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We investigate the global dynamics of several anticompetitive systems of rational difference equations which are special cases of
general linear fractional system of the forms 𝑥

𝑛+1
= (𝛼
1
+ 𝛽
1
𝑥
𝑛
+ 𝛾
1
𝑦
𝑛
)/(𝐴
1
+ 𝐵
1
𝑥
𝑛
+ 𝐶
1
𝑦
𝑛
), 𝑦
𝑛+1

= (𝛼
2
+ 𝛽
2
𝑥
𝑛
+ 𝛾
2
𝑦
𝑛
)/(𝐴
2
+

𝐵
2
𝑥
𝑛
+ 𝐶
2
𝑦
𝑛
), 𝑛 = 0, 1, ..., where all parameters and the initial conditions 𝑥

0
, 𝑦
0
are arbitrary nonnegative numbers, such that both

denominators are positive. We find the basins of attraction of all attractors of these systems.

1. Introduction

A first order system of difference equations:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑦
𝑛
) , 𝑦

𝑛+1
= 𝑔 (𝑥

𝑛
, 𝑦
𝑛
) ,

𝑛 = 0, 1, . . . , (𝑥
0
, 𝑦
0
) ∈ R,

(1)

where R ⊂ R2, (𝑓, 𝑔) : R → R, 𝑓, 𝑔 are continuous
functions, is competitive if 𝑓(𝑥, 𝑦) is nondecreasing in 𝑥 and
nonincreasing in 𝑦, and 𝑔(𝑥, 𝑦) is nonincreasing in 𝑥 and
nondecreasing in 𝑦.

System (1) where the functions 𝑓 and 𝑔 have monotonic
character opposite the monotonic character in competitive
system is called anticompetitive; see [1, 2].

In this paper, we consider the following anticompetitive
systems of difference equations:

𝑥
𝑛+1

=

𝛾
1
𝑦
𝑛

𝐵
1
𝑥
𝑛
+ 𝑦
𝑛

, 𝑦
𝑛+1

=

𝛽
2
𝑥
𝑛

𝐵
2
𝑥
𝑛
+ 𝑦
𝑛

, 𝑛 = 0, 1, . . . ,

(2)

where all parameters are positive numbers and the initial
conditions (𝑥

0
, 𝑦
0
) are arbitrary nonnegative numbers such

that 𝑥
0
+ 𝑦
0
> 0. In the classification of all linear fractional

systems in [3], System (2) was mentioned as system (18, 18).
We also consider systems

𝑥
𝑛+1

=

𝛾
1
𝑦
𝑛

𝐵
1
𝑥
𝑛
+ 𝑦
𝑛

, 𝑦
𝑛+1

=

𝛼
2
+ 𝛽
2
𝑥
𝑛

𝑦
𝑛

, 𝑛 = 0, 1, . . . ,

(3)

𝑥
𝑛+1

=

𝛾
1
𝑦
𝑛

𝐴
1
+ 𝑥
𝑛

, 𝑦
𝑛+1

=

𝛼
2
+ 𝛽
2
𝑥
𝑛

𝑦
𝑛

, 𝑛 = 0, 1, . . . ,

(4)

with 𝑥
0

> 0, 𝑦
0

> 0, which were labeled as systems
(18, 23) and (16, 23), respectively, in [3]. Three systems have
interesting and different dynamics. While System (2) has all
bounded solutions, most of solutions of Systems (3) and (4)
are unbounded. Another major difference is the existence
of the unique period-two solution for (2) and, in a special
case, the abundance of such solutions, while neither (3) nor
(4) has period-two solutions. We show that every solution
of System (3) converges to the unique equilibrium or is
approaching (0,∞) and so System (3) gives an example of
a semistable equilibrium point. Finally, we show that all
solutions of (4) which start on the stable set converge to the
unique equilibrium, while all solutions which start off the
stable set are approaching (0,∞) or (∞, 0). We also get that
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for some special values of parameters, Systems (4) and (3) can
be decoupled and explicitly solved.

Competitive systems of the form (1) were studied bymany
authors such as Clark and Kulenović [4], Hess [5], Hirsch
and Smith [6], Kulenović and Merino [7], Kulenović and
Nurkanović [8], Garić-Demirović et al. [9, 10], and Smith
[11, 12]. Precise results about the basins of attraction of the
equilibrium points have been obtained in [13].

The study of anticompetitive systems started in [1] and
has advanced since then; see [2]. The principal tool of
study of anticompetitive systems is the fact that the second
iterate of the map associated with anticompetitive system
is competitive map and so elaborate theory for such maps
developed recently in [6, 14, 15] can be applied.

The major result on a global behavior of System (2) is the
following theorem.

Theorem 1. (a) Assume that𝐵
1
< 𝐵
2
.Then the unique positive

equilibrium point𝐸(𝑥, 𝑦) of System (2) is locally asymptotically
stable with the basin of attractionB(𝐸) = (0,∞)

2. The unique
period-two solution {𝑃

1
, 𝑃
2
} = {(𝛾

1
, 0), (0, 𝛽

2
/𝐵
2
)} is a saddle

point and its basin of attraction is the union of coordinate axes
without the origin, that is, B({𝑃

1
, 𝑃
2
}) = ((𝑥, 0) | 𝑥 > 0) ∪

(0, 𝑦) | 𝑦 > 0).
(b) Assume that 𝐵

1
> 𝐵

2
. Then every solution of

System (2) converges to the period-two solution {𝑃
1
, 𝑃
2
} or

to the equilibrium 𝐸. More precisely, there exists a set C =

{(𝑥, (𝑦/𝑥)𝑥) : 𝑥 > 0} ⊂ R = (0,∞)
2 which is the basin of

attraction of 𝐸. The setC has the property that for

W
−
:= {𝑥 ∈ R \C : ∃𝑦 ∈ C 𝑤𝑖𝑡ℎ 𝑥 ⪯se 𝑦}

= {(𝑥, 𝑦) : 𝑦 >

𝑦

𝑥

𝑥 ≥ 0} ,

W
+
:= {𝑥 ∈ R \C : ∃𝑦 ∈ C 𝑤𝑖𝑡ℎ 𝑦 ⪯se 𝑥}

= {(𝑥, 𝑦) : 0 ≤ 𝑦 <

𝑦

𝑥

𝑥} ,

(5)

the following holds.
(i) If (𝑥

0
, 𝑦
0
) ∈ W

+
, then

lim
𝑛→∞

(𝑥
2𝑛
, 𝑦
2𝑛
) = 𝑃
1
, lim

𝑛→∞

(𝑥
2𝑛+1

, 𝑦
2𝑛+1

) = 𝑃
2
. (6)

(ii) If (𝑥
0
, 𝑦
0
) ∈ W

−
,

lim
𝑛→∞

(𝑥
2𝑛
, 𝑦
2𝑛
) = 𝑃
2
, lim

𝑛→∞

(𝑥
2𝑛+1

, 𝑦
2𝑛+1

) = 𝑃
1
. (7)

(c) Assume that 𝐵
1
= 𝐵
2
. Then every solution of System

(2) is equal to either the period-two solution {𝐵
1
𝑦
0
/(𝐵
1
𝑥
0
+

𝑦
0
), 𝛽
2
𝑥
0
/(𝐵
1
𝑥
0
+ 𝑦
0
)}, {𝐵
1
𝐷𝑥
0
/(𝐵
1
𝑦
0
+ 𝐷𝑥
0
), 𝛽
2
𝑦
0
/(𝐵
1
𝑦
0
+

𝐷𝑥
0
)} or to the equilibrium 𝐸(𝑥, 𝑦), where 𝐷 = 𝛽

2
/𝛾
1
and

𝑥 = √𝛽
2
𝛾
1
/(𝐵
1
+ 1).

2. Preliminaries

We now give some basic notions about competitive systems
and maps in the plane of the form (1), where 𝑓 and 𝑔

are continuous functions, 𝑓(𝑥, 𝑦) is nondecreasing in 𝑥

and nonincreasing in 𝑦, and 𝑔(𝑥, 𝑦) is nonincreasing in 𝑥

and nondecreasing in 𝑦 in some domain 𝐴 with nonempty
interior.

Consider a map 𝑇 = (𝑓, 𝑔) on a set R ⊂ R2, and let
𝐸 ∈ R.The point𝐸 ∈ R is called a fixed point if𝑇(𝐸) = 𝐸. An
isolated fixed point is a fixed point that has a neighborhood
with no other fixed points in it. A fixed point 𝐸 ∈ R is
an attractor if there exists a neighborhood U of 𝐸 such that
𝑇
𝑛

(x) → 𝐸 as 𝑛 → ∞ for x ∈ U; the basin of attraction
is the set of all x ∈ R such that 𝑇𝑛(x) → 𝐸 as 𝑛 → ∞.
A fixed point 𝐸 is a global attractor on a set K if 𝐸 is an
attractor and K is a subset of the basin of attraction of 𝐸. If
𝑇 is differentiable at a fixed point 𝐸 and if the Jacobian 𝐽

𝑇
(𝐸)

has one eigenvalue with modulus less than one and a second
eigenvalue with modulus greater than one, 𝐸 is said to be a
saddle. See [16] for additional definitions.

Definition 2. Let 𝑇 = (𝑓, 𝑔) be a continuously differentiable
vector function and let𝑈 be a neighborhood of a saddle point
(𝑥, 𝑦) of (1). The local stable manifoldW𝑠loc is the set

W
𝑠

loc ((𝑥, 𝑦)) = { (𝑥, 𝑦) : 𝑇
𝑛

(𝑥, 𝑦) ∈ 𝑈 (∀𝑛 ≥ 0)

∧ lim
𝑛→∞

𝑇
𝑛

(𝑥, 𝑦) = (𝑥, 𝑦)} .

(8)

The global stable manifold𝑊𝑠 of a saddle point (𝑥, 𝑦) is the
set

W
𝑠

((𝑥, 𝑦)) = {(𝑥, 𝑦) : lim
𝑛→∞

𝑇
𝑛

(𝑥, 𝑦) = (𝑥, 𝑦)} . (9)

The map 𝑇 may be viewed as a monotone map if we
define a partial order on R2 so that the positive cone in
this new partial order is the fourth (resp. first) quadrant.
Define a south-east (resp. north-east) partial order ⪯se (resp.
⪯ne) on R2 so that the positive cone is the fourth quad-
rant (resp. first quadrant), that is, (𝑥1, 𝑦1) ⪯se (𝑥

2

, 𝑦
2

) (resp.
(𝑥
1

, 𝑦
1

) ⪯ne (𝑥
2

, 𝑦
2

)) if and only if 𝑥1 ≤ 𝑥2 and 𝑦1 ≥ 𝑦2 (resp.
𝑥
1

≤ 𝑥
2 and 𝑦

1

≤ 𝑦
2). For 𝑥,𝑦 ∈ R2 the order interval

⟦𝑥,𝑦⟧ is the set of all 𝑧 such that 𝑥 ⪯ 𝑧 ⪯ 𝑦. The map 𝑇
is called competitive (resp. cooperative) on a set 𝑆 if v⪯sew
(resp. v⪯new) implies 𝑇(v) ⪯se 𝑇(w) (resp. 𝑇(v) ⪯ne 𝑇(w)).

Two points v,w ∈ R2
+
are said to be related if v ⪯ w

or w ⪯ v. Also, a strict inequality between points may be
defined as v ≺ w if v ⪯ w and v ̸=w. A stronger inequality
may be defined as v ≺≺ w if V

1
< 𝑤
1
and 𝑤

2
< V
2
. A map

𝑓 : IntR2
+
→ IntR2

+
is strongly monotone if v ≺ w implies

that 𝑓(v) ≺≺ 𝑓(w) for all v,w ∈ IntR2
+
. Clearly, being related

is invariant under the iteration of a strongly monotone map.
Differentiable strongly monotone maps have Jacobian with
constant sign configuration

[

+ −

− +
] . (10)

Themean value theorem and the convexity ofR2
+
may be used

to show that 𝑇 is monotone, as in [17].
For x = (𝑥

1
, 𝑥
2
) ∈ R2, define 𝑄

𝑙
(x) for 𝑙 = 1, . . . , 4

to be the usual four quadrants based at x and numbered in
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a counterclockwise direction, for example, 𝑄
1
(x) = {y =

(𝑦
1
, 𝑦
2
) ∈ R2 : 𝑥

1
≤ 𝑦
1
, 𝑥
2
≤ 𝑦
2
}. We now state three results

for competitive maps in the plane.
The following definition is from [11].

Definition 3. Let S be a nonempty subset of R2. A competi-
tive map 𝑇 : S → S is said to satisfy condition (𝑂+) if for
every 𝑥, 𝑦 in S, 𝑇(𝑥) ⪯ne 𝑇(𝑦) implies 𝑥⪯ne𝑦, and 𝑇 is said
to satisfy condition (𝑂−) if for every 𝑥, 𝑦 inS, 𝑇(𝑥) ⪯ne 𝑇(𝑦)
implies 𝑦⪯ne 𝑥.

The following theorem was proved by de Mottoni-
Schiaffino for the Poincaré map of a periodic competitive
Lotka-Volterra system of differential equations. Smith gener-
alized the proof to competitive and cooperative maps [11, 12].

Theorem 4. Let S be a nonempty subset of R2. If 𝑇 is a
competitive map for which (𝑂+) holds, then for all 𝑥 ∈ S,
{𝑇
𝑛

(𝑥)} is eventually componentwise monotone. If the orbit of
𝑥 has compact closure, then it converges to a fixed point of 𝑇.
If instead (𝑂−) holds, then for all 𝑥 ∈ S, {𝑇2𝑛} is eventually
componentwise monotone. If the orbit of 𝑥 has compact closure
in S, then its omega limit set is either a period-two orbit or a
fixed point.

The following result is from [11], with the domain of the
map specialized to be the cartesian product of intervals of real
numbers. It gives a sufficient condition for conditions (𝑂+)
and (𝑂−).

Theorem 5. Let R ⊂ R2 be the cartesian product of two
intervals in R. Let 𝑇 : R → R be a 𝐶1 competitive map.
If 𝑇 is injective and det 𝐽

𝑇
(𝑥) > 0 for all 𝑥 ∈ R, then 𝑇 satisfies

(𝑂+). If 𝑇 is injective and det 𝐽
𝑇
(𝑥) < 0 for all 𝑥 ∈ R, then 𝑇

satisfies (𝑂−).

The following result is a direct consequence of the
Trichotomy Theorem of Dancer and Hess, see [5, 15, 18],
and is helpful for determining the basins of attraction of the
equilibrium points.

Corollary 6. If the nonnegative cone with respect to the partial
order ⪯ is a generalized quadrant in R2 and if the competitive
map 𝑇 :→ R2 has no fixed points in ⟦𝑢

1
, 𝑢
2
⟧ other than 𝑢

1

and 𝑢
2
, then the interior of ⟦𝑢

1
, 𝑢
2
⟧ is either a subset of the

basin of attraction of 𝑢
1
or a subset of the basin of attraction of

𝑢
2
.

The next two results are from [15, 18].

Theorem 7. Let 𝑇 be a competitive map on a rectangular
region R ⊂ R2. Let x ∈ R be a fixed point of 𝑇 such that
Δ := R∩ int(𝑄

1
(x) ∪𝑄

3
(x)) is nonempty (i.e., x is not the NW

or SE vertex ofR), and 𝑇 is strongly competitive on Δ. Suppose
that the following statements are true.

(a) The map 𝑇 has a 𝐶1 extension to a neighborhood of x.

(b) The Jacobian matrix of 𝑇 at x has real eigenvalues 𝜆,
𝜇 such that 0 < |𝜆| < 𝜇, where |𝜆| < 1, and the

eigenspace 𝐸𝜆 associated with 𝜆 is not a coordinate
axis.

Then there exists a curveC ⊂ R through x that is invariant
and a subset of the basin of attraction of x, such that C is
tangential to the eigenspace 𝐸𝜆 at x, and C is the graph of a
strictly increasing continuous function of the first coordinate on
an interval. Any endpoints of C in the interior ofR are either
fixed points or minimal period-two points. In the latter case,
the set of endpoints ofC is a minimal period-two orbit of 𝑇.

Theorem8. LetI
1
,I
2
be intervals inRwith endpoints 𝑎

1
, 𝑎
2

and 𝑏
1
, 𝑏
2
with endpoints, respectively, with 𝑎

1
< 𝑎
2
and 𝑏
1
< 𝑏
2
,

where −∞ ≤ 𝑎
1
< 𝑎
2
≤ ∞ and −∞ ≤ 𝑏

1
< 𝑏
2
≤ ∞. Let 𝑇 be a

competitive map on a rectangleR = I
1
×I
2
and 𝑥 ∈ int(R).

Suppose that the following hypotheses are satisfied.

(1) 𝑇(int(R)) ⊂ int(R) and 𝑇 is strongly competitive on
int(R).

(2) The point x is the only fixed point of 𝑇 in (𝑄
1
(x) ∪

𝑄
3
(x)) ∩ int(R).

(3) Themap 𝑇 is continuously differentiable in a neighbor-
hood of x, and x is the saddle point.

(4) At least one of the following statements is true.

(a) 𝑇 has no minimal period-two orbits in (𝑄
1
(x) ∪

𝑄
3
(x)) ∩ int(R).

(b) det 𝐽
𝑇
(x) > 0 and 𝑇(x) = x only for x = x.

Then the following statements are true.

(i) The stable manifold W𝑠(x) is connected and it is the
graph of a continuous increasing curve with endpoints
in 𝜕R. int(R) is divided by the closure of W𝑠(x) into
two invariant connected regionsW

+
(“below the stable

set”), andW
−
(“above the stable set”), where

W
+
:= {x ∈ R \W

𝑠

(x) : ∃x ∈ W
𝑠

(x) with x ⪯se x


} ,

W
−
:= {x ∈ R \W

𝑠

(x) : ∃x ∈ W
𝑠

(x) with x ⪯se x} .
(11)

(ii) The unstable manifoldW𝑢(x) is connected and it is the
graph of a continuous decreasing curve.

(iii) For every x ∈ W
+
, 𝑇𝑛(x) eventually enters the interior

of the invariant set 𝑄
4
(x) ∩R, and for every x ∈ W

−
,

𝑇
𝑛

(x) eventually enters the interior of the invariant set
𝑄
2
(x) ∩R.

(iv) Let m ∈ 𝑄
2
(x) and M ∈ 𝑄

4
(x) be the endpoints of

W𝑢(x), where m⪯se x ⪯se M. For every x ∈ W
−
and

every z ∈ R such that m⪯se 𝑧, there exists 𝑚 ∈ N

such that 𝑇𝑚(x) ⪯se 𝑧, and for every x ∈ W
+
and every

z ∈ R such that z⪯se M, there exists 𝑚 ∈ N such that
M⪯se 𝑇

𝑚

(x).
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Case (a) Case (b)

𝑃2

𝑃1

𝐸

𝑊𝑢(𝐸)

𝑃2

𝑃1

𝐸

𝑊𝑠(𝐸)

𝑊𝑢(𝐸)

Figure 1: Global dynamics of System (2).

3. Global Dynamics of System (2)
(See Figure 1)

The equilibrium point 𝐸(𝑥, 𝑦) of System (2) satisfies the
following system of equations:

𝑥 =

𝛾
1
𝑦

𝐵
1
𝑥 + 𝑦

, 𝑦 =

𝛽
2
𝑥

𝐵
2
𝑥 + 𝑦

. (12)

It is easy to see that System (12) has unique equilibrium
point 𝐸 in the first quadrant, for all values of the parameters.
Indeed, the positive equilibriumpoint is an intersection of the
following two curves:

𝑦 =

𝐵
1
𝑥
2

𝛾
1
− 𝑥

, (13)

𝑥 =

𝑦
2

𝛽
2
− 𝐵
2
𝑦

. (14)

It is clear that at the point of intersection 𝐸 curve (13) is
steeper than curve (14), that is,

𝑑𝑦

𝑑𝑥








(13)

(𝐸) >

𝑑𝑦

𝑑𝑥








(14)

(𝐸) , (15)

which gives

𝐵
1
𝑥 (2𝛾
1
− 𝑥)

(𝛾
1
− 𝑥)
2

>

(𝛽
2
− 𝐵
2
𝑦)
2

𝑦 (2𝛽
2
− 𝐵
2
𝑦)

. (16)

This inequality is equivalent to the following inequality:

(𝛽
2
+

𝑦
2

𝑥

)(𝛾
1
+ 𝐵
1

𝑥
2

𝑦

) > 𝐵
1
𝑥𝑦, (17)

which is always satisfied.

3.1. Linearized Stability Analysis of System (2). In this section
we present the linearized stability analysis of the equilibrium
𝐸 of System (2).

Theorem 9. (i) If 𝐵
1
< 𝐵
2
, then 𝐸 is locally asymptotically

stable.
(ii) If 𝐵

1
= 𝐵
2
, then 𝐸 is a nonhyperbolic equilibrium point.

(iii) If 𝐵
1
> 𝐵
2
, then 𝐸 is a saddle point.

Proof. Themap 𝑇 associated to System (2) is

𝑇 (𝑥, 𝑦) = (

𝑓 (𝑥, 𝑦)

𝑔 (𝑥, 𝑦)
) = (

𝛾
1
𝑦

𝐵
1
𝑥 + 𝑦

𝛽
2
𝑥

𝐵
2
𝑥 + 𝑦

) . (18)

The Jacobian matrix of map (18) is

𝐽
𝑇
(𝑥, 𝑦) = (

−

𝐵
1
𝛾
1
𝑦

(𝐵
1
𝑥 + 𝑦)

2

𝐵
1
𝛾
1
𝑥

(𝐵
1
𝑥 + 𝑦)

2

𝛽
2
𝑦

(𝐵
2
𝑥 + 𝑦)

2
−

𝛽
2
𝑥

(𝐵
2
𝑥 + 𝑦)

2

), (19)

and evaluated at the equilibrium point 𝐸 = (𝑥, 𝑦) is

𝐽
𝑇
(𝑥, 𝑦) = (

−

𝐵
1

𝛾
1

𝑥
2

𝑦

𝐵
1

𝛾
1

𝑥
3

𝑦
2

𝑦
3

𝛽
2
𝑥
2

−

𝑦
2

𝛽
2
𝑥

). (20)

The characteristic equation has the following form:

𝜆
2

+ (

𝐵
1

𝛾
1

𝑥
2

𝑦

+

1

𝛽
2

𝑦
2

𝑥

)𝜆 = 0, (21)

and the characteristic roots are

𝜆
1
= 0, 𝜆

2
= −

𝐵
1

𝛾
1

𝑥
2

𝑦

−

1

𝛽
2

𝑦
2

𝑥

. (22)
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A straightforward calculation shows that the conditions 𝜆
2
∈

(−1, 0), 𝜆
2
= −1, and 𝜆

2
∈ (−∞, −1), respectively, are

equivalent to the conditions

(

𝑥

𝑦

)

2

<

𝛽
2

𝛾
1

, (

𝑥

𝑦

)

2

=

𝛽
2

𝛾
1

, (

𝑥

𝑦

)

2

>

𝛽
2

𝛾
1

. (23)

On the other hand, by dividing two equilibrium equations
(12) we obtain

(

𝑥

𝑦

)

2

=

𝛽
2

𝛾
1

𝐵
1
𝑥 + 𝑦

𝐵
2
𝑥 + 𝑦

, (24)

which implies that the condition (23) is equivalent to the
conditions

𝐵
1
< 𝐵
2
, 𝐵

1
= 𝐵
2
, 𝐵

1
> 𝐵
2
, (25)

which completes the proof of the theorem.

3.2. Global Results for System (2). In this section we present
the proof ofTheorem 1 on the global dynamics of System (2).

First, we prove the following result on existence and local
behavior of the period-two solutions.

Lemma 10. System (2) has the minimal period-two solution

{𝑃
1
, 𝑃
2
} = {(𝛾

1
, 0) , (0,

𝛽
2

𝐵
2

)} (26)

for all values of parameters. If 𝐵
1
̸= 𝐵
2
, then the solution (26)

is the unique period-two solution and when 𝐵
1
= 𝐵
2
there are

infinitely many period-two solutions. The set

B = {(𝑥, 𝑦) | 𝑥 > 0, 𝑦 = 0 or 𝑥 = 0, 𝑦 > 0} (27)

is a subset of the basin of attraction of the solution (26). The
period-two solution (26) is locally stable if 𝐵

1
> 𝐵
2
and a

saddle point if 𝐵
1
< 𝐵
2
. Finally the period-two solution (26)

is nonhyperbolic if 𝐵
1
= 𝐵
2
.

Proof. The second iterate of the map 𝑇 is given as

𝑇
2

(𝑥, 𝑦) = [𝑥𝛽2
𝛾
1

𝑦 + 𝑥𝐵
1

𝑥𝑦𝛽
2
+ 𝑥
2
𝛽
2
𝐵
1
+ 𝑦
2
𝛾
1
𝐵
1
+ 𝑥𝑦𝛾

1
𝐵
1
𝐵
2

𝑦𝛽
2
𝛾
1

𝑦 + 𝑥𝐵
2

𝛽
2
𝐵
1
𝑥
2
+ 𝛾
1
𝑥𝑦𝐵
2

2
+ 𝛽
2
𝑥𝑦 + 𝛾

1
𝑦
2
𝐵
2

] . (28)

A period-two solution of System (2) satisfies 𝑇2(𝑥, 𝑦) =

(𝑥, 𝑦), which immediately leads to the following equations:

(𝐵
2
− 𝐵
1
) (𝛽
2
𝛾
1
𝑥 − 𝐵
2
𝛾
1
𝑥𝑦 − 𝛾

1
𝑦
2

) = 0, (29)

(𝐵
2
− 𝐵
1
) (𝛽
2
𝛾
1
𝑦 − 𝐵
2
𝑥𝑦 − 𝛾

1
𝐵
1
𝑥
2

) = 0, (30)

which have either unique solution if𝐵
1
̸= 𝐵
2
or it has infinitely

many solutions if 𝐵
1

= 𝐵
2
. In the first case, (29) gives

immediately (13) and (30) gives (14), whichmeans that in this
case the only minimal period-two solution is (26).

A straightforward calculation shows that 𝑇(𝑃
1
) =

𝑃
2
, 𝑇(𝑃
2
) = 𝑃

1
, which shows that {𝑃

1
, 𝑃
2
} is a minimal

period-two solution. Moreover, 𝑇(𝑎, 0) = 𝑃
2
, 𝑇(0, 𝑏) = 𝑃

1

for every 𝑎 > 0, 𝑏 > 0, which shows that the setB is a subset
of the basin of attraction of {𝑃

1
, 𝑃
2
}. The Jacobian matrix of

𝑇
2 is

𝐽
𝑇
2 (𝑥, 𝑦)

=

[

[

[

[

[

[

𝑦𝛽
2
𝛾
2

1
𝐵
1

𝐵
1
𝐵
2
𝑥
2

+ 2𝐵
1
𝑥𝑦 + 𝑦

2

(𝑥𝑦𝛽
2
+ 𝑥
2
𝛽
2
𝐵
1
+ 𝑦
2
𝛾
1
𝐵
1
+ 𝑥𝑦𝛾

1
𝐵
1
𝐵
2
)
2
−𝑥𝛽
2
𝛾
2

1
𝐵
1

𝐵
1
𝐵
2
𝑥
2

+ 2𝐵
1
𝑥𝑦 + 𝑦

2

(𝑥𝑦𝛽
2
+ 𝑥
2
𝛽
2
𝐵
1
+ 𝑦
2
𝛾
1
𝐵
1
+ 𝑥𝑦𝛾

1
𝐵
1
𝐵
2
)
2

−𝑦𝛽
2

2
𝛾
1

𝐵
1
𝐵
2
𝑥
2

+ 2𝐵
1
𝑥𝑦 + 𝑦

2

(𝛽
2
𝐵
1
𝑥
2
+ 𝛾
1
𝑥𝑦𝐵
2

2
+ 𝛽
2
𝑥𝑦 + 𝛾

1
𝑦
2
𝐵
2
)
2

𝑥𝛽
2

2
𝛾
1

𝐵
1
𝐵
2
𝑥
2

+ 2𝐵
1
𝑥𝑦 + 𝑦

2

(𝛽
2
𝐵
1
𝑥
2
+ 𝛾
1
𝑥𝑦𝐵
2

2
+ 𝛽
2
𝑥𝑦 + 𝛾

1
𝑦
2
𝐵
2
)
2
.

]

]

]

]

]

]

(31)

The Jacobian matrix of 𝑇2 evaluated at 𝑃
1
is

𝐽
𝑇
2 (𝑃
1
) =

[

[

[

[

0 −

1

𝛽
2

𝛾
1
𝐵
2

0

1

𝐵
1

𝐵
2

]

]

]

]

(32)

and the Jacobian matrix of 𝑇2 evaluated at 𝑃
2
is

𝐽
𝑇
2 (𝑃
2
) =

[

[

[

[

[

1

𝐵
1

𝐵
2

0

𝐵
2
−

1

𝛽
2
𝛾
1

(

𝛽
2

2

𝐵
2

+ 𝛽
2
𝛾
1
𝐵
2
) 0

]

]

]

]

]

. (33)
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In both cases, the eigenvalues of the Jacobianmatrix of𝑇2 are
𝜆
1
= 0, 𝜆

2
= 𝐵
2
/𝐵
1
, which implies the result on local stability

of the minimal period-two solution {𝑃
1
, 𝑃
2
}.

Proof of Theorem 1. First, observe that the rectangle R =

[0, 𝛾
1
] × [0, 𝛽

2
/𝐵
2
] \ {0, 0} = ⟦𝑃

2
, 𝑃
1
⟧ \ {0, 0} is an invariant

and attracting set for themap𝑇 and so is for themap𝑇2.More
precisely, (𝑥

𝑛
, 𝑦
𝑛
) ∈ R for 𝑛 ≥ 1. The map 𝑇2 is a competitive

map onR.

Case a. Assume that 𝐵
1
< 𝐵
2
.Then in view ofTheorem 9 and

Lemma 10, the map 𝑇2 has three equilibrium points 𝑃
1
, 𝑃
2
,

and 𝐸, where 𝑃
2
⪯se 𝐸⪯se 𝑃1. The equilibrium points 𝑃

1
and

𝑃
2
are saddle points and 𝐸 is a local attractor. The ordered

intervals ⟦𝑃
2
, 𝐸⟧ and ⟦𝐸, 𝑃

1
⟧ are both invariant sets of 𝑇2 and

in view of Corollary 6, their interiors are attracted to 𝐸. If we
take the point (𝑥, 𝑦) ∈ R \ ⟦𝑃

2
, 𝐸⟧ ∪ ⟦𝐸, 𝑃

1
⟧, we can find the

points (𝑥
𝑙
, 𝑦
𝑙
) ∈ int ⟦𝑃

2
, 𝐸⟧ and (𝑥

𝑢
, 𝑦
𝑢
) ∈ int ⟦𝐸, 𝑃

1
⟧, such

that (𝑥
𝑙
, 𝑦
𝑙
) ⪯se (𝑥, 𝑦) ⪯se (𝑥𝑢, 𝑦𝑢). Consequently, since 𝑇

2 is
competitive 𝑇

2𝑛

((𝑥
𝑙
, 𝑦
𝑙
)) ⪯se 𝑇

2𝑛

((𝑥, 𝑦)) ⪯se 𝑇
2𝑛

((𝑥
𝑢
, 𝑦
𝑢
)) for

𝑛 ≥ 1 and so lim
𝑛→∞

𝑇
2𝑛

((𝑥, 𝑦)) = 𝐸, which by continuity
of 𝑇 implies that

lim
𝑛→∞

𝑇
2𝑛+1

((𝑥, 𝑦)) = lim
𝑛→∞

𝑇 (𝑇
2𝑛

((𝑥, 𝑦)))

= 𝑇 ( lim
𝑛→∞

𝑇
2𝑛

((𝑥, 𝑦))) = 𝑇 (𝐸) = 𝐸,

(34)

and so lim
𝑛→∞

𝑇
𝑛

((𝑥, 𝑦)) = 𝐸.

Case b. Assume that 𝐵
1
> 𝐵
2
.Then in view ofTheorem 9 and

Lemma 10, themap𝑇2 has three equilibrium points𝑃
1
and𝑃
2

which are local attractors and 𝐸 which is a saddle point. The
ordered intervals ⟦𝑃

2
, 𝐸⟧ and ⟦𝐸, 𝑃

1
⟧ are both invariant sets

for 𝑇2 and in view of Corollary 6, their interiors are attracted
to𝑃
2
and𝑃
1
, respectively. In view ofTheorems 7 and 8, there is

the setCwith described properties. Direct calculation shows
that the half-line 𝑦 = (𝑦/𝑥)𝑥, 𝑥 > 0 is an invariant set which
in view of a uniqueness of stable manifold implies that this
half-line is exactly stable manifold mentioned inTheorems 7
and 8. It should be observed that because of the fact that one
of the characteristic values at the equilibrium point𝐸 is 0, this
equilibrium is superattractive, that is, 𝑇(𝑥

0
, 𝑦
0
) = (𝑥, 𝑦), for

every (𝑥
0
, 𝑦
0
) ∈ C.

Case c. Assume that𝐵
1
= 𝐵
2
.Then by dividing two equations

of System (2) we obtain that the solution of (2) satisfies

𝑦
𝑛+1

𝑥
𝑛+1

=

𝛾
2

𝛽
1

𝑥
𝑛

𝑦
𝑛

=

𝛾
2

𝛽
1

1

𝑦
𝑛
/𝑥
𝑛

. (35)

This means that 𝑦
𝑛
/𝑥
𝑛
satisfies first order difference equation

𝑢
𝑛+1

= 𝐷/𝑢
𝑛
, where 𝐷 = 𝛾

2
/𝛽
1
. All nonconstant solu-

tions of 𝑢
𝑛+1

= 𝐷/𝑢
𝑛
are period-two solutions {𝑢

0
, 𝐷/𝑢
0
}.

Thus 𝑦
𝑛

= {𝑢
0
𝑥
𝑛
, (𝐷/𝑢

0
)𝑥
𝑛
}. In this case, System (2)

becomes

𝑥
𝑛+1

=

𝐵
1
𝑢
0

𝐵
1
+ 𝑢
0

, 𝑦
𝑛+1

=

𝛽
2

𝐵
1
+ 𝑢
0

, 𝑛 = 1, 2, . . . ,

𝑥
𝑛+1

=

𝐵
1
𝐷

𝐷 + 𝐵
1
𝑢
0

, 𝑦
𝑛+1

=

𝛽
2
𝑢
0

𝐷 + 𝐵
1
𝑢
0

, 𝑛 = 1, 2, . . . ,

(36)

which completes the proof of Case (c).

Remark 11. System (2) is an example of the homogeneous
system which is a special case of a general System (1), where
both functions 𝑓 and 𝑔 are homogeneous functions of the
same degree 𝑘, that is, 𝑓(𝑡𝑢, 𝑡V) = 𝑡

𝑘

𝑓(𝑢, V), 𝑔(𝑡𝑢, 𝑡V) =

𝑡
𝑘

𝑔(𝑢, V) for all 𝑢, V in intersection of domains of 𝑓 and 𝑔 and
all 𝑡 ̸= 0. In that case, the ratio 𝑧

𝑛
= 𝑦
𝑛
/𝑥
𝑛
of every solution of

(1) satisfies the first order difference equation:

𝑧
𝑛+1

=

𝑓 (1, 𝑧
𝑛
)

𝑔 (1, 𝑧
𝑛
)

= 𝐹 (𝑧
𝑛
) , 𝑛 = 0, 1, . . . (37)

whose analysis gives valuable information about the dynam-
ics of System (1), but does not provide the global dynamics.
In particular, this approach cannot determine precisely the
basins of attraction of different types of attractors such as
equilibrium points and periodic solutions. This approach in
the case of the system of linear fractional equations:

𝑥
𝑛+1

=

𝛼
1
+ 𝛽
1
𝑥
𝑛
+ 𝛾
1
𝑦
𝑛

𝐴
1
+ 𝐵
1
𝑥
𝑛
+ 𝐶
1
𝑦
𝑛

, 𝑦
𝑛+1

=

𝛼
2
+ 𝛽
2
𝑥
𝑛
+ 𝛾
2
𝑦
𝑛

𝐴
2
+ 𝐵
2
𝑥
𝑛
+ 𝐶
2
𝑦
𝑛

,

𝑛 = 0, 1, . . . ,

(38)

where all parameters and the initial conditions (𝑥
0
, 𝑦
0
) are

arbitrary nonnegative numbers such that 𝐴
𝑖
+ 𝐵
𝑖
𝑥
0
+ 𝐶
𝑖
𝑦
0
>

0, 𝑖 = 1, 2, was first used in [19] and was systematically
developed in the recent paper [20]. In [20], the authors
studied all possible homogeneous systems of the form (38)
and they proved that every bounded solution converges to
either an equilibrium solution or to period-two solution.
They were able to find a part of the basin of attraction of the
period-two solution but not the complete basin of attraction.
In the case of system (2) the auxiliary equation for 𝑧

𝑛
= 𝑦
𝑛
/𝑥
𝑛

is

𝑧
𝑛+1

=

𝛽
2
(𝐵
1
+ 𝑧
𝑛
)

𝛾
1
(𝐵
2
+ 𝑧
𝑛
) 𝑧
𝑛

= 𝐹 (𝑧
𝑛
) , 𝑛 = 0, 1, . . . . (39)

Since 𝐹 is decreasing, every solution of the auxiliary equation
is approaching not necessarily minimal period-two solution.
Further analysis can be continued either by checking negative
feedback condition for 𝐹2 or by using Theorem 3.2 from
[20]. In neither case the complete description of the basins
of attraction of the equilibrium and the period-two solution
is possible. We prefer our approach because it is more precise
and also apply equally well to anticompetitive systems which
are not homogeneous. The approach which is making use of
homogeneous properties of functions is applicable also to the
systems which are neither competitive nor anticompetitive.
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𝑊𝑠(𝐸)

(𝛾1, 0)

𝐸

𝑊𝑢(𝐸)

Figure 2: Global dynamics of System (3).

4. Global Dynamics of System (3)
(See Figure 2)

The equilibrium point 𝐸(𝑥, 𝑦) of System (3) satisfies the
following system of equations:

𝑥 =

𝛾
1
𝑦

𝐵
1
𝑥 + 𝑦

, 𝑦 =

𝛼
2
+ 𝛽
2
𝑥

𝑦

. (40)

It is easy to see that System (40) has the unique equilibrium
point 𝐸 in the first quadrant, for all values of the parameters.
Indeed, the positive equilibriumpoint is an intersection of the
following two curves:

𝑦 =

𝐵
1
𝑥
2

𝛾
1
− 𝑥

, (41)

𝑥 =

𝑦
2

− 𝛼
2

𝛽
2

. (42)

It is clear that at the point of intersection 𝐸 curve (41) is
steeper than curve (42), that is,

𝑑𝑦

𝑑𝑥








(41)

(𝐸) >

𝑑𝑦

𝑑𝑥








(42)

(𝐸) , (43)

which gives

𝐵
1
𝑥 (2𝛾
1
− 𝑥)

(𝛾
1
− 𝑥)
2

>

𝛽
2

2𝑦

. (44)

This inequality is equivalent to the following inequality:

2𝛽
1
𝑥𝑦 (2𝛾

1
− 𝑥) > 𝛽

2
(𝛾
1
− 𝑥)
2

, (45)

which in turn is equivalent to

2 + 2

𝐵
1

𝛾
1

𝑥
2

𝑦

> 𝛽
2

𝐵
1

𝛾
1

𝑥
3

𝑦
3
. (46)

4.1. Linearized Stability Analysis of System (3). In this section
we prove the following result.

Theorem 12. The unique equilibrium 𝐸 of System (3) is a
saddle point.

Proof. Themap 𝑆 associated to System (3) is

𝑆 (𝑥, 𝑦) = (

𝑓 (𝑥, 𝑦)

𝑔 (𝑥, 𝑦)
) = (

𝛾
1
𝑦

𝐵
1
𝑥 + 𝑦

𝛼
2
+ 𝛽
2
𝑥

𝑦

) . (47)

The Jacobian matrix of map (47) is

𝐽
𝑆
(𝑥, 𝑦) = (

−

𝐵
1
𝛾
1
𝑦

(𝐵
1
𝑥 + 𝑦)

2

𝐵
1
𝛾
1
𝑥

(𝐵
1
𝑥 + 𝑦)

2

𝛽
2

𝑦

−

𝛼
2
+ 𝛽
2
𝑥

𝑦
2

), (48)

and evaluated at the equilibrium point 𝐸 = (𝑥, 𝑦) is

𝐽
𝑆
(𝑥, 𝑦) = (

−

𝐵
1

𝛾
1

𝑥
2

𝑦

𝐵
1

𝛾
1

𝑥
3

𝑦
2

𝛽
2

𝑦

−1

). (49)

The characteristic equation has the following form:

𝜆
2

+ (1 +

𝐵
1

𝛾
1

𝑥
2

𝑦

)𝜆 +

𝐵
1

𝛾
1

𝑥
2

𝑦

− 𝛽
2

𝐵
1

𝛾
1

𝑥
3

𝑦
2
= 0. (50)

Set

𝑃 = 1 +

𝐵
1

𝛾
1

𝑥
2

𝑦

, 𝑄 =

𝐵
1

𝛾
1

𝑥
2

𝑦

− 𝛽
2

𝐵
1

𝛾
1

𝑥
3

𝑦
2
. (51)

Then the necessary and sufficient condition for (50) to have
one root inside the unit circle and one root outside the unit
circle is |𝑃| > |1 + 𝑄|, 𝑃2 − 4𝑄 > 0; see [7, 21]. The condition
|𝑃| > |1 + 𝑄| leads to 𝑃 > −1 − 𝑄 which is equivalent to

2 + 2

𝐵
1

𝛾
1

𝑥
2

𝑦

> 𝛽
2

𝐵
1

𝛾
1

𝑥
3

𝑦
3
, (52)

which is condition (46).
The condition 𝑃2 − 4𝑄 > 0 becomes

(1 +

𝐵
1

𝛾
1

𝑥
2

𝑦

)

2

− 4(

𝐵
1

𝛾
1

𝑥
2

𝑦

− 𝛽
2

𝐵
1

𝛾
1

𝑥
3

𝑦
3
) > 0, (53)

which is equivalent to

(1 −

𝐵
1

𝛾
1

𝑥
2

𝑦

)

2

+ 4𝛽
2

𝐵
1

𝛾
1

𝑥
3

𝑦
3
> 0, (54)

which is clearly satisfied.
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4.2. Global Results for System (3)

Lemma 13. System (3) has no minimal period-two solution.

Proof. The second iterate of the map 𝑆 is given as

𝑆
2

(𝑥, 𝑦)

= (𝛾
1
(𝑦 + 𝑥𝐵

1
)

𝛼
2
+ 𝑥𝛽
2

𝛽
2
𝐵
1
𝑥
2
+ 𝛽
2
𝑥𝑦 + 𝛼

2
𝐵
1
𝑥 + 𝛾
1
𝐵
1
𝑦
2
+ 𝛼
2
𝑦

,

𝑦

(𝑦 + 𝑥𝐵
1
) (𝛼
2
+ 𝑥𝛽
2
)

(𝑦𝛼
2
+ 𝑦𝛽
2
𝛾
1
+ 𝑥𝛼
2
𝐵
1
)) .

(55)

Period-two solution satisfies 𝑆2(𝑥, 𝑦) = (𝑥, 𝑦) which reduces
to the following two equations:

𝛾
1
(𝑦 + 𝑥𝐵

1
) (𝛼
2
+ 𝑥𝛽
2
)

− 𝑥 (𝛽
2
𝐵
1
𝑥
2

+ 𝛽
2
𝑥𝑦 + 𝛼

2
𝐵
1
𝑥 + 𝛾
1
𝐵
1
𝑦
2

+ 𝛼
2
𝑦) = 0,

(56)

𝑦𝛼
2
+ 𝑦𝛽
2
𝛾
1
+ 𝑥𝛼
2
𝐵
1
− (𝑦 + 𝑥𝐵

1
) (𝛼
2
+ 𝑥𝛽
2
) = 0. (57)

Equation (57) leads immediately to 𝑦𝛾
1
−𝑦𝑥−𝑥

2

𝐵
1
= 0which

is exactly the equilibrium equation (41). Using (41) in (56),
we obtain after some elementary simplification that period-
two solution satisfies (42). This shows that System (3) has no
minimal period-two solution.

Lemma 14. Themaps 𝑆 and 𝑆2 associatedwith System (3) have
the following properties.

(i) The maps 𝑆 and 𝑆2 are injective.
(ii) det 𝐽

𝑆
2(𝑥, 𝑦) > 0 for all (𝑥, 𝑦), 𝑦 > 0.

Consequently, 𝑆2 satisfies (𝑂+) condition and so {𝑆2𝑛(𝑥
0
, 𝑦
0
)}

is eventually componentwise monotone.

Proof. (i) We will prove that 𝑆 is injective and the injectivity
of 𝑆2 will follow immediately. The condition

𝑆 (𝑥
1
, 𝑦
1
) = 𝑆 (𝑥

2
, 𝑦
2
) (58)

is reduced to the following two conditions:

𝑥
2
𝑦
1
= 𝑥
1
𝑦
2
, 𝛼

2
(𝑦
2
− 𝑦
1
) = 𝛽
2
(𝑥
2
𝑦
1
− 𝑥
1
𝑦
2
) , (59)

which immediately implies 𝑦
1
= 𝑦
2
and so 𝑥

1
= 𝑥
2
.

(ii) A direct calculation shows that

det 𝐽
𝑆
2

=

𝐵
2

1
𝛼
2

2
𝛾
2

1
𝑦
2

(𝛼
2
+ 𝑥𝛽
2
) (𝑦𝛼
2
+ 𝑥𝑦𝛽

2
+ 𝑥𝛼
2
𝐵
1
+ 𝑥
2
𝛽
2
𝐵
1
+ 𝑦
2
𝛾
1
𝐵
1
)
2
,

(60)

which implies our statement.
The statement on (𝑂+) condition follows from

Theorem 5.

Theorem 15. Consider System (3). Then there exists a setC ⊂

D = [0,∞) × (0,∞) which is invariant subset of the basin
of attraction of 𝐸. The set C is a graph of a strictly increasing
continuous function of the first variable on an interval and
separates D into two connected and invariant components,
namely,

W
−
:= {𝑥 ∈ D \C : ∃𝑦 ∈ C 𝑤𝑖𝑡ℎ 𝑥 ⪯se 𝑦} ,

W
+
:= {𝑥 ∈ D \C : ∃𝑦 ∈ C 𝑤𝑖𝑡ℎ 𝑦 ⪯se 𝑥} ,

(61)

which satisfy the following.
(i) If (𝑥

0
, 𝑦
0
) ∈ W

+
, then

lim
𝑛→∞

(𝑥
2𝑛
, 𝑦
2𝑛
) = 𝐸, lim

𝑛→∞

(𝑥
2𝑛+1

, 𝑦
2𝑛+1

) = (0,∞) .

(62)

(ii) If (𝑥
0
, 𝑦
0
) ∈ W

−
,

lim
𝑛→∞

(𝑥
2𝑛
, 𝑦
2𝑛
) = (0,∞) , lim

𝑛→∞

(𝑥
2𝑛+1

, 𝑦
2𝑛+1

) = 𝐸.

(63)

Proof. Clearly, the rectangle [0, 𝛾
1
]×(0,∞) is an invariant and

attracting set for the map 𝑆. In particular, 𝑥
𝑛
≤ 𝛾 for 𝑛 ≥ 1.

Then by Lemma 14 and Theorem 4, every solution
{(𝑥
𝑛
, 𝑦
𝑛
)} of System (3) has eventuallymonotone components

{(𝑥
2𝑛
, 𝑦
2𝑛
)} and {(𝑥

2𝑛+1
, 𝑦
2𝑛+1

)}, which shows that every
bounded solution converges to period-two solution. In view
of Lemma 13, there are no minimal period-two solutions and
so every bounded solution of System (3) converges to the
equilibrium 𝐸. In view of Theorems 7 and 8, there is a set
C with described properties. Consequently, every solution
with an initial point (𝑥

0
, 𝑦
0
) ∈ W

+
converges to 𝐸, while

every solution which starts in W
−
approaches (0,∞) and is

asymptotic to the global unstable manifold𝑊𝑢(𝐸).

5. Global Dynamics of System (4)
(See Figure 3)

The equilibrium point 𝐸(𝑥, 𝑦) of System (4) satisfies the
following system of equations:

𝑥 =

𝛾
1
𝑦

𝐴
1
+ 𝑥

, 𝑦 =

𝛼
2
+ 𝛽
2
𝑥

𝑦

. (64)

It is easy to see that System (64) has the unique equilibrium
point 𝐸 in the first quadrant, which is an intersection of two
parabolas:

𝑦 =

𝑥 (𝐵
1
+ 𝑥)

𝛾
1

, (65)

𝑥 =

𝑦
2

− 𝛼
2

𝛽
2

. (66)

It is clear that at the point of intersection 𝐸, curve (65) is
steeper than curve (66), that is,

𝑑𝑦

𝑑𝑥








(65)

(𝐸) >

𝑑𝑦

𝑑𝑥








(66)

(𝐸) , (67)

which gives

2𝑦 (𝐴
1
+ 2𝑥) > 𝛽

2
𝛾
1
. (68)
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𝑊𝑠(𝐸)

𝐸

𝑊𝑢(𝐸)

Figure 3: Global dynamics of System (4).

5.1. Linearized Stability Analysis of System (4). In this section
we prove the following result.

Theorem 16. The unique equilibrium 𝐸 of System (4) is a
saddle point.

Proof. Themap 𝑆 associated to System (4) is

𝑈 (𝑥, 𝑦) = (

𝑓 (𝑥, 𝑦)

𝑔 (𝑥, 𝑦)
) = (

𝛾
1
𝑦

𝐴
1
+ 𝑥

𝛼
2
+ 𝛽
2
𝑥

𝑦

) . (69)

The Jacobian matrix of map (69) has the form:

𝐽
𝑈
(𝑥, 𝑦) = (

−

𝛾
1
𝑦

(𝐴
1
+ 𝑥)
2

𝛾
1

𝐴
1
+ 𝑥

𝛽
2

𝑦

−

𝛼
2
+ 𝛽
2
𝑥

𝑦
2

), (70)

which evaluated at the equilibrium point 𝐸 = (𝑥, 𝑦) is

𝐽
𝑈
(𝑥, 𝑦) = (

−

𝑥

𝐴
1
+ 𝑥

𝛾
1

𝐴
1
+ 𝑥

𝛽
2

𝑦

−1

) . (71)

The characteristic equation of System (4) has the following
form:

𝜆
2

+ (1 +

𝑥

𝐴
1
+ 𝑥

)𝜆 +

𝑥

𝐴
1
+ 𝑥

−

𝛽
2
𝛾
1

𝑦 (𝐴
1
+ 𝑥)

= 0. (72)

Set

𝑃 = 1 +

𝑥

𝐴
1
+ 𝑥

, 𝑄 =

𝑥

𝐴
1
+ 𝑥

−

𝛽
2
𝛾
1

𝑦 (𝐴
1
+ 𝑥)

. (73)

The necessary and sufficient condition for (72) to have one
root inside the unit circle and one root outside the unit circle

is |𝑃| > |1 + 𝑄|, 𝑃2 − 4𝑄 > 0; see [7, 21]. In view of the fact
that 𝑃 > 1+𝑄, the condition |𝑃| > |1+𝑄| leads to 𝑃 > −1−𝑄
which is equivalent to

2 + 2

𝑥

𝐴
1
+ 𝑥

>

𝛽
2
𝛾
1

𝑦 (𝐴
1
+ 𝑥)

, (74)

which is equivalent to the condition (68).
The condition 𝑃2 − 4𝑄 > 0 becomes

(1 +

𝑥

𝐴
1
+ 𝑥

)

2

− 4(

𝑥

𝐴
1
+ 𝑥

−

𝛽
2
𝛾
1

𝑦 (𝐴
1
+ 𝑥)

) > 0, (75)

which is equivalent to

(1 −

𝑥

𝐴
1
+ 𝑥

)

2

+ 4

𝛽
2
𝛾
1

𝑦 (𝐴
1
+ 𝑥)

> 0, (76)

which is clearly satisfied.

5.2. Global Results for System (4)

Lemma 17. System (4) has no minimal period-two solution.

Proof. The second iterate of the map 𝑈 is given as

𝑈
2

(𝑥, 𝑦)

= (

1

𝑦

𝛾
1
(𝑥 + 𝐴

1
)

𝛼
2
+ 𝑥𝛽
2

𝐴
2

1
+ 𝑥𝐴
1
+ 𝑦𝛾
1

,

𝑦

(𝑥 + 𝐴
1
) (𝛼
2
+ 𝑥𝛽
2
)

(𝑥𝛼
2
+ 𝛼
2
𝐴
1
+ 𝑦𝛽
2
𝛾
1
)) .

(77)

Period-two solution satisfies𝑈2(𝑥, 𝑦) = (𝑥, 𝑦) which reduces
to the following two equations:

𝑥𝑦 (𝐴
1
𝑥 + 𝑦) = 𝛾

1
(𝛼
2
+ 𝛽
2
𝑥) , (78)

𝛾
1
𝑦 = 𝑥 (𝐴

1
+ 𝑥) . (79)

Equation (79) is exactly the equilibrium equation (65). Using
(65) in (78) we obtain after some elementary simplification
that period-two solution satisfies (66).This shows that System
(4) has no minimal period-two solution.

Lemma 18. The maps 𝑈 and 𝑈2 associated with System (4)
have the following properties.

(i) If 𝐴
1
𝛽
2
̸= 𝛼
2
, then the maps 𝑈 and 𝑈2 are injective.

(ii) If𝐴
1
𝛽
2
̸= 𝛼
2
, thendet 𝐽

𝑈
2(𝑥, 𝑦) > 0 for all (𝑥, 𝑦),𝑦 > 0.

Consequently, 𝑈2 satisfies (𝑂+) condition, when 𝐴
1
𝛽
2
̸= 𝛼
2
.

Proof. (i) We will prove that 𝑈 is injective which will imply
the injectivity of 𝑈2. The condition

𝑈(𝑥
1
, 𝑦
1
) = 𝑈 (𝑥

2
, 𝑦
2
) (80)
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is reduced to the following two conditions:

𝐴
1
(𝑦
2
− 𝑦
1
) = 𝑥
2
𝑦
1
− 𝑥
1
𝑦
2
,

𝛼
2
(𝑦
2
− 𝑦
1
) = 𝛽
2
(𝑥
2
𝑦
1
− 𝑥
1
𝑦
2
) ,

(81)

which implies that 𝑦
2
− 𝑦
1

= (1/𝐴
1
)(𝑥
2
𝑦
1
− 𝑥
1
𝑦
2
) =

(𝛽
2
/𝛼
2
)(𝑥
2
𝑦
1
− 𝑥
1
𝑦
2
)

(

1

𝐴
1

−

𝛽
2

𝛼
2

) (𝑥
2
𝑦
1
− 𝑥
1
𝑦
2
) = 0, (82)

and 𝑥
2
𝑦
1
− 𝑥
1
𝑦
2
= 0, when 𝐴

1
𝛽
2
̸= 𝛼
2
. This implies 𝑦

1
= 𝑦
2

and so 𝑥
1
= 𝑥
2
.

(ii) A direct calculation shows that

det 𝐽
𝑈
2 = (𝛼

2
− 𝐴
1
𝛽
2
)
2 𝛾

1

(𝛼
2
+ 𝛽
2
𝑥) (𝐴
2

1
+ 𝐴
1
𝑥 + 𝛾
1
𝑦)
2
,

(83)

which proves our statement.
The statement on (𝑂+) condition follows from

Theorem 5.

Theorem 19. Consider System (4). Assume that 𝐴
1
𝛽
2
̸= 𝛼
2
.

Then there exists a set C ⊂ D = [0,∞) × (0,∞) which is
invariant subset of the basin of attraction of 𝐸. The set C is
a graph of a strictly increasing continuous function of the first
variable on an interval and separatesD into two connected and
invariant components, namely,

W
−
:= {𝑥 ∈ D \C : ∃𝑦 ∈ C with 𝑥⪯se𝑦} ,

W
+
:= {𝑥 ∈ D \C : ∃𝑦 ∈ C with 𝑦⪯se𝑥} ,

(84)

which satisfy the following.
(i) If (𝑥

0
, 𝑦
0
) ∈ W

+
, then

lim
𝑛→∞

(𝑥
2𝑛
, 𝑦
2𝑛
) = (∞, 0) , lim

𝑛→∞

(𝑥
2𝑛+1

, 𝑦
2𝑛+1

) = (0,∞) .

(85)

(ii) If (𝑥
0
, 𝑦
0
) ∈ W

−
,

lim
𝑛→∞

(𝑥
2𝑛
, 𝑦
2𝑛
) = (0,∞) , lim

𝑛→∞

(𝑥
2𝑛+1

, 𝑦
2𝑛+1

) = (∞, 0) .

(86)

Proof. Assume that 𝐴
1
𝛽
2
̸= 𝛼
2
. Then by Lemma 18 and

Theorem 4, every solution {(𝑥
𝑛
, 𝑦
𝑛
)} of System (4) has even-

tuallymonotone components {(𝑥
2𝑛
, 𝑦
2𝑛
)} and {(𝑥

2𝑛+1
, 𝑦
2𝑛+1

)},
which shows that every bounded solution converges to a
period-two solution. In view of Lemma 17, there are no
minimal period-two solutions and so every bounded solution
of System (4) converges to the equilibrium 𝐸. In view of
Theorems 7 and 8, there is a setC with described properties.
Consequently, the regions W

−
and W

+
are invariant for 𝑈2

and every solution inW
−
(W
+
) is asymptotic to the unstable

manifold W𝑢(𝐸) and so the statement of the theorem fol-
lows.

Theorem 20. Consider System (4). Assume that 𝐴
1
𝛽
2
= 𝛼
2
.

Then System (4) can be decoupled and written as

𝑥
𝑛+1

=

𝛽
2
𝛾
2

1

𝑥
𝑛
(𝐴
1
+ 𝑥
𝑛
)

, 𝑦
𝑛+1

= 𝛽
1

𝛽
2
𝛾
1
+ 𝐴
1
𝑦
𝑛

𝑦
2

𝑛

,

𝑛 = 0, 1, . . . .

(87)

Every solution {(𝑥
𝑛
, 𝑦
𝑛
)} of System (87) has eventually mono-

tone subsequences {(𝑥
2𝑛
, 𝑦
2𝑛
)} and {(𝑥

2𝑛+1
, 𝑦
2𝑛+1

)}. Every
bounded solution converges to the unique positive equilibrium.
Every unbounded solution {(𝑥

𝑛
, 𝑦
𝑛
)} approaches either (∞, 0)

or (0,∞).

Proof. Using the condition𝐴
1
𝛽
2
= 𝛼
2
in the second equation

of System (4) gives

𝑦
𝑛+1

= 𝛽
2

𝐴
1
+ 𝑥
𝑛

𝑦
𝑛

, (88)

and so 𝑥
𝑛+1
𝑦
𝑛+1

= 𝛽
2
𝛾
1
which shows that System (4) has an

invariant of the form:

𝑥
𝑛
𝑦
𝑛
= 𝛽
2
𝛾
1
, 𝑛 = 1, 2, . . . . (89)

Using (89), System (4) is reduced to System (87). Both
equations of System (87) are first order difference equations
with decreasing functions and so by Theorem 1.19 [7], the
subsequences of even and odd indexes are eventually mono-
tonic and so every bounded solution converges to a period-
two solution. An immediate checking shows that neither one
of the two equations of System (87) has period-two solutions.
For example, the unique equilibrium 𝑥 of the first equation of
System (87) satisfies

𝑥
3

+ 𝐴
1
𝑥
2

− 𝛽
2
𝛾
2

1
= 0, (90)

while period-two solution satisfies 𝑓2(𝑥) = 𝑥which becomes
𝑥
2

((𝐴 + 𝑥)
2

/(𝐴
2

𝑥 + 𝐴𝑥
2

+ 𝐶)) = 𝑥 and so is reduced to
(90). Thus every bounded solution converges to the unique
equilibrium.

The result for unbounded solutions follows immediately
from (89).
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an anti-competitive system of difference equations in the plane,”
Communications on Applied Nonlinear Analysis, vol. 19, no. 2,
pp. 41–53, 2012.



Discrete Dynamics in Nature and Society 11

[3] E. Camouzis, M. R. S. Kulenović, G. Ladas, and O. Merino,
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a competitive system of linear fractional difference equations,”
Advances in Difference Equations, vol. 2006, Article ID 19756,
2006.
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