1999

Dimensional Strategies and the Minimization Problem: Barrier-Avoiding Algorithms

Daniel B. Faken
A. F. Voter

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1021/jp9920949

This Article is brought to you for free and open access by the Chemistry at DigitalCommons@URI. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
In the present paper we examine the role of dimensionality in the minimization problem. Since it has such a powerful influence on the topology of the associated potential energy landscape, we argue that it may prove useful to alter the dimensionality of the space of the original minimization problem. We explore this general idea in the context of finding the minimum energy geometries of Lennard-Jones clusters. We show that it is possible to locate barrier-free, high-dimensional pathways that connect local, three-dimensional cluster minima. The performance of the resulting, “barrier-avoiding minimization” algorithm is examined for clusters containing as many as 55 atoms.

I. Introduction

Perhaps because we instinctively sense that our tools at any moment are, in truth, relatively primitive, we tend to display a reluctance to confront certain issues. Random processes are a case in point. Historically, our view of “noise” was basically that it was “bad”. As a consequence, in the past we sought to eradicate, avoid, or minimize it whenever possible. As our abilities to deal with noise have advanced, our views of it have also fundamentally changed.

Far from universally avoiding stochastic elements, today we often intentionally introduce them into purely deterministic problems for reasons of “convenience”. Random walk treatments of electronic structure and simulated annealing strategies for minimization are important examples of this changing perspective.

Years of low-dimensional pedagogy have left an unfortunate legacy. The tendency is to view larger dimensional problems as automatically more difficult than their smaller dimensional counterparts. There are obvious counter examples. Laplace’s “two-dimensional” evaluation of the one-dimensional Gaussian integral is a particularly striking one. More recently, advances in formal and computational tools for higher-dimensional systems have contributed to a growing awareness that dimensionality can be transformed from “foe” to “friend”.

Dimensionality exerts a powerful influence on phenomenology. The absence of phase transitions in one-dimension and the formal divergence of diffusion coefficients for two-dimensional fluids are familiar examples. Because it has such a fundamental influence on the topology of potential energy “landscapes”, it is, as suggested by Purisima and Scheraga, useful to consider dimensional modification as a tool within the context of the minimization problem.

The present paper examines a particular class of dimensional modification strategies. As a prototype application, we consider the problem of finding the minimum energy geometry of Lennard-Jones clusters. We show that there exist barrierless, higher dimensional pathways that connect three-dimensional, local cluster minima. On the basis of our findings we suggest that dimensional modification may prove to be a useful strategy for certain classes of minimization problems.

The remainder of this paper is organized as follows: Section II introduces the basic idea of dimensional expansion. Results of the application of these methods to Lennard-Jones clusters are presented in Section III. Section IV contains a discussion and summary of the results as well as a comparison with currently available methods.

II. Formal Developments

Minimization problems are arguably among the most ubiquitous in science and engineering. They are also among the most frustrating. What appears to be a relatively simple task for a few variables rapidly becomes quite challenging as the number of degrees of freedom increases. This rise in complexity mirrors the rapid increase of the number of local minima in the associated potential energy landscape with increasing numbers of degrees of freedom. For example, the number of stable local minima increases roughly exponentially with the number of particles for relatively simple Lennard-Jones cluster systems.

At heart, therefore, the minimization problem is effectively the local minimum problem.

In the present section we explore the potential of dimensionality for use as a tool in the treatment of minimization problems. We examine whether the increase in the complexity of the minimization problem with system size is inevitable or whether it an example of allowing the potential “solution” to become the “problem”. We consider conventional minimization techniques only briefly, referring the reader to existing reviews of those methods for more detailed treatments. To provide an explicit framework for our discussion, we adopt the viewpoint throughout the following that the objective function we seek to minimize is a generalized potential energy surface for a realizable physical system whose natural coordinates are continuously variable quantities.

For the present discussion, it is convenient to divide minimization techniques into two broad classes—those that modify the underlying potential energy surface and those that...
do not. Standard conjugate gradient methods as well as various “annealing” approaches19 fall into the latter category. On the basis of a variety of physically motivated analogies, annealing methods leave the underlying potential energy surface itself unchanged. The most common of these methods, simulated annealing,12,19 adopts a classical statistical—mechanical point of view. Specifically, the strategy is to locate the potential minimum by following the associated classical probability density as the “temperature” of the system is reduced. If the “cooling schedule” is sufficiently conservative (i.e., if care is taken to ensure that the thermal fluctuations are sufficient to defeat the local minimum problem), the density will ultimately condense onto the global potential minimum in the limit of zero temperature. Unfortunately, however, this procedure can fail in practice. Situations in which differences between the energies of major potential basins are small relative to the barriers that separate them can, for example, prove particularly difficult. By the time it becomes apparent that one is headed toward a local minimum, the scale of the relevant thermal fluctuations can, for computationally feasible cooling schedules, be too small to have any practical chance of overcoming the energy barrier.

Rather than viewing the original objective function as a potential surface for a finite temperature classical system, “quantum annealing” methods6,11 employ a finite temperature, quantum-mechanical model. The global minimum of the specified potential is again located by following the density (or ground state wave function) toward the zero-temperature, classical limit. If we perform the limits by first turning off the quantum mechanics and then reducing the temperature, we recover conventional simulated annealing. We are free, however, to reverse the order of the limits, first taking temperature to zero and then turning down the quantum mechanics. There is practical merit to this second approach. Specifically, ground state diffusion Monte Carlo methods9 provide a general (stochastic!) means for performing the zero-temperature limit not available in purely classical approaches. Once the ground state is reached, the quantum mechanics of the problem can be turned off by, for example, gradually increasing the masses of the particles of the system. In quantum annealing, tunneling, as opposed to thermal fluctuations, provides the mechanism for avoiding local minima. Quantum-mechanical optimization approaches based on a dynamical model have been proposed by Straub et al.14

As indicated earlier, annealing methods do not alter the underlying potential energy surface. Quantum annealing does, however, change the way in which information concerning the potential is processed during intermediate stages of the minimization process. While the classical density at a point depends on the potential energy at that specific location, the quantum-mechanical density is influenced by the values of the potential energy throughout a surrounding neighborhood.

A second broad strategy for the design of minimization algorithms involves purposefully modifying the original potential energy surface. That is, rather than simply modifying the way in which potential energy information is processed, we seek to distort the potential in such a way that we obtain an algorithmic advantage while leaving the global minimum essentially intact. Early work by Stillinger and Stillinger22,24,25 is an example of this type of approach. They sought to reduce the number of local minima by altering the long-range form of simple pair potentials. Strategies based on “smoothing” techniques have also been proposed.18,23 More recently, Wales et al.10,27 have devised an approach based on a “basin hopping” methodology in which the original potential energy at each point is replaced by the energy of its corresponding local minimum or “inherent structure.”22,24,25 By construction, the basin hopping method, unlike some distortion strategies, is guaranteed to leave the energetics of the various potential minima unaltered. By eliminating or lessening barriers between neighboring inherent structures, however, the approach promotes transitions between various local minima. The procedure is simple to implement and has proved effective in a variety of applications.7,9,15,16,28

The present work explores another class of minimization strategies. Broadly speaking, the approach is a potential modification technique that combines elements of both basin-hopping and dimensional-relaxation strategies. A simple analogy will suffice to convey the essential idea. As anyone who has ever hiked in the mountains knows, it is often easier to “contour” around a local “barrier” than to climb over it. Rather than blindly restricting ourselves to lower dimensional ridge routes that go over barriers, we seek instead higher dimensional, barrier-free routes that bypass them. In a similar spirit, the present method attempts to defeat the local minimum problem by constructing barrier-free, high-dimensional pathways that connect the various three-dimensional inherent structures.

Why do we have any hope that such high-dimensional pathways either exist or that they will be helpful for the general minimization problem? To answer this basic question, it is useful to first pose another: How many three-dimensional isomers exist for a four-atom Lennard-Jones cluster? A bit of reflection will reveal that the answer to the latter question is one. In three dimensions each of the four atoms can be a nearest neighbor of all of the remaining particles by forming a tetrahedron. Using similar arguments, it is simple to see that an N-particle Lennard-Jones cluster will have a single isomer in $N - 1$ dimensions. Because all atoms can be nearest neighbors of every other atom, it is also simple to see that the energy of this $N - 1$ dimensional, minimum energy structure is less than the energy of any other inherent structure in any number of dimensions.

To make the connection between dimensionality and the number of local minima more explicit, we list in Table 1 the number of energetically distinct isomers found for the 13 atom Lennard-Jones cluster as a function of the number of spatial dimensions. We assume the potential energy of these clusters to be of the pairwise form

$$V(R) = \sum_{i<j} V_{LJ}(|r_i - r_j|)$$

where r_i is a D-dimensional vector whose components $(x_{i1}, x_{i2}, \ldots, x_{iD})$ specify the position of atom “i”. The Lennard-Jones interaction, $V_{LJ}(r)$, specified in terms of the usual well-depth, ϵ, and length scale, σ, parameters by

$$V_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

<table>
<thead>
<tr>
<th>dimension</th>
<th>no. of isomers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>345</td>
</tr>
<tr>
<td>3</td>
<td>1505</td>
</tr>
<tr>
<td>4</td>
<td>363</td>
</tr>
<tr>
<td>5</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>
is a function of the \(D \)-dimensional interparticle Euclidian distance, \(|r_i - r_j| \),

\[
|r_i - r_j| = \left(\sum_{n=1}^{D} (x_{i,n} - x_{j,n})^2 \right)^{1/2}
\]

III. Numerical Method and Examples

We now describe our implementation of barrier-avoiding minimization and examine its performance for small \((N < 55)\) Lennard-Jones clusters. In part, we have chosen this system for our initial applications because resources like the Cambridge Cluster Database (http://brian.ch.cam.ac.uk) greatly simplify the process of validating the cluster structures and energies that are encountered.

The function we are trying to minimize, \(V(R) \), is assumed to depend only on the distances between the particles. The class of such functions includes the pairwise additive potentials of the present study, as well as other forms which will be discussed below. In this way, the function is defined for configurations in any dimension; only the definition of the distance changes.

Let \(D \) be the dimension (usually 3) in which the original \(N \)-particle cluster configuration resides, and \(H \) the number of “extra” dimensions to be used in the search. \(H \) is useful from 1 to \((N - 1 - D)\). Above this value of \(H \), the \((D + H)\) dimensional atoms only see an \((N - 1)\) dimensional subspace. Given this configuration, we denote the new \((D + H)\) dimensional coordinates by \(R = (r_1, r_2, \ldots, r_N) \), where \(r_1 = (x_{i,1}, x_{i,2}, \ldots, x_{i,D}, x_{i}(D+1), \ldots, x_{i}(D+H)) \) and where \(x_{i,j} \) is the \(j \)th component of the Cartesian coordinates of particle \(i \). We call \(R \) \(D \)-dimensional (but embedded in a \((D + H)\) dimensional space) if \(x_{i}(D + 1) = x_{i}(D + 2) = \ldots, x_{i}(D + H) = 0 \) for all \(i \).

In the algorithm discussed below it is necessary both to expand and compress the cluster between \(D \) and \(D + H \) dimensions. To execute such expansions and compressions it is essential that we have available a suitable “signature” of the dimensionality of the space. We assume in the following that we have available some suitable “width” function, \(W_p(R) \), that is continuous in \(R \), equal to zero when \(R \) is \(D \)-dimensional, and otherwise positive. One choice for the width function, the
one used in the present study, is

\[W_D(R) = \sum_{i=1}^{N} \sum_{n=0}^{D-H} \frac{\alpha_n^2}{R_{i,n}} \]

(3.1)

The basic idea behind the present algorithm is that, given a local minimum in three dimensions, we can find another, three-dimensional structure via a random walk at constant potential energy in a higher dimension. That is, we can move from a three-dimensional energy minimum to another energy “basin” using higher dimensional pathways. The new structure is either another local minimum at the same energy as the starting configuration, or it is a new structure that is not a local minimum. If the new structure is energetically degenerate with the starting configuration, we simply continue the search. If, as is much more likely, the new structure is not a local minimum, then we are assured that it can be relaxed to a new local minimum with a lower energy. In this way, we produce a sequence of three-dimensional energy minima and to illustrate (crudely) the scaling of effort leading to the lowest energy three-dimensional structure.

The steps performed by the algorithm are as follows: given an arbitrary starting configuration, \(R \);

1. Find the “inherent structure” for \(R \). We minimize \(V(R) \) for \(R \) constrained to stay in \(D \) dimensions (i.e., the \(H \) higher components are zero). Any minimization technique\(^{15}\) that decreases \(V \) is acceptable for this step (e.g., steepest descent, conjugate-gradient, etc.). More formally, given an initial configuration \(R_0 \), we find \(R \) such that:

 (a) \(\frac{dV(R)}{dr_i} = 0 \) for all \(r_i \)

 (b) \(\frac{d^2V(R)}{dr_i dr_j} > 0 \) for all \(r_i, r_j \)

 (c) \(V(R) \leq V(R_0) \)

In part (b) we exclude the directions equivalent to overall translation and rotation of the system. We denote the energy of the (local) minimum produced by steps (a-c) \(E_{LM} \) and the associated configuration \(R_{LM} \).

2. Perform a constant-energy random walk. This walk consists of \(n\text{steps} \) constrained random displacements of \(R \) in \((D + H) \) dimensions, the constraint being \(V(R) = E_{LM} \). In the present paper, we generate trial displacements, \(\Delta R \), by uniformly translating all particles within a “box” of about 0.1\(\sigma \). The value of \(n\text{steps} \) was 100 for the smaller clusters, 50 for the 38 atom cluster, and 30 for the 55 atom cluster. The constraint was imposed (to first order) by removing the component of \(\Delta R \) parallel to the gradient of \(V(R) \). For large translations, this is not sufficient, and one must either use a higher order correction (involving the Hessian) or, as was done in the present paper, readjust \(\Delta R \) by moving parallel to the energy gradient until the constraint is met (rejecting the “trial” \(\Delta R \) if the constraint cannot be met this way).

3. Minimize \(W_D(R) \) while keeping \(V(R) = E_{LM} \). Techniques for such minimizations are widely available in the “nonlinear programming” literature.\(^{15}\) Our technique is to use the strategy outlined in Step (2), but setting \(\Delta R = -c \nabla W_D(R) \), where \(c \) adjusts the step size at each step so that the gradient is followed downhill (with respect to \(W_D(R) \)) to a (constrained) local minimum.

4. If the minimization in (3) results in \(R \) being \(D \)-dimensional (i.e., \(W_D(R) = 0 \)), and \(R \equiv R_{LM} \), then we may have succeeded in finding a configuration that will quench to a lower energy, \(D \)-dimensional inherent structure. In this instance, we start again at Step (1) with the new configuration. By proceeding through a sequence of inherent structures of successively lower energies, we are removing large numbers of local minima from the search as it proceeds.

5. On the other hand, the constrained minimization in (3) can fail in its attempt to “compress” the \((D + H) \) dimensional configuration in Step (2) completely back to \(D \)-dimensions. In such cases, we resume our high-dimensional search by resetting \(R \) to the last, high-dimensional configuration generated by the random walk in Step (2) and continuing the expanded dimensional walk from that point until Step (4) is satisfied.

We have implemented this “barrier avoiding minimization” procedure and have examined its efficacy for finding the global minima of clusters whose atoms interact via the Lennard-Jones pair-potential. All calculations reported here were done with \(H = 1 \); that is, the random walk was performed in four dimensions. Although four dimensions proved to be sufficient to produce barrier-free minimization pathways for all examples considered in the present work, it may be necessary to revisit this issue for other applications. We first discuss the cases of 16–33 atoms and then do a more detailed examination of the 38 atom case.

Figure 2 shows the results of a typical set of applications of the barrier avoiding minimization procedure (Steps (1–5) above) for clusters ranging from 16 to 33 atoms. This figure is presented both to convey a sense of the sequence of inherent structure energies visited by the clusters enroute to their global potential energy minima and to illustrate (crudely) the scaling of effort with respect to cluster size. In Figure 2, the minimizations for
to the results of Figure 1) by roughly 3.6. In particular, over the size range shown in Figure 2, the energy structure is in the range of 10^4 to 10^6 for 20 randomly generated initial configurations for each cluster size. It is first important to note that the present procedure successfully locates the ground state for all cluster sizes. It is also important to note that the level of effort required to find the ground state for 20 randomly generated initial configurations for each cluster size. We note that we have had success in locating the minimum energy structure for the 38 atom cluster. The reasons for this increase in effort are, at present, unclear. It may, however, be an indication that higher dimensional ($H > 1$) minimization pathways could prove useful for studies of larger clusters.

As a somewhat more demanding test of the procedure, we examine its performance for the 38 atom Lennard-Jones cluster. As discussed by Doye, Miller, and Wales, this cluster presents significant challenges in optimization and simulation studies. Its fcc-like global minimum is separated from a low-lying, icosahedral local minimum by an appreciable barrier. Figure 4 displays the results of applying the barrier-avoiding minimization method to this system. As illustrated in Figure 4, starting from a randomly generated configuration, the method successfully locates the global minima. It is important to note that the minimization trace shown in Figure 4 actually proceeds through the 38 atom icosahedral local minimum. This confirms that the minimization strategy successfully located a barrier-free, high-dimensional pathway from the fcc local minimum to the ground-state configuration.

Finally, although it is a somewhat less challenging example than the 38 atom case, we note that we have also had success in locating the minimum energy structure for the 55 atom cluster. Systematic studies of larger clusters are planned.

IV. Discussion & Summary

In the present paper, we have explored the use of dimensional strategies for minimization problems. We have presented a particular method that exploits the simplifying influence of dimensionality on inherent structure topology. For one class of systems, Lennard-Jones clusters, we have shown the resulting approach represents a practical minimization method. Using this method, we have succeeded in locating high-dimensional, barrier-free pathways between three-dimensional local minima and the corresponding global minimum-energy structures for clusters containing up to 55 atoms. We are encouraged by the present results, particularly by the method’s performance in locating the global minimum for the 38 atom cluster.

In order for the current approach to be of general significance, it will be necessary to establish its utility for a broader range of applications. Although we are cautiously optimistic, the final decision concerning the ultimate fate of the present method must, therefore, await the outcome of ongoing studies.

If dimensional approaches are to be of general merit, two basic conditions must be satisfied. First, it is necessary that dimensionality exert a simplifying effect on the inherent structure topology for the problem of interest. Second, one must find a way to translate this simplification into a practical minimization algorithm. In the present work, both conditions have been met. As discussed in Section II, increasing cluster dimensionality reduces the number of local minima. We have shown, using the barrier-avoiding methods discussed in Section III, how to transform this dimensional simplification into a viable minimization procedure. Although the particular strategy described by Purisima and Scheraga for exploiting it does not appear to be general, their work illustrates the important point that the simplifying effects of dimensionality on the minimization problem extend to classes of potentials of chemical interest. Leaving aside the particulars for the moment, the “take-home” message of the present investigation is that whether it is the barrier-avoiding methodology of Section III or some other, yet to be discovered, implementation, dimensional strategies appear to represent a potentially valuable tool for the construction of new classes of minimization algorithms.

Acknowledgment. J.D.D. and D.L.F. would like to thank the National Science Foundation for support of the present research.
research through Grant CHE-9714970. In addition, J.D.D. would like to acknowledge support through the NSF Grant CDA-9724347. Work at Los Alamos National Laboratory was performed under the Department of Energy contract W-7405-ENG-36.

References and Notes