look at the invariant torus as it appears on the 3d energy hypersurface
where it has the shape of a doughnut. The entire energy hypersurface is densely
foliated by such doughnuts and the entire phase space by invariant tori.

The existence of a second integral of the motion I implies the existence of
a special canonical transformation from the canonical coordinates q1, q2, p1, p2

to the action-angle coordinates J1, J2, φ1, φ2. In (q1, q2, p1, p2)-space, the lo-
cal Ji-axes are perpendicular to and the local φi-axes tangential to any given
invariant torus. The torus is then specified by the (time-independent) action
coordinates J1, J2 alone, and the motion of the phase point on the torus by the
angle coordinates φ1(t), φ2(t).

Since the torus lies entirely on a given energy hypersurface, the Hamiltonian
expressed in terms of the new coordinates is a function of the action variables
only, H(q1, q2, p1, p2) = H(J1, J2). The associated canonical equations, J̇i =
−∂H/∂φi = 0, and φ̇i = ∂H/∂Ji = ωi(J1, J2), have trivial solutions and the
phase point winds around the torus with period 2π/ω1 the long way and with
period 2π/ω2 the short way.

If for a given torus the ratio ω2/ω1 is a rational number, any trajectory will
close on itself. If not, the trajectory will wind around the torus and eventually
cover it. The motion of the phase point (in the original coordinates as well as in
the action-angle ones) is called periodic or quasiperiodic according to whether the
two fundamental frequencies are commensurate or incommensurate. Hence, the
existence of the analytic invariant I in addition to H imposes severe constraints
not only on the course of individual trajectories in phase space but also on the
motion in time of any dynamical variable.

The absence of I literally opens the gates to chaotic motion. The trajectories
are no longer necessarily confined to 2d surfaces in phase space, and they may be
able to take a much more complex course on the 3d energy hypersurface without
violating the nonintersection requirement. Likewise, the nonexistence of action-
angle coordinates removes the constraint of periodicity or quasi-periodicity and
allows for more complex motion in time, characterized by continuous intensity
spectra. All these new possibilities of complexity are realized by the chaotic
trajectories in nonintegrable Hamiltonian systems.

We illustrate these phenomena with two examples of nonlinear Hamiltonian
dynamics for systems with two degrees of freedom. Our emphasis will be on
the visualization of the geometrical properties discussed previously by use of
computer generated phase-space trajectories.

Our first example is the compound plane pendulum or double pendulum
consisting of two equal point masses m, one suspended from a fixed support
by a rigid weightless rod of length L and second suspended from the first by
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a similar rod (see Fig. 1). The total energy is conserved. Is there a second
independent integral of the motion? Nobody has ever found one. That is,
of course, not a proof that the system is nonintegrable. However, we shall
find that not all phase-space trajectories are confined to invariant tori, which
demonstrates nonintegrability beyond any reasonable doubt.

Figure 1: The double pendulum. We use units such that m = 1, L = 1, and
g = 1.

In order to accomplish this task, we first have to find a set of canonical coor-
dinates for the system. The general recipe for the construction of the Hamilto-
nian for a mechanical system can be found in textbooks on classical mechanics.3

For the double pendulum the main steps of this procedure are summarized as
follows. The four Cartesian coordinates (x1, y1, x2, y2) of the two masses can be
expressed in terms of two generalized coordinates (θ1, θ2).

x1 = L sin θ1, y1 = 2L− L cos θ1, (2a)
x2 = L sin θ1 + L sin θ2, y2 = 2L− L cos θ1 − L cos θ2. (2b)

The Lagrangian L is constructed as the kinetic energy minus the potential en-
ergy and is expressed in terms of the unconstrained coordinates and their time
derivatives.

L =
1
2
mL2[2θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ1 − θ2)−mgL(3− 2 cos θ1 − cos θ2)]. (3)
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The canonical momenta pi = ∂L/∂θ̇i conjugate to the coordinates qi = θi are
given by

p1 = mL2[2θ̇1 + θ̇2 cos(θ1 − θ2)], p2 = mL2[θ̇2 + θ̇1 cos(θ1 − θ2)], (4)

and are used to construct the Hamiltonian from L via a Legendre transform
H =

∑
i piq̇i − L. We find that

H =
1

2mL2

p2
1 + 2p2

2 − 2p1p2 cos(q1 − q2)
1 + sin2(q1 − q2)

+mgL(3− 2 cos q1 − cos q2). (5)

The time evolution of the two pairs of canonical coordinates is determined by
the canonical equations (1), yielding four coupled nonlinear first-order equations
(see Problem 1).

It is instructive to write a short program that simulates the double pendulum
and displays its motion on a computer screen. Except for small-amplitude oscil-
lations, the motion of the two point masses is rather complex and evokes a sense
of unpredictability. However, if we want to distinguish whether a particular run
of the system is quasiperiodic or chaotic, we must sharpen our observational
tools. Merely watching the swinging masses is not sufficient. We need to look
for a torus.

How do we best visualize a 2d torus in 4d space on a flat screen? Suppose
we want to visualize the torus on the (q1, q2)-plane. We can plot q1(t) versus
q2(t) without regard to p1 or p2. This projection will always be a continuous
line. But we restrict the plot to only those phase points for which, say p2 = 0
with ṗ2 > 0. This produces a Poincaré map, the projection onto a plane of the
intersection of the trajectory with the surface of section p2 = 0. If a particular
trajectory is confined to a torus, then the Poincaré map is confined to the
intersection of the torus with the surface of section and is simply a line. If
the trajectory is not confined to a torus, the map will not be restricted in that
way. Chaotic trajectories have Poincaré maps that are disorganized jumbles of
points in contrast to regular trajectories which yield Poincaré maps that are
lines for irrational ω2/ω1 or a finite number of points for rational ω2/ω1). This
type of analysis is probably the most powerful technique for the detection and
visualization of chaos in Hamiltonian systems with two degrees of freedom.

In Fig. 2 we show the Poincaré maps for six different trajectories of the double
pendulum, all on the same energy hypersurface. The coordinates of the outer
mass x2, y2 are shown at those times for which p2 is zero and increasing. We use
these coordinates instead of the canonical coordinates for illustration, since the
former give the actual location of a real object in ordinary space. This cut will
mirror the abstract phase space behavior. Of the six trajectories, five can be
seen to lie on tori. The sixth trajectory is responsible for the chaotic jumble of
points that covers most of the figure. At the center of the nested closed curves is
a single dot. The corresponding trajectory is thus strictly periodic, returning to
the same point in phase space over and over again. (A set of initial conditions
very close to this orbit is q1 = −0.822, q2 = 1.4335, p1 = 1.5422, p2 = 0.0.) The
small pair of closed curves outside the nested group arise from a single trajectory,
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with successive crossings alternating between the two members. At the center
of each is a single dot. These two dots represent a second strictly periodic
trajectory, which repeats its phase space position after two passages through
the surface of section, rather than after every single passage. Both of these
periodic orbits are numerically stable, that is, most nearby initial conditions
also lead to tori. Isolated unstable periodic orbits might exist also, but because
they are not surrounded by regular regions they are more difficult to discover
numerically.

Figure 2: The Poincaré maps for five regular trajectories and one chaotic tra-
jectory are shown for the double pendulum on the same energy hypersurface
E = E0 = 2.24483. The initial conditions for the regular trajectories all have
p2 = 0 and p1 chosen so that E = E0. For the nest of tori, starting from the
outside in, the initial conditions are q1 = −0.65, -0.7, -0.85 with q2 = 1.4, and
(q1 = −0.822, q2 = 1.4335). The two small closed curves are both produced by
the trajectory starting from (q1 = −0.5, q2 = 1.4). The initial condition for the
chaotic orbit is (q1 = 0.5, q2 = π, p1 = p2 = 0).

Our second example differs from the usual mechanical systems, but will be
useful for the study of quantum chaos that will be the subject of a future column.
It is a model of two classical spins, i.e., two 3-component vectors ~S1 and ~S2 of
fixed length S that are coupled one to the other. Like the double pendulum, this
is a nonlinear Hamiltonian system with two degrees of freedom, but unlike the
pendulum problem, which is motivated mechanically, the classical spin prob-
lem is derived from objects whose nature is intrinsically quantum mechanical.4

The path toward canonical variables and a phase-space description is therefore
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different.
Instead of starting with the construction of a Lagrangian, we specify the

system by the energy function

H = −
∑

α={x,y,z}

[
JS1αS2α +

1
2
Aα(S1α

2 + S2α
2)
]

(6)

for the six noncanonical coordinates Siα (i = 1, 2), and their Poisson brackets

{Siα, Sjβ} = −δij
∑
γ

εαβγSi,γ , (7)

where εαβγ is the Levi-Civita symbol. The Siα(i = 1, 2) satisfy Hamilton’s
equations

d~Si
dt

= {H, ~Si} = −~Si ×
∂H

∂~Si
. (8)

Only four out of the six first-order differential equations in (8) are independent.
Choosing a set of canonical coordinates is equivalent to expressing Siα in

terms of two pairs of variables pi, qi whose Poisson brackets satisfy the condi-
tions, {pi, pj} = {qi, qj} = 0 and {pi, qj} = δij . If the spin components are
expressed in terms of spherical coordinates in the usual way

~Si = S(sin θi cosφi, sin θi sinφi, cos θi) (9)

then the variables (pi = S cos θi, qi = φi) are indeed canonical. The canonical
equations for the spin problem are then obtained by expressing (6) in terms of
pi and qi and then using (1).

Note that the energy function (6) of the classical two-spin system does not
have the form, kinetic energy plus potential energy, and that the canonical
momenta have nothing in common with mass times velocity. We have left these
associations completely behind.

The classical two-spin problem is completely integrable if there exists an
independent integral of the motion in addition to H. We have determined that
if the condition

(Ax−Ay)(Ay−Az)(Az−Ax)+Jx2(Ay−Az)+Jy2(Az−Ax)+Jz2(Ax−Ay) = 0
(9)

is satisfied, the system is integrable; otherwise it is nonintegrable.4 If we choose
the parameters Jx = Jy = 1, Jz = 0, Ax = −Ay = −1, Az = 0, the integrability
condition (10) is satisfied. In this case we have been able to construct a sec-
ond integral of the motion explicitly.4 We have simulated a number of different
initial conditions, all on the same energy hypersurface, for this choice of the
parameters and have plotted the results in Fig. 3. We show Poincaré maps of
the intersections of the trajectory with the plane θ2 = π/2, projected onto the
(q1, p1) plane. Unlike the case of the double pendulum, we find only lines and
no jumbles illustrating the fact that in this integrable model the entire energy
hypersurface is densely foliated by doughnuts.
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Figure 3: Poincaré maps of several phase-space trajectories for the nonlinear
integrable two-spin model with S = 1, Jx = Jy = 1, Jz = 0, Ax = −Ay = −1,
Az = 0 and energy E = E0 = −0.09957501. The cut plane is defined by
θ2 = π/2. The initial conditions are θ1 = θ2 = π/2, φ1 = −π + 0.2n, where
n = 0, 1, . . . 6 and n = 25, 26, . . . 30 and p2 chosen in each case so that E = E0.

If we choose the parameters Jx = Jy = 1, Jz = 0, Ax = 2, Ay = −1, Az = 0,
the integrability condition (10) is not satisfied, a second integral of the motion
does not exist, and the system is nonintegrable. The time evolution is chaotic,
but not necessarily for all initial conditions. Some tori do persist, but it is not
easy to recognize them unless a plot of the Poincaré map is made (see Fig. 4).
The top panels show two projected trajectories and the bottom two show the
corresponding Poincaré maps (defined by θ2 = π/2). The trajectories are given
for 0 < Jt < 50, the maps over much longer times. A study of the trajectories
reveals very little of the nature of the underlying motion. The two trajectories
are almost indistinguishable and it is not apparent whether either trajectory
is confined to a torus. However from the Poincaré maps it is obvious which is
confined and which is free to wander the energy hypersurface. It is equally clear
why the word chaos is used!
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Figure 4: Two phase-space trajectories and Poincaré maps of the nonintegrable
two-spin model (6) with Jx = Jy = 1, Jz = 0, Ax = 2, Ay = −1, Az = 0.
The initial conditions for the regular and chaotic trajectory are (θ1 = 1.0, θ2 =
2.0, φ1 = 3.0, φ2 = 1.26) and (θ1 = 1.0, θ2 = 2.0, φ1 = 3.0, φ2 = 1.29) respec-
tively. The top panels show projections of the full trajectory over a short time
interval and the bottom panels show projections of the Poincaré maps (surface
of section θ2 = π/2) of the same trajectories.

Problems for further study

1. Write a program that performs an animation of the swinging double pen-
dulum. How is the energy measured in terms of L, m, and g? For sim-
plicity choose dimensionless units such that L, m, and g are unity. Derive
the equations of motion for the canonical variables using (5) and (1). Use
the result that

q̇1 =
p1 − p2 cos(q1 − q2)

mL2[1 + sin2(q1 − q2)]
(10)

to check your results. We have used the fourth-order Runge-Kutta algorithm5

to integrate the equations of motion for q̇1, q̇2, ṗ1, ṗ2. A choice of time step
∆t = 0.01 should be sufficient. Note that the swinging rods will appear to
shrink and stretch as their orientation changes, due to different horizontal
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and vertical screen resolution and pixel size, unless special care is taken
to correct for the aspect ratio.

2. Modify your program in the following way so that it draws a Poincaré map.
After an integration time step, compare the value of p2 to its previous
value. If p2 has passed through 0, plot a point on the (x2, y2) plane (see
discussion in text). It would be desirable to draw the pendulum and the
map side by side so that you can see the correspondence between the
motion of the pendulum and the appearance of points on the Poincaré
map.

3. (a) Find the period of the orbit at the center of the nested set of tori (see
Fig. 2). (b) Find a set of initial conditions for which the Poincaré map
is the pair of dots at the center of the outlying closed loops. Hint: Begin
with the initial conditions q2 = 1.4, q1 = −0.5, p2 = 0 given in Fig. 2 and
modify them slightly to seek smaller loops. (c) Find the period of this
trajectory.

4. Derive the equation of motion for each component of each spin for the
two-spin Hamiltonian (6). Show algebraically that H is conserved. Adapt
your program to draw ~S1 and ~S2. It is possible to draw both the azimuthal
and the polar motions.

5. The Poincaré map is not the only numerical technique that can be used
to detect chaos. The rate of divergence of nearby trajectories is linear or
exponential for regular and chaotic motion respectively. (See for example,
the discussion of Lyapunov exponents in Ref. 1.) Compute the Lyapunov
spectrum of the integrable and nonintegrable two-spin model and the dou-
ble pendulum for trajectories in the regular and chaotic regime. Is your
interpretation of the spectrum consistent with your interpretation of the
Poincaré map? It is also interesting to compute the time-displaced auto-
correlation functions such as C1x(t) = <S1x(t)S1x(0)>. (See Ref. 6 for
a discussion of the computation of time-displaced correlation functions.)
Determine if there is a qualitative difference in the behavior of C1x(t) for
the two-spin model in the integrable and chaotic regimes.7

6. Consider a single spin problem defined by

H =
1
2
AzSz

2 − γ~S · ~B, (11)

where γ and Az are constants and B is an external magnetic field. (a)
Show that the system is integrable if B is independent of time. (b) Find
Hamilton’s equations of motion when B depends on t. (c) Numerically
integrate the equations for the two cases B = (B cosωt, 0, 0) and B =
(B cosωt,B sinωt, 0). Choose Az, B, and γ order unity, and integrate for
many periods of the oscillating field. What can you conclude about the
integrability of the system from the Poincaré maps for these two cases?
(d) Prove your conclusions algebraically. See Refs. 4 and 8 for details.
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We thank Harvey Gould and Jan Tobochnik for helpful suggestions. A True
BASIC program for the double pendulum is available from them. Please address
comments, suggestions for future columns, and requests to hgould@clarku or
tobochnik%heyl.kzoo.edu.

References

1. J. Tobochnik and H. Gould, Computers in Physics 3, No. 6, 86 (1989).

2. M. Tabor, Chaos and Integrability in Nonlinear Dynamics, Wiley, New
York (1989).

3. See for example, H. Goldstein, Classical Mechanics, Addison-Wesley, Read-
ing (1980) (graduate text); I. Percival and D. Richards, Introduction to
Dynamics, Cambridge University Press (1982) (undergraduate text).

4. E. Magyari, H. Thomas, R. Weber, C. Kaufman and G. Müller, Z. Phys.
B 65, 363 (1987).

5. See for example, W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes, Cambridge University Press (1986).

6. H. Gould and J. Tobochnik, Computers in Physics 3, No. 4, 82 (1989).

7. N. Srivastava, C. Kaufman and G. Müller, J. Appl. Phys. 63, 4154 (1988);
ibid. J. Physique C8, 1601 (1988).

8. H. Frahm and H. J. Mikeska, Z. Phys. B 60, 117 (1985).

11


	Hamiltonian Chaos
	Citation/Publisher Attribution

	Hamiltonian Chaos
	Publisher Statement
	Terms of Use


	tmp.1403016079.pdf.BLljB

