THE UNIVERSITY OF RHODE ISLAND

University of Rhode Island [DigitalCommons@URI](https://digitalcommons.uri.edu/)

[Mathematics Faculty Publications](https://digitalcommons.uri.edu/math_facpubs) [Mathematics](https://digitalcommons.uri.edu/math) Mathematics Mathematics

1994

A fibered polynomial hull without an analytic selection

J. William Helton

Orlando Merino University of Rhode Island, merino@uri.edu

Follow this and additional works at: [https://digitalcommons.uri.edu/math_facpubs](https://digitalcommons.uri.edu/math_facpubs?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages)

Citation/Publisher Attribution

Helton, J. William; Merino, Orlando. A fibered polynomial hull without an analytic selection. Michigan Math. J. 41 (1994), no. 2, 285--287. doi:10.1307/mmj/1029004995. https://projecteuclid.org/euclid.mmj/ 1029004995

Available at:<http://dx.doi.org/10.1307/mmj/1029004995>

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [digitalcommons-group@uri.edu.](mailto:digitalcommons-group@uri.edu) For permission to reuse copyrighted content, contact the author directly.

A fibered polynomial hull without an analytic selection

Terms of Use All rights reserved under copyright.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/math_facpubs/51

A Fibered Polynomial Hull without an Analytic Selection

J. WILLIAM HELTON & ORLANDO MERINO

This note shows that certain polynomial hulls in \mathbb{C}^3 have no analytic selection, thus settling a standing question about such hulls.

Recall that the *polynomial hull* $\mathcal{P}(S)$ of a set S in \mathbb{C}^M is the set

$$
\mathcal{P}(\mathcal{S}) = \{ w \in \mathbb{C}^M : |p(w)| \le \max_{v \in \mathcal{S}} |p(v)| \text{ for all polynomials } p \text{ on } \mathbb{C}^M \}.
$$

We shall be considering sets S in C^{1+N} that are fibered over the unit circle ∂ D in C the complex plane. Thus S has the form

$$
\{(e^{i\theta}, S_{\theta}): 0 \leq \theta \leq 2\pi\},\
$$

where each S_{θ} is a subset of C^N . Let **D** denote the unit disk in the complex plane and let H_N^{∞} denote the C^N -valued functions bounded and analytic on **D.** Clearly (from the maximum principle) if f is any H_N^{∞} function satisfying

 $f(e^{i\theta}) \in S_a$ for almost all θ ,

then the graph $\{z, f(z)\}\colon z \in \mathbf{D}$ of f lies in $\mathcal{P}(S)$. Such a function f is called an *analytic selection* of $\mathcal{P}(S)$. A significant question about polynomial hulls is which hulls have analytic selections.

An obvious necessary condition is that $\mathcal{P}(S)$ in \mathbb{C}^{1+N} be a set whose projection onto the first coordinate is a set containing **D**. We shall refer to such $\mathcal{P}(S)$ as having *nontrivial fiber over the unit disk*. Also, if the S_{θ} are not connected then it is easy to make up examples where $\mathcal{P}(S)$ has no analytic selection.

QUESTION (O). Are these conditions sufficient for $\mathcal{P}(S)$ to have an analytic selection?

By giving a highly pathological example (for $N=1$), Wermer [Wr] showed that in general the answer is No. However, when the S_{θ} are nicely behaved the story is different. For $N=1$ Slodkowski [SI] and independently Wegert [Wg] and Helton-Marshall [HM] showed that the answer is Yes. This article gives a simple very well-behaved S in C^3 for which the answer to (Q) is No.

Now we write down the S that provides our example. Write C^2 as $\{z =$ $(x_1, y_1, x_2, y_2) = (z_1, z_2)$. Let C denote the semicircle

Received October 26, 1992. Revision received March 29, 1993. Michigan Math. J. 41 (1994).

J. WILLIAM HELTON & ORLANDO MERINO

$$
\mathcal{C} = \{ (z_1, z_2) : |z_1| = 1, \text{Im } z_1 \ge 0, z_2 = 0 \}
$$

embedded in the first complex coordinate of \mathbb{C}^2 . Our example is based on rotating C inside of real 3-dimensional space in a way that varies with θ . Here \mathbb{R}^3 is embedded in \mathbb{C}^2 in the usual way ($y_2 = 0$). Let R^1_θ denote the map which acts on \mathbb{C}^2 by the rotation of z in the z_1 plane by θ (z_2 is kept fixed), that is,

$$
R^1_\theta(z_1,z_2)=(e^{i\theta}z_1,z_2).
$$

Also, let R_{θ}^2 denote rotation in the (y_1, x_2) plane by θ .

THEOREM 1. The polynomial hull $\mathcal{P}(S)$ of S with fibers

$$
\mathcal{S}_{\theta} = R^1_{\theta/2}(R^2_{\theta/2}(\mathcal{C}))
$$

has nontrivial fibers over the disk, since $\mathcal{P}(\mathcal{S})$ contains the graph

 $\{(z, \pm z^{1/2}, 0) : z \in D\}$

of $z^{1/2}$. Moreover, each S_{θ} is connected, and the sets S_{θ} vary continuously with θ . However, $\mathcal{P}(S)$ contains no analytic selection.

First we need a lemma. For $k = 1, 2$, let Proj_k be the map on \mathbb{C}^3 given by $Proj_k(\zeta, z_1, z_2) = z_k.$

LEMMA. $\mathcal{P}(\mathcal{S}) \subset \mathbf{D} \times \mathcal{P}(\text{Proj}_1(\mathcal{S})) \times \mathcal{P}(\text{Proj}_2(\mathcal{S}))$.

Proof. $S \subset \partial D \times Proj_1(S) \times Proj_2(S)$. Thus

 $\mathcal{P}(S) \subset \mathcal{P}(\partial \mathbf{D} \times \text{Proj}_1(S) \times \text{Proj}_2(S)) \subset \mathbf{D} \times \mathcal{P}(\text{Proj}_1(S)) \times \mathcal{P}(\text{Proj}_2(S)).$ \Box

Proof of Theorem 1. Suppose that $f = (f^1, f^2)$ in H_2^{∞} has its graph contained in $\mathcal{P}(\mathcal{S})$. By the lemma, the function f^2 is in $\mathcal{P}(\text{Proj}_2(\mathcal{S})) \subset [-1,1]$ in **R**. In particular Im f^2 is 0; therefore f^2 is constant, but $f^2(1) = 0$ since $f(1) \in \mathbb{C}$. We conclude that f^2 is 0.

The value of $f = (f^1, 0)$ at θ is in $S_{\theta} \cap \{(z_1, 0)\} = \{(\pm e^{i\theta/2}, 0)\}$ except possibly for $\theta = 0$ or 2π . That is, $f^1 = \pm e^{i\theta/2}$ almost everywhere. No such function exists in H_1^{∞} , so we have a contradiction.

Now we check that the S_{θ} are smoothly varying. If $0 < \theta < 2\pi$, then the maps R^1_θ and R^2_θ on \mathbb{C}^2 are jointly C^∞ in θ and (z_1, z_2) . The only potential difficulty is at $\theta = 0$ or $\theta = 2\pi$. One can easily visualize S_{θ} since it lies in $R^3 \subset C^2$. The key is the set of points $\pm z_\theta = (\pm e^{i\theta/2}, 0)$ which are the image of $\pm i$ under the map $R_{\theta/2}^1 R_{\theta/2}^2$ (and which consequently lie in S_{θ}). Observe that $\pm i = \pm z_0 = \mp z_{2\pi}$, implying that as θ moves from 0 to 2π the points (+1, 0) and (-1, 0) rotate into each other. Thus $S_{2\pi}$ is a rotation of C in the (z_1 , 0) plane which has the same endpoints as C; we have $S_{2\pi} = C$ or $S_{2\pi} = -C$. However,

$$
R_{2\pi/2}^1(R_{2\pi/2}^2(1,0))=R_{\pi}^1((-1,0))=(1,0).
$$

We have established that the S_{θ} vary continuously in θ .

 \Box

Lest one complain that our example hinges on degeneracy of S_{θ} , we now give an example where S is the closure of an open set in \mathbb{C}^3 in addition to maintaining other nice properties.

THEOREM 2. For $n \in \mathbb{N}$, let \mathbb{S}^n be the set in \mathbb{C}^3 with fibers $\mathbb{S}_{\theta} + (1/n)B$, where B is the unit ball of C^2 . Then there exists $n_0 \in N$ such that the polynomial hull of S^{n_0} has no analytic selection.

Proof. Suppose not. Then for each *n* there exists f_n in H_2^{∞} whose graph lies in S^n . Let f_0 be a normal families limit of $\{f_n\}$. By polynomial convexity of each S_{θ} and by Corollary 2 in [HM], the function f_0 has graph lying in $\mathcal{P}(\mathcal{S})$. Thus $\mathcal{P}(\mathcal{S})$ has a selection, contrary to Theorem 1. П

References

- [HM] J. W. Helton and D. E. Marshall, Frequency domain design and analytic selections, Indiana Univ. Math. J. 39 (1990), 157-184.
	- [S1] Z. Slodowski, *Polynomial hulls for* C^2 *and quasicircles*, preprint.
- [Wg] E. Wegert, preprint.
- [Wr] J. Wermer, *Polynomially convex hulls and analyticity*, Ark. Mat. 20 (1982), 129-135.

J. W. Helton Department of Mathematics University of California - San Diego La Jolla, CA 92093-0112

O. Merino Department of Mathematics University of Rhode Island Kingston, RI 02881