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Two-spinon dynamic structure factor of the one-dimensionals5 1
2 Heisenberg antiferromagnet

Michael Karbach and Gerhard Mu¨ller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

A. Hamid Bougourzi
Institute of Theoretical Physics, SUNY at Stony Brook, Stony Brook, New York 11794

Andreas Fledderjohann and Karl-Heinz Mu¨tter
Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
~Received 11 June 1996; revised manuscript received 20 November 1996!

The exact expression derived by Bougourzi, Couture, and Kacir for the two-spinon contribution to the
dynamic spin structure factorS(q,v) of the one-dimensionals51/2 Heisenberg antiferromagnet atT50 is
evaluated for direct comparison with finite-chain transition rates (N<28) and an approximate analytical result
previously inferred from finite-N data, sum rules, and Bethe ansatz calculations. The two-spinon excitations
account for 72.89% of the total intensity inS(q,v). The singularity structure of the exact result is determined
analytically and its spectral-weight distribution evaluated numerically over the entire range of the two-spinon
continuum. The leading singularities of the frequency-dependent spin autocorrelation function, static spin
structure factor, andq dependent susceptibility are determined via sum rules. The impact of the non-two-
spinon excitations on the integrated intensity, the susceptibility, the frequency moments, and the Euclidian time
representation ofS(q,v) is studied on the basis of finite-size data.@S0163-1829~97!00517-1#

I. INTRODUCTION

Notwithstanding the fact that Bethe1 found the key that
solves the one-dimensional~1D! s51/2 Heisenberg model,

H5J(
l51

N

Sl•Sl11 , ~1.1!

as early as 1931, the emergence of explicit results for various
physical quantities ~ground-state energy,2 excitation
spectrum,3 magnetization curve, susceptibility,4 thermo-
dynamics5! was slow at first and then faster since around
1960. Interest in this model began to spread far and wide
when the first compounds with quasi-1D magnetic properties
were synthesized and investigated experimentally.

However, the dynamics of the 1D Heisenberg antiferro-
magnet (J.0) has remained elusive to any rigorous ap-
proach during all those years. An exact result for the dy-
namic spin structure factor

S~q,v![
1

N(
l ,n

eiqnE
2`

1`

dteivt^Sl
z~ t !Sl1n

z &, ~1.2!

in particular, would have been of great value for the inter-
pretation of a host of experimental data.6

Significant progress in the understanding of theT50 dy-
namics resulted from the observation7 that almost all the
spectral weight inS(q,v) is carried by a special class of
Bethe ansatz solutions with excitation energies~in units of
J henceforth!

vm~q!5psin
q

2
cosS q22

qm
2 D , ~1.3!

0<q<p,0<qm<q, for N→`. In the (q,v) plane they
form a two-parameter continuum bounded by the branches

vL~q!5
p

2
sinq, vU~q!5psin

q

2
. ~1.4!

These excitations were later namedtwo-spinonstates. Their
density of states~rescaled by 2p/N) is7

D~q,v!5
Q„v2vL~q!…Q„vU~q!2v…

AvU
2 ~q!2v2

. ~1.5!

TheT50 dynamic spin structure factor for a finite system
with evenN and periodic boundary conditions can be written
in the form

S~q,v!52p(
l

Mld~v2vl!, ~1.6!

where Ml5u^GuSq
zul&u2 with Sq

z5N21/2( le
iqlSl

z are the
transition rates between the singlet (ST50) ground state
uG& and the triplet (ST51) statesul& with finite-N excitation
energiesvl . Among them are theN(N12)/8 two-spinon
excitations, which contribute most of the spectral weight.

The finite-chain analysis of Ref. 7 suggested that the
scaled transition ratesNMl vary smoothly withq and v.
The consequence could be that the exact two-spinon part of
S(q,v) is expressible, forN→`, as a product

S~2!~q,v!5M ~q,v!D~q,v!, ~1.7!

with a smooth transition-rate functionM (q,v), toward
which the scaled finite-N transition rates converge. This sce-
nario is indeed realized in the relatedXX model,8 where the
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two-spinon density of states is given by Eq.~1.5! with modi-
fied spectral boundaries, and the transition-rate function is a
constant.7

II. TWO-SPINON TRANSITION RATES

In the Heisenberg model~1.1!, the finite-N data for the
two-spinon matrix elements indicate thatM (q,v) diverges
at v5vL(q) and vanishes atv5vU(q). In Ref. 7 the ex-
pression

M ~a!~q,v!5AvU
2 ~q!2v2

v22vL
2~q!

~2.1!

for the two-spinon transition-rate function was proposed on
the basis of this observation and the requirements that
S(a)(q,v)5M (a)(q,v)D(q,v) must produce the correct in-
frared exponent atq5p,9,10 the correctq dependence of the
known first frequency moment,7,11 and, via sum rule, the
correct value for the direct susceptibility.4 The resulting~ap-
proximate! expression,12

S~a!~q,v!5
Q„v2vL~q!…Q„vU~q!2v…

Av22vL
2~q!

, ~2.2!

for the two-spinon dynamic structure factor has been widely
used for the interpretation of inelastic neutron scattering
measurements on a number of quasi-1D antiferromagnets at
low temperature6 and for comparisons with the results of
various computational studies.13,14

It is interesting to note in this context that the exact dy-
namic structure factorS(q,v) of the Haldane-Shastry model
has a structure very similar to Eq.~2.2!.15 In that model, as in
theXXmodel, all the spectral weight ofS(q,v) is carried by
the two-spinon excitations.

A detailed assessment of the merits and limitations of the
result ~2.2! has become possible only recently through a re-
markable new development. By approaches based on the
concept of infinite-dimensional symmetries which had been
developed in the context quantum groups16 Bougourzi, Cou-
ture, and Kacir17 were able to derive the exact expression for
the two-spinon transition-rate function in the form18

M ~q,v!5
1

2
e2I ~ t !, ~2.3!

wheret52(b12b2)/p and

I ~ t !5E
0

`

dx
cosh~2x!cos~xt!21

xsinh~2x!coshx
ex, ~2.4!

v5
p

2coshb1
1

p

2coshb2
, ~2.5a!

q52cot21~sinhb1!2cot21~sinhb2!. ~2.5b!

By solving Eqs.~2.5! we can express the auxiliary variable
t as a function of the two physical variablesq,v:

t5
4

p
cosh21AvU

2 ~q!2vL
2~q!

v22vL
2~q!

. ~2.6!

For the numerical evaluation of Eq.~2.3! we separate the
singular part from the integral~2.4!:

2I ~ t !52I 02 lnS tsinh2pt

4 D2h~ t !, ~2.7!

where

h~ t !5Ci~ t !1 f 1~ t !2 f 2~ t !, ~2.8a!

f 1~ t !5E
1

`dx

x

cos~xt!

cosh2x
, f 2~ t !5E

0

1dx

x

cos~xt!

coth2x
,

~2.8b!

I 05g1 f 1~0!2 f 2~0!50.367 710 3 . . . . ~2.8c!

A series expansion ofs(t)[@ lnt1I02h(t)#/2,

s~ t !5E
0

`

dx
sin2~xt/2!

xcosh2x
5 (

m51

`

~21!mmlnS 11
t2

4m2D ,
C[eI0/250.722 21 . . . , ~2.9!

brings Eq.~2.3! with t from Eq. ~2.6! into closed form:

M ~q,v!5CtsinhS pt

4 D )
m51

`
$11@ t/~4m22!#2%2m21

$11@ t/4m#2%2m
.

The exact two-spinon part ofS(q,v), i.e., the function
~1.7! with the density of states~1.5! and the transition-rate
function ~2.3! evaluated numerically via Eq.~2.7! with Eq.
~2.6! is plotted in Fig. 1~a!. For comparison, the approximate
result ~2.2! is shown in Fig. 1~b!. The two results look very

FIG. 1. ~a! Exact and~b! approximate two-spinon dynamic
structure factor. Both expressions are nonzero only in the shaded
region of the (q,v) plane bounded byvL(q) andvU(q).
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similar, yet there are subtle differences, which may not mat-
ter for most experimental comparisons but are important for
comparisons with other theoretical results. Both expressions
diverge at the lower spectral boundaryvL(q). At the upper
boundaryvU(q), S

(a)(q,v) has a discontinuity, whereas
S(2)(q,v) approaches zero continuously over a rounded
shoulder. The structure of the exact transition-rate function
~2.3! lends itself naturally to be factorized into the approxi-
mate function~2.1! and a correction which accounts for the
modified singularities at the boundaries of the two-spinon
continuum:

M ~q,v!5M ~a!~q,v!ACt/2eh~ t !/2. ~2.10!

III. SINGULARITIES AT vL„q… AND vU„q…

What is the precise nature of the leading singularity in the
transition-rate functionM (q,v) and in the two-spinon dy-
namic structure factorS(2)(q,v) at the spectral boundaries
vU(q) andvL(q), and how do these singularities compare
with those of the approximate resultsS(a)(q,v) and
M (a)(q,v)? The answer is obtained by inserting Eq.~2.7!
into Eq. ~2.3!, evaluating the leading term fort→0 and
t→`, respectively, and inserting Eq.~2.6! expanded accord-
ingly.

At vU(q) the transition-rate function is thus found to ap-
proach zero linearly,

M ~q,v! →
v→vU8C

p

vU~q!

vU
2 ~q!2vL

2~q!
@vU~q!2v#, ~3.1!

which implies that the two-spinon dynamic structure factor
vanishes in a square-root cusp:

S~2!~q,v! →
v→vU8C

p

A2vU~q!

vU
2 ~q!2vL

2~q!
AvU~q!2v. ~3.2!

M (a)(q,v) vanishes more slowly,;@vU(q)2v#1/2, imply-
ing thatS(a)(q,v) drops to zero abruptly.

At vL(q) we find a square-root divergence~for qÞp) in
both the exact and the approximate transition-rate functions,
but in the former this power-law singularity is accompanied
by a logarithmic correction:

M ~q,v! →
v→vLAC/2

p
AvU

2 ~q!2vL
2~q!

vL~q!

1

Av2vL~q!

3Aln
1

v2vL~q!
. ~3.3!

Since the two-spinon density of states is a step function near
vL(q), only the prefactor changes inS(2)(q,v):

S~2!~q,v! →
v→vL M ~q,v!

Av2~q!2vL
2~q!

. ~3.4!

For q→p the singularity atvL(q) turns into a much stron-
ger infrared singularity:

M ~p,v! →
v→0

A2pC
1

v
Aln

1

v
, ~3.5!

S~2!~p,v! →
v→0A2C

p

1

v
Aln

1

v
. ~3.6!

IV. SPIN AUTOCORRELATION FUNCTION

A quantity of some interest in various experimental and
theoretical contexts is the frequency-dependent spin autocor-
relation function

F~v![E
2`

1`

dte2 ivt^Sl
z~ t !Sl

z&. ~4.1!

The two-spinon contribution toF(v),

F~2!~v![
1

pE0
p

dqS~2!~q,v!, ~4.2!

is a piecewise smooth function over the range of two-spinon
energies 0,v,p and has singularities atv50, p/2, p.
The approximate two-spinon autocorrelation function in-
ferred from Eq.~2.2! can be evaluated in terms of elliptic
integrals. It has a step discontinuity atv50,

F~a!~v! →
v→01

p
1O~v!, ~4.3!

a logarithmic divergence atv5p/2,

F~a!~v! →
v→p/2

} ln
1

up/22vu
, ~4.4!

and a square-root cusp atv5p,

F~a!~v! →
v→p

}Ap2v. ~4.5!

The exact two-spinon expression has logarithmic diver-
gences atv50, p/2, and a linear cusp atv5p:

F~2!~v! →
v→0

} ln
1

v
, ~4.6!

F~2!~v! →
v→p/2

}S ln 1

up/22vu D
3/2

, ~4.7!

F~2!~v! →
v→p

}~p2v!. ~4.8!

The functionsF (2)(v) andF (a)(v) are plotted in Fig. 2.

V. FINITE-CHAIN MATRIX ELEMENTS

To what extent and accuracy can the spectral-weight dis-
tribution of S(q,v) be reconstructed from Eq.~1.6! on the
basis of finite-chain data for excitation energiesvl and tran-
sition ratesMl? In a generic situation, the chances for suc-
cess may be remote. Convergence of the finite-N data for Eq.
~1.6! toward the infinite-N spectral density may only exist in
an average sense, such as can be realized, at least in prin-
ciple, by a histogram representation of Eq.~1.6!, but hardly
in practice given the very coarse-grained spectral-weight dis-
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tribution even in the largest systems that can be handled
computationally.

Among the ever growing collection of Bethe ansatz solv-
able models, there exist numerous situations where the spec-
tral density of interest is dominated by a specific class of
excitations that can be identified in terms of Bethe quantum
numbers. When the dynamically dominant class of excita-
tions consists of a two-parameter continuum, as is frequently
the case, the task of reconstructing that spectral density from
finite-N data with reasonable accuracy may be perfectly
within the reach of state-of-the-art computational applica-
tions.

In the case at hand, the two-spinon excitation energies
vl can be evaluated for finite chains over a wide range of
N and then again for infiniteN, all via Bethe ansatz. The
finite-N transition ratesMl can be evaluated directly from
the Bethe ansatz wave function for the ground state and the
two-spinon states up toN516 and indirectly from the finite-
N ground-state wave function via the recursion method14 up
to N528.

The crucial point for the reconstruction of the two-spinon
part of the dynamic structure factorS(q,v) is that it factor-
izes into two smooth functions: the density of states
D(q,v), which can be determined exactly via Bethe ansatz,
and the transition rate functionM (q,v), toward which the
finite-N transition rates seem to converge in the following
sense: pick any sequence of finite-N two-spinon states with
energiesvl(N) and wave numbersql(N) converging to-
ward (q,v) asN→`. Then the associated scaled transition
ratesNMl converge toward the exact transition rate function
M (q,v).

In the main plot of Fig. 3 we show the transition rate
functionsM (p,v) ~exact, solid line! andM (a)(p,v) ~ap-
proximate, dashed line! along with scaled finite-N transition
ratesNMl for N56,8, . . .,28. The downward deviation of
M (a)(p,v) from M (p,v) at low frequencies is due to the
lacking logarithmic corrections in the infrared divergence
and the upward deviation at high frequencies due to the dif-
ferent cusp singularity atvU(p).

All finite-N data points fall close to the solid line. Their
deviations from that line have an irregular appearance at first
sight. This is attributable to the fact that an increasing num-

ber of spectral contributions from systems with increasing
N are distributed over a fixed frequency interval. However,
when we focus on the lowest-lying excitation, for example,
we see that the data points move away from the dashed line
toward the solid line. The uniform convergence of this par-
ticular sequence of data points is best observable in the rep-
resentation of the inset on the left of Fig. 3.

The region nearvU(p) is shown magnified in the inset on
the right. Here the finite-N data converge in a much more
complicated pattern. Nevertheless, the trend is clearly toward
the linear behavior of the solid line and away from the
square-root behavior of the dashed line.

The corresponding results forq5p/2 are depicted in Fig.
4. Here the highest two-spinon excitation forN528, which
we were unable to compute with sufficient accuracy via the

FIG. 2. Two-spinon part of the frequency-dependent spin auto-
correlation function. The solid line represents the exact result
F (2)(v) and the dashed line the approximate resultFa(v).

FIG. 3. Two-spinon transition-rate function atq5p. The solid
line represents the exact resultM (q,v) and the dashed line the
approximate resultM (a)(q,v). Also shown are scaled finite-chain
transition ratesNMl for all two-spinon excitations atq5p of sys-
tems withN56,8, . . . ,16,28 spins, and for lowest two-spinon ex-
citations also of systems withN518,20,. . . ,26. The low-
frequency and high-frequency parts are shown again in the insets
with transformed scales on both axes.

FIG. 4. Two-spinon transition-rate function atq5p/2. The solid
line represents the exact resultM (q,v) and the dashed line the
approximate resultM (a)(q,v). Also shown are scaled finite-chain
transition ratesNMl for all two-spinon excitations atq5p of sys-
tems with N58,12,16,28 spins. The low-frequency and high-
frequency parts are shown again in the insets with transformed
scales on both axes.
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recursion method, is not included. Even with the few finite-
chain data points available in this case, the finite-size scaling
behavior of the transition ratesMl and their convergence
toward the exact transition-rate function is again convinc-
ingly determined.

VI. SUM RULES

How important is the two-spinon contribution toS(q,v)
in relation to that of other excited states? The key to the
answer is provided by sum rules, such as the first frequency
moment, which is known for allq,

K1~q![E
0

`dv

2p
vS~q,v!5

2EG

3N
~12cosq!, ~6.1!

and whereEG52N(ln221/4) is the ground-state energy,2

or the susceptibility,

x~q![
1

pE0
`dv

v
S~q,v!, ~6.2!

which is known forq50 only,4 x(0)51/p2, or the inte-
grated intensity~static structure factor!,

I ~q![E
0

`dv

2p
S~q,v!, ~6.3!

of which we know the grand total:

I T5
1

pE0
p

dqI~q!5^~Sl
z!2&5

1

4
. ~6.4!

The exact two-spinon contribution to thenth frequency mo-
ment ofS(q,v),

Kn~q![E
0

`dv

2p
vnS~q,v!, ~6.5!

as obtained from Eq.~1.7! with Eqs. ~1.5! and ~2.3! can be
brought into the form

Kn
~2!~q!5

2C

p3 @vU~q!#n11kn~q!, ~6.6!

where

kn~q!5E
0

`

dx
xsinhx

cosh2x S 12sin2
q

2
tanh2xD ~n21!/2

e2s~4x/p!.

~6.7!

For n52m1151,3, . . . this expression reduces to a poly-
nomial in cosq,

K2m11
~2! ~q!5

C

p S p2

2 Dm(
l50

m Sml D ~21! l

2l
k l~12cosq!m111 l ,

~6.8a!

k l[E
0

`

dx
x~ tanhx!2l11

coshx
e2s~4x/p!. ~6.8b!

The exact sum rules forK2m11(q) were shown to have pre-
cisely this general structure,19,20 which, incidentally, is also
reproduced by the frequency momentsK2m11

(a) (q) of

S(a)(q,v). However, the exact coefficients of the polynomial
are only known form50. Comparison of

K1
~2!~q!5

C

p
k0~12cosq!, k050.9163. . . , ~6.9!

with Eq. ~6.1! provides one way of measuring the relative
spectral weight of the two-spinon excitations:

K1
~2!~q!

K1~q!
50.7130. . . , ~6.10!

A somewhat larger share of spectral weight,K1
(a)(q)/

K1(q)50.8462. . . , is accounted for byS(a)(q,v).
A different way of measuring the relative two-spinon

spectral weight is provided by the static structure factor
~6.3!. Here, the missing spectral weight of higher-lying ex-
citations is weighted less heavily. The exact two-spinon
static structure factorI (2)(q)5K0

(2)(q) taken from Eq.~6.6!
and integrated overq yields the total two-spinon intensity

I T
~2!5

4C

p3E
0

`

dx
x2

coshx
e2s~4x/p!.0.7289I T . ~6.11!

The total intensity ofS(a)(q,v) is7 I T
(a).0.7424I T .

The observation thatS(a)(q,v) overestimates the total
two-spinon intensity by a smaller fraction,
I T
(a)/I T

(2).1.0185, than the first frequency moment of the
two-spinon spectral weight,K1

(a)(q)/K1
(2)(q).1.1868, is

consistent with the observation that it predicts too much
spectral weight nearvU(q) and too little nearvL(q).

At small q, where the two-spinon continuum is very nar-
row, all frequency moments ofS(2)(q,v) and S(a)(q,v)
have exactly the same ratio

Kn
~a!~q!

Kn
~2!~q!

→
q→04C

p
k050.8426. . . . ~6.12!

The implications of the frequency momentsK0
(2)(q) and

K21
(2)(q) for the singularities of the static structure factor and

the static susceptibility, respectively, are as follows. Given
the exact asymptotic finite-size gap of the lowest two-spinon
excitation atq5p,21

v1 →
N→`a

N
, a5

p2

2
, ~6.13!

and the exact infrared divergence~3.6! of S(2)(q,v), it is
possible to determine, under standard scaling assumptions,
the leadingN dependence of the integrated intensity at
q5p,

I ~p,N! →
N→`m0

2p
~ lnN!3/2 ~6.14!

with m05A2C/p. The exact coefficient, m0/2p
50.1079 . . . , issignificantly higher than the value 0.090 52
predicted in a recent DMRG study.22 The leading singularity
of the integrated intensity forN5`,q→p is then predicted
to be of the form
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I ~2!~q! →
q→pm0

2p F2 lnS 12
q

p D G3/2, ~6.15!

which is consistent with the exactly known leading
asymptotic term of the static spin correlation function23

^Sl
zSl1n

z &;(21)nn21(lnn)1/2/n.
The corresponding leading terms for the static susceptibil-

ity read

x~p,N! →
N→`m0

pa
NAN, ~6.16!

x~2!~q! →
q→p

}
A2 ln~p2q!

p2q
. ~6.17!

VII. SIGNIFICANCE OF NON-TWO-SPINON PART
OF S„q,v…

Where in (q,v) space is the remaining spectral weight,
and how does it affect various quantities that can be derived
from the dynamic structure factor? In answer to these ques-
tions, we investigate here the effects of the non-two-spinon
excitations on four quantities which are related toS(q,v)
and which can be computed with high precision from finite-
N data for the ground-state wave function.

A. Integrated intensity

The integrated intensity ofS(q,v), i.e., the static spin
structure factor~6.3! has been determined with high preci-
sion for wave numbersq<13p/14 from finite-N data of cy-
clic chains withN<28 sites.24 This result is plotted in Fig. 5
for comparison with the exact two-spinon integrated inten-
sity I (2)(q) calculated fromS(2)(q,v) via ~6.3! and the inte-
grated intensity7

I ~a!~q!5
1

2p
ln
11sin~q/2!

cos~q/2!
~7.1!

obtained from the approximate resultS(a)(q,v).

The finite-N data indicate thatI (q) increases linearly
from zero for small q and diverges logarithmically at
q5p. The initial rise of the finite-N data,
I (q)→0.271q/p,19 is significantly steeper than that of the
two-spinon contribution,I (2)(q)→0.210q/p and that of the
approximate result,I (a)(q)→0.25q/p. Hence the integrated
intensity of the non-two-spinon part ofS(q,v) increases lin-
early inq too.

The function I (a)(q) approximates the two-spinon inte-
grated intensityI (2)(q) quite well for q/p&0.6. At larger
q, this is no longer the case. The divergence predicted by
expression~7.1!, I (a);2 ln(12q/p), is weaker than the di-
vergence~6.15! of the exact two-spinon result. The inset of
Fig. 5 shows the relative non-two-spinon integrated intensity,
DI (2)(q)512I (2)(q)/I (q), and the relative deviation,
DI (a)(q)512I (a)(q)/I (q), of the approximate result~7.1!.
If it can be assumed that the leading singularity ofI (q) at
q5p is produced entirely by the two-spinon part of
S(q,v), then the functionDI (2)(q) must approach zero as
q→p. The dashed line in the inset does not rule out that this
assumption is correct.

It is interesting to compare these results with the exact
integrated intensity of the Haldane-Shastry model,15

I (HS)(q)52(1/4)ln(12q/p), where non-two-spinon excita-
tions have zero spectral weight inS(q,v). It turns out that
for q&13p/14, I (HS)(q) is a better approximation ofI (q)
than I (2)(q) is.24

B. Susceptibility

The q dependent susceptibility atT50 is related to
S(q,v) via the sum rule~6.2!. This quantity, which has been
determined with considerable accuracy from finite-N data, is
plotted in Fig. 6 for comparison with the exact two-spinon
susceptibility x (2)(q) calculated fromS(2)(q,v) via Eq.
~6.2! and the approximate result7

x~a!~q!5
1

p2

q

sinq
~7.2!

FIG. 5. Integrated intensities~6.3! in comparison:I (q) is repre-
sented by finite-N data forN56,8, . . . ,28.I (2)(q) is the exact two-
spinon result.I (a)(q) is the approximate result~7.1!. The inset
showsDI (2)(q)512I (2)(q)/I (q) andDI (a)(q)512I (a)(q)/I (q).

FIG. 6. The q dependent susceptibilty~6.2! in comparison:
x(q) is represented by finite-N data forN56,8, . . . ,28.x (2)(q) is
the exact two-spinon result.x (a)(q) is the approximate result~7.2!.
The inset shows the relative non-two-spinon integrated intensity
Dx (2)(q)512x (2)(q)/x(q) andDx (a)(q)512x (a)(q)/x(q).
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inferred from Eq.~2.2!.
The normalization ofS(a)(q,v) was chosen such that the

exact value of the direct susceptibilty,4 x(0)51/p2, is cor-
rectly reproduced. With increasingq, x (a)(q) deviates in a
downward direction from x(q). Its divergence at
q5p,x (a)(q);(p2q)21, is slightly weaker than the diver-
gence~6.17! of the exact two-spinon susceptibilty.

The contribution of the non-two-spinon spectral weight of
S(q,v) to x(q) in the limit q→0 is small as indicated by
the result p2x (2)(0)50.8426. . . . The relative non-two-
spinon contribution to the susceptibility,Dx (2)(q)51
2x (2)(q)/x(q), stays smaller than the relative non-two-
spinon integrated intensityDI (2)(q) ~see inset!. This indi-
cates that the non-two-spinon spectral weight is located pre-
dominatly above the two-spinon continuum.

C. Frequency moments

Yet a different way to assess the non-two-spinon part of
S(q,v) employs the frequency moments~6.5! which are re-
lated, via sum rules,20 to short-range multispin correlations in
the ground state. Forn51 we know the exact results~6.1!.
For n52,3,4,5 high-precision results have been calculated
from finite-N data for the associated ground-state expectation
values.19 The momentsKn

(2)(q) of the exact two-spinon dy-
namic structure factorS(2)(q,v) have been determined in
Eq. ~6.6! and the momentsKn

(a)(q) of S(a)(q,v) in Ref. 20.
For n51, bothK1

(2)(q) andK1
(a)(q) reproduce theq de-

pendence of the exact sum rule~6.1! correctly, but the pref-
actors are smaller,

K1
~2!~q!

K1~q!
50.7130. . . ,

K1
~a!~q!

K1~q!
50.8462. . . , ~7.3!

which again reflects the missing spectral weight of the non-
two-spinon excitations. Theq dependence of the moment
ratios

Rn~q![
Kn~q!

K1~q!
for n52,3,4,5, ~7.4!

of the full dynamic structure factor as inferred from finite-
N data are shown in Fig. 7 along with the corresponding
moment ratiosRn

(2)(q) of S(2)(q,v) and the moment ratios
Rn
(a)(q) of S(a)(q,v). The most striking observation is that

Rn(q) approaches a nonzero value asq→0, whereas the
exact and the approximate two-spinon moment ratios both go
to zero:Rn

(2)(q);Rn
(a)(q);qn21. This means that for long

wavelengths the frequency momentsKn(q), n>2, are
dominated by non-two-spinon excitations, which are neces-
sarily located above the narrow two-spinon band. In other
words, the two-spinon dynamic structure factorS(2)(q,v)
does not contribute to the leadingO(q2) term ofKn(q) for
n>2.

At larger wave numbers, the impact of the non-two-
spinon excitations on the moment ratios is more modest but
still significant. Here the deviation ofRn

(2)(q) from Rn(q) is
almostq independent, and it grows with increasingn. This
again indicates that the non-two-spinon spectral weight
comes for the most part from higher frequencies than the
two-spinon spectral weight.

The moment ratiosRn
(a)(q) agree very well withRn

(2)(q)
at smallq, but then deviate upwardly. Forq*p/3, they rise
even above the ratiosRn(q). This discrepancy, which be-
comes more conspicuous with increasingn, again reflects the
fact thatS(a)(q,v) underestimates the spectral weight near
the lower continuum boundaryvL(q) and overestimates the
spectral weight near the upper boundaryvU(q).

19

D. Euclidian time representation

We can study the significance of the non-two-spinon ex-
citations in a dynamical quantity by the same kind of com-
parison if we consider the Laplace transform of the dynamic
structure factor,14

S̃~q,t![E
0

`dv

2p
e2vtS~q,v!. ~7.5!

This quantity can be interpreted as a Euclidian time repre-
sentation ofS(q,v). For t50, it is the integrated intensity
~6.3!. From finite-N data forS(q,v) as obtained via the re-
cursion method for systems withN<28 sites,14 this quantity
can be accurately extrapolated toN→` if qÞp. For the
graphical representation, it is convenient to plot the function

FIG. 7. Ratios of frequency moments~7.4!. For n52,3,4,5, the
Rn(q) represent finite-N data forN56, . . .,28. TheRn

(2)(q) are
exact two-spinon results and theRn

(a)(q) are the moment ratios for
Eq. ~2.2!.
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r~q,t ![
S̃~q,0!

S̃~q,t!
21, t5AvL~q!texp@vL~q!t#,

~7.6!

which was used for the finite-N extrapolation, instead of
S̃(q,t) itself. The resulting curves, shown as solid lines in
Fig. 8 for severalq values, rise from zero with zero initial
slope and then become almost linear int with a q dependent
slope.

If the threshold singularity were a square-root divergence
as predicted by Eq.~2.2!, then the asymptotic growth of
r(q,t) would be exactly linear. The logarithmic correction in
the exact two-spinon threshold singularity~3.4!, however,
leads to a slight modification of the asymptotic growth of
r(q,t),

r~2!~q,t !→
t→`

}
t

lnlnt
. ~7.7!

The dashed lines in Fig. 8 show the functionr (2)(q,t) as
inferred from the exact two-spinon dynamic structure factor.
The discrepancies are fairly small over the range oft shown.
The deviationD (2)(q,t)5r (2)(q,t)2r(q,t) is shown in the
inset. Not surprisingly, the functionr (a)(q,t) inferred from
Eq. ~2.2! deviates more strongly fromr(q,t). This compari-
son was already made in Ref. 14.
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