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Abstract. This work investigates jammed granular matter under conditions
that produce heterogeneous mass distributions on a mesoscopic scale. We
consider a system of identical disks that are confined to a narrow channel,
open at one end and closed off at the other end. The disks are jammed
by the local pressure in a gravitational field or centrifuge. All surfaces are
hard and frictionless. We calculate the profiles of pressure, mass density,
and entropy density on a mesoscopic length scale under the assumption that
the jammed states are produced by random agitations of uniform intensity
along the channel. These profiles exhibit trends and features governed by the
balancing of position-dependent forces and potential energies. The analysis
employs a method of configurational statistics that uses interlinking two-disk
tiles as the fundamental degrees of freedom. Configurational statistics weighs the
probabilities of tiles according to competing potential energies associated with
gravity and centrifugation. Amendments account for the effects of the marginal
stability of some tiles due to competing forces.

1. Introduction

One criterion commonly used to demarcate the granular regime from the colloidal
regime in a suspension compares the energy kBT of thermal fluctuations with the
gravitational potential energy mgσ of a suspended particle when lifted a distance
equal to its diameter σ [1]. It follows that the earth’s gravitational field g has a
part in terrestrial experiments on granular matter. It can reasonably be argued
that the variations with vertical distance of quantities under investigations are
undetectably small in a wide range of experiments. Effects of gravity are real
and interesting, nevertheless. Jammed macrostates produced via some protocol
are described by characteristic profiles of pressure, mass density, entropy density,
mechanical coordination numbers etc. Other fields or potentials produce their own
profiles in the same quantities. We shall consider combinations of gravity and
centrifuge

How are trends and features in these profiles related to particular local
configurations of jammed grains? Reliable answers to this wide-ranging question are
hard to get in general. Evidence from experimental, theoretical, and computational

http://arxiv.org/abs/1312.5854v2
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studies point to the balances of forces and potential energies that determine the nature
of jammed states [2-19].

We shall argue that the balance of relevant forces and the relative sizes of relevant
potential energies may affect the profiles in separate ways. To support this argument
with evidence that is methodologically sound and, at the same time, transparent
regarding its physical origin, we consider a somewhat idealized model: a system of
disks confined to a narrow channel.

The work reported here builds on previous studies as described in the following.
Ashwin, Bowles, and Saika-Voivod [20, 21, 22] introduced a simple model of rigid disks
of one size and mass in a narrow channel. The disks are positioned in a horizontal plane
and jammed by a uniform pressure. Two regimes of channel widths were identified,
for which the configurations of jammed disks can be described by a finite number of
interlinking tiles (four tiles in one regime and 32 tiles in the other). The configurational
entropy versus volume fraction was calculated by elemenary means in the first regime
and by a transfer matrix technique in the second.

Gundlach et al. [23] generalized the analysis of the first regime to a channel
with its plane oriented vertically and its axis still horizontal. The effects of gravity
were shown to produce a critical point at which the system is highly susceptible to
ordering tendencies. Criticality was shown to be robust in the presence of some effects
of friction. Remarkable analogies between this system of confined disks subject to
gravity and a system of hard spheres subject to friction [7, 8, 9, 10, 11, 12] were
identified, including the coexistence of domains with different types or degrees of
ordering.

Most recently, a system of disks confined to a narrow channel was used to
explore the relationship between thermally equilibrated fluid states and mechanically
stabilized jammed states, demonstrating new insights that remain relevant for more
complex systems [24, 25]. The rigorous analysis of idealized systems such as this often
uncover issues and features that transcend their own limitations.

In this work we extend the analysis of disks jammed in a narrow channel to
conditions that produce heterogeneous mass distributions on a mesoscopic scale caused
by gravity and centrifuge (see Fig. 1). We tilt the axis of the channel into the (vertical)
direction of the gravitational field [scenario (i)] and spin the channel about its axis
[scenario (iii)]. We rotate the channel in a horizontal plane with its axis oriented
radially and its plane oriented horizontally [scenario (ii)] or vertically [scenario (iv)].
Previous studies of the statistical mechanics of jammed granular columns under gravity
in heterogeneous macrostates do exist [26-30] and will be discussed in Sec. 7.

The protocol of random agitations employed here is different from the ones implied
in Refs. [20, 21, 22, 23]. No piston is needed. Jamming is caused by the gravitational
force [scenario (i)], the centrifugal force [scenario (ii)], or a combination of both
[scenarios (iii) and (iv)] acting on the disks when the random agitations are stopped
suddenly. These forces vary along the channel, depending on the mass density, which
itself varies along the channel. In scenarios (iii) and (iv) the mechanically stable tiles
sequences depend on the local jamming pressure.

Disks of mass µ and diameter σ are confined to a long channel of width H
with H/σ = 1 +

√

3/4. This particular width represents the border between
the aforementioned regimes [21]. All surfaces are rigid and frictionless. Jammed
microstates are described as sequences of two-disk tiles. Successive tiles are interlinked
by sharing one disk as illustrated in Fig. 1.

Tiles come in four distinct shapes. Two of them bear the same name (v), the
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Figure 1. Jammed microstates of disks of mass µ and diameter σ in a channel
of width H for scenarios (i)-(iv). For H/σ ≤ 1 +

√

3/4 all configurations are
sequences of interlinking two-disk tiles as shown. In our methodology, tiles v

are elements of pseudo-vacuum and tiles 1, 2, 3, 4 are statistically interacting
particles.

other two each bear two names, (1,4) and (2,3), respectively, all for a reason. The
most compact state is an alternating sequence of tiles v. There is no need to assign
different names to the two shapes because all relevant attributes are identical, yet they
are not interchangeable.

In scenarios (i) and (ii) the least compact state is a sequence v · · · 1v2v1v2 · · · v.
Here only tiles v can follow each other directly. Any tile 1 (2) is separated from the
next tile 1 (2) by at least two tiles v. A tile 1 is separated from the nearest tile 2 by
at least one tile v.

In scenario (iii) multiple tiles 1 and multiple tiles 2 following one another directly
can be stabilized by the centrifugal force perpendicular to the channel axis at locations
where the gravitational pressure is not too strong. Any tile 1 (2) that follows directly
another tile 1 (2) is renamed tile 4 (3) in our analysis.

In scenario (iv) tiles 3 but not tiles 4 can be stabilized by the gravitational force
perpendicular to the channel axis at locations where the centrifugal pressure is not
too strong. Conversely, below a certain threshold centrifugal pressure tiles v and 1 are
destabilized by gravity in this scenario.

We describe our methodology in Sec. 2. The next four sections are devoted each
to one of the scenarios (i)-(iv) in ascending order of complexity.

2. Statistically interacting tiles

Every jammed microstate is a unique sequence of tiles subject to the rules mentioned.
In the absence of acceleration due to gravity/rotation along the channel, jammed
macrostates are spatially homogeneous and are fully characterized by the average
populations of tiles from each species.

A detailed account of our methodology for such cases can be found in Ref. [23].
The method itself was invented by Haldane [31], and developed by Wu [32], Isakov,
[33], Anghel [34], and others [35, 36, 37, 38] in significant aspects. The adaptation
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to jammed granular matter as reported in Ref. [23] is embedded in the framework of
configurational statistics [39, 40].

Here we extend that account to spatially heterogeneous situations such as
caused by gravitational or centrifugal forces. Some aspects of this extension are
straightforward, others are more subtle. Many conclusions reached in Ref. [23] remain
valid locally for mesoscopic segments of jammed disks.

On any mesoscopic segment of channel we can interpret tiles 1, 2, 3, 4 as
statistically interacting quasiparticles excited from the pseudo-vacuum vv · · · v by
random agitations of given intensity in the face of a specific local pressure. The number
of distinct segments with given particle content is determined by the multiplicity
expression,

W ({Nm}) = npv

M
∏

m=1

(

dm +Nm − 1
Nm

)

, (1)

dm = Am −
M
∑

m′=1

gmm′(Nm′ − δmm′). (2)

The pseudo-vacuum has degeneracy npv = 2. The number of particle species is M = 4.
In the taxonomy of Ref. [36] they belong to the categories host (m = 1, 2) and tag
(m = 3, 4). The capacity constants are A1 = A2 = 1

2 (N − 1) and A3 = A4 = 0,
where N is the number of disks. The statistical interaction coefficients are compiled
in Table 1.

Table 1. Statistical interaction coefficients of tiles 1, 2, 3, 4 in the role of
quasiparticles.

gmm′ 1 2 3 4

1 3
2

1
2

1
2

1
2

2 1
2

3
2

1
2

1
2

3 0 −1 0 0

4 −1 0 0 0

The number of tiles is fixed atN−1. Each v-tile contributes a volume 1
2σ and each

particle tile twice that. Hence the activation of a particle from any species expands
the volume by 1

2σ.
Configurational statistics postulates that jammed macrostates with specific

profiles of mass density and entropy density can be generated reproducibly via
sufficiently well-defined protocols of random agitations. Our calculations assume a
protocol in which the random agitations of controlled intensity are applied uniformly
along the channel. When these agitations are stopped abruptly, a jammed microstate
is frozen out in short order by the local gravitational or centrifugal pressure.

The associated jammed macrostate is then characterized by the (dimensionless)
parameter field,

p̂
.
=

p(x)σ

2Tk
, (3)

where p(x) is the local pressure and Tk some measure for the intensity of (uniform)
random agitations. We specify the position along the channel by coordinate x
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generically. In applications we use z if the axis is vertical and r if it is horizontal
and rotating (see Fig. 1).

In scenarios (iii) and (iv) the jammed macrostate also depends on a second
(dimensionless) parameter, which is not a field:

ω̂2 .
=

µω2dσ

4Tk
, ĝ

.
=

µgd

Tk
, (4)

respectively, where d = 1
2 (H − σ) = (

√
3/4)σ is half the shortest distance a disk can

move between walls. Moreover, in scenarios (i), (iii) with gravitational pressure and
(ii), (iv) with centrifugal pressure we use, respectively, scaled position coordinates,

ẑ
.
=

2µgz

Tk
, r̂

.
= r

√

µω2

Tk
. (5)

Note that the ω in (4) describes a channel spinning about its axis and the ω in (5) a
channel with its axis rotating.

Key relations from the statistical mechanical analysis [23] adapted to
heterogeneous situations are a set of linear equations for the scaled tile population
densities N̄m(x)

.
= 〈Nm(x)〉/N ,

wm(x)N̄m(x) +

M
∑

m′=1

gmm′N̄m′(x) = Ām, (6)

where Ām
.
= Am/N , and where the wm(x) are real, non-negative solutions of the

nonlinear equations,

eKm(x) = [1 + wm(x)]

M
∏

m′=1

[

1 + wm′(x)−1
]

−g
m

′
m . (7)

The Km(x) will be derived from (3)-(5) case by case. Our focus is on the profiles of
the mass density,

ρ̃ =
σ

2µ
ρ(x) =

[

1 +

M
∑

m=1

N̄m(x)

]−1

, (8)

and the entropy density,

S̄(x) =

M
∑

m=1

[(

N̄m(x) + Ȳm(x)
)

ln
(

N̄m(x) + Ȳm(x)
)

− N̄m(x) ln N̄m(x)− Ȳm(x) ln Ȳm(x)
]

, (9)

Ȳm(x)
.
= Ām −

M
∑

m′=1

gmm′N̄m′(x), (10)

in addition to that of pressure p(x). One additional relation is necessary for closure.
The local pressure (3), which enters (7) on the left, depends on the profile of mass
density (8) in a way that varies between scenarios. This relation will be introduced
case by case.
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3. Gravity

In scenario (i) the axis of the channel is oriented vertically (see Fig. 1). Tiles 3
and 4 are mechanically unstable against the slightest intensity of random agitations.
They do not exist in jammed microstates produced by our protocol. Configurational
statistics can accommodate this kind of mechanical instability by simply freezing out
tiles 3 and 4. Taking the limit K3,K4 → ∞ leaves Eqs. (6), (7), and (9)-(10) valid
for tiles 1 and 2. A further simplification follows from symmetry: tiles 1 and 2 occur
with equal probability. We have

K1 = K2 = p̂, (11)

in generalization of the zero-gravity situation [23]. Equations (7) with (11) used on
the left are valid on a mesoscopic scale with the z-axis pointing vertically down and
z = 0 located at the top of the pile of disks. Anghel’s rules [34] permit a type-1 merger
[38] 1 & 2 → 1̄. Symmetry dictates that w1 = w2

.
= w and N̄1 = N̄2

.
= 1

2N̄ .
The population profile of tiles 1 and 2 combined inferred from Eqs. (6) and (7)

depends on the pressure profile as follows:

N̄ =
[

w + 2
]

−1
, w =

1

2
ep̂
[

1 +
√

1 + 4e−p̂
]

. (12)

The local pressure is caused by the weight of the disks piled on top. It depends on
the mass density (8) transcribed into

ρ̃ =
1

1 + N̄
, (13)

via the integral,

p(z) = g

∫ z

0

dz′ρ(z′), (14)

which we invert into

ẑ = 2

∫ p̂

0

dp̂′
[

1 + N̄(p̂′)
]

. (15)

The integral yields

eẑ = e3p̂
√
5 + 1√
5− 1

√
1 + 4e−p̂ − 1√
1 + 4e−p̂ + 1

. (16)

The entropy density (9)-(10) for this case becomes

S̄ =
[

(

1− N̄
)

ln
(

1− N̄
)

− N̄ ln N̄ −
(

1− 2N̄
)

ln
(

1− 2N̄
)

]

. (17)

Expressing (16) as a cubic equation,

(h2 − 1)(h+ 1) = 4(1 +
√
5)e−ẑ/2, (18)

in h(p̂)
.
=

√
1 + 4e−p̂, we find a unique real solution with asymptotics,

h =







√
5− 1 + 3

√
5

22
ẑ +O(ẑ2), ẑ ≪ 1

1 +
(

1 +
√
5
)

e−ẑ/2 +O(e−ẑ), ẑ ≫ 1
. (19)

The curve of p̂ − 1
2 ẑ versus ẑ in Fig. 2 represents the (negative) deviation from

hydrostatic pressure of close-packed disks. Also shown are the pressure asymptotes
near the top of the stack and deep down in the channel.
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Figure 2. Profiles of scaled pressure, p̂, scaled population density of particle tiles
N̄ , scaled mass density ρ̃, and scaled entropy S̄ versus scaled depth ẑ in scenario
(i). The asymptotics are shown dashed.

The pressure has a universal profile in the scaled variables with asymptotics,

p̂ =











15 +
√
5

44
ẑ +O(ẑ2), ẑ ≪ 1

ẑ

2
−Arcoth

√
5 + O(e−ẑ/2), ẑ ≫ 1

. (20)

The actual pressure p at actual depth z does, of course, depend on the intensity Tk

of random agitations used in our jamming protocol. The overall pressure deep down
decreases with increasing Tk as expected.

That same solution enters the expression for the particle population density and
the mass density as follows:

N̄ =
h(p̂)− 1

2h(p̂)
, ρ̃ =

2h(p̂)

3h(p̂)− 1
. (21)

The variation of both densities versus scaled depth as depicted in Fig. 2 is linear near
the top and exponential deep down. The asymptotics are

ρ̃ =















2
√
5

3
√
5− 1

+
4

(3
√
5− 1)3

ẑ +O(ẑ2), ẑ ≪ 1

1−
√
5 + 1

2
e−ẑ/2 +O(e−ẑ), ẑ ≫ 1

, (22)

N̄ =















√
5− 1

2
− 1 + 3

√
5

5 · 44 ẑ +O(ẑ2), ẑ ≪ 1
√
5 + 1

2
e−ẑ/2 +O(e−ẑ), ẑ ≫ 1

, (23)

The rate at which ρ̃ grows with depth first increases then decreases toward zero.
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The profile of the entropy density inferred from (17), (21), and the physical
solution of (18) has the compact form

S̄ = Arsinh

(

1

2
ep̂/2

)

− p̂

2h(p̂)
. (24)

The asymptotic expansions in terms of z̃ are

S̄ =























ln
1 +

√
5

2
−
(

1 + 3
√
5

44

)2
ẑ2

2
√
5
+O(z̃3), ẑ ≪ 1

1 +
√
5

2

(

ẑ

2
+ 1− ln

1 +
√
5

2

)

e−ẑ/2 +O(e−ẑ), ẑ ≫ 1.

(25)

It is a monotonically decreasing function as shown in Fig. 2, with a quadratic
dependence on ẑ near the top and an exponential tail deep down.

Spinning the vertical channel about its axis stabilizes tiles 3 and 4 at sufficiently
low gravitational pressure. How this affects the four profiles of Fig. 2 will be discussed
in Sec. 5.

4. Centrifuge

Scenario (ii) considers a channel with plane and axis oriented horizontally, rotating
with constant angular velocity ω in the horizontal plane (see Fig. 1). All densities are
now functions of the radial coordinate r. The disks are jammed by the local pressure
due to centrifugation.

Only tiles 1 and 2 are stable and the same symmetries obtain as in scenario
(i). Equations (11)-(13) and (17) remain valid whereas Eqs. (14) and (15) are to be
replaced, respectively, by

p(r) = ω2

∫ r

0

dr′r′ρ(r′), (26)

r̂2 = 2

∫ p̂

0

dp̂′
[

1 + N̄(p̂′)
]

. (27)

We assume that the column of disks just reaches the location of the axis of rotation.
This is a convenient albeit somewhat artificial boundary condition. It preserves all
features of interest and avoids clutter. The resulting centrifugal pressure profile reads

er̂
2

= e3p̂
√
5 + 1√
5− 1

√
1 + 4e−p̂ − 1√
1 + 4e−p̂ + 1

. (28)

The four profiles shown in Fig. 3 differ from those shown in Fig. 2 in ways that
are as significant physically as they are obvious mathematically. Linear (quadratic)
dependences at small ẑ are replaced by quadratic (quartic) dependences at small r̂.
Exponential behavior at large ẑ is replaced by Gaussian behavior at large r̂.

These simple and smooth profiles for a rotating channel will acquire additional
structures when the plane is turned from a horizontal into a vertical direction. In that
case the mechanical stability of some tiles depends on the centrifugal pressure. The
four profiles thus modified will be discussed in Sec. 6.
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Figure 3. Profiles of scaled pressure p̂, scaled population density of particle tiles
N̄ , scaled mass density ρ̃, and scaled entropy S̄ versus scaled radius r̂ in scenario
(ii). The asymptotics are shown dashed.

5. Gravity with centrifuge

Scenario (iii) is an extension of scenario (i). The channel is spinning about its vertical
axis with constant angular velocity ω (see Fig. 1). The spinning has the effect of
mechanically stabilizing tiles 3 and 4 provided the local gravitational pressure is not
too high.

In all jammed states every disk touches a wall. Hence each disk experiences the
same centrifugal force irrespective of what tile it is part of. Only disks that have
both neighbors touching the wall on their side need the centrifugal force for their own
mechanical stability. All such disks belong to a tile 3 or 4.

Tiles v, 1, 2 are stable for any pressure. The stability of tiles 3 and 4 is
precarious at all nonzero pressures but to varying degrees. Near the top there exists
an asymptotic low-pressure regime where tiles 3 and 4 are no less stable than tiles 1
and 2. Deep down there exists an asymptotic high-pressure regime where tiles 3 and
4 are highly unstable. The physics of the two asymptotic regimes is firmly grounded
in configurational statistics.

5.1. Low pressure and high pressure

The analysis for the low-pressure asymptotic regime proceeds parallel to that of Sec. 3
with some modifications. We must replace Eq. (11) by

Km = p̂, m = 1, . . . , 4. (29)

Before we solve Eqs. (6) and (7) for M = 4 statistically interacting particles we take
advantage of the symmetries reflected in (29) and in the Am, gmm′ from Table 1.
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According to Anghel’s rules [34, 38] we can implement three successive mergers,

3 & 4 → 3̄, 1 & 2 → 1̄, 1̄ & 3̄ → 1̃, (30)

that lead to a single species of fermionic particles:

K1̃ = p̂, A1̃ = N − 1, g1̃1̃ = 1. (31)

The dependence on the pressure profile of the population profile for particles 1̃ inferred
from (6) then becomes

N̄ =
1

ep̂ + 1
. (32)

With (32) substituted into (13), the solution of (14) is

ẑ

2
= p̂+ ln

(

2

1 + e−p̂

)

, (33)

in analogy to (16) but solved more compactly:

p̂ =
ẑ

2
− ln

(

4

1 +
√
1 + 8e−ẑ/2

)

. (34)

The configurational entropy density derived from (9-10) is recognizably fermionic:

S̄ = −N̄ ln N̄ −
(

1− N̄
)

ln
(

1− N̄
)

=
p̂

1 + ep̂
+ ln

(

1 + e−p̂
)

. (35)

The four profiles predicted by configurational statistics for the low-pressure
asymptotic regimes are shown in Fig. 4 as the set of curves drawn solid at small ẑ
and dashed at large ẑ. The underlying assumption that tiles 3 and 4 are mechanically
stable is accurate near the surface but invalid deep down.

At ẑ ≫ 1 the high gravitational pressure destabilizes practically all tiles 3 and 4
under jamming. This high-pressure asymptotic regime leads us back to the statistical
mechanics of scenario (i). If we assume that all tiles 3 and 4 lose mechanical stability
at the same threshold pressure p0, then we can use Eq. (14) modified into

p(z)− p0 = g

∫ z

z0

dz′ρ(z′). (36)

The solution for scaled variables is

eẑ−ẑ0 = e3(p̂−p̂0)
2 + ep̂0

[

1 +
√
1 + 4e−p̂0

]

2 + ep̂
[

1 +
√
1 + 4e−p̂

] . (37)

We arrive at the four high-pressure asymptotic profiles shown in Fig. 4 as the set of
curves drawn dashed at low ẑ and solid at large ẑ. The values ẑ0 and p̂0 are related
by the requirement that the pressure be continuous across the point of mechanical
instability. For the purpose of illustration we choose ẑ0 = 4, implying p̂0 ≃ 1.51,

This oversimplified model of mechanical instability predicts a kink in the pressure
profile and discontinuities in the other three profiles. In reality, the mechanical
instability of tiles 3 and 4 is a more complex phenomenon as will be discussed next.



Disks in a narrow channel jammed by gravity and centrifuge 11

0 2 4 6 8 10 12
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0.0

z`

p` -
z` �

2

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

z`

N
0 2 4 6 8 10 12

0.6

0.7

0.8

0.9

1.0

z`

Ρ�

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z`

S

Figure 4. Profiles of scaled pressure, scaled population density of particle tiles,
scaled mass density, and scaled entropy, versus scaled depth in the low-pressure
asymptotic regime (solid at ẑ < 4, dashed at ẑ > 4) and in the high-pressure
asymptotic regime (dashed at ẑ < 4, solid at ẑ > 4.

5.2. From low to high pressure

Tiles 3 and 4 have conditional mechanical stability. Only a fraction of such tiles that
are predicted by configurational statistics to be generated survive jamming. That
fraction becomes smaller with increasing pressure.

To describe the physics of this situation most economically we perform the first
two mergers (30) of particle tiles. This leads to two species 1̄ and 3̄ with specifications
A1̄ = N − 1, A3̄ = 0, g1̄1̄ = 2, g1̄3̄ = 1, g3̄1̄ = −1, and g3̄3̄ = 0. Tiles 1 and 2 are
represented by particles 1̄ and tiles 3 and 4 by particles 3̄.

The population densities of particles 1̄ and 3̄ created under local gravitational
pressure p̂,

N̄1̄(p̂) =
ep̂

(

1 + ep̂
)2 , N̄3̄(p̂) =

1
(

1 + ep̂
)2 , (38)

are independent of ω̂ because each disk experiences the same centrifugal force.
The ratio N̄3̄/N̄1̄ = e−p̂ tells us that particles 3̄ with precarious mechanical

stability are already created in lower proportions than the mechanically stable particles
1̄. That ratio is close to unity at low pressure (near the top) and becomes exponentially
small at high pressure (deep down). In fact, both population densities become small
at high pressure and the v-tiles become predominant.

In Appendix A.1 we present a model for the conditional mechanical stability of
particles 3̄. It predicts that of the N3̄ particles 3̄ generated at angular velocity ω̂ the
fraction that survives jamming under gravitational pressure p̂ is

Rω(p̂/ω̂
2) =

σ/d

σ/d+ p̂/ω̂2
. (39)
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The limits Rω(0) = 1 and Rω(∞) = 0 represent the physics in the low-pressure and
high-pressure asymptotic regimes, respectively.

The total population density of particles 1̄ and 3̄ at scaled gravitational pressure
p̂ and scaled angular velocity ω̂ that survive jamming thus becomes

N̄ (c)(p̂, ω̂)
.
= N̄1̄(p̂) +Rω(p̂/ω̂

2)N̄3̄(p̂) =
Rω(p̂/ω̂

2) + ep̂
(

1 + ep̂
)2 , (40)

which approaches (32) at low p̂/ω̂2 and (12) at high p̂/ω̂2 as required for consistency.
Relation (15) now holds for ẑ(p̂, ω̂) and N̄ (c)(p̂, ω̂).

The four profiles emerging from this more realistic model for the conditional
stability of particles 3̄, now depend on the parameter ω̂, which compares the centrifugal
energy of the disks in the spinning channel with the intensity Tk of random agitations
used in the jamming protocol. These profiles are shown in the four panels of Fig. 5. All
curves are smooth. The singularities predicted by the more primitive model (Fig. 4)
have disappeared.

The effects of centrifugal force on the disks in the spinning channel are manifest in
the deviations from the doted curve shown in each panel. Faster spinning stabilizes an
increasing number of particles 3̄. Hence N̄ is enhanced. Additional particles produce
more disorder, which, in turn, increases S̄. The same particles added, on the other
hand, suppress the mass density ρ at the location ẑ where they are placed and thus
reduce the pressure p̂ at any distance ẑ measured from the top.
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Figure 5. Profiles of scaled pressure, scaled population density of particle tiles,
scaled mass density, and scaled entropy, versus scaled depth for scaled angular
velocities ω̂ = ∞ (dashed line), ω̂ = 1, 0.2 (solid lines), and ω̂ = 0 (dotted line).



Disks in a narrow channel jammed by gravity and centrifuge 13

6. Centrifuge with gravity

Physically, scenario (iv) is an extension of scenario (ii). The axis of the channel is
horizontal again. Rotation produces centrifugal pressure. The plane of the channel is
now vertical with gravity pulling the disks toward the lower wall (see Fig. 1).

Mathematically, scenario (iv) is akin to scenario (iii) but more complex. Only one
of the five tiles is mechanically stable at all pressures. The strengths and limitations
of configurational statistics are most clearly brought to light in this scenario.

The four familiar profiles depend separately on p̂ and ĝ, not merely on their ratio.
Therefore, the results for light disks and heavy disks cannot be reduced to the same
universal curves via scaling. The attributes ‘light’ (ĝ ≪ 1) and ‘heavy’ (ĝ ≫ 1) are
gauged by the ratio of the work needed to lift one disk halfway across the channel in
units of the intensity of random agitations.

Tiles 2 are mechanically stable and tiles 4 unstable at any pressure. In
Appendix A.2 we show that tiles 3 are mechanically stable up to pressure p̂ = 1

3 ĝ.
At higher pressure they are only conditionally stable in the sense that only a fraction
of tiles 3 generated by random agitations survive. Conversely, tiles v are unstable at
p̂ ≤ 1

3 ĝ and conditionally stable at p̂ > 1
3 ĝ. Tiles 1, by contrast, remain unstable up

to the higher threshold pressure, p̂ = 2
3 ĝ, and then become conditionally stable.

For a proper understanding of the physics in this scenario, it is important that
we distinguish the balancing of potential energies and the balancing of forces. We first
discuss the former, then add the latter to the analysis.

6.1. Competing potential energies

We begin by assuming that all five tiles are mechanically stable at any pressure,
meaning that any tile that is generated by random agitations under centrifugal
pressure p̂(r̂) remains in place when the agitations stop abruptly. In Eqs. (7) the
exponents on the left are

Km = p̂(r̂)± ĝ, (41)

where the plus (minus) sign applies to m = 1, 4 (2, 3). Their physical solution becomes

w1 = w4 = eĝ
[

√

sinh2 ĝ + e2p̂ + sinh ĝ

]

,

w2 = w3 = e−ĝ

[
√

sinh2 ĝ + e2p̂ − sinh ĝ

]

, (42)

The tile population densities inferred from (6) are

N̄1 = w1N̄4 =
w1w2

(1 + w1)(w1 + w2 + 2w1w2)
,

N̄2 = w2N̄3 =
w1w2

(1 + w2)(w1 + w2 + 2w1w2)
,

N̄v
.
= 1−

4
∑

m=1

N̄m =
2w1w2

w1 + w2 + 2w1w2
. (43)

In Fig. 6 we show these population densities plotted versus p̂/ĝ for disks of two
different (intermediate) weights. What strikes the eye is the extent to which the results
of configurational statistics already reflect the precarious mechanical stability of four
of the five tiles.
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Tiles 4, which are mechanically unstable at any pressure, are hardly present (less
than one in a thousand). Tiles 1, which are unstable at p̂/ĝ < 2/3, are represented
by less than half a percent in that pressure range. At higher pressure, where their
stability becomes conditional, their representation remains below one percent.

Tiles v dominate at high pressure but their population density dips down by a
factor of ten at low pressure, where they become unstable. Tiles 3 with complementary
stability attributes, dominate at low pressure and virtually disappear at high pressure.

When we increase the weight of the disks by a moderate amount (from ĝ = 1.5
to ĝ = 2) the population densities of tiles 1 and 4 experience another significant drop
whereas those of tiles v and 3 reflect their complementary abundance and scarcity in
sharper relief. The conversion between tiles v and 3 is predicted by configurational
statistics to take place at p̂/ĝ = 1 when the scaled compression work p̂ is balanced by
the scaled gravitational work ĝ.

6.2. Competing forces

The mechanical instability involving tiles v and 3 produces a singularity at p̂/ĝ = 1
3 .

Below that threshold value all tiles v spontaneously collapse into tiles 3 due to
insufficient centrifugal pressure. This instability is not reflected in the results of Fig. 6.

The competing potential energies come into play while the system is undergoing
random agitations and the competing forces that cause mechanical instabilities when
the agitations stop and the system is jammed. Configurational statistics naturally
accounts for the former. The latter must be imposed in an ad-hoc fashion.

In the current context we proceed by dropping tiles tiles 1 and 4 from
consideration, knowing that they are ignorable for ĝ = 1.5 or higher. In Appendix A.2
we have determined that at p̂/ĝ ≤ 1

3 only tiles 3 exist and have estimated that at
p̂/ĝ > 1

3 only a fraction,

Rg(p̂/ĝ) =
σ/2d

√

1 +
(

4d
σ

p̂
ĝ

)2
. (44)

of tiles 3 that are generated survive jamming by centrifugal pressure.
For the population density of tiles 3, corrected to account for their conditional
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Figure 6. Tile population densities (43) for ĝ = 1.5 (solid) and ĝ = 2 (dashed).
Note the different vertical scales left and right.
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mechanical stability, we thus write

N̄
(c)
3 (p̂, ĝ) =







1, p̂ ≤ 1
3 ĝ

Rg(p̂/ĝ)
N̄3(p̂, ĝ)

N̄3(ĝ/3, ĝ)
, p̂ > 1

3 ĝ
, (45)

where N̄3(p̂, ĝ) comes from (43).
This expression takes into account that configurational statistics underestimates

the number of tiles 3 near the mechanical instability. The correction has the
consequence that the number of tiles 3 are overestimated by the same factor at high p̂,
where configurational statistics is more accurate. The side effect is negligible because
the number of tiles 3 decreases rapidly as p̂ increases from the point of instability.

Contrary to what configurational statistics predicts (see Fig. 6), there are no
tiles v and 2 at p̂/ĝ ≤ 1

3 . As the centrifugal pressure decreases toward the point of
mechanical instability, p̂/ĝ = 1

3 , tiles v collapse into tiles 3 and convert 2 into tiles 3
in the process. That conversion is best captured in the following corrected population
density of tiles 2:

N
(c)
2 (p̂, ĝ) = [1−N

(c)
3 (p̂, ĝ)]N2(p̂, ĝ). (46)

The corrected population densities of tiles v is then the complement,

N (c)
v (p̂, ĝ) = 1−N

(c)
2 (p̂, ĝ)−N

(c)
3 (p̂, ĝ). (47)

By avoiding any direct manipulation of Nv(p̂, ĝ) we minimize the effects at high
pressure of our approximate accounting for the mechanical instability. In Fig. 7
we show the three population densities corrected for the presence of the mechanical
instability in comparison with their uncorrected counterparts for two values of ĝ.
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Figure 7. Population densities of tiles v, 2, and 3 versus p̂/ĝ for ĝ = 1.5 (left)
and ĝ = 3 (right). The dashed lines represent the results (43). The solid lines
account for the mechanical instability at p̂/ĝ = 1

3
via the results (45)-(47).

We see that the effects of the mechanical instability do indeed have no significant
impact at high pressure as should be the case. We also discern parallel trends (most
clearly for ĝ = 3) produced by the competing potential energies at p̂/ĝ = 1 in the
uncorrected results and the competing forces at p̂/ĝ = 1

3 in the corrected results.
For the calculation of the four profiles we must use relation (27) now relating

r̂(p̂, ĝ) to N̄(p̂, ĝ), where N̄(p̂, ĝ) is the sum of all four population densities in the

uncorrected results and the sum of N
(c)
2 (p̂, ĝ) and N

(c)
3 (p̂, ĝ) in the results corrected

for the mechanical instability.
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Figure 8. Profiles of scaled pressure, scaled population density of particle tiles,
scaled mass density, and scaled entropy, versus scaled radius in scenario (iv) with
ĝ = 2. The dashed lines represent the results that account only for statistical
instabilities. The solid lines also account for the mechanical instability at p̂/ĝ = 1

3
.

In Fig. 8 we show these four profiles for the case ĝ = 2. The dashed curves
highlight the effect of competing potential energies at p̂/ĝ = 1, whereas the solid curves
also include the effects of the competing forces (mechanical instability) at p̂/ĝ = 1

3 .

7. Conclusion

External fields produce characteristic profiles for local pressure, mass density, entropy
density, and other properties of granular matter. These profiles may vary sufficiently
slowly to be ignorable under many circumstances, but they are real. Our study
suggests that these profiles are generated in two stages.

(i) While the random agitations are in operation, configurations of granular
particles are being weighted, in a first selection process, according to competing
potential energies due to contact forces and external forces.

(ii) When the random agitations stop and a jammed microstate is frozen out, a
second selection process eliminates configurations that are mechanically unstable.

The evidence for these profiles resulting from a two-stage jamming process
pertains, admittedly, to an idealized system of disks confined to a narrow channel
subjected to gravity or centrifuge or both. However, the scouting for clues to a
deeper understanding of multifaceted processes in complex systems via studies of
idealized scenarios that can be analyzed with some rigor is an accepted practice with
documented success in granular matter studies [20, 21, 22, 23, 24, 25] and elsewhere.

Finally, we wish to comment on a series of theoretical studies by Luck and Mehta
[26-30] that investigate columns of grains in jammed configurations with trapped void
spaces. The methodology is quite different from ours, based on a stochastic process
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for transitions between discrete states of individual grains with different degrees of
ordering. The model transition rates depend on three parameters: (i) the intensity of
vibrations akin to our Tk, assumed uniform as in our study; (ii) a scaled activation
energy, akin to our p̂, that grows with depth and slows down transitions with increasing
depth; (iii) a local ordering field that controls the presence of trapped voids at given
depth. In our approach, this last task is assumed by the statistically interacting tiles
with activation energies that depend on depth. It will be interesting to compare the
results of the two approaches once our methodology has been extended to include the
kinetics of transitions between different tile configurations.

Appendix A. Mechanical instabilities

Here we examine the statistical effects of mechanical instabilities of tiles under
conditions realized in two scenarios.

Appendix A.1. Scenario (iii)

Two disks touching the same wall, held in place by disks touching the opposite wall,
represent a tile 1̄. It has unconditional mechanical stability. A configuration with
three or more disks touching the same wall involves at least one tile 3̄. Its mechanical
stability depends on the strength of the centrifugal force at given local gravitational
pressure.

Configurational statistics predicts expressions (38) for the population densities
of tiles 1̄ and 3̄ under the assumption that the mechanical stability of all tiles is
unconditional. These tiles are generated by random agitations of given intensity.

For an estimate of the fraction Rω of tiles 3̄ that survive jamming, we consider the
configuration depicted on the left of Fig. A1. Tiles 3̄ have a chance to be generated if
three consecutive disks are positioned on the same side of the channel with the middle
one closer to the center (dot-dashed line).

The stabilizing centrifugal force depends on the distance of the middle disk from
the central axis. The destabilizing force depends on the local pressure and the relative
horizontal position of the middle disk to its two neighbors. The additional assumption
that both outer disks touch the wall has only a mild impact on the estimate but
simplifies the calculation significantly.

The stabilizing and destabilizing forces are in balance if the middle disk is at
position

c =
p̂

ω̂2
d tanφc ≃

p̂

ω̂2
d sinφc, (A.1)

where we take into account that the angle φc is small.
The fraction of three-disk configurations shown that lead to tiles 3̄ under jamming

is then estimated to be

Rω =
d− c

d
, (A.2)

which, in conjunction with (A.1), exhibits the following dependence on the stabilizing
agent ω̂ and the destabilizing agent p̂:

Rω(p̂/ω̂
2) =

σ/d

σ/d+ p̂/ω̂2
. (A.3)

This function, plotted in Fig. A1, is used in the analysis of Sec. 5.2.
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.
= µω2c balancing the destabilizing contact forces p(z)/ cosφc (left). Fraction

Rω of tiles 3̄ predicted to be mechanically stable as a function of p̂/ω̂2 (right).

Appendix A.2. Scenario (iv)

Two disks touching the bottom wall, held in place by disks touching the top wall,
represent a tile 2. It has unconditional mechanical stability. A configuration with three
or more disks touching the bottom wall contains at least one tile 3. Its mechanical
stability depends on the strength of the local centrifugal pressure in relation to the
weight of the disk.

Configurational statistics predicts population densities (43) under the assumption
that the mechanical stability of all tiles is unconditional. Here we estimate the fraction
Rg of tiles 3 that survive jamming by centrifugal pressure.

We consider the configuration depicted on the left of Fig. A2. Tiles 3 have a
chance to be generated if three consecutive disks are positioned near the bottom of
the channel with the middle one furthest from the wall before jamming begins. The
effectiveness of the stabilizing weight of the middle disk depends on the local pressure
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Figure A2. Three-disk configuration with the stabilizing gravitational force
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.
= µg in balancing the destabilizing contact forces p(r)/ cosφc (left). Fraction

Rg of tiles 3 predicted to be mechanically stable as a function of p̂/ĝ (right).



Disks in a narrow channel jammed by gravity and centrifuge 19

and the relative vertical position of the middle disk relative to its two neighbors. As
before we argue that the impact of additional assumptions is ignorable.

The stabilizing and destabilizing forces are in balance if the middle disk is at
position c, implying

cotφc =
4d

σ

p̂

ĝ
. (A.4)

The parameter p̂/ĝ varies along the channel in a controlled way. The fraction of
three-disk configurations shown that lead to tiles 3 under jamming is

Rg =
2d− c

2d
, (A.5)

from which we infer the function

Rg(p̂/ĝ) =
σ/2d

√

1 + (4dp̂/σĝ)2
. (A.6)

The ratio levels off in a cusp at p̂/ĝ = 1
3 when it reaches unity as shown in Fig. A2.
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