1996

The *Escherichia coli* K-12 *gntP* Gene Allows *E. coli* F-18 to Occupy a Distinct Nutritional Niche in the Streptomycin-Treated Mouse Large Intestine

Neal J. Sweeney
University of Rhode Island

Per Klemm
University of Rhode Island

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cels_past_depts_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution

Available at: https://iai.asm.org/content/64/9/3497

This Article is brought to you for free and open access by the College of the Environment and Life Sciences at DigitalCommons@URI. It has been accepted for inclusion in Past Departments Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
The *Escherichia coli* K-12 gntP Gene Allows *E. coli* F-18 To Occupy a Distinct Nutritional Niche in the Streptomycin-Treated Mouse Large Intestine

NEAL J. SWEENEY,†‡ PER KLEMM,‡ BETH A. MCCORMICK,†‡ EVA MOLLER-NIELSEN,†§ MARYJANE UTLEY,† MARK A. SCHEMBRI,‡ DAVID C. LAUX,† and PAUL S. COHEN†*

Department of Biochemistry, Microbiology, and Molecular Genetics, University of Rhode Island, Kingston, Rhode Island 02881, and Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark

Received 24 January 1996/Returned for modification 18 March 1996/Accepted 2 June 1996

Escherichia coli F-18 is a human fecal isolate that makes type 1 fimbriae, encoded by the *fim* gene cluster, and is an excellent colonizer of the streptomycin-treated mouse intestine. *E. coli* F-18 *fimA::tet*, lacking type 1 fimbriae, was constructed by bacteriophage P1 transduction of the *fim* region of the *E. coli* K-12 strain ORN151, containing the tetracycline resistance gene from Tn10 inserted in the *fimA* gene, into *E. coli* F-18. *E. coli* F-18 *fimA::tet* was found to occupy a distinct niche in the streptomycin-treated mouse intestine when fed in small numbers (10⁴ CFU) to mice, along with large numbers (10¹⁰ CFU) of *E. coli* F-18, as defined by the ability of the *E. coli* F-18 *fimA::tet* strain to grow and colonize only 1 order of magnitude below *E. coli* F-18. The same effect was observed when mice already colonized with *E. coli* F-18 were fed small numbers of *E. coli* F-18 *fimA::tet*. Experiments which show that the *E. coli* K-12 gene responsible for this effect is not *fimA::tet* but *gntP*, which maps immediately downstream of the *fim* gene cluster, are presented. *gntP* encodes a high-affinity gluconate permease, suggesting that the distinct niche in the mouse large intestine is defined by the presence of gluconate. The data presented here support the idea that small numbers of an ingested microorganism can colonize the intestine as long as it can utilize an available nutrient better than any of the other resident species can.

A thick (200- to 400-μm), viscous mucus layer covers the epithelial cells of the mammalian large intestine (1, 11). The mucus layer consists of mucin (a gel-forming glycoprotein), glycoproteins, lipids, proteins, nucleic acids, epithelial cell debris, enzymes, bile, and all the components of gastric juices (1, 25). The mucus layer is thought to exist in a dynamic state in which the mucus is continuously being secreted by goblet cells and simultaneously being degraded by the resident microorganisms (23, 36).

An examination of the mammalian intestine has revealed that several hundred species of microorganisms inhabit this environment (35). The diversity of microorganisms reflects the respective abilities to occupy different ecological niches. It has been demonstrated in experiments in chemostats that two different microorganisms having a preference for the same growth-limiting nutrient cannot coexist (41). That is, one will eventually outcompete and eliminate the other. However, if two different microorganisms utilize different growth-limiting nutrients, they can coexist in a chemostat and maintain stable populations (44, 46). These observations have led to the theory that the mammalian intestine may be thought of as a chemostat with several hundred species in equilibrium, each utilizing a different limiting nutrient better than all the other species (19, 30). The size of any particular population would then be dependent on and proportional to the concentration of the corresponding nutrient. The plethora of substrates present in the intestinal tract arise from ingested and digested food, epithelial cell debris, mucus, and substrates secreted by the microflora. An exception to this nutrient/niche theory was developed by Freter, who used mathematical modeling to demonstrate that two species competing for the same limiting nutrient may occupy the same niche if the less efficient species can adhere to the intestinal mucosa (20). Thus, two classes of ecological niches may exist in the intestine, specific adhesion niches and specific nutrient niches.

Although many species of bacteria found in the mammalian large intestine have been characterized and cataloged, relatively little is known about how they compete with each other nutritionally, i.e., which substrates are available to support growth, which metabolic pathways are used, and which genes are required for the ability to colonize. A major problem encountered in studying the colonization of the mammalian intestine is what is commonly referred to as “colonization resistance,” in which all intestinal niches are occupied in a balanced ecosystem and most ingested microorganisms fail to colonize because of the lack of an available niche. This phenomenon, predicted by the theories described above, has been noted by several extensive studies (8, 9, 17, 18, 45). For example, when human volunteers were fed with *E. coli* K-12 strains, these strains did not persist in the feces of these individuals (2, 32, 43). Moreover, when healthy human volunteers were fed *E. coli* strains isolated from their own feces, even those strains could not colonize (3).

Despite the phenomenon of colonization resistance, a continuous succession of *E. coli* strains appears to exist in the mammalian intestine. Some strains are present for extended periods from months to years (residents), whereas others
(transients) can be detected for only several days (38–40). In one study in which the plasmid profiles of different *E. coli* strains in fecal samples obtained from one person were examined during an 11-month period, 53 different electrophoretic types were found, and although most were detected for only a few sampling days, some were present for extended periods (12). In another study, an average of five *E. coli* biotypes were found in the feces of individual humans (4). Thus, diversity exists even among normal commensal *E. coli* strains in the intestine, suggesting the possibility that different *E. coli* strains utilize different growth-limiting nutrients for colonization.

In the present study, we present a situation in which an *E. coli* K-12 *fim*-linked gene allows *E. coli* F-18, a normal human fecal isolate (13), to occupy a distinct niche in the mouse large intestine, as defined by its ability, when ingested in small numbers, to grow and colonize in the presence of large numbers of its parent. Moreover, we show that the *E. coli* K-12 *fim*-linked gene is *gntP*, a recently described gene which encodes a high-affinity gluconate permease (28).

MATERIALS AND METHODS

Bacterial strains and plasmids. All the *E. coli* F-18 and K-12 strains and plasmids used in this study are listed in Table 1.

Bacteriophage P1 transduction. All P1 transductions were performed as previously described (34).

Construction of *E. coli* F-18 strain. The *fimH* gene maps at 98.1 min on the *E. coli* K-12 chromosome (6), downstream of the *fim* gene cluster. To confirm the location of the *fimH* gene, *E. coli* F-18 no. 167 was transduced with pLOF containing *fimH* cloned into pBR322. Eighteen *E. coli* K-12 transductants (kanamycin resistant and tetracycline resistant) were tested for the presence of *fimH* by PCR using primer pairs specific for the *fim* gene and *fimH*. All 18 *E. coli* K-12 transductants contained *fimH*.

Isolation of *E. coli* F-18 strains by rabbit-specific anti-type 1 fimbria serum. All *E. coli* F-18 strains used in this study were tested for the presence of type 1 fimbriae after growth to stationary phase at 37°C in Luria broth. Aliquots of 100 µl of each culture were added to 10 µl of undiluted rabbit-specific anti-type 1 fimbria serum (34) for 5 min at room temperature, and the mixtures were observed by phase-contrast microscopy (magnification, ×400 for the extent of agglutination). The antisera were presorbed with whole *E. coli* fimA::tet to prevent nonspecific binding of antibodies to the test cells.

Mouse colonization experiments. The method used to compare the relative

TABLE 1. *E. coli* strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-18</td>
<td>Str<sup>+</sup> Rif<sup>+</sup></td>
<td>13</td>
</tr>
<tr>
<td>F-18 Na<sup>+</sup></td>
<td>Str<sup>+</sup> Rif<sup>+</sup> Na<sup>+</sup></td>
<td>34</td>
</tr>
<tr>
<td>F-18 fimA::tet</td>
<td>Transduction of fimA::tet from ORN151 to F-18, Str<sup>+</sup> Rif<sup>+</sup> Tet<sup>+</sup></td>
<td>34</td>
</tr>
<tr>
<td>F-18 fimA::xpt</td>
<td>Transduction of fimA::xpt from ORN147 to F-18, Str<sup>+</sup> Rif<sup>+</sup> Kan<sup>+</sup></td>
<td>This study</td>
</tr>
<tr>
<td>F-18 no. 99</td>
<td>Transduction of fim region from ORN174 to F-18 fimA::xpt, Str<sup>+</sup> Rif<sup>+</sup> Tet<sup>+</sup></td>
<td>This study</td>
</tr>
<tr>
<td>F-18 no. 167</td>
<td>Transduction of fim region from ORN174 to F-18 fimA::xpt, Str<sup>+</sup> Rif<sup>+</sup> Tet<sup>+</sup></td>
<td>This study</td>
</tr>
<tr>
<td>F-18 no. 167 uxuA::minITn10::xpt</td>
<td>Transduction of fim::xpt into uxuA of F-18 no. 167, Str<sup>+</sup> Rif<sup>+</sup> Tet<sup>+</sup></td>
<td>This study</td>
</tr>
<tr>
<td>ORN151</td>
<td>rpsL fimA::xpt, Str<sup>+</sup> Tet<sup>+</sup></td>
<td>33</td>
</tr>
<tr>
<td>ORN147</td>
<td>rpsL fimA::xpt, Str<sup>+</sup> Kan<sup>+</sup></td>
<td>33</td>
</tr>
<tr>
<td>ORN174</td>
<td>tet inserted 400 bp downstream of fimH</td>
<td>7</td>
</tr>
<tr>
<td>ATM160</td>
<td>expression vector containing miniTn10::xpt</td>
<td>14, 22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasmids</th>
<th>Relevance</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRU1</td>
<td>fimF fimG fimH gntP uxuA waaB E. coli K-12 genes cloned into BamHI site of pBR322</td>
<td>37</td>
</tr>
<tr>
<td>pRU6</td>
<td>E. coli K-12 uxuA gene cloned into SalI site of pBR322</td>
<td>37</td>
</tr>
<tr>
<td>pPKL133</td>
<td>2.6-kb KpnI-EcoRI fragment of pPIL38 containing gntP cloned into KpnI-EcoRI</td>
<td>28</td>
</tr>
<tr>
<td>pGEM3</td>
<td>Amp<sup>+</sup> resistance plasmid pGEM3</td>
<td>14, 22</td>
</tr>
<tr>
<td>pLOF</td>
<td>Suicide vector containing miniTn10::xpt</td>
<td>Promega</td>
</tr>
</tbody>
</table>

TABLE 2. Utilization of various carbohydrates by *E. coli* F-18 strains

<table>
<thead>
<tr>
<th>E. coli strain</th>
<th>Glc</th>
<th>GlcA</th>
<th>GalA</th>
<th>Gnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-18</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F-18 fimA::xpt</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F-18 fimA::xpt</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F-18 no. 167</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uxuA::minITn10::xpt (pRU1)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F-18 no. 167</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uxuA::minITn10::xpt (pPIL133)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F-18 (pGEM3)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Glc, glucose (1.0 mg/ml); GlcA, glucuronate (2.5 mg/ml); GalA, galacturonate (2.5 mg/ml); Gnt, glucuronate (1.0 mg/ml). Davis minimal agar plates were incubated at 30°C for 48 h.
intestinal colonization abilities of streptomycin-resistant *E. coli* strains in mice has been described previously (13, 34).Briefly, three male, individually housed CD-1 mice (5 to 8 weeks of age), fed Charles River Valley rat, mouse, and hamster formula, were given streptomycin-treated (5 g/liter) drinking water for 24 h. Following 18 to 24 h of starvation for food and water, the mice were given 1 ml of 20% (wt/vol) sucrose containing either 10^10 or 10^4 CFU of Luria broth. After the bacterial suspension had been ingested, both the food and streptomycin-treated water were returned to the mice; 1 g of feces was collected after 5 and 24 h and on odd-numbered days for 2 weeks thereafter. Cages were changed daily. Fecal samples (no older than 24 h) were homogenized, diluted in 1% tryptone broth, and plated on MacConkey agar (Difco, Detroit, Mich.) containing antibiotics as indicated in the legends to the figures to enumerate each *E. coli* strain. Antibiotic concentrations on plates were as follows: streptomycin sulfate, 10 μg/ml; rifampin, 50 μg/ml; tetracycline hydrochloride, 10 μg/ml; kanamycin, 80 μg/ml; nalidixic acid, 50 μg/ml; ampicillin, 100 μg/ml. All the plates were incubated for 18 to 24 h at 37°C before being counted. Each colonization experiment was performed twice to confirm initial colonization results, and the data from both experiments are included in the figures.

Southern blotting. Southern hybridizations were performed at high stringency with the digoxigenin radioactive DNA-labeling and detection kit (Boehringer Mannheim). The *gntP* gene of *E. coli* PC31 (28) was used as the probe.

RESULTS

E. coli F-18 fimA::tet occupies a distinct niche in the mouse large intestine. The fim gene cluster encodes the genes required for the synthesis of type 1 fimbriae (26, 27, 33). *E. coli* F-18 fimA::tet, unable to make type 1 fimbriae, contains the chromosomal fim region from the *E. coli* K-12 strain ORN151 (fimA::tet) (33). As previously described, when mice were fed 10^10 CFU each of *E. coli* F-18 and *E. coli* F-18 fimA::tet, both strains colonized at approximately the same level of about 10^6 CFU/g of feces (34). However, when mice were fed 10^10 CFU of *E. coli* F-18 and 10^4 CFU each of *E. coli* F-18 fimA::tet and *E. coli* F-18 NaI*, both strains colonized at approximately 10^5 CFU/g of feces, *E. coli* F-18 fimA::tet colonized at approximately 10^5 CFU/g of feces, and *E. coli* F-18 NaI* colonized at approximately 10^4 CFU/g of feces (Fig. 1). Thus, *E. coli* F-18 and *E. coli* F-18 NaI* were equally good colonizers, since they maintained a ratio of 10^6:1 throughout the entire 15 days. However, *E. coli* F-18 fimA::tet appeared to grow in and occupy a distinct niche from which *E. coli* F-18 NaI* was excluded. When the experiment was performed in the opposite direction, i.e., when 10^10 CFU of *E. coli* F-18 fimA::tet and 10^4 CFU of *E. coli* F-18 NaI* were fed to mice, *E. coli* F-18 fimA::tet colonized at a level of about 10^6 CFU/g of feces whereas *E. coli* F-18 NaI* colonized at about 10^2 CFU/g of feces (results not shown).

Therefore, *E. coli* F-18 NaI* was not able to occupy the distinct niche available to *E. coli* F-18 fimA::tet. It should be noted that when occupying the distinct niche, *E. coli* F-18 fimA::tet was not only found in feces but was also found in ileal, cecal, and colonic mucus (not shown).

E. coli F-18 fimA::tet was also able to grow in and occupy the distinct niche in mice that had been colonized with *E. coli* F-18 for 15 days. That is, when mice colonized with *E. coli* F-18 at a level of about 10^6 CFU/g of feces were challenged with 10^4 CFU each of *E. coli* F-18 fimA::tet and *E. coli* F-18 NaI*, *E. coli* F-18 fimA::tet grew and colonized at a level of about 10^7 CFU/g of feces whereas *E. coli* F-18 NaI* decreased to <10^2 CFU/g of feces (Fig. 2).

In control experiments, it was found that *E. coli* F-18 fimA::npt, which does not make type 1 fimbriae because it contains the fim chromosomal region from *E. coli* K-12 ORN147 (fimA::npt), and two randomly selected *E. coli* F-18 P1 transductants (no. 99 and 167) which contain the fim+ gene cluster of *E. coli* ORN152 and which make type 1 fimbriae, were all able to occupy the distinct niche (data not shown). Therefore, the ability of *E. coli* F-18 fim transductants to occupy the distinct niche was not associated with either tetracycline resistance or the ability to make type 1 fimbriae but appeared to be due to a fim-linked gene present in the ORN strains that was the K-12 fim-linked gene.

A glucurononate mutant can occupy the distinct site. D-Glucuronate is a major constituent of hyaluronic acid, which is plentiful in mammalian tissues and makes up approximately 0.6% of the dry weight of mouse cecal mucus (28a). The *uxa* gene cluster maps downstream of the fim gene cluster at 98 min on the *E. coli* K-12 chromosome and consists of three genes, *uxA*, which encodes D-mannonate dehydratase (EC 4.2.1.8), *uxB*, which encodes D-mannonate oxidoreductase (EC 1.1.1.57), and *uxD*, which encodes a negative repressor of *uxA* and *uxB* (48). To determine whether the K-12 fim-
linked gene was involved in glucuronate metabolism, we constructed \(E. coli \) F-18 no. 167 \(\text{uxu}A::\text{mini}Tn10::npt \), which makes type 1 fimbriae because it contains the wild-type K-12 \(\text{fim} \) gene cluster but is unable to metabolize glucuronate (Tables 1 and 2). Streptomycin-treated mice were fed \(10^{10} \) CFU of \(E. coli \) F-18 Na\(^{+}\) and \(10^{4} \) CFU of \(E. coli \) F-18 (pRU6), \(E. coli \) F-18 no. 167 \(\text{uxu}A::\text{mini}Tn10::npt \), \(E. coli \) F-18 Na\(^{+}\) and \(10^{4} \) CFU of \(E. coli \) F-18 (pRU6), \(E. coli \) F-18 Na\(^{+}\) colonized at about \(10^{6} \) CFU/g of feces and \(E. coli \) F-18 (pPKL133) colonized at about \(10^{7} \) CFU/g of feces (Fig. 3A); i.e., pPKL133 allowed \(E. coli \) F-18 to occupy the distinct niche. In contrast, the vector control pGEM3 did not allow \(E. coli \) F-18 to occupy the distinct niche (Fig. 3B). These data therefore suggest that the K-12 \(\text{fim} \)-linked gene that allows \(E. coli \) F-18 to occupy the distinct niche is \(\text{gnt}P \).

Since the K-12 \(\text{uxu} \) genes did not appear to be involved in \(E. coli \) F-18 occupying the distinct niche and it was unlikely that \(\text{fim}F, \text{fim}G, \text{fim}H \) were involved, we tested the possibility that \(\text{gnt}P \), the only other K-12 gene on pRU1, was the K-12 \(\text{fim} \)-linked gene (see Fig. 5). The functional K-12 \(\text{gnt}P \) gene is the only non-pGEM3 gene on pPKL133 (see Fig. 5). It encodes a high-affinity gluconate permease (28). When mice were challenged with \(10^{10} \) CFU of \(E. coli \) F-18 and \(10^{4} \) CFU of \(E. coli \) F-18 (pPKL133), \(E. coli \) F-18 colonized at about \(10^{6} \) CFU/g of feces and \(E. coli \) F-18 (pPKL133) colonized at about \(10^{7} \) CFU/g of feces (Fig. 4A); i.e., pPKL133 allowed \(E. coli \) F-18 to occupy the distinct niche. In contrast, the vector control pGEM3 did not allow \(E. coli \) F-18 to occupy the distinct niche (Fig. 4B). These data therefore suggest that the K-12 \(\text{fim} \)-linked gene that allows \(E. coli \) F-18 to occupy the distinct niche is \(\text{gnt}P \).

E. coli F-18 does not contain \(\text{gnt}P \). Southern blotting experiments were performed under high-stringency conditions to determine whether \(E. coli \) F-18 contains \(\text{gnt}P \). DNA isolated from both \(E. coli \) PC31, a K-12 strain, and \(E. coli \) SK22, a human commensal strain, reacted very strongly with the \(\text{gnt}P \) probe (1.2-kb NsiI fragment [Fig. 5]), yielding the predicted 6.7-kb fragment released by EcoRV treatment (Fig. 5, lanes 1 and 7), the predicted 5.5-kb fragment released by EcoRI treatment (lanes 2 and 8), and the predicted 1.8-kb fragment con-
taining predominantly gntP DNA released by EcoRI and PstI treatment (lanes 3 and 9). In contrast, E. coli F-18 DNA reacted very weakly with both the 6.7- and 5.5-kb fragments and, instead of reacting with the expected 1.8-kb gntP fragment, reacted very weakly with a 0.6-kb EcoRI-PstI fragment (lanes 4 to 6). These results indicate that E. coli F-18 does not contain a functional gntP gene. In similar Southern blotting experiments, E. coli F-18 fimA::tet was found to contain the gntP gene (results not shown), suggesting that gntP is also responsible for its ability to colonize the distinct niche.

DISCUSSION

In a previous report, we suggested that type 1 fimbriae prevent E. coli F-18 from occupying the distinct niche described here (29); however, in that study, fimA::tet had been bacteriophage P1 transduced from an E. coli K-12 strain into E. coli F-18 and we had not eliminated the possibility that the gene responsible was not the defective E. coli K-12 fimA::tet gene but a K-12 fim-linked gene. Here, we show that the effect is due to the E. coli K-12 gntP gene, which is immediately downstream of fimH in E. coli K-12 (28) and is not present in E. coli F-18 (Fig. 5). Since gntP encodes a gluconate permease, the distinct niche is most likely to be a nutritional niche defined by the presence of gluconate.

As stated above, a major problem encountered in studying the colonization of the mammalian intestine is what is commonly referred to as colonization resistance, in which all intestinal niches are occupied in a balanced ecosystem and most ingested microorganisms fail to colonize because of a lack of an available niche (30). Colonization resistance is, in fact, the reason that we used streptomycin, i.e., to clear the mouse intestine of facultative microorganisms and create an available niche for our E. coli strains. Streptomycin treatment selectively reduces the facultative microflora; however, the anaerobic population in the large intestine remains largely intact, and large numbers of different species coexist (21). Since E. coli K-12 fails to colonize the intestines of conventional mice (20), streptomycin treatment may be eliminating a microorganism that either utilizes gluconate better than E. coli K-12 does or kills it.

Gluconate is metabolized in E. coli K-12 via the Entner-Doudoroff pathway and to a lesser extent via the pentose phosphate pathway (15, 47). E. coli K-12 contains three gluconate permeases other than GntP, each encoded by a different gene. The GntI system of genes, which maps at 75 min on the chromosome, contains gntT and gntU, encoding high- and low-affinity gluconate transport systems, respectively, and gntK, encoding a gluconate kinase (24). The GntII system, located at 96 min, contains gntS, encoding a second high-affinity gluconate transport system, and gntV, encoding a thermosensitive gluconate kinase (5). The GntII system is specifically induced by gluconate and is regulated by gntR, a repressor that also maps at 75 min (48). GntR also represses the Entner-Doudoroff pathway but does not regulate the genes of the GntII system. Genes regulating the GntII system have not been identified (24).
E. coli F-18 does not contain the gntP gene (Fig. 5) but does metabolize gluconate (Table 2). This suggests that E. coli F-18 has one or more of the gluconate permease genes discussed above but that these genes are not expressed as well as gntP in the mouse intestine or that the E. coli F-18 gluconate permease(s) is not as effective as GntP in transporting gluconate in the intestine.

The E. coli K-12 gntP gene is monocistronic and appears to be under catabolite repression; i.e., it contains an excellent catabolite activator protein-binding site and is repressed by glucose (28). The GntP protein is a high-affinity inner membrane gluconate permease and has a much higher affinity for gluconate than for a number of other sugars, including gluconate (28). Interestingly, the expression of gntP is constitutive in exponentially growing cells in the absence of gluconate or a catabolite repressing carbon source (28). Moreover, gntP is repressed by high concentrations of gluconate (28).

The fact that gntP encodes a high-affinity constitutive gluconate transport system in the absence of high gluconate concentrations suggests that it is ideally suited to function in an environment containing growth-limiting amounts of gluconate. The mouse large intestine is most likely to be such an environment. A primary source of gluconate in the intestine is likely to be 6-phosphogluconate, which is a key intermediate in the mammalian and bacterial pentose phosphate pathways (16, 30). We suggest the possibility that as dead epithelial cells are sloughed from intestinal villus tips into the mucosal layer, 6-phosphogluconate is released into the mucus along with dead epithelial cell contents. The action of presumptive 6-phosphogluconate-specific phosphatases present in mucus, of either epithelial cell or bacterial cell origin, could generate gluconate. A second gluconate source in the large intestine could of course be undigested dietary gluconate.

Since gntP is repressed by high concentrations of gluconate (28), we suggest that gluconate must be present in low concentrations in the streptomycin-treated mouse large intestine. Moreover, we suggest that the E. coli K-12 gntP gene, either in the chromosome of E. coli F-18 or in a plasmid, allows E. coli F-18 to utilize growth-limiting amounts of gluconate not only better than E. coli F-18 but also better than any of the myriad of other species also present in the streptomycin-treated mouse large intestine (21). In addition, since E. coli F-18 colonizes at about 10^9 CFU/g of feces and E. coli F-18 carrying the K-12 gntP colonizes about an order of magnitude lower when fed in small numbers to mice, E. coli F-18 must be using something other than gluconate as its major carbon source in the large intestine.

Finally, the data presented here suggest that at least with respect to E. coli strains, the nutrient/niche theory is correct. That is, in the presence of an established E. coli strain, small numbers of another ingested E. coli strain will grow and colonize as long as it can utilize a growth-limiting nutrient better than the first E. coli strain and all the other species present in the intestine.

ACKNOWLEDGMENTS

This investigation was supported by U.S. Environmental Protection Agency Assistance Agreement CR 820422-02-0 (P.S.C.) and grants from The Danish Technical and Medical Research Councils (P.K.). We thank Paul Ritzenthaler for providing us with pRUT1 and pRUs6.

REFERENCES

ichia coli strain and its ability to bind a specific mouse colonic mucus gel protein. Infect. Immun. 40:45–49.
errichia coli: sequence analysis and localization of promoters for the edd-eda
19. Freter, R., H. Bricker, M. Botney, D. Cleven, and A. Aranki. 1983. Mech-
272:6557–6567.
24. Istaruz, T., E. Polermo, and J. Vitiell-Flores. 1986. Mutations affecting glu-
conate metabolism in Escherichia coli: Genetic mapping for the thermosen-
29. Krivan, H. Personal communication.

Editor: B. I. Eisenstein