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Jammed disks in narrow channel: criticality and

ordering tendencies

Norman Gundlach1, Michael Karbach1,2, Dan Liu2 and

Gerhard Müller2

1 Bergische Universität Wuppertal, Fachbereich C, 42097 Wuppertal, Germany
2 Department of Physics, University of Rhode Island, Kingston RI 02881, USA

Abstract. A system of identical disks is confined to a narrow channel, closed
off at one end by a stopper and at the other end by a piston. All surfaces are hard
and frictionless. A uniform gravitational field is directed parallel to the plane
of the disks and perpendicular to the axis of the channel. We employ a method
of configurational statistics that interprets jammed states as configurations of
floating particles with structure. The particles interlink according to set rules.
The two jammed microstates with smallest volume act as pseudo-vacuum. The
placement of particles is subject to a generalized Pauli principle. Jammed
macrostates are generated by random agitations and specified by two control
variables. They are inferred from measures for expansion work against the
piston, gravitational potential energy, and intensity of random agitations. In
this two-dimensional space of variables there exists a critical point. The jammed
macrostate realized at the critical point depends on the path of approach. We
describe all jammed macrostates by volume and entropy. Both are functions of
the average population densities of particles. Approaching the critical point in an
extended space of control variables generates two types of jammed macrostates:
states with random heterogeneities in mass density and states with domains of
uniform mass density. Criticality is shown to be robust against some effects of
friction.

1. Introduction

Granular matter consists of particles with sizes too big for thermal fluctuations to
have a significant impact. The spatial configurations of grains depend on many factors
including their sizes and shapes, interactions between them, interactions with external
fields, and a protocol for producing macrostates in a controllable way [1, 2, 3, 4].
Models of granular matter tend to omit non-essential attributes of grains in efforts to
gain more profound knowledge of bulk behavior.

In this spirit, jammed states of rigid objects with no interactions other than
hard-core repulsion have become the focus of numerous studies. It has become
common to describe jammed states of granular matter in the language of equilibrium
statistical mechanics albeit with provisos. We shall use the term configurational

statistics for this framework of analysis [5, 6, 7]. Jammed states are frozen, hence
time averages useless. Nevertheless, jammed macrostates are postulated to exist,
to be systematically reproducible by means of some protocol of random agitations,
and to be describable by entropies and averaged mass densities in spatial regions of
macroscopic size.

http://arxiv.org/abs/1207.5475v2
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The concepts of criticality, ordering, and transitions as used in studies of granular
matter have a dynamic context for the most part such as in self-organized criticality
[8] and jamming transitions [9, 10, 11, 12]. In this work we use these concepts in a
more restricted sense, where a critical singularity and ordering tendencies are evident
in the configurational entropy of jammed macrostates. Our study is focused on a
simple scenario that enables us to investigate these phenomena analytically.

Inspired by prior work [13, 14, 15], we consider a long, narrow channel of width
H with the axis in a horizontal direction, a stopper at one end, and a piston at the
other end as shown in Fig. 1. The channel contains N disks of mass m and diameter
σ. All surfaces are rigid and frictionless. Jamming requires three points of contact on
each disk that are not on the same semicircle. A uniform gravitational field g in the
direction shown is present.

g σ

H

1 vv 2 v v 2 v

Figure 1. Jammed microstate of disks of mass m and diameter σ in a channel
of width H. For 1 < H/σ < 1 +

√

3/4 all configurations are sequences of four
distinct interlinking two-disk tiles. In our methodology, two tiles (marked v) are
elements of pseudo-vacuum and the other two (marked 1,2) are particles.

In channels with 1 < H/σ < 1 +
√

3/4, every jammed disk (except the two
outermost) touches one wall and two adjacent disks. Every possible jammed microstate
is a sequence of interlinking two-disk tiles. The four distinct tiles are identified in
Fig. 1. The two most compact states consist of tiles v in alternating sequence. There
is no need for using two v-tile symbols. Both tiles have the same volume and energy.
One cannot be exchanged for the other in any given location. The least compact states
are sequences [v1v2v1v2 · · · v] and [v2v1v2v1 · · · v]. Only tiles v can follow each other
directly. Any tile 1 (2) is separated from the next tile 1 (2) by at least two tiles v. A
tile 1 is separated from the nearest tile 2 by at least one tile v.

In channels with 1+
√

3/4 < H/σ < 2, there exist 32 tiles interlinking according
to more complicated rules [14]. If H/σ > 2, disks can pass one another with the
consequence that the jamming condition becomes nonlocal. Here we assume that
H/σ < 1 +

√

3/4.
Jammed microstates in this system are countable. Each has a well defined volume.

Many have the same volume. They represent one jammed macrostate in the sense of
an ensemble average. The multiplicity of microstates with given volume determines
the configurational entropy of that macrostate. In the limit N → ∞, the entropy per
disk, S̄

.
= S/N , becomes a smooth function of reduced excess volume, V̄

.
= (V −V0)/N ,

where V0 is the volume of the most compact state.
The inverse slope of the configurational entropy curve is an intensive variable

named compactivity [5]:

X
.
=

(

dS̄

dV̄

)−1

. (1)
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This definition works well when a jammed macrostate is specified by a single intensive
variable. Typical for such cases is that S̄ increases monotonically between V̄ = 0 and
some value V̄ = V̄∞. The function S̄(V̄ ) is concave along that stretch with infinite
initial slope and zero final slope. The compactivity thus varies between X = 0 at
V̄ = 0 and X = ∞ at V̄ = V̄∞. It is a measure for the intensity by which the system
is randomly agitated to produce a specific jammed macrostate. A dosage of intense
random agitations produces a highly compactifiable state with much excess volume.
Jolting the system with less intensity produces a more compact and less compactifiable
jammed macrostate.

Between the most disordered jammed macrostate at V̄ = V̄∞ and the least
compact jammed macrostate at V̄ = V̄max the function S̄(V̄ ) stays concave and thus
decreases. These jammed macrostates have negative compactivity. They do exist but
cannot, in general, be generated by random agitations.

This scenario is borne out if we set g = 0 in our system or tilt the channel into
a horizontal plane. The configurational entropy of this case was determined in [13].
The gravitational field g complicates matters significantly. Jammed macrostates are
now specified by two independent intensive variables. Microstates with equal volume
have different statistical weight on account of their gravitational potential energy.

We introduce a methodology that can cope with this situation (Sec. 2). S̄ turns
out to be a multiple-valued function of V̄ (Sec. 3). There exists a critical point (Sec. 4).
Ordering tendencies at criticality are explored (Sec. 5). The analysis is extended to
include some effects of friction (Sec. 6). More complex scenarios now appear within
analytic reach (Sec. 7).

2. Methodology

Here we adapt a method of statistical mechanical analysis based on fractional exclusion
statistics to jammed states of granular matter. This approach was originally developed
for quantum many-body systems [16, 17, 18, 19] and was recently extended to classical
particles with shapes [20, 21, 22, 23]. Whereas microscopic degrees of freedom are
subject to thermal fluctuations, the disks in the narrow channel need to be subjected
to random agitations to produce a comparable effect. In the context of this study the
disks are not the particles themselves. The particles (or quasiparticles) are the tiles 1
and 2. The method to be described has three parts.

2.1. Energetics

Configurational statistics postulates that a protocol of random agitations exists such
that jammed macrostates are reproducibly generated. Random agitations of controlled
intensity are performed while the piston exerts a controlled force on the disks. The
disks are not jammed at this stage. Their dynamic state is influenced by competing
agents: (i) the intensity of random agitations, (ii) the force of the piston, and (iii) the
weight of the disks.

A jammed microstate is frozen out when, abruptly and simultaneously or in short
order, the random agitations are stopped and the force of the piston is increased to
a value much larger than the weight of all disks combined. This protocol is designed
to keep the stable jammed microstates the same with or without gravity. Gravity
merely affects their statistical weights. The associated jammed macrostate is then
characterized by two ratios of three intensive variables that reflect the three agents.
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Each variable is a form of energy competing for influence on the dynamic state and
leaving its mark on the jammed macrostate.

The volume of each element of pseudo-vacuum as indicated by a bracket in Fig. 1
is σ

√

1− (H/σ − 1)2 and the volume of a particle from either species is σ. Hence the
activation of each particle increases the volume by a fraction of the disk diameter,

v1 = v2 = qσ, q
.
= 1−

√

1− (H/σ − 1)2. (2)

To reduce clutter in the notation we use a channel of unit cross sectional area and
identify the force of the piston during random agitations with the ambient pressure
p. The activation of a particle 1 or 2 adds energy. One disk moves up or down in the
gravitational field g and the piston moves out against pressure p:

ǫ1 = pqσ + γ, ǫ2 = pqσ − γ, γ = mg(H − σ). (3)

The third unit of energy that competes with pqσ and γ is some measure Tk for the
intensity of random agitations.

For g = 0 the jammed macrostate resulting from the random agitations at given
pressure only depends on the ratio

Kp
.
=
pqσ

Tk
, (4)

which is a dimensionless version of 1/X . In a thermal context we have (∂S̄/∂V̄ )Ū =
p/T . For g 6= 0 the jammed macrostate also depends on a second dimensionless ratio,

Kg
.
=

γ

Tk
. (5)

Configurational statistics does not specify how the intensity of random fluctuations is
quantitatively reflected in Tk. This poses no problem. Whereas the entropy S̄ and the
excess volume V̄ are functions of Kp and Kg, the shape of the function S̄(V̄ ) inferred
from them only depends on

Γ
.
=
Kg

Kp
=

γ

pqσ
. (6)

2.2. Combinatorics

For the combinatorial analysis we use the template designed for statistically interacting
particles familiar from previous work (adapted to open boundary conditions) [16, 21]:

W ({Nm}) = npv

M
∏

m=1

(

dm +Nm − 1
Nm

)

, (7)

dm = Am −
M
∑

m′=1

gmm′(Nm′ − δmm′). (8)

This multiplicity expression yields the number of microstates with given particle
content. The degeneracy of the pseudo-vacuum is encoded in npv. The Am are capacity
constants and the gmm′ are statistical interaction coefficients.

All particles of a given species will have the same volume and energy no matter
where they are placed. Therefore, all microstates with given particle content constitute
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a macrostate in the sense discussed earlier. The entropy of a macrostate as derived
from the multiplicity expression (7) for Nm ≫ 1 via S = kB lnW reads [18, 22]:

S({Nm}) = kB

M
∑

m=1

[

(

Nm + Ym
)

ln
(

Nm + Ym
)

−Nm lnNm − Ym lnYm

]

, (9)

Ym
.
= Am −

M
∑

m′=1

gmm′Nm′ . (10)

2.3. Statistical mechanics

The statistical mechanical analysis as transcribed from a thermal system [17, 18]
produces, for the grand partition function, the result [21]

Z =

M
∏

m=1

(

1 + w−1
m

)Am

, (11)

where the (real, positive) wm are the solutions of the coupled nonlinear algebraic
equations,

eKm = (1 + wm)

M
∏

m′=1

(

1 + w−1
m′

)

−g
m′m , (12)

and where Km
.
= ǫm/Tk. The average population densities, N̄m

.
= 〈Nm〉/N , of

particles from each species are derived from the coupled linear equations,

wmN̄m +
M
∑

m′=1

gmm′N̄m′ = Ām, (13)

where Ām
.
= Am/N . The configurational entropy, S̄(V̄ ), follows from a scaled version

of the entropy expression (9) in combination with the volume expression,

V̄ ({N̄m}) =
M
∑

m=1

N̄mvm. (14)

The function S̄(V̄ ) can also be derived from (11) via S̄ = −(∂Ḡ/∂T )p and V̄ =
(∂Ḡ/∂p)T , where Ḡ = − limN→∞N−1kBT lnZ if we set Tk = kBT as in a thermal
context.

3. Configurational entropy

All jammed microstates such as the one shown in Fig. 1 contain particles from M = 2
species. The specifications needed for the statistical mechanical analysis are listed in
Table 1. In the taxonomy of [21] both species are compacts.

3.1. Zero gravity

In the special case g = 0, particles 1 and 2 have equal energy. No distinction is
necessary. They can be merged into a single species 1̄ with specifications A1̄ = N − 3
and g1̄1̄ = 2. It is a type-1 merger in the classification of [23]. The configurational
entropy follows directly from (9) with these specifications:

S̄ = kB
[

(1− N̄1̄) ln(1− N̄1̄)− N̄1̄ ln N̄1̄ − (1− 2N̄1̄) ln(1− 2N̄1̄)
]

, (15)
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Table 1. Specifications of the particles represented by tiles 1 and 2: species,
volume and energy (relative to vacuum), capacity constant (left), and interaction
coefficients (right). The pseudo-vacuum has degeneracy npv = 2. Its elements
have (absolute) volume (1 − q)σ and energy p(1− q)σ.

m vm ǫm Am

1 qσ pqσ + γ 1

2
(N − 3)

2 qσ pqσ − γ 1

2
(N − 3)

gmm′ 1 2

1 3

2

1

2

2 1

2

3

2

where V̄ = qσN̄1̄. This result was first derived in [13] by a different method. In this
case we do not have to solve (12) and (13) to get to S̄(V̄ ). Those solutions are

w1̄ =
1

2
eK1̄

[

1 +
√

1 + 4e−K1̄

]

, N̄1̄ =
1

w1̄ + 2
, (16)

where K1̄ = Kp from (4). The entropy inferred from (11) reads

S̄ = kB

[

ln
(

1 + w−1
1̄

)

+
K1̄

2 + w1̄

]

. (17)

Expressions (16) and (17) are consistent with (15). All attributes of S̄(V̄ ) described in
Sec. 1 are realized. Contact with quantities in Table I of [5] are readily established. If
we set X̃

.
= K−1

1̄
, Ṽ

.
= V̄ /qσ, S̃

.
= S̄/kB, and w

.
= w1̄, implying Ṽ = (2 + w)−1,

e1/X̃ = w2/(1 + w), S̃ = ln(1 + w−1) + Ṽ /X̃, and Z̃ = (1 + w−1), we obtain

Ỹ
.
= Ṽ − X̃S̃ = −X̃ ln(1 + w−1) and, hence, Z̃ = e−Ỹ /X̃ .

3.2. Nonzero gravity

For g 6= 0 the entropy depends on two independent variables. The function S̄(N̄1, N̄2)
inferred from (9) with the Am and gmm′ from Table 1 produces an entropy landscape
as shown in Fig. 2. It is of quadrilateral shape with a smooth maximum in the center
and zeros at the corners. All jammed states on a line N̄1 + N̄2 = const have the same
volume but different gravitational potential energies. Expression (15) is recovered by
S̄(N̄1̄/2, N̄1̄/2). The system has the highest capacity for particles if both species are
present in equal numbers.

Equations (12) in simplified form read

e2Kp =
w2

1w
2
2

(1 + w1)(1 + w2)
, e2Kg =

w1

w2
. (18)

They reduce to a 4th-order polynomial equation with one physically relevant, real
solution wm(Kp,Kg), m = 1, 2. The particle population densities inferred from (13)
are

N̄1 =
w2 + 1

D
, N̄2 =

w1 + 1

D
, D

.
= 2w1w2 + 3(w1 + w2) + 4. (19)

Jammed macrostates generated by random agitations fall onto lines parametrized
by Γ. Several such lines are shown in Fig. 2. All lines begin at the jammed macrostate
with maximum entropy and equal population densities. With Kp increasing from zero
the lines fan out. On the line Γ = 0 the two population densities are being depleted
at the same rate. Higher values of Γ have the effect that particles 1 are depleted more
rapidly. The population of particles 2 may decrease or increase as the curves show.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
N20.00

0.05

0.10

0.15

0.20

0.25

0.30

N1

Figure 2. Entropy per disk, S̄/kB, versus population densities N̄1, N̄2. The
contours are at 0.049ℓ, ℓ = 1, . . . , 9. The seven curves represent particle population
densities of macrostates with Γ = 0, 0.5, 0.75, 1, 1.25, 1.5, 3 (left to right).

At Γ = 1 particles 2 have zero activation energy. Their density increases
moderately. This is an entropic effect. As the population of particles 1 (with positive
activation energy) decreases, the entropy is maximized by an increasing population of
particles 2. The (nearly straight) line pertaining to this case terminates at the point of
maximum entropy for states with N̄1 = 0. The configurational entropy curves, S̄(V̄ ),
as inferred from (18) and (19) in combination with (9) are shown in Fig. 3 for the
same values of Γ.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.1

0.2

0.3

0.4

0.5

V �qΣ

S�
k B

0.481...

0.281...

0.177... 0.276...

Figure 3. Entropy per disk versus excess volume at Γ = 0, 0.5, 0.75, 1, 1.25, 1.5, 3
(left to right). The dashed arch delimits a region of critical macrostates.

The concave curve on the upper left represents the zero-gravity case discussed
in Sec. 3.1 and previously solved in [13]. The inverse slope of that curve is the



Jammed disks in narrow channel: criticality and ordering tendencies 8

compactivity (1), a quantity that varies between zero in the most compact jammed
macrostate and infinity in the macrostate with the highest possible entropy. All curves
for nonzero gravity start from that highest-entropy point and fan out in different
directions.

At Γ < 1 both species of particles have positive activation energies. The physics
does not change qualitatively from the zero-gravity case. The gravitational field
suppresses the population density of particles 1 and enhances that of particles 2. The
net effect is a modest reduction of entropy (of mixing) at given volume. All curves
end in the most compact jammed state.

At Γ > 1, the particles from species 2 have negative activation energies. The
jammed state produced by random agitations in the low-intensity limit is now
qualitatively different. It is a periodic array of close-packed particles 2. It has volume
V̄ /qσ = 1

3 , which is larger than the (Γ-independent) jammed state produced in the
high-intensity limit of random agitations.

Increasing the intensity of random agitation always increases the entropy.
However, at Γ > 1, it initially decreases the volume of the states thus produced.
The decreasing V̄ is associated with compression work used for weight lifting. The
annihilation of particles 2 creates disorder and thus increases S̄. At higher intensities
the jammed states have larger volume again. Here particles 1, which have high energy,
are created in significant numbers.

For the borderline case Γ = 1 between the two regimes, the particles from species 2
have zero activation energy. Gravitational energy and expansion energy are in balance.
Random agitations do not produce ordering in the low-intensity limit. The shapes of
the curves in Fig. 3 signal the presence of a critical singularity.

4. Criticality

In the framework of configurational statistics it is legitimate to use the term criticality

more loosely than is common in the theory of (thermal) phase transitions. In our
system the critical singularity is associated with the combined limit

Kp → ∞, Kg → ∞, Γ → 1. (20)

The jammed macrostate realized at the critical singularity depends on how the
singularity is approached, which is not altogether unusual [24]. In Sec. 3 we have
considered one particular approach, with Γ = 1, implying that w1  ∞ and

w2  
(9−

√
69)1/3 + (9 +

√
69)1/3

21/332/3
= 1.3247 . . . , (21)

the physically relevant solution of the cubic equation,

w3
2 − w2 − 1 = 0. (22)

The associated values for excess volume and entropy are

S̄/kB  lnw2 = 0.28119 . . . , (23)

V̄ /qσ  (3 + 2w2)
−1 = 0.17700 . . . . (24)

Further critical macrostates are represented by points on the (dashed) arching
line in Fig. 3 and by points in the space underneath. The latter will be discussed in
Sec. 5. The former are realized in a family of pathways toward the critical singularity
specified by a single parameter,

∆
.
= Kp −Kg. (25)
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The critical macrostates are determined from

w1 = ∞, e2∆ =
w3

2

1 + w2
, −∞ < ∆ < +∞ (26)

and the particle population densities (13) become

N̄1 = 0, N̄2 =
1

3 + 2w2
. (27)

The point ∆ = 0 recovers the case Γ = 1 discussed previously. Only particles 2
are present. They are distributed randomly along the channel. The volume and the
entropy depend on the population density N̄2:

V̄ /qσ = N̄2, (28)

S̄/kB =
1− N̄2

2
ln

(

1− N̄2

2

)

− N̄2 ln N̄2 −
1− 3N̄2

2
ln

(

1− 3N̄2

2

)

. (29)

Complete ordering exists if there are no particles or if the particles are close packed.
The function S̄(V̄ ) has zero slope at the point (23) and infinite slope at S̄ = 0:

dS̄

dV̄
 

{

− ln V̄ , V̄ → 0
3
2 ln

(

1
3 − V̄

)

, V̄ → 1
3

. (30)

All critical macrostates are averages of the same subset of jammed microstates,
but weighted differently. The macrostate at the top of the arch has all microstates
from that subset weighted equally. The macrostates elsewhere on the arch result from
averages with one bias in the weighting. The parameter ∆ controls the population
density N̄2 and thus the volume. All microstates with a given number of particles 2
remain weighted equally. The macrostates inside the arch result from averages with
two biases in the weighting.

5. Ordering tendencies

We choose a second bias in the form of a weak interaction force that either enhances or
suppresses heterogeneities in mass density along the channel. It controls the degree of
clustering of particles 2. New pathways to the critical point generate macrostates with
domains of uniform mass density. No symmetry-breaking field needs to be introduced
to make that happen.

We extend the set of particle species from two to three. We split one species
into two: every compact 2 in the system becomes either a host 2′ or a tag 2′′ [21].
The particle 2 closest to the piston is a host 2′. Any other particle 2 is a tag 2′′ if
it follows the preceding particle 2 in one of the two shortest tile sequences: 2vv2 or
2v1v2. Otherwise it is a host again.

In Fig. 1 we have one host 2′ followed by a tag 2′′ (left to right). We do not
split compacts 1 because they become depleted as criticality is approached. The
specifications of the three species, compact 1, host 2′, and tag 2′′, are compiled in
Table 2. Anghel’s rules [19, 23] are satisfied.

Raising (lowering) the activation energy of the tag relative to that of the host
amounts to a repulsive (attractive) short-range force between particles 2. Such a force
suppresses (enhances) heterogeneities in mass density. It opens up new pathways to
the critical singularity. In the critical macrostates thus generated the microstates
with a given number of particles 2 are no longer weighted equally. The weighting now
discriminates between hosts and tags.
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Table 2. Specifications of three species of particles: species, volume and
energy (relative to vacuum), capacity constant (left), and statistical interaction
coefficients (right).

m vm ǫm Am

1 qσ pqσ + γ 1

2
(N − 3)

2′ qσ pqσ − γ 1

2
(N − 3)

2′′ qσ pqσ − γ − φ 0

gmm′ 1 2′ 2′′

1 3

2

1

2

1

2

2′ 1

2

5

2

3

2

2′′ 0 −1 0

The evidence for the formation of domains presented here is indirect, as found in
the entropy. Spatial correlations will be the focus of a separate study. Assembling the
function S̄(V̄ ) in the extended parameter space starts from the extended Eqs. (18),

e2Kp =
w2

1w
3
2′(1 + w2′′ )

(1 + w1)(1 + w2′)2w2′′
, e2Kg =

w1(1 + w2′)w2′′

w2
2′ (1 + w2′′)

, eΦ =
w2′

w2′′
, (31)

where Φ
.
= φ/Tk is an amendment to (4) and (5). The population densities of compacts

1, hosts 2′, and tags 2′′ are

N̄1 =
1 + 2w2′′ + w2′w2′′

D(φ)
, N̄2′ =

(1 + w1)w2′′

D(φ)
, N̄2′′ =

1 + w1

D(φ)
, (32)

D(φ) = 4 + 3w1 + 7w2′′ + 5w1w2′′ + 3w2′w2′′ + 2w1w2′w2′′ .

We now have a two-parameter family of pathways toward the critical singularity
with critical macrostates determined from

w1 = 0, e2∆ =
w5

2′(1 + w2′′ )
2

(1 + w2′)3w2′′
, eΦ =

w2′

w2′′
, (33)

−∞ < ∆ < +∞, −∞ < Φ < +∞,

and with critical population densities,

N̄1 = 0, N̄2′ = w2′′N̄2′′ =
w2′′

3 + 5w2′′ + 2w2′w2′′
. (34)

The function S̄(N̄2′ , N̄2′′) inferred from (9) is shown in Fig. 4. Every point in this
entropy landscape represents a macrostate at criticality. All critical macrostates have
pqσ = γ and φ = 0.

In macrostates pertaining to Φ = 0, particles 2 form random clusters. They are
the states of highest entropy at given N̄2′ + N̄2′′ , represented by the dashed curve in
Fig. 4. This particular mix of hosts and tags,

N̄2′ =
1

4

[

√

N̄2′′(8 + N̄2′′)− 5N̄2′′

]

, (35)

produces a characteristic texture of heterogeneity in mass density. Critical macrostates
on either side of the dashed curve have mass heterogeneities with textures that reflect
a higher degree of ordering.

In macrostates generated on pathways with Φ > 0 tags are more abundant and
hosts less abundant than in a mixture of randomly placed particles 2. The bottom
three solid curves are critical population densities (34) at fixed Φ > 0. Clusters of hosts
with tags are domains of uniform, low mass density, phase separated from domains of
uniform, high mass density. The latter are clusters of tiles v.
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Figure 4. Entropy per disk, S̄/kB , versus population densities N̄2′′ , N̄2′ of
particles from the two species 2′′ and 2′. The contours are at 0.028ℓ, ℓ = 1, . . . , 9.
The solid and dashed curves represent (34) for Φ = 0,±1.5,±3.0,±5.0 in
ascending order from top to bottom.
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Figure 5. Entropy per disk versus excess volume at criticality. The five
curves, inferred from (33), represent, from top to bottom, critical macrostates
characterized (a) by Φ = 0, 1.5, 3, 5, 10. and (b) by Φ = 0,−1.5,−3,−5,−10

These domains suppress the entropy significantly relative to the entropy of random
clusters of particles 2. The entropy reduction is evident in the contours of Fig 4 and,
more compellingly, in the configurational entropy curves, S̄(V̄ ), shown in Fig. 5(a).
The effect is most significant at intermediate volume where large clusters of tiles 2 or
tiles v are least likely to be realized by chance.

A different ordering tendency is manifest in critical macrostates generated along
pathways with Φ < 0. More hosts and fewer tags are present than in a randomly
placed mixture. Critical population densities (34) at fixed Φ < 0 are represented by
the top three solid curves in Fig. 4. These macrostates exhibit various degrees of
dispersal of particles 2. The dispersal flattens out heterogeneities in mass density and
thus reduces the entropy.
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This ordering tendency manifests itself differently in the configurational entropy
as shown in Fig. 5(b). Dispersal of particles 2 only produces ordering tendencies
in conjunction with spatial constraints. The entropy reduction remains insignificant
until crowding of particles 2 becomes an issue. The capacity of the channel for hosts
2′ is only 60% of its capacity for particles 2. Hence, hosts alone reach saturation at
V̄ /qσ = 1

5 in an ordered state. At larger V̄ , the entropy rises again on account of tags
attached to some hosts.

6. Friction

The assumption of frictionless surfaces puts some distance between physical reality
and the results presented thus far. Here we narrow that gap somewhat. Friction will
stabilize additional configurations of jammed disks. However, a rigorous analysis in the
framework of configurational statistics now appears remote. The jammed microstates
are no longer countable. They include configurations with disks that do not touch
any wall. Friction allows a disk to be wedged in between two disks that touch the
same wall. The range of distance between the middle disk and the wall depends on
the coefficient of friction.

It appears reasonable to argue that the dominant effect of friction is well
represented if we allow the controlled presence of adjacent disks that touch the same
wall. Our method is readily adaptable to accommodate this scenario. We extend
the set of statistically interacting particles from two species (Table 1) to four species
(Table 3). Any tile 1 that is stable in the absence of friction remains a particle of
species 1. Any tile 1 that directly follows another tile 1 can only be stabilized by
friction. We name it a particle 4. Likewise, in any string of adjacent tiles 2, the first
is a particle 2 and the others are particles 3.

Table 3. Specifications of four species of particles: species, volume and
energy (relative to vacuum), capacity constant (left), and statistical interaction
coefficients (right).

m vm ǫm Am

1 qσ pqσ + γ 1

2
(N − 3)

4 qσ pqσ + γ + ψ 0

2 qσ pqσ − γ 1

2
(N − 3)

3 qσ pqσ − γ + ψ 0

gmm′ 1 4 2 3

1 3

2

1

2

1

2

1

2

4 −1 0 0 0

2 1

2

1

2

3

2

1

2

3 0 0 −1 0

All four species of particles extend the volume by the same amount qσ. Their
expansion work is identical. The gravitational potential energy is raised (lowered) by
γ when a particle 1 or 4 (2 or 3) is activated. The population densities of particles
4 and 3 relative to those of particles 1 and 2, respectively, are controllable by the
parameter ψ in a role akin to a chemical potential. Unlike pqσ in (4) and γ in (5), the
parameter ψ is not associated with any physically relevant unit of energy. However,
its value is determined, via Rf , by an observable effect of friction. In the taxonomy
of Ref. [21] particle 1 is host to tag particle 4 and particle 2 host to tag 3.
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Equations (12) for the two pairs of hosts and tags become

e2Kp =
w2

1w
2
2(1 + w3)(1 + w4)

(1 + w1)(1 + w2)w3w4
,

e2Kg =
w1w3(1 + w4)

w2(1 + w3)w4
, eΨ =

w4

w1
=
w3

w2
, (36)

where Ψ
.
= ψ/Tk. The particle population densities inferred from (13) are

N̄4 =
N̄1

w4
=

(1 + w2)w3

D(ψ)
, N̄3 =

N̄2

w3
=

(1 + w1)w4

D(ψ)
, (37)

D(ψ) = (1 + w2)w3 + (1 + w1)w4 + w3w4[2w1w2 + 3(w1 + w2) + 4].

In the limit ψ → ∞ we have w3, w4 → ∞ and expressions (18), (19) for the frictionless
case are recovered.

Within the limitations of our approach, the effects of friction are most
transparently accounted for if we impose the constraints

N̄4

N̄1
=
N̄3

N̄2
= Rf , (38)

because friction is the same near both walls. The parameter Rf with range 0 ≤ Rf ≤ 1
is a measure for the coefficient of friction. This simple model to include friction can be
modified in the light of evidence from experiments or simulations. We could prohibit,
for example, the occurrence of more than three tiles 1 or three tiles 2 adjacent to each
other. Within the limitations of this model we can state that Rf is zero in the absence
of friction and that it increases monotonically with the coefficient of static friction.
The asymmetry in Eq. (38) is due to gravity, N̄4 < N̄3 follows from N̄1 < N̄2.

The four Eqs. (36) are thus reduced to a pair,

e2Kp

(1 +Rf )2
=

w2
1w

2
2

(1 + w1)(1 + w2)
, e2Kg =

w1

w2
. (39)

Expressions (37) for the particle population densities remain intact.
How do the additional tiles stabilized by friction, i.e. the tag particles 3 and 4,

affect the configurational entropy curves S̄(V̄ )? The answer is shown in Fig. 6 for
Rf = 0.1. In this case we have one tile 1 (2) stabilized by friction for every ten tiles
1 (2) that are stable under pressure and gravity alone.

All features except one are qualitatively the same as in Fig. 3 for the frictionless
case. The curves fan out from the most disordered state in a similar manner.
Criticality is robust. The coordinates of three landmarks (critical point, points of
maximum and minimum volume) have shifted somewhat. The jammed macrostate
with maximum volume now has a nonzero entropy. The source of this entropy are the
extra tiles stabilized by friction. They are randomly distributed as tags 3 to hosts 2.
Tiles 1 are absent from this macrostate.

The critical states, located on the dashed curve in Fig. 6, are again associated
with the combined limit (20). Equation (26) for w2 remains valid if we divide the
left-hand side by (1 +Rf )

2. The critical particle population densities in the presence
of friction are

N̄1 = N̄4 = 0, N̄2 =
N̄3

Rf
=

1

Rf + 3 + 2w2
. (40)
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Figure 6. Entropy per disk versus excess volume at Γ = 0, 0.5, 0.75, 1, 1.25, 1.5, 3
(left to right) with effects of friction included (Rf = 0.1). The dashed arch
delimits a region of critical macrostates.

7. Conclusions

7.1. Analogies

It is interesting to compare the results of this work with the results compiled in
[25, 26, 27, 28, 29, 30] for hard sphere subject to friction. There exists a remarkable
analogy with similar and contrasting features between jammed macrostates of disks
at criticality along the dashed arc of our Fig. 3 and of spheres in the RCP limit along
the vertical borderline of the phase diagram in [25]. In both systems the jammed
macrostates depend on the compactivity and one additional control parameter,
contributed by gravity in our system and by friction in the hard-sphere system.

Approaching our critical line via the limit (20) with a specific value for ∆ in
(25) corresponds to approaching the RCP line from the left via the limit X → 0 for
a specific value of µ (coefficient of friction) or Z (mechanical coordination number).
The jammed macrostates to the right of the RCP line are shown in [28] to consist
of coexisting domains of RCP disorder and FCC order. The RCP line can thus be
interpreted as the location of a first-order phase-transition.

In Sec. 5 of this work we show indirect evidence that the macrostates below
the (dashed) critical line (see Fig. 5) also consist of coexisting domains of order and
disorder. In our case two distinct types of ordering are explored. However, we have
yet to develop the mathematical tools for a more direct and quantitative description
of the ordered domains.

There exists a second analogy between the two systems. It pertains to the
(averaged) mechanical coordination number Z. In the hard-sphere system, there
appears to exist a function Z(µ), which was shown to vary monotonically between a
low-friction plateau, Z = 6 and a high-friction plateau, Z = 4, for jammed macrostates
between the RLP and RCP lines [29].

The confined disks of our system have Z = 3 with no variation in the absence
of friction. In Sec. 6 we argue that friction stabilizes additional disk configurations
involving disks with only two loaded contacts. Our argument implies that Z decreases
monotonically with increasing coefficient of friction. A more quantitative analysis of
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that functional relation and its dependence on V̄ will have to await an analysis based
on refined mathematical tools.

7.2. Discussion

The methodology of this work builds on the foundations of configurational statistics.
Chief among the assumptions is the existence of jammed macrostates that are
systematically reproducible by some protocol of random agitations of given intensity
and that can be described by few control variables.

Jammed macrostates of the system under investigation here are parametrized by
two variables reflecting the intensity of the random agitations in two distinct energy
units of relevance. One unit represents the expansion work of the piston when it is
moved a fraction of one disk diameter. The other unit represents the weight of one
disk lifted across the channel.

A protocol of random agitations that fits the bill of configurational statistics for
the jammed disks in the narrow channel is not guaranteed to exist. If it does exist
it may be difficult to implement. It is no secret that this is the Achilles’ heel of
configurational statistics.

The detailed predictions of this work follow rigorously from the assumptions
underlying configurational statistics if friction is absent. The versatility of our
method of analysis makes it possible to include some dominant effects of friction
in a transparent way. Our results thus present a situation where the assumptions
of configurational statistics can be put to the test of simulations and experiments.
The simplicity of the model in conjunction with the complexity of its behavior is well
suited for that purpose. Any instances of verification or falsification will shed light on
the important question of how accurately a protocol of random agitations applied to
jammed granular matter can mimic effects of thermal fluctuations.

7.3. Outlook

Experimental, theoretical, and computational studies of jammed disks are well
established [31, 32, 33, 34] but scenarios with highly confined geometries have drawn
limited attention thus far [13, 14, 15]. We hope to have shown in this work that such
simple systems exhibit behavior that is worth studying for at least two reasons: there
exist compelling analogies to behavior of more complex systems, exact analytic results
are within reach.

The methodology as presented here is amenable to further development in several
directions: (i) the regime 1 +

√

3/4 < H/σ < 2 of 32 tiles as identified in [14], (ii)
mixtures of disks with different radii and masses including rattlers [35, 36, 37], (iii)
spatial correlations of heterogeneities in mass density, and (iv) channels with the axis
oriented vertically.
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