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A Comparative Analysis of Stationary-Phase Monte Carlo Methods 

J. D. Doll* 

Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

and D. L. Freeman 

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881 
(Received: August 17, 1987) 

We consider the stationary-phase Monte Carlo method and a variety of related approaches. The stationary-phase Monte 
Carlo method is aimed at the generic problem of performing high-dimensional integrations of rapidly oscillatory integrands. 
Real time numerical path integration is one important class of applications where such problems arise. We examine the 
relationship between the stationary-phase Monte Carlo approach and the recent work of Makri and Miller and of Filinov. 

Introduction 
One exciting recent development in many-body theory has been 

the evolution of a variety of practical numerical path integral 
methods for equilibrium applications.’ These path integral Monte 
Carlo methods are proving to be useful in the analysis of equi- 
librium many-body quantum phenomena, as evidenced by the 
rapidly increasing number of such applications.’-2 

In principle, these same path integral Monte Carlo methods 
are applicable to problems in quantum dynamics. In practice, 
however, their time-dependent application has been stalled by a 
difficult mathematical issue. Path integral approaches involve 
summing contributions from all possible quantum-mechanical 
“paths” associated with a particular process. In equilibrium ap- 
plications, the calculation of matrix elements of exp(-PH) (or of 
thermodynamic averages involving such elements) is ultimately 
translated by the path integral Monte Carlo approach into the 
problem of summing simple exponential terms, terms that are the 
measure of the significance of each path. In dynamical appli- 
cations, however, we require matrix elements of the propagator, 
exp(iHt/h), or, in general, the complex temperature operator3” 
exp(-(P + i t / h ) H ) .  Such matrix elements involve not the as- 
sembly of simple exponentials, but rather the summation of 
complex, typically highly oscillatory exponential terms. Such a 
task is a difficult Monte Carlo problem. The apparent inability 
of Monte Carlo methods to cope directly with such phase oscil- 
lation difficulties has, in the past, led many to express a general 
pessimism concerning the feasibility of developing the dynamical 
analogue of the equilibrium path integral Monte Carlo method. 

We recently introduced’ a relatively simple variation of the 
traditional Monte Carlo procedure aimed at overcoming the phase 
oscillation problems. This method was motivated in large part 
by a consideration of ordinary stationary-phase approaches. The 
aim, however, was the development of a general purpose multi- 
dimensional numerical procedure. The resulting stationary-phase 
Monte Carlo (SPMC) approach appears to overcome many of 
the difficulties outlined above. The basic idea of the SPMC 
approach is to use a %oarse graining” procedure to identify the 
regions of configuration space regions that contribute most strongly 

( I )  For a recent review of these methods, see, for example: Berne, B. J.; 

(2) For a cross section of recent applications, see, for example: J. Stat. 

(3) Miller, W. H.; Schwartz, S. D.; Tromp, J. W. J. Chem. Phys. 1983, 

(4) Coalson, R. D.; Freeman, D. L.; Doll, J. D. J .  Chem. Phys. 1986.85, 

(5) Doll, J. D.; Coalson, R. D.; Freeman, D. L. J. Chem. Phys. 1987,87, 

(6) Chang, J.; Miller, W. H. J .  Chem. Phys. 1987, 87, 1648. 
(7) Doll, J. D.; Freeman, D. L. Adu. Chem. Phys., in press. This issue 

contains the conference proceedings of the Lasers, Molecules and Methods 
Conference, organized at Los Alamos, July, 1986. 

Thirumalai, D. Annu. Reu. Phys. Chem. 1986, 37, 401. 

Phys. 1986, 43, 729-1244. 

79, 5029. 

4567. 

1641. 

to the final result. Such an identification produces a probability 
distribution function suitable for use in conjunction with Metropolis 
importance sampling.*s9 By generating such an importance 
sampling function, the SPMC approach simplifies the numerical 
difficulties traditionally associated with Monte Carlo approaches 
to highly oscillatory integrands. 

In the present work we analyze the basic SPMC approach in 
light of recent developments by Makri and Millerlo and the related 
work by Filinov.” Included is a discussion of the connection 
between the various approaches. We also identify practical lim- 
itations in some of the methods which are rectified in a forth- 
coming publication.I2 

The Stationary-Phase Monte Carlo Method 
We begin this section by motivating the generic integrations 

which can be conveniently evaluated using SPMC. For notational 
convenience we limit the discussion to a one-dimensional system. 
Generalizations to many degrees of freedom are straightforward. 

Key quantities in study of the quantum dynamics of many- 
particle systems at  finite temperatures are time correlation 
functions. For example, within the dipole approximation, the 
spectrum of a many-body system is obtained from the Fourier 
transform of the dipole-dipole autocorrelation function, C,,(t), 
given by 

(1) 
Tr [e -@HxeiHr/hxe- iHr/h  1 

Tr [e-BH] 
C,,(t) = 

As emphasized by Berne and Harp,I3 it is convenient to consider 
the related autocorrelation function, G,,(t), given by 

where p, is given by 

/I, = p / 2  + i t / h  (3) 

with /I = l /kBT,  kB being the Boltzmann constant and T the 
absolute temperature. It is easy to show that the Fourier 
transforms of G,,(t) and Cx,(t) are related by 

G,,(w) = e-~hu/2Cxx(w) (4) 

(8) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; 

(9) Valleau, J. P.; Whittington, S. G. In Modern Theoreticul Chemistry; 

(10) Makri, N.; Miller, W. H. Chem. Phys. Lett. 1987, 139, 10. 
(11) Filinov, V. S. Nucl. Phys. 1986, 8271, 717. 
(12) Doll, J. D.; Freeman, D. L.; Gillan, M. J. Chem. Phys. Lett. 1988, 

(13)  Berne, B. J.; Harp, G. D. Adu. Chem. Phys. 1970, 17, 63. 

Teller, E. J .  Chem. Phys. 1953, 21, 1087. 

Berne, B. J., Ed.; Plenum: New York, 1977; Vol. 5, pp 137-168. 

1433 277. 

0022-365418812092-3278$01.50/0 0 1988 American Chemical Society 



Stationary-Phase Monte Carlo Methods 

Consequently, G,,(w) and C,,(w) contain the same physical in- 
formation. However, Gxx(t) has both formal and computational 
advantages. 

By evaluating the quantum-mechanical traces in eq 2 in the 
coordinate representation, one obtains 

Jdx dx’ I(xle-o$lx)12xx’ 
(5) 

Gxx(t) = I d x  dx’ I(xle-@plx)12 

The x and x’integrations in eq 5 could be evaluated by Monte 
Carlo methods were the absolute square of the complex tem- 
perature density matrix elements available as the weight function. 
These density matrix elements are not, however, generally known 
analytically. These elements can be expressed in path integral 
form,14 a convenient starting point for numerical work. In the 
Fourier path integral method4-15-” the ratio, R, of the density 
matrix element to the free particle value is expressed by 

where 

s k z  = 21pc12h2/(m@(rk)2) (7) 

where m is the particle mass and a is the set of Fourier coefficients. 
The average of the potential energy evaluated along the path 
specified by the Fourier coefficients, (V), is defined explicitly in 
ref 5. 

When eq 6 is introduced into eq 5, the result is a ratio of 
integrations each of the generic form 

Jdx  p ( x )  eiflx) 
Z(t) = (8) 

where p(x) andf(x) are associated with the real and imaginary 
parts of the action. Detailed representations for p(x) andf(x) 
will be given elsewhere.’* Their explicit forms are irrelevant for 
the current discussion. In principle, we can evaluate eq 8 by means 
of Monte Carlo procedures, utilizing p ( x )  as an importance 
sampling function. For small t such a procedure is a practical 
one. For large t ,  however, the exponential term in eq 8 will 
typically oscillate rapidly over distances small relative to the 
natural length scale of p(x). These oscillations complicate the 
direct Monte Carlo evaluation of (8) since they require that we 
include a sufficient number of quadrature points to faithfully 
construct all of the phase interferences. This is an unnecessary 
nuisance, unnecessary since these troublesome high-frequency 
oscillations are effectively decoupled from the weight function, 
p ( x ) ,  and thus cannot contribute to the integral. A complication 
associated with evaluating integrals of the form of eq 8 is the 
difficulty in formulating a procedure which smoothly interpolates 
between the small t limit and the large t (stationary-phase) limit 
for multidimensional integrals. 

To develop a numerically useful procedure for the evaluation 
of integrals of the form of eq 8, it is convenient to introduce a 
“damping function”, D,(x) ,  defined by 

JdX P ( X )  

(14) Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path Inte- 

(15) Doll, J. D.; Freeman, D. L. J.  Chem. Phys. 1984, 80, 2239. 
(16) Doll, J. D. J .  Chem. Phys. 1984, 81, 3536. 
(17) Freeman, D. L.; Doll, .I. D. J.  Chem. Phys. 1984, 80, 5709. 
(18) Doll, J .  D.; Freeman, D. L.; Beck, T. L., to be published. 

grals; McGraw-Hill: New York, 1965. 
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where p , Q )  is an arbitrary, normalized probability distribution 
function. In what follows we shall take p,(y)  to be a Gaussian 
of width e. It is easy to show that eq 8 can be identically written 
as 

Jdx  p(x) D,(x)  eirAX) 
Z(t) = (10) 

JdX A x )  

The effect of the introduction of D,(x) is to damp the integrand 
where the oscillations are severe. This can be seen by evaluating 
D,(x)  within a gradient approximation for the special case that 
p ( x )  is unity. When p,(x) is a Gaussian probability distribution 
function of width and p ( x )  = 1, eq 9 is of the form 

J 

Expanding f(x-y) through second order 

produces 

e~p(-(etf’)~/2(1 - ite zf”)) 
D,(2)(t)  = (13) [ ( I  - itc 2f’’)]1/2 

where the superscript on D,“(x) denotes the second-order gradient 
approximation. Analogous first-order results can be obtained from 
eq 13 by setting the second derivative terms to zero. The effect 
of the damping function can be clearly seen from eq 13. For large 
t ,  D,(x) is exponentially damped for points not in the station- 
ary-phase region (f‘ = 0). A numerical study of the effect of the 
damping function is given in ref 7 and 12. The form of eq 13 is 
equivalent to the procedure introduced by Filinov” for the Monte 
Carlo evaluation of highly oscillatory integrands. 

Although the results of integrations using D,(x)  are formally 
independent of e, the second-order results are e-dependent. 
Furthermore, results using D,‘2)(x) are exact only in the limit that 
e is zero. Consequently, there is a need to formulate an optimal 
choice of e that enhances Monte Carlo convergence without in- 
troducing large systematic errors. Studies in ref 7 were limited 
to real values of e. Recently, Makri and Millerko introduced a 
Monte Carlo approach to treat oscillatory integrands. This ap- 
proach can be obtained from eq 13 using a particular complex, 
coordinate-dependent expression for e. In particular, if we choose 

where Q is a real constant, and DJ2)(x) becomes the Makri-Miller 
resultlo 

DMM(x) = e-(eIf)’[1 + iteo2Yl1/2 (15) 
The choice of e in (14) serves to eliminate the imaginary parts 
of the second-order contributions to the exponential portion of 
the damping function. As discussed by Makri and Miller,Io 
conventional stationary-phase results for eq 10 are recovered in 
the large eo limit. Since exact results are obtained in the limit 
of vanishing eo, and the stationary-phase results in the large eo 
limit, Makri and Millerlo have argued that eq 15 can be expected 
to be generally useful. 

Discussion 
We have considered here various aspects of the stationary-phase 

Monte Carlo method. A basic result of the present paper is the 
identification of the connection between our stationary-phase 
Monte Carlo approach and the recent methods of Filinov” and 
of Makri and Millerlo. This connection is summarized by eq 10 
and 13-15. The SPMC method appears to offer a general tool 
for the analysis of a class of problems previously thought to be 
off limits to Monte Carlo study; the construction of high-di- 
mensional averages of highly oscillatory integrands. Such integrals 
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arise naturally in a variety of physical contexts, including the 
numerical path integral study of quantum dynamics. The de- 
velopment of the present approach and the related method, the 
coordinate rotation t e c h n i q ~ e , ~ . ~  suggests that progress is being 
made toward the development of a general Monte Carlo theory 
of quantum dynamics. It is likely that the methods described here 
will find use in other problem areas where there are difficulties 
associated with phase oscillations. 

It is important to recognize that there are a number of potential 
pitfalls associated with applications of any of the approximate 
forms of the damping function. Perhaps the most serious is the 
fact that the results of integrations using an approximate damping 
function are not exact. There is an additional difficulty in ap- 
plications of any of the second-order damping functions [eq 13 
or 151. For multidimensional integrations the second derivatives 
required in the evaluation of the second-order damping functions 
take the form of determinants. The generation of such deter- 

minants for many-dimensional systems may prove to be difficult. 
A more useful procedure may be one requiring only first derivatives 
which can be corrected to the exact result. Such a procedure is 
given in ref 12. 
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Structure of Hard-core Models for Liquid Crystals 

Daan Frenkel 
FOM Institute for Atomic and Molecular Physics, P.O. Box 41883, 1009 DB Amsterdam, The Netherlands 
(Received: July 16, 1987; In Final Form: October 28, 1987) 

The results of recent computer simulations on fluids of nonspherical hard-core particles are discussed. New data are presented 
on the structure and dynamics of a system of hard spherocylinders with length-to-width ratio LID = 5 .  These data show 
that such spherocylinders can occur in at least four stable phases, viz., isotropic fluid, nematic liquid crystal, crystalline solid, 
and, surprisingly, a smectic A phase. 

Introduction 
Computer simulations of classical many-body systems can be 

used to gain insight in the microscopic behavior of real liquids 
and solids. Two distinct, and often complementary, approaches 
may be distinguished. On the one hand, one may carry out 
simulations on a realistic models in order to assist the interpretation 
of real experiments. On the other hand, computer simulations 
on idealized models of dense phases may be used to test theoretical 
concepts. Occasionally, computer simulations on simple model 
systems have yielded results that were qualitatively different from 
what was expected on the basis of the theories current at the time. 
A prime example of such a "computer discovery" is the observation 
by Alder and Wainwright of the long-time tails in the velocity- 
autocorrelation function of hard spheres. Our current theoretical 
understanding of simple liquids is, to a large extent, based on the 
results of such simulations. 

The situation is different for more complex fluids, such as liquid 
crystals. For the latter class of materials, direct comparison 
between experiment and simulation is difficult, because such 
simulations are very time-consuming (although not impossible; 
see ref 2). Simulation of idealized models for liquid crystals is 
also less than straightforward because there is no consensus as 
to what constitutes an "ideal" liquid crystal. 

For atomic liquids it is well-known that the structure of the 
fluid is almost completely determined by the short-range repulsive 
forces acting between the atoms. In fact, the success of the 
hard-sphere fluid as a reference system in thermodynamic per- 
turbation theories for simple liquids3v4 is largely a consequence 
of this fact. In contrast, it is at present not known whether the 
structure of more complex liquids, such as liquid crystals, is also 

(1) Alder, B. J.; Wainwright, T. E. Phys. Rev. A 1970, 1, 18-21. 
(2) Picken, S. J. Internal Report; University of Groningen, 1984. 
(3) Barker, J. A.; Henderson, D. J .  Chem. Phys. 1967, 48, 4714. 
(4) Weeks, J .  D.; Chandler, D.; Andersen, H. C. J .  Chem. Phys. 1971, 54, 

5237. 

primarily determined by excluded volume effects. From the 
theoretical work of Onsager5 we know that a fluid of (infinitely) 
thin spherocylinders with length L and diameter D must undergo 
a transition from the isotropic to the nematic phase at  a number 
density of order l/(L*D). At this density the fraction of the 
volume occupied by the spherocylinders is still vanishingly small 
(of order D/L). Recent computer simulations on hard ellip- 
soids-of-revolution with more realistic shapes6!' have shown that 
a stable nematic phase is possible for this class of hard-core 
molecules if the length-to-breadth ratio is either larger than 2.5 
or less than 0.4.8 These results do not yet imply that nonspherical 
hard-core interactions are the cause of orientational order in real 
nematic liquid crystals. In fact, two additional factors are often 
invoked to explain the stability of nematic liquid crystals, namely, 
(1) long-range anisotropic forcesg which tend to induce orienta- 
tional order and (2) the presence of flexible tails attached to the 
rigid molecular core.1° The effect of the flexible tails is to stabilize 
the liquid phase with respect to the crystalline solid. However, 
now that we know that hard spheroids, that have neither long- 
range interactions nor flexible tails, form a nematic phase over 
a rather wide range of length-to-breadth ratios, we can begin to 
test thermodynamic perturbation theories. Such tests should 
enable us to ascertain whether nonspherical hard-core fluids can 
serve as "reference" systems for nematic liquid crystals in the same 
way that the hard-sphere fluid is a reference system for, say, liquid 
argon. 

( 5 )  Onsager, L. Ann. N .  Y. Acad. Sci. 1949, 51, 627. 
(6) Eppenga, R; Frenkel, D. Mol. Phys. 1984, 52, 1303. 
(7) Frenkel, D; Mulder, B. M. Mol. Phys. 1985, 55, 11 7 1. 
( 8 )  Pioneering simulations of hard spherocylinders with LID = 2 were 

carried out by Vieillard-Baron Mol. Phys. 1974, 28, 809. However, in that 
system Vieillard-Baron did not observe nematic ordering. 

(9) Maier, W.; Saupe, A. Z. Naturforsch., A: Astrophys., Phys., Phys. 
Chem. 1958, 13A, 564. 

(10) Dowell, F.; Martire, D. E. J.  Chem. Phys. 1978,68, 1088. Ibid. 1978, 
68, 1094. Ibid. 1978, 68, 2322. Dowell, F. Phys. Rev. A 1983, 28, 3526. 
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