Highly Efficient Non-Covalent Energy Transfer in All-Organic Macrocycles

Bhasker Radaram
University of Rhode Island

Joshua Potvin
University of Rhode Island

Mindy Levine
University of Rhode Island, m_levine@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs

The University of Rhode Island Faculty have made this article openly available.
Please let us know how Open Access to this research benefits you.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1039/C3CC45128C
The use of aromatic organic macrocycles as supramolecular hosts for non-covalent energy transfer is reported herein. These macrocycles lead to stronger binding and more efficient energy transfer compared to commercially available γ-cyclodextrin. This energy transfer was particularly efficient for the highly toxic benzo[a]pyrene with a fluorescent BODIPY acceptor, with up to a 5-fold increase in the fluorophore emission observed.

The complexation of small molecules in organic macrocycles is a highly active area of research, with applications including supramolecular catalysis,1 small-molecule detection,2 and macrocycle-promoted energy transfer.3 We have previously shown that γ-cyclodextrin, a well-known supramolecular host,4 promotes efficient energy transfer from several polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to fluorophore acceptors.5 This energy transfer occurs with up to 35% efficiency, and has significant potential applications in developing array-based detection schemes.6

The use of aromatic macrocycles as supramolecular hosts can lead to even stronger binding of aromatic guests and higher energy transfer efficiencies, as these macrocycles can bind aromatic guests via π-π stacking7 in addition to hydrophobic binding.8 Four examples of such macrocycles were synthesized (Figure 1) (synthetic details provided in the ESI). Briefly, a double Williamson etherification reaction9 followed by a double Suzuki reaction10 rapidly assembled the linear precursors. The key macrocyclization reactions were accomplished via a double etherification reaction (for compound 1)11 or via a double Mitsunobu reaction (for compounds 2-4).12

These macrocycles include three structures that are electronically-dissymmetric (1-3), with clearly defined electron-rich and electron-deficient components to the macrocycle, and one that is electronically symmetric (4). The electronically dissymmetric structures are designed to bind an electron-rich analyte near the electron-deficient component of the macrocycle, and an electron-deficient fluorophore near the electron-rich segment of the macrocycle, to form a stack of four aromatic components with alternating electronic character that will undergo efficient energy transfer. Whether such dissymmetry improves the binding and energy transfer efficiencies was tested by comparison to control macrocycle 4, which lacks dissymmetry.

Semi-empirical PM3-level calculations of the macrocycles indicate that all of them have internal dimensions analogous to that of γ-cyclodextrin (Table 1),13 and sufficiently large to promote intra-cavity energy transfer.

Once synthesized, macrocycles 1-4 were used for two key applications: (a) as supramolecular hosts to bind aromatic PAHs; and (b) as hosts for non-covalent energy transfer from PAHs to fluorophore 7 (Figure 2).14

The binding of aromatic PAHs in macrocycles 1-4 was measured by adding concentrated solutions of the macrocycle and PAH in THF to an aqueous solution of phosphate buffered saline. The fluorescence emission spectrum of the PAH was measured in the presence of increasing amounts of the macrocycle. This experimental design resulted in a mostly aqueous solution, which maximized hydrophobic binding of the PAHs.

![Image of macrocycles](https://example.com/macrocycle.png)
Among all macrocycles tested, macrocycle 2 was the most efficient supramolecular host for binding benzo[a]pyrene 6, with other PAH-macrocycle combinations leading to negligible binding. This binding was quantified by measuring changes in the emission spectra of benzo[a]pyrene: the addition of 0.061 mM of macrocycle 2 to 0.029 mM solution of benzo[a]pyrene 6 resulted in a 4-fold increase in the benzo[a]pyrene emission (Figure 3a).

The sharp increase in the excimer band around 500 nm with increasing amounts of the macrocycle strongly suggests a 1:2 host: guest complex, even in the presence of a ca. 2-fold excess of the supramolecular host. Fitting this data to a Benesi-Hildebrand equation for a 1:2 complex revealed an apparent binding constant of $K = 5 \times 10^4$ M$^{-2}$, which is among the highest binding constants observed for this highly toxic analyte. By comparison, the addition of macrocycle 2 to a solution of anthracene resulted in no significant changes in the anthracene emission beyond spectral broadening (Figure 3b).

The efficiency of such energy transfer was quantified in two ways: (a) by measuring the decrease in the donor emission from adding an energy acceptor, according to Equation 1:

\[
\text{Donor decrease} = \frac{F_{DA}}{F_D} - 1
\]

where F_{DA} and F_D are the integrated emission of the donor in the presence and absence of acceptors; and (b) by measuring the increase in the acceptor emission from adding the energy donor, according to Equation 2:

\[
\text{Fluorophore increase} = \frac{I_{FA}}{I_A}
\]

where I_{FA} is the integrated emission of the fluorophore from analyte excitation, and I_A is the integrated emission of the fluorophore (from excitation at the same wavelength) in the absence of the analyte.

The results of macrocycle-promoted energy transfer are summarized in Table 3. These experiments were conducted under mostly aqueous conditions to maximize the favourable hydrophobic binding and π-π stacking between the aromatic PAH donor, aromatic fluorophore acceptor, and aromatic macrocycle.

The results clearly indicate that macrocycle 2 was the most efficient host for non-covalent energy transfer, as measured both

<table>
<thead>
<tr>
<th>NMR proton</th>
<th>Initial (ppm)</th>
<th>Final (ppm)</th>
<th>Change in ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak A</td>
<td>9.005</td>
<td>9.021</td>
<td>+0.016</td>
</tr>
<tr>
<td>Peak B</td>
<td>8.471</td>
<td>8.482</td>
<td>+0.021</td>
</tr>
<tr>
<td>Peak C</td>
<td>5.542</td>
<td>5.465</td>
<td>-0.077</td>
</tr>
<tr>
<td>Peak D</td>
<td>4.571</td>
<td>4.549</td>
<td>-0.022</td>
</tr>
</tbody>
</table>
by the increase in fluorophore emission more than 5-fold and by the decrease in donor emission to 57% of its initial value (Figure 5a and 5b). The minimal amount of excimer emission observed in these spectra strongly suggests that fluorophore 7 displaces one molecule of benz[a]pyrene from the macrocycle’s interior. Interestingly, macrocycle 4 was substantially less efficient than macrocycle 2 at promoting supramolecular energy transfer between benz[a]pyrene 6 and BODIPY 7 (Figure 5c and 5d). The only difference between the two hosts is the replacement of the perfluorophenyl ring in macrocycle 2 with a phenyl ring in macrocycle 4, which effectively removes the electronic dissymmetry from the structure. This direct comparison indicates that electronic dissymmetry provides a direct benefit for supramolecular energy transfer efficiencies.

Macrocycle 2 was also substantially more efficient at promoting such energy transfer compared to γ-cyclodextrin. Using γ-cyclodextrin as a supramolecular host resulted predominantly in the formation of a benz[a]pyrene excimer, with only weak energy transfer observed. This excimer effectively obscured the fluorophore emission peak, rendering such a system ineffectual for benz[a]pyrene-based energy transfer and detection. In contrast, using macrocycle 2 resulted in a strong BODIPY peak and minimal benz[a]pyrene excimer emission under identical experimental conditions. The ability to use benz[a]pyrene in such energy transfer schemes (and detection schemes based on such energy transfer) is particularly relevant, due to the high toxicity and known carcinogenicity of benz[a]pyrene. Control experiments with macrocycle 2 and BODIPY 7 indicated that no energy transfer occurred from the very weakly fluorescent macrocycle to the BODIPY fluorophore.

Figure 5: Comparison of the energy transfer in macrocycle 2 (5a and 5b) and macrocycle 4 (5c and 5d).

The reasons why macrocycle 2 is substantially more efficient than macrocycles 1, 3, and 4 at binding PAHs and promoting energy transfer are currently under investigation, but the following conclusions can already be drawn: (a) The electronic dissymmetry in macrocycle 2 led to better energy transfer efficiencies than electronically symmetric macrocycle 4; (b) the ester linkages in macrocycle 2 led to better energy transfer efficiencies than the ether linkages of macrocycle 1; and (c) the presence of the methoxy groups in macrocycle 3 led to less efficient energy transfer than macrocycle 2, possibly due to the increased steric bulk.

In summary, reported herein is the use of aromatic organic macrocycles as supramolecular hosts for PAH binding and non-covalent energy transfer. One of the new macrocycles, compound 2, is substantially more efficient than known macromolecules at binding benz[a]pyrene and promoting energy transfer from this toxic to a fluorophore. More generally, the ability to modify the supramolecular host for this energy transfer via synthetic organic chemistry provides optimal flexibility in tuning and optimizing such non-covalent energy transfer. The scope of macrocycle-promoted energy transfer and its use in array-based detection scheme is currently under investigation, and results will be reported in due course.

Notes and references

14 Experiments done with an unfunctionalized BODIPY indicate essentially identical behavior; see ESI for more details.