1991

Oscillations of delay differential equations

K. Gopalsamy

G. Ladas

University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/math_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution
Available at: https://doi.org/10.1017/S0334270000008493

This Article is brought to you for free and open access by the Mathematics at DigitalCommons@URI. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
OSCILLATIONS OF DELAY DIFFERENTIAL EQUATIONS

K. GOPALSAMY¹ and G. LADAS²

(Received 30 July 1989; revised 28 February 1990)

Abstract

Sufficient conditions are established for all solutions of the linear system

\[\frac{dy_i(t)}{dt} + \sum_{j=1}^{n} q_{ij} y_i(t - \tau_{ij}) = 0, \quad i = 1, 2, \ldots, n, \]

to be oscillatory, where \(q_{ij} \in (-\infty, \infty), \tau_{ij} \in (0, \infty), i, j = 1, 2, \ldots, n \).

1. Introduction

Consider the system of delay differential equations

\[\frac{dy_i(t)}{dt} + \sum_{j=1}^{n} q_{ij} y_j(t - \tau_{ij}) = 0, \quad i = 1, 2, \ldots, n \]

(1)

where the coefficients are real numbers and the delays are positive real numbers. We say that a solution

\[y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix} \]

of (1) oscillates if for some \(i \in (1, 2, \ldots, n) \), \(y_i(t) \) has arbitrarily large zeros. A solution \(y(t) \) of (1) is said to be nonoscillatory if there exists a \(t_0 \geq 0 \) such that for each \(i = 1, 2, \ldots, n \), \(y_i(t) \neq 0 \) for \(t \geq t_0 \). The aim of this brief paper is to derive a set of sufficient conditions for all solutions

¹School of Mathematics, Flinders University, Bedford Park, S. A. 5042.
²Department of Mathematics, University of Rhode Island, Kingston, R. I., U.S.A.
© Copyright Australian Mathematical Society 1991, Serial-fee code 0334-2700/91
of (1) to oscillate. Our result is an extension of a result of Gopalsamy in [2], where only bounded solutions of systems like (1) have been considered. For references concerning the oscillation of systems, the reader is referred to the references in [2].

2. Sufficient conditions for oscillation

The following lemma will be useful in the proof of our theorem below.

Lemma 1. Assume that (1) has a nonoscillatory solution (2). Then there are numbers

$$\delta_i \in \{-1, 1\} \text{ for } i = 1, 2, \ldots, n$$

such that the system

$$\frac{dz_i(t)}{dt} + \sum_{j=1}^{n} p_{ij} z_j(t - \tau_{ij}) = 0 \quad (3)$$

where

$$p_{ij} = \frac{\delta_i}{\delta_j} q_{ij} \text{ for } i, j = 1, 2, \ldots, n \quad (4)$$

has a nonoscillatory solution \([z_1(t), z_2(t), \ldots, z_n(t)]^T\) with eventually positive components \(z_i(t), i = 1, 2, \ldots, n\).

Proof. The components \(y(t)\) of (2) are positive or negative eventually. That is, there exists a \(T > 0\) such that \(y_i(t) \neq 0\) for \(t \geq T\) and \(i = 1, 2, \ldots, n\). Set \(\delta_i = \text{sign}[y_i(t)]\), \(i = 1, 2, \ldots, n\) and \(t \geq T\). It is now easy to see that

$$z(t) = [\delta_1 y_1(t), \delta_2 y_2(t), \ldots, \delta_n y_n(t)]^T \quad (5)$$

satisfies (3) and \(\delta_i y_i(t) > 0\) for \(i = 1, 2, \ldots, n\) and \(t \geq T\).

The next result is concerned with the asymptotic behaviour of nonoscillatory solutions of (1).

Lemma 2. Consider the system (1) and suppose that the constant coefficients of (1) satisfy

$$q = \min_{1 \leq i \leq n} \left[q_{ii} - \sum_{j=1}^{n} |q_{ij}| \right] > 0. \quad (6)$$

Then every nonoscillatory solution \(y(t) = (y_1, y_2, \ldots, y_n)\) satisfies

$$\lim_{t \to \infty} y_i(t) = 0.$$
PROOF. Clearly (6) is also satisfied with the q_{ij} replaced by the respective p_{ij} of (4). From this and (5) it suffices to prove the lemma for nonoscillatory solutions of (2) with eventually positive components. Let us assume that there is a $t_0 \geq 0$ such that $y_i(t) > 0$ for $t \geq t_0$, $i = 1, 2, \ldots, n$. If we let

$$w(t) = \sum_{j=1}^{n} y_j(t), \quad t \geq t_0 \tag{7}$$

then

$$\frac{dw(t)}{dt} + \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} y_j(t - \tau_{jj}) = 0$$

or

$$\frac{dw(t)}{dt} + \sum_{i=1}^{n} q_{ii} y_i(t - \tau_{ii}) = - \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} q_{ij} y_j(t - \tau_{jj}) \leq \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} |q_{ji}| y_i(t - \tau_{ii}). \tag{8}$$

It follows from (8) that

$$\frac{dw(t)}{dt} + \sum_{i=1}^{n} \left\{ q_{ii} - \sum_{j=1, j \neq i}^{n} |q_{ji}| \right\} y_i(t - \tau_{ii}) \leq 0. \tag{9}$$

An integration of both sides of (9) leads to

$$w(t) + q \int_{t_0 + \tau}^{t} \sum_{i=1}^{n} y_i(s - \tau_{ii}) ds \leq w(t_0 + \tau) \tag{10}$$

where $\tau = \max_{1 \leq j \leq n} \tau_{jj}$. A consequence of (10) is that w is bounded and $y_i \in L_1(t_0 + \tau, \infty)$ for $i = 1, 2, \ldots, n$. From the boundedness of w one can conclude that of y_i since $w(t) = \sum_{i=1}^{n} y_i(t)$ and $y_i(t) > 0$ eventually. It will now follow from (1) that \dot{y}_i is bounded for $t \geq \tau$, and therefore y_i is uniformly continuous on $[0, \infty)$. The uniform continuity of y_i on $[0, \infty)$, the eventual positivity of y_i and the integrability of y_i on a half-line together with a lemma of Barbalat [1], will imply that $\lim_{t \to \infty} y_i(t) = 0$, $i = 1, 2, \ldots, n$ and this completes the proof.

THEOREM. Let $q_{ij} \in (-\infty, \infty)$, $\tau_{jj} \in (0, \infty)$, $i, j = 1, 2, \ldots, n$. If

$$q \tau_* > \frac{1}{e} \quad \text{where} \quad q = \min_{1 \leq i \leq n} \left(q_{ii} \sum_{j=1, j \neq i}^{n} |q_{ji}| \right), \quad \tau_* = \min_{1 \leq i \leq n} \tau_{ii} \tag{11}$$

then every solution of (1) oscillates.
Proof. Assume for the sake of a contradiction that (1) has a nonoscillatory solution (2). In view of Lemma 1 we can assume that the components of \(y_i(t) \) are eventually positive for \(i = 1, 2, \ldots, n \). We have directly from (1) that

\[
\sum_{i=1}^{n} \frac{dy_i(t)}{dt} + \sum_{j=1}^{n} \sum_{i=1}^{n} q_{ij} y_j(t - \tau_{jj}) = 0
\]

which satisfies

\[
\sum_{i=1}^{n} \left[\frac{dy_i(t)}{dt} \right] + \sum_{i=1}^{n} \left(q_{ii} - \sum_{j=1}^{n} |q_{ji}| \right) y_i(t - \tau_{ii}) \leq 0. \tag{12}
\]

We have from (12) that \(w(t) = \sum_{i=1}^{n} y_i(t) \) satisfies

\[
\frac{dw(t)}{dt} + \sum_{i=1}^{n} \left(q_{ii} - \sum_{j=1}^{n} |q_{ji}| \right) y_i(t - \tau_{ii}) \leq 0. \tag{13}
\]

Integrating both sides of (13) over \((t, \infty)\) and using the fact

\[w(t) \to 0 \text{ as } t \to \infty \quad (\text{since } y_i(t) \to 0, \ i = 1, 2, \ldots, n) \]

we derive that

\[
-w(t) + q \int_{t}^{\infty} \sum_{i=1}^{n} y_i(s - \tau_{ii}) \leq 0 \tag{14}
\]

and this leads to

\[
w(t) \geq q \int_{t}^{\infty} \sum_{i=1}^{n} y_i(s - \tau_{ii}) \, ds. \tag{15}
\]

It is found from (15) that

\[
w(t) \geq q \int_{t-\tau_*}^{\infty} \sum_{i=1}^{n} y_i(s) \, ds, \quad \tau_* = \min_{1 \leq i \leq n} \tau_{ii} \tag{16}
\]

or

\[
w(t) \geq q \int_{t-\tau_*}^{\infty} w(s) \, ds. \tag{17}
\]

Now we let

\[
F(t) = \int_{t-\tau_*}^{\infty} w(s) \, ds \tag{18}
\]
and derive from (17) and (18) that
\[
\frac{dF(t)}{dt} = -w(t - \tau_*)
\leq -qF(t - \tau_*) ; \quad t > 2\tau_*. \tag{19}
\]
It follows from (19) that \(F \) is an eventually positive solution of
\[
\frac{dF(t)}{dt} + qF(t - \tau_*) \leq 0 ; \quad t > 2\tau_*. \tag{20}
\]
But it is well known (from Ladas and Stavroulakis [3]) that when (11) holds, (20) cannot have an eventually positive solution and this contradiction completes the proof.

References