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ABSTRACT (323 words) 36 

Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts 37 

defined by nine planetary boundaries if “unacceptable global change” is to be avoided.  38 

Chemical pollution was identified as one of those boundaries for which continued impacts could 39 

erode the resilience of ecosystems and humanity.  The central concept of the planetary boundary 40 

(or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite 41 

assimilative capacity for chemical pollution, which includes persistent, as well as readily 42 

degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem 43 

and human viability.  The PBCP allows humanity to explicitly address the increasingly global 44 

aspects of chemical pollution throughout a chemical’s life cycle and the need for a global 45 

response of internationally coordinated control measures.  We submit that sufficient evidence 46 

shows stresses on ecosystem and human health at local to global scales, suggesting that 47 

conditions are transgressing the safe operating space delimited by a PBCP.  As such current local 48 

to global pollution control measures are insufficient.  However, while the PBCP is an important 49 

conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize 50 

due to the extremely large number of commercial chemicals or mixtures of chemicals that cause 51 

myriad adverse effects to innumerable species and ecosystems, and the complex linkages 52 

between emissions, environmental concentrations, exposures and adverse effects.  As well, the 53 

normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal 54 

groups with differing viewpoints.  Thus, a combination of approaches is recommended as 55 

follows: develop indicators of chemical pollution, for both control and response variables, that 56 

will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution, 57 

develop new technologies and technical and social approaches to mitigate global chemical 58 
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pollution that emphasize a preventative approach, coordinate pollution control and sustainability 59 

efforts, and facilitate implementation of multiple (and potentially decentralized) control efforts 60 

involving scientists, civil society, government, non-governmental organizations and international 61 

bodies. 62 

KEYWORDS: planetary boundary, chemical pollution, chemical emissions, Stockholm 63 

Convention, tipping point, global threshold, pollution controls, ecosystem health protection, 64 

human health protection, chemical management 65 

1. INTRODUCTION  66 

Rockström et al. (2009a, 2009b) presented nine anthropogenic impacts of global relevance, 67 

including climate change, biodiversity loss, anthropogenic changes of the nitrogen and 68 

phosphorus cycles, stratospheric ozone depletion, ocean acidification, global freshwater use, 69 

changes in land use, atmospheric aerosol loading, and chemical pollution.  The authors proposed 70 

that humanity may be moving beyond a “safe operating space” as the magnitude of these impacts 71 

approach or exceed certain thresholds that represent tipping points of the global system or a 72 

natural limit for processes without clear thresholds (so-called “dangerous levels” in the 73 

Rockström et al. articles) (Fig. 1).  As discussed in detail below, the authors defined a “safe 74 

operating space” as those global conditions that allow for continued human development.  75 

Rockström et al. (2009a, 2009b) challenged the global scientific community to determine these 76 

“non-negotiable” thresholds or natural limits, which are science-based limits of the Earth’s 77 

systems, reflecting conditions that are favorable for human life and cultural development, and 78 

then to define human-determined boundaries at an appropriate distance from these limits that 79 

allow humanity to “avoid unacceptable global change” (Carpenter and Bennett, 2011).  A critical 80 
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goal of defining the boundaries is to move governance and management away from a piecemeal 81 

and sectorial approach, towards an integrated global approach that is necessary to address global 82 

phenomena.   83 

 84 

For chemical pollution, Rockström et al. (2009a, 2009b) did not define the scope of chemicals 85 

considered, natural limits or a planetary boundary, but stated that these remain to be determined.  86 

However, they suggested that possible measurable control variables for natural limits could be 87 

emissions, concentrations or effects of Persistent Organic Pollutants (POPs), plastics, endocrine 88 

disruptors, heavy metals and nuclear wastes.  Persson et al. (2013) added to the discussion by 89 

suggesting three conditions that must be met simultaneously for chemical pollution to present a 90 

global threat.  Here we consider a broad range of chemicals including synthetic organic 91 

substances and metals, and those intentionally and unintentionally released.  We do not consider 92 

the nutrients nitrogen and phosphorus that are considered under a separate planetary boundary, or 93 

sulfates that can also fall under another planetary boundary (atmospheric aerosol loading).   94 

 95 

A large primary literature and numerous reviews document the extent and diversity of chemical 96 

pollution and attendant adverse health effects to humans and ecosystems (e.g.,UNEP, 2012; 97 

AMAP, 2004, 2009; Letcher et al., 2010; WHO and UNEP, 2013; inter alia).  Indeed, the 98 

number of scientific studies providing such evidence fills environmental journals and conference 99 

halls.  Examples of widespread effects are diminishing populations of wildlife (e.g., Oaks et al., 100 

2004; Tapparo et al., 2012; EFSA, 2013) and increasing burdens of human clinical and 101 
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subclinical illness related to environmental toxicants (WHO and UNEP, 2013; Grandjean and 102 

Landrigan, 2006; Stillerman et al., 2008).  Mounting evidence also indicates that the assessment 103 

of individual chemicals is insufficient, as complex mixtures might cause significant toxic effects, 104 

even if all individual chemicals are present only at individually non-toxic concentrations, as 105 

discussed below.  This pattern has been observed repeatedly in a broad range of bioassays at 106 

different levels of complexity and for different types of chemicals (see reviews by Kortenkamp 107 

et al., 2007, 2009; Kortenkamp, 2008; Backhaus et al., 2010; SCHENIHR et al., 2012).  108 

Together, this evidence implies that if emissions of increasing numbers and amounts of 109 

chemicals continue at current and anticipated increasing rates (UNEP, 2012), concentrations of 110 

such chemicals in many parts of the world, alone or as mixtures, will push the global system 111 

beyond the safe operating space.  In turn, reaching this point will lead to erosion of vital 112 

ecosystems and ecosystem services, and threaten human well-being.  Some argue that this point 113 

has already been reached (WHO and UNEP, 2013; inter alia).  Furthermore, the boundary of 114 

global chemical pollution cannot be ignored because it is inextricably connected to the other 115 

planetary boundaries by the manifold impacts across the life-cycle of chemicals at a global scale, 116 

e.g., energy and water use for extraction and manufacturing, land use change that accompanies 117 

waste disposal with a potential loss of biodiversity.   118 

 119 

This paper explores the definitions and meaning of, and arguments for, a planetary boundary or 120 

boundaries for chemical pollution (PBCP).  We discuss the many challenges that indicate that 121 

defining a boundary or boundaries for chemical pollution is not easily within reach.  Our intent 122 

here is not to reproduce or re-summarize evidence of widespread adverse effects due to chemical 123 
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pollution.  Rather, we submit that this evidence points to the need for considering a planetary 124 

boundary or more likely boundaries for chemical pollution to help humanity remain within the 125 

Earth’s safe operating space.  Thus, the paper closes with recommendations for steps that 126 

hopefully will move humanity towards a safe operating space with respect to chemical pollution.   127 

 128 

We start the discussion by acknowledging that defining natural limits and a PBCP(s) is 129 

challenging for many reasons.  In the framework presented by Rockström et al. (2009a, 2009b), 130 

defining a PBCP is more difficult than for other planetary boundaries (e.g. for global warming), 131 

due to the difficulty of identifying a single or a few measurable control variables.  A control 132 

variable is defined, according to Rockström et al. (2009a, 2009b), as a measureable parameter 133 

that can be related to a specific planetary boundary, e.g., atmospheric CO2 or temperature for 134 

global warming.  However, agreeing on one or more control variables for chemical pollution is 135 

challenging because chemical pollution is caused by an enormous number of chemicals emitted 136 

from innumerable sources and in extremely different amounts in different regions of the world. 137 

In the same way, the response variable is difficult to define and measure in a clear-cut way, since 138 

chemicals cause a wide variety of adverse effects in a similarly wide variety of species, including 139 

humans. The links to the related boundary of biodiversity are evident (Steffen et al. 2015).  The 140 

critical point is that the Earth’s assimilative capacity, or the number and capacities of the sinks 141 

capable of degrading or immobilizing anthropogenically-released chemicals, is limited at the 142 

global level, even for readily biodegradable chemicals. 143 
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2. WHY A PLANETARY BOUNDARY FOR CHEMICAL POLLUTION? 144 

 145 

Several policy instruments aimed at controlling chemical pollution have been developed and are 146 

in varying degrees of implementation (Table S1).  How does a PBCP differ from existing 147 

instruments for chemical management and how or why might it be useful rather than redundant?  148 

In order to answer these questions we first expand on the concept of planetary boundaries and a 149 

“safe operating space” introduced by Rockström et al. (2009a, 2009b) and then move to put a 150 

PBCP into the context of existing instruments for chemicals management. 151 

 152 

Rockström et al. (2009a, 2009b) identified that several Earth processes and subsystems behave 153 

non-linearly, with thresholds that, once crossed, could tip them into new, undesirable states.  For 154 

these processes, a sharp “tipping point” may exist beyond which the system may transition into a 155 

qualitatively different stage, such as much more rapid global warming at CO2 concentrations 156 

above a certain value (Fig. 1a).  Examples of Earth systems with such global thresholds or 157 

tipping points include the global climate and ocean acidification (e.g., Lenton et al., 2008; Doney 158 

et al., 2009; 2014).  The planetary boundary can then be set at a level somewhere below the 159 

tipping point.   160 

 161 

Other processes and subsystems may not have sharp thresholds (Fig. 1b), but their continued 162 

erosion or depletion at continental to global scales may cause functional collapse in an increasing 163 

number of globally interconnected systems.  Here, examples are freshwater use, land use change 164 

and loss of biodiversity (May, 1977; Gerten et al., 2013; Baronsky et al., 2012; Brook et al., 165 
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2013).  For these, the planetary boundary can be set at a level where the risk of functional 166 

collapse is deemed acceptably low.  In aggregate, planetary boundaries may thus be defined as a 167 

set of critical values for one or several control variables defined by humans to be at a safe 168 

distance from such thresholds or dangerous levels (if no threshold is evident) that, if crossed, 169 

could lead to abrupt global environmental change.  The domain below the boundary can be 170 

considered a “safe operating space”. 171 

 172 

Figure 1. Illustration of the concept of the planetary boundary (a) for phenomena with a clear 173 

tipping point or threshold, where the system moves into a new state, such as CO2-driven climate 174 

change, and (b) without a tipping point, where the system is constantly eroded (modified figure 175 

from Rockström et al. (2009a), reprinted with permission of the Stockholm Resilience Center, 176 

Stockholm University, Sweden). We suggest that aggregated chemical pollution is illustrated by 177 

(b) where there is no clear tipping point. 178 

 179 

 180 

Although the intention was to define planetary boundaries for systems or processes affecting the 181 

Earth at the global scale, Rockström et al. (2009a, 2009b) recognized that many of the identified 182 
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boundaries have thresholds that are more evident at local and/or regional scales where 183 

disturbance is concentrated or the affected ecosystem is more sensitive.  These were identified as 184 

“slow processes without known global scale thresholds”.  As such, they become a global 185 

problem when they occur at many sites at the same time, aggregating to a level that undermines 186 

the resilience of ecosystems or that adversely affects human health.  In turn, these effects would 187 

make it more likely that a threshold with global consequences will be crossed.  Examples include 188 

biodiversity loss, land use change, global nitrogen and phosphorus biogeochemical cycles, and 189 

chemical pollution (Erisman et al., 2013; Hooper et al., 2012; Diaz and Rosenberg, 2008).  Slow 190 

processes without global thresholds may also exert their effects by affecting other planetary 191 

boundaries, for example, chemical pollution of ecosystems linked to biodiversity loss 192 

(Voeroesmarty et al., 2010; Lenzen et al., 2012; Steffen et al. 2015).   193 

 194 

The distance between the planetary boundary and the threshold or natural limit ideally depends 195 

on the uncertainty that surrounds the scientific knowledge about the threshold or natural limit 196 

(Fig. 2).  If the uncertainty is high, a larger distance between the threshold and the boundary is 197 

advisable.   198 

 199 
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 200 

Figure 2. Illustration of where global impacts are located with respect to the safe operating space. 201 

 202 

For the planetary boundaries where critical limits were estimated, most of these could be based 203 

on one or two specific control variables, such as atmospheric CO2 concentrations and radiative 204 

forcing for climate change.  Most of the planetary boundaries that were quantified are 205 

preliminary, rough estimates with large uncertainties and for which knowledge gaps were 206 

acknowledged.  207 

 208 

Although some preliminary boundaries have been proposed, Rockström et al. (2009a, 2009b) 209 

pointed out the normative quality of a “safe” distance, as it is based on how societies deal with 210 

risk and uncertainty.  By normative we mean that decisions on what constitutes a “safe operating 211 

space” are societal decisions, supported by scientific evidence.  This implies that the diversity of 212 

viewpoints held by different societal groups have to be heard in order to come to a decision on 213 

what constitutes a safe operating space.   214 

 215 
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What does the PBCP offer that existing pollution control instruments lack? The planetary 216 

boundary concept allows us to explicitly address the global aspects of chemical pollution.  By 217 

recognizing the global nature of chemical pollution, including aggregated local effects or where 218 

distance separates emissions from effects, we highlight the need for an integrated global response 219 

and acknowledge that pollution control activities of local to national entities alone, are 220 

insufficient.  221 

 222 

Chemical pollution is a global issue.  Several groups of chemicals are distributed around the 223 

globe by virtue of their persistence and ability to undergo long-range transport, for example 224 

chlorofluorocarbons (CFCs) and persistent organic pollutants (POPs).  Others, such as high-225 

production-volume metals that are inherently persistent, are used and emitted globally because of 226 

their high production volumes, global trade and widespread use in a broad range of applications.  227 

Additionally, the global economy is undergoing chemical “intensification”, as described by the 228 

UNEP “Global Chemicals Outlook” analysis (UNEP, 2013).  Chemical intensification is due to 229 

rapidly increasing global production of chemicals (Wilson and Schwarzman, 2009), to the 230 

increasing use of synthetic substances to replace natural materials, and to the use of increasingly 231 

complex chemicals in more and more applications.  Chemical intensification is predicted to lead 232 

to increasing per-capita chemical usage amongst a growing global population (UNEP, 2013).   233 

 234 

In addition, chemical product chains, which span the life cycle stages from resource extraction to 235 

product manufacturing, use and disposal, are increasing in complexity, often covering several 236 

continents and decades of time, and offer new challenges to pollution control.  For example, 237 

chemical production today can result in future emissions, particularly for chemicals in 238 
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infrastructure and goods with long lifetimes.  Brunner and Rechberger (2001) have estimated that 239 

whereas ~10% of all chemical stocks is contained in waste deposits from primary production and 240 

~10% is contained in land filled waste, ~80% is contained in in-use and “hibernating” stocks.  241 

Most documentation of uncontrolled releases concern the two former sources (i.e., 20%) but not 242 

the 80% (e.g., Brunner and Rechberger, 2001; Weber et al., 2013; inter alia).  Examples of the 243 

“20%” include long-term emissions from tailings, waste rock piles, nuclear waste repositories, 244 

abandoned industrial sites, and numerous landfills in developing countries (Turk et al., 2007; 245 

Torres et al., 2013; Weber et al., 2011).  One example of long-term emissions from an in-use 246 

chemical stock is that of polychlorinated biphenyls (PCBs, listed as a POP under the Stockholm 247 

Convention) from equipment that was still in use in Canada in 2006 despite the ban on PCB 248 

production nearly 40 years ago (Diamond et al., 2010; Csiszar et al., 2013).  Another example is 249 

that of CFCs contained in blown building insulation that is subject to uncontrolled releases as the 250 

generation of buildings using that foam undergoes renovation or destruction over the next 30 251 

years (Brunner and Rechberger, 2001)  252 

 253 

Similar application patterns of chemical technologies and similar uses of chemical products in 254 

almost all regions of the world result in widespread chemical releases.  Chemical manufacturing 255 

and industrial usage are rapidly shifting from Western industrialized countries to developing 256 

countries and countries with economies in transition, including BRICS countries (Brazil, Russia, 257 

and especially India and China, and most recently South Africa) (UNEP, 2013).  New and 258 

increasing resource extraction and chemical manufacturing, usage and waste disposal are leading 259 

to increased chemical pollution, particularly in jurisdictions with insufficient control mechanisms 260 

(Schmidt, 2006; Gottesfeld and Cherry, 2011).  Short-lived chemicals are also being released in 261 
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many regions at rates that exceed degradation rates and hence environmental assimilative 262 

capacities.  Examples of such chemicals include pharmaceuticals, high production volume 263 

plastics and plasticizers such as bisphenol A and di-ester phthalates, and “D4” and “D5” 264 

siloxanes (e.g., WHO and UNEP, 2013; Kolpin et al., 2002; Rosi-Marshall et al., 2013; Peck and 265 

Hornbuckle, 2004; Fromme et al., 2002; Fries and Mihajlovic, 2011; Wang et al., 2013).   266 

 267 

As pointed out above, the global nature of chemical pollution demands a global response of 268 

internationally coordinated control measures, in addition to multiple local, regional and national 269 

efforts covering different groups of substances, which are disconnected in time and space.  One 270 

example of a global governance instrument is the Stockholm Convention on Persistent Organic 271 

Pollutants (POPs), which seeks elimination at best, or more broadly, the sound management, of a 272 

set of POPs agreed upon through international negotiations (Stockholm Convention, 2008).  273 

While achieving many successes (Stockholm Convention, 2012), the Convention is limited to a 274 

small number of chemicals or chemical classes (currently 22 are listed, with four more under 275 

review), includes numerous exemptions, and has no instrument for sanctions to ensure national 276 

implementation.  This is not a shortcoming of the Convention because  the intention of the 277 

Convention is not to address the totality of chemical pollution. As such, the Stockholm 278 

Convention is not adequate for challenge presented by developing a PBCP. Similarly, the 279 

Montreal Protocol is limited to substances that deplete the stratospheric ozone layer (UNEP 280 

2010-2011) and the Minamata Convention is limited to mercury (UNEP 2015).  The Convention 281 

on Long-range Transboundary Air Pollution, under the aegis of the United Nations Economic 282 

Commission for Europe and to which there are 51 parties, addresses a range of chemical 283 

pollutants including metals and POPs (UNECE 2004).  284 
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 285 

Another example of a global governance tool is the United Nations Framework Convention on 286 

Climate Change where global negotiations and agreements have led to reduction goals for 287 

greenhouse gases that are intended to be implemented at national levels (UNFCCC, 2013). 288 

International climate negotiations have seen the emergence of control instruments of largely two 289 

types.  The first is an absolute limit for total CO2-equivalent emissions (a “cap”) to assure that 290 

total global emissions are on target to prevent the global atmospheric CO2 concentration 291 

exceeding an agreed-upon boundary.  The second type of control scheme links emissions to 292 

activity or intensity such as CO2-equivalent emissions per unit of electricity generated or per 293 

kilometre driven, or to an economic cost resulting in reductions of CO2-equivalent 294 

emissions/capita (Azar and Rodhe, 1997; Ellerman and Sue Wing, 2003).  These intensity or 295 

efficiency-based emission controls acknowledge the need to reduce greenhouse gas emissions 296 

but cannot ensure that global emissions are within the global safe operating space because of 297 

population and economic growth that increase the demand for energy services, most of which are 298 

based on fossil fuels (IEA, 2014).  299 

 300 

Implicit in the concept of a safe operating space for CO2 and other greenhouse gases, ocean 301 

acidification, nitrogen and phosphorus cycles, and “chemical pollution”, is that there is a finite 302 

global assimilative capacity.  Here we define assimilative capacity as the ability of an ecosystem 303 

to render substances harmless, i.e. avoiding adverse effects.  By seeing the problem in this light, 304 

it leads us towards exploring the need for a globally coordinated cap for emissions, rather than 305 

jurisdiction-specific, intensity-based controls, which may be sufficient in some circumstances but 306 

fail to account for cumulative, global effects.   307 
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 308 

3. CHALLENGES OF DEFINING A PLANETARY BOUNDARY FOR 309 

CHEMICAL POLLUTION 310 

Moving the idea of a PB beyond a conceptual model requires that the impact of anthropogenic 311 

stressor(s) on all ecosystems can be described and quantified as a function of a measurable 312 

control variable(s) that is (are) related to a measurable response variable(s).  For a PBCP, the 313 

ultimate effect or response variable (Fig. 1) subject to control is widespread adverse impact(s) to 314 

ecological and/or human health caused by exposure to (a) substance(s).  Exposure can be 315 

identified as the critical control variable since it is the necessary prerequisite for any kind of 316 

chemically induced effect or response we want to safeguard against.  Ideally, chemical exposure 317 

can be used to define a threshold(s) or natural limit(s) that, in turn, can be translated into a global 318 

boundary (boundaries) and a safe operating space.  As noted above, the boundary (boundaries) is 319 

(are) established by humans and is (are) a product of societal demands, needs, value judgments 320 

and negotiations.  The control variable(s) must also be amenable to translation into possible 321 

mitigation or control activities, which in this case would reduce exposure and thus, would 322 

maintain human and ecosystem health within the safe operating space, the latter reflected in 323 

maintained biodiversity, ecosystem functionality and human health.  324 

 325 

Challenges arise at all stages in the definition process that starts with a control variable(s) and 326 

ends with “actionable” activities.  First, operationalizing “exposure” as the control variable is 327 

difficult because of the high and poorly defined number of chemicals that fall under the umbrella 328 

of “chemical pollution”.  More than 100 000 substances are in commerce (Egeghy et al., 2012), 329 
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including pesticides, biocides and pharmaceuticals, industrial chemicals, building materials and 330 

substances in personal care products and cosmetics (e.g., Howard and Muir, 2010, 2011; ECHA, 331 

2013) and very few of them have undergone adequate risk assessment for adverse effects.  A 332 

recent screening of 95 000 chemicals for persistence (P), bioaccumulation (B) and toxicity (T) 333 

properties (REACH criteria) identified 3% or approximately 3000 chemicals as potential PBT 334 

chemicals (uncertainty range of 153-12 500 chemicals) (Strempel et al., 2012).  Similarly, 93 000 335 

chemicals were screened for P, B and long range transport potential according to the Stockholm 336 

Convention criteria, plus T (REACH criteria) resulting in the identification of 510 potential 337 

POPs (uncertainty range of 190-1 200 chemicals) (Scheringer et al., 2012). Unintentionally 338 

produced substances, such as the combustion by-products polycyclic aromatic hydrocarbons 339 

(PAH) and polychlorinated and polybrominated dibenzo-p-dioxins and furans (PCDD/F and 340 

PBDDs/Fs), are emitted as a consequence of human activity and many emitted chemicals are 341 

transformed to a multitude of other chemicals by biological and physical-chemical processes.  342 

Whereas some limits have been placed on a few selected chemicals that are highly persistent, 343 

bioaccumulative and toxic such as PCDD/F, those with intermediate PBT properties have 344 

received insufficient attention (Muir and Howard, 2006; Howard and Muir, 2010; Scheringer et 345 

al., 2012).  In addition, an enormous number of organisms in a diversity of ecosystems are 346 

exposed to chemical pollution (which is invariably a complex chemical mixture) and they will 347 

respond in myriad ways.  Moreover, chemicals have specific modes of actions and can show 348 

very different toxicological potencies.  Humans take a specific place among affected organisms.  349 

Any approach to establishing a PBCP(s) must include impacts on human health, even if this is in 350 

contrast to the framework of Rockström et al. (2009a, 2009b) or which the objects of protection 351 
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are biogeochemical systems and ecosystems, e.g., the climate system, the ozone layer, and 352 

freshwater. 353 

 354 

Second, we acknowledge that boundaries for chemical pollution have been developed at a global 355 

scale for selected POPs and mercury, and at local and regional scales for chemicals in foods, 356 

water and air (Table S1).  However, only a few of these boundaries account for exposure to 357 

multiple chemicals simultaneously that can act in an additive fashion.  Moving beyond a 358 

chemical-by-chemical approach to acknowledge mixture effects is of growing importance if 359 

limits are to be protective (e.g., Kortenkamp, 2007; Kortenkamp et al., 2007; Backhaus et al., 360 

2010; Meek et al., 2011; SCHENIHR et al., 2012).  An increasing body of evidence suggests 361 

that, de facto, the existing boundaries are not sufficiently protective for endocrine disrupting 362 

chemicals that can cause transgenerational effects (e.g., Baccarelli and Bollati, 2009; Bollati and 363 

Baccarelli, 2010; Bouwman et al., 2012; Mani et al., 2012; WHO and UNEP, 2013; inter alia).  364 

This is not surprising since accepted and validated methods for identifying and testing endocrine 365 

disrupting chemicals, particularly after exposure during critical early life stages, are generally 366 

lacking or have not yet been implemented in chemicals risk assessment (WHO and UNEP, 2013; 367 

inter alia).  368 

 369 

Third, connecting exposure as the control variable to an “actionable” activity (such as controlling 370 

emissions) is difficult because of the diversity of fate and transformation processes at play 371 

between an initial emission of a chemical or a chemical mixture and the concentration(s) 372 
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resulting in exposure and then an adverse effect.  Establishing the release-fate-concentration-373 

effect linkage is necessary for other planetary boundaries such as CO2, stratospheric ozone, 374 

phosphorus and nitrogen cycles.  Establishing this linkage for chemical pollution is also 375 

necessary but it is more challenging because of the large number of chemicals of varying 376 

persistence and toxicity that are captured by this boundary.   377 

 378 

Finally, in addition to the scientific challenges of defining a boundary(s), it must be remembered 379 

that most of the world’s countries do not have the capacity or resources to measure a control 380 

variable such as exposure and to implement effective controls such as those listed in Table S1 381 

(e.g., Klanova et al., 2009; Adu-Kumi et al., 2012).  Furthermore, as noted above, a boundary(s) 382 

is normative and as such, a diversity of viewpoints will be held on what constitutes an 383 

“acceptable’ level of pollution.  384 

 385 

The combination of numerous substances with different use and emission patterns, affecting a 386 

multitude of different endpoints in a plethora of exposed species in the vastly different 387 

ecosystems of the world, plus consideration of human health, makes the derivation of a single 388 

quantitative PBCP or multiple PBCPs a daunting, if not impossible task.  However, the situation 389 

of increasing chemical production, emissions and adverse effects cannot be allowed to continue 390 

unabated.  Thus, we believe that the concept of a planetary boundary or boundaries for chemical 391 

pollution is a useful framework for global action, but that it needs to be modified to account for 392 

these complexities and challenges. 393 
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 394 

4. STEPS TOWARD GLOBAL CHEMICALS MANAGEMENT 395 

 396 

Although it may not be possible to establish a single or even multiple PBCP(s) at this time, an 397 

increasing body of evidence strongly suggests that we need more effective global chemicals 398 

management.  What has been accomplished in global chemicals management?  Global 399 

cooperation amongst nations has, amongst others, resulted in the Stockholm Convention on 400 

POPs, the Montreal Protocol on CFCs, the Basel Convention on Control of Transboundary 401 

Movements of Hazardous Wastes, and the Rotterdam Convention on Prior Informed Consent 402 

Procedure for Certain Hazardous Chemicals and Pesticides in International Trade.  These 403 

Multilateral Environmental Agreements have come together under the aegis of UNEP.  The 404 

Stockholm and Montreal agreements strive towards zero-emissions of the listed chemicals.  In 405 

January 2013, UNEP brokered the Minamata Convention on mercury, the language of which has 406 

gained support from 94 signatory countries (UNEP, 2015).  The Minamata Convention specifies 407 

the banning of production, export and import of a range of mercury-containing products, calls for 408 

the drafting of strategies to limit the use of mercury in artisanal and small-scale gold mining, and 409 

aims to work towards minimizing mercury emissions from combustion sources such as 410 

conventional fossil fuel power plants and cement factories.  Like the Stockholm Convention, the 411 

Minamata Convention includes the provision to develop a compliance mechanism that will be 412 

established through negotiation after the official signing of the Convention.   413 

 414 
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These five agreements address priority chemical pollutants at the global scale, reflect the insight 415 

that global dilution is not the solution to local or global pollution, and that environmental 416 

safeguards are the right of all countries.  Well over 100 countries have adopted them (except for 417 

the most recent Minamata Convention), which in itself is a great accomplishment.  However, 418 

these agreements have limitations due to numerous official exemptions and unofficial 419 

“loopholes”, they cover only a limited number of chemicals, implementation costs are largely 420 

left to individual countries of which many lack such capacity, and sanctions cannot be levied for 421 

a lack of compliance.  As such, these agreements are not adequate to address the totality of 422 

chemical pollution (which was never their intent).  Importantly, the fact that these agreements 423 

have been enacted is a reflection that humanity has come close to or crossed boundaries for these 424 

chemicals.  A PBCP provides an overarching conceptual basis to characterize the achievements 425 

of these agreements and to accommodate additional necessary controls.  426 

 427 

For chemicals listed by the Stockholm and Minamata Conventions and the Montreal Protocol, 428 

the planetary boundary is set at a de minimus level (ideally  zero emissions but exemptions 429 

preclude this).  In addition to the zero emissions boundary, several other types of boundaries 430 

have been defined during the past decades under many jurisdiction-specific regulations and 431 

initiatives spanning local to national scales.  As summarized in Table S1, the initiatives, which 432 

come from international agencies, Europe, Japan, North America, China, India and Nigeria, 433 

include limits to levels of pesticides in groundwater and surface water, levels of priority 434 

pollutants in surface waters, and acceptable daily intakes (ADIs) for a wide range of food 435 

contaminants.  However, as noted above, not all of these agencies are able to monitor for, and 436 

enforce compliance.  437 
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 438 

Another major global initiative is the Strategic Approach to International Chemicals 439 

Management (SAICM), which is also under the aegis of UNEP.  The ultimate goal of SAICM is 440 

to facilitate activities to ensure that “…chemicals will be produced and used in ways that 441 

minimize significant adverse impacts on the environment and human health” (SAICM, 2006).  442 

The role of SAICM is advisory by acting as a source of information to governmental and extra-443 

governmental bodies regarding safe chemical management and funding projects to fulfill the aim 444 

of the initiative.  SAICM is a non-binding agreement with broad participation of countries and 445 

other stakeholders such as the chemical industry.  In comparison to the five chemical 446 

agreements, SAICM is much broader in scope by addressing all agricultural and industrial 447 

chemicals from cradle to grave, aiming at overall sound chemicals management. However, 448 

SAICM does not have a compliance mechanism. 449 

  450 

To move towards a truly global approach encompassing the aggregated impacts from all 451 

anthropogenic chemical pollution, we need to learn from experience and build on successes (and 452 

failures).  What are the key lessons learned?  One lesson learned is that implementation of 453 

stringent controls by specific jurisdictions has led to improved local conditions in those 454 

jurisdictions.  However, increased global trade and the fluidity of global finance have moved 455 

more chemical and goods production and waste disposal to locations without stringent controls 456 

(e.g., Skelton et al., 2011; Breivik et al., 2011; Sindiku et al.., 2014).  Thus, one intention of a 457 

global boundary is avoiding “pollution free” jurisdictions at the expense of creating “pollution 458 

havens” in developing nations (e.g. Gottesfeld, 2013).  Examples of developed nations achieving 459 

their pollution control goals by shipping waste and waste products to developing nations have 460 
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been described elsewhere (Schmidt, 2006; Breivik et al., 2011, 2014; Gioia et al., 2011; 461 

Abdullah et al., 2013).  462 

 463 

A second lesson learned is that despite the challenges, as scientists we need to avoid calling for 464 

more scientific certainty before action is taken as this delays adoption of control measures, which 465 

in this case translates to measures that will help stem widespread chemical pollution.  Gee and 466 

others (Gee, 2006; Gee et al., 2013; Harremoës et al., 2001) have documented examples of where 467 

the call for more research to improve risk assessments of chemicals often led to delays in action 468 

of up to several decades although early warnings of adverse effects were already apparent (e.g. 469 

tobacco smoking and asbestos).  Persson et al. (2013) provide a persuasive argument in this 470 

regard.  471 

 472 

As a result of these considerations, we submit that the PBCP is a useful aspirational framework 473 

that allows natural and social scientists, policy makers, industry and civil society to visualize the 474 

idea of a safe operating space, see the limited assimilative capacity of the Earth, recognize 475 

chemical pollution at a global scale, and see the inadequacy of current control measures to deal 476 

with the totality of global chemical pollution.  Having said that, we recognize that defining a 477 

single or multiple quantitative PBCP(s), or even a single approach for its definition, is not now 478 

within reach.  Rather, we recommend advancing in multiple directions that involve globally 479 

coordinated action in scientific, technical and political domains (e.g., Conklin, 2005; Horn and 480 

Weber, 2007).  For the scientific domain we propose the following:  481 
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1. Explore advancing the concept of, and methods for quantifying a PBCP(s).  We advocate 482 

making stepwise progress using a few well-known chemicals such as POPs, intermediate 483 

PBT chemicals (demonstrated toxicity but not highly persistent), and a few high production 484 

volume chemicals with demonstrated toxicity.     485 

2.  Continue to identify and develop indicators of global chemical pollution, initially based on 486 

proxies for chemical exposure and potency.  Information on indicator status should then be 487 

used to gauge progress towards staying within the safe operating space for chemical 488 

pollution.  Useful information to guide this task can be taken from the Drivers, Pressures, 489 

States, Impacts, Responses (DPSIR) approach (OECD, 1991; Harremoës, 1998), and 490 

suggestions of how this could be accomplished are given in the Supporting information.  This 491 

proposal builds on the global monitoring networks that have achieved considerable success 492 

such as those under the Stockholm Convention (e.g., the Global Atmospheric Passive 493 

Sampling network or GAPS (Gawor et al., 2014) and Human milk survey (UNEP et al., 494 

2013)).  495 

3. Conduct research into new technologies and methods that will aid in implementing the goals 496 

of the six global chemical agreements (Montreal Protocol; Stockholm, Minamata, Rotterdam, 497 

Basel and UNECE LRTAP Conventions) and in lowering production and emissions of non-498 

POP priority chemicals.  This research includes methods for identifying and characterizing 499 

stocks of chemicals scheduled for elimination, developing technologies for efficient and 500 

effective destruction of stockpiles, research into societal and cultural considerations that will 501 

maximize the likelihood of policy implementation, etc.  502 

4. Connect activities aimed at chemical pollution control in the context of PBCP to efforts 503 

aimed at moving towards sustainable resource use.  This should include investigating ways to 504 
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chemically “de-intensify” economies, to use “green chemistry” substitutes and non-chemical 505 

solutions, and to implement social solutions aimed at reducing resource consumption.  506 

Efforts are underway in this regard, such as the U.S. EPA’s Design for the Environment 507 

Program (U.S.EPA, 2014) and the GreenScreen© for Safer Chemicals (Clean Production 508 

Action, 2015).  These two issues, PBCP and sustainable resource use, are intertwined such 509 

that chemical pollution is a manifestation of unsustainable and inefficient resource use.  510 

Thus, efforts directed towards achieving both goals would benefit from coordinated action.  511 

 512 

Progressing towards a PBCP(s) will require scientific, political, social and economic strategies.  513 

In the political domain, it will be important to raise more awareness for chemical pollution 514 

problems in all parts of the world, and to aid individual countries in implementing existing local 515 

and regional boundaries and international agreements.  The shift of chemical production from 516 

OECD countries primarily to the BRICS countries needs to be complemented by a process that 517 

helps to develop chemical regulation and enforcement in these regions to a level comparable or 518 

better than that of OECD countries.  519 

 520 

To address these needs, organizations at the global level such as WHO and UNEP can be drivers 521 

for effective exchange and collaboration amongst the public, environmental NGOs, industry and 522 

national government institutions to enable significant pollution control.  Civil society and local 523 

jurisdictions also have and continue to implement effective pollution controls using a variety of 524 

tools.  Examples here include the activities of the International POPs Elimination Network 525 
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(IPEN), the Pesticides Action Network (PAN), and C40 Cities for “Global Leadership on 526 

Climate Change” (C40 Cities, 2013).  527 

 528 

In closing, 50 years ago Rachel Carson pointed out for the first time that the extensive use of 529 

pesticides is dangerous not only to wildlife, but also to humans.  This is still an ongoing concern, 530 

emphasized by the recent finding that neonicotinoid pesticides are contributing to the massive 531 

collapse of bee populations (Tapparo et al., 2012; Henry et al., 2012; Whitehorn et al., 2012).  532 

Now we need to go beyond Rachel Carson’s clarion call about pesticides.  Today’s phenomenon 533 

of locally to globally distributed chemicals that are causing adverse effects, demands that a wide 534 

range of chemical products and uses be restrained and many chemicals in commerce need to be 535 

used with much more prudence and precaution.  It is time to harness the knowledge, capacity and 536 

commitment held by many to see Rachel Carson’s vision moved to a truly global scale. 537 

 538 
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