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ABSTRACT

Let D be a DAG and let X be any non-empty subset of D’s vertices. X is a convex

set of D if D contains no path that originates in X , then visits one or more vertices not

in X , and then re-enters X . This work presents basic convexity algorithms for creating,

growing, and shrinking convex sets using two different approaches: predecessor and

successor sets, and topological sorts. It shows that the algorithms based on predecessor

and successor sets typically have higher asymptotic running times than those based

on topological sorts. However, when creating a convex set based upon a potentially

non-convex set of “seed” vertices, the use of predecessor and successor sets permits the

creation of a convex set which is the uniquely smallest superset of the seeds.

This work also considers the problem of stochastically searching for a global minimum

over all convex sets of a given DAG, using the basic convexity algorithms described

above. This work demonstrates the existence of such an algorithm that, when run for

an unbounded finite number of iterations, the probability of it covering the entire search

space approaches one.

This work presents one possible mapping which extends this work’s optimization of a

single parallel task to the optimization of task-parallel programs with multiple tasks.

This mapping is studied experimentally. The results demonstrate a significant (32%)

speed improvement over a human-crafted parallelization of the same program, suggesting

the possible merit in this work’s approach to automated parallel-program optimization.
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CHAPTER 1

Introduction

1.1 Overview

This work develops a machine-learning technique to automate the work of adapting

existing computer codes to take advantage of multi-processor / multi-core computers.

This work focuses on a model of parallel programming called task-parallelism, in which

a computer source code is divided into sections called tasks (see Section 2.10). When the

resulting program is run, different tasks can run on different processor cores, assuming

that certain interdependencies are satisfied. In this way parallel execution is obtained.

For all but the smallest programs, there are typically many different valid ways to divide

a program code into tasks. Generally, different groupings (called task sets) result in

different running times for the resulting program, due to factors such as cache warmth

and thread scheduling overhead. A number of different approaches may be taken to

execute a program code that has been divided according to some task set. In this work’s

proof-of-concept (see Chapter 8), the program and specified task set are converted into a

multi-threaded C++ program, which is then compiled to a native executable using any

standard C++ compiler. This translation process is described in detail in Section 3.3.

The full task-set optimization problem (see Section 3.4) is the optimization problem

of finding a task set which leads to a parallel program with an approximately minimal

running time.

While the full task-set optimization problem is the motivation for this present research,

this work focuses on a restricted form of the problem, called the single-task opti-

mization problem (see Section 3.5). The relationship between these two problems is

briefly discussed below, and in much more detail in Chapter 3. Because each task is

also a convex set (see Section 2.9), the single-task optimization problem is also called

1



the single-convex-set optimization problem. This work treats these two terms as inter-

changeable.

For this work, any program to be optimized is represented as a dataflow graph (DFG)

(see Section 3.1). When representing program codes as dataflow graphs, we represent

an individual task as some subset of the DFG’s vertices. Figure 1 (page 19) provides

an example of a dataflow graph for a program which computes a simple mathematical

expression. 1

A task set is a set of tasks, and thus is modeled as a set of vertex sets. In this work, the

pair of a DFG and a task set is considered to be a complete specification of a task-parallel

program. Other details which may affect a task-parallel program’s running time, such as

how the (DFG, task-set) pair is mapped to C++ source code, are outside the scope of

this research and are treated as fixed details during the optimization process. Figure 5

(pages 88-89) provides an example of different task sets defined over the same DFG.

The key complicating factor for the optimization problems considered in this work is that

not all task sets are valid. For a given program, there may be some task sets which would

lead to the resulting program to deadlock during execution. This problem is partially

avoided by requiring that each task to be a convex set. However, as was discovered in

the latter stages of this research effort, the convexity of each individual task in a set is

not sufficient to ensure the absence of deadlock at runtime. This issue is treated in depth

in Chapter 3.

1.2 Three Problem Levels

This thesis develops three broad groups of algorithms: (1) the Full Task-set Optimization

Algorithm, (2) the Single Convex-Set Optimization Algorithm, and (3) Basic Convexity

1For simplicity, the DFG model used in this work cannot represent branching or
looping. However, more expressive DFG languages exist and have been used in other
systems.

2



Algorithms.

These three groups of algorithms, and the relationships between the groups, are described

briefly below.

1.2.1 Full Task-set Optimization Algorithm

The full task-set optimization algorithm directly addresses the automatic parallelization

problem which motivates this thesis. This algorithm is studied in the proof-of-concept

described in Chapter 8.

In the early stages of this research, our goal was to focus on the development and

study of an algorithm which directly addressed the full task-set optimization problem.

Furthermore, we strove to ensure that given an unbounded number of iterations, the

probability of the algorithm finding a globally optimal value would approach one.

Our early approach to this algorithm was to develop another algorithm which mutates a

single convex set (see Subsection 1.2.2, below). We designed the full task-set optimiza-

tion algorithm to execute one instance of the single convex-set mutation algorithm for

each task in the evolving task set. The evolved task-set would simply be the collection

of convex sets evolved in this manner. We assumed that as the full task-set optimization

algorithm ran for an unbounded number of iterations, the probability of it discovering a

globally optimal task set would approach one. We expected this to be an emergent prop-

erty resulting from trivially combining individual convex sets whose mutation algorithm

had a similar probability property.

This approach to the research was necessarily changed when we discovered that some

collections of convex sets did not form a valid task set. When a task set contains exactly

one task, deadlock is avoided precisely when that task is a convex set. However, when a

task set contains multiple tasks, deadlock may arise even when each individual task is a

convex set. This problem is discussed in detail in Subsection 3.3.1.3.

3



To address this problem, we modified our full task-set optimization algorithm to alter

individual tasks, as necessary, to eliminate any deadlock which might arise when combin-

ing those tasks into a single task set. Our approach is described in Appendix E. However,

this resulted in a non-trivial mapping from individually mutated convex sets to a full

task set. The non-triviality of that mapping raised serious doubts that the resulting full

task-set optimization algorithm could be proven to discover globally optimal task sets

given an unbounded number of iterations.

Due to the then-limited amount of time to complete this thesis’ research, a decision was

made to refocus our efforts on proving the above-mentioned probability quality for only

our single task-set optimization algorithm. Our hope, and a central assumption of this

work, is that by proving that quality for our single convex-set optimization algorithm,

we provide a stepping-stone for future attempts to develop a full task-set optimization

problem with that probability property.

The proof of concept in Chapter 8 demonstrates that regardless of whether or not our

full task-set optimization algorithm would probably discover a globally optimal task

set given enough iterations, the algorithm can in practice discover useful task-parallel

optimizations.

1.2.2 Single Convex-Set Optimization Algorithm

This algorithm (Algorithm 3 in Chapter 7) discovers a single convex set which approx-

imately minimizes a specified cost function. As the algorithm runs for an unbounded

number of iterations, the probability of it discovering a global minimum asymptotically

approaches one.

Note that the full-convex-set optimization algorithm described above does not use the

entirety of this single-convex-set optimization algorithm. Instead, it uses this algorithm’s

technique for mutating individual convex sets, which is arguably the most interesting

aspect of this algorithm.
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This thesis establishes the following qualities for the presented single-convex-set opti-

mization algorithm:

Asymptotically Complete Search/Optimization As discussed above, this is the

property that if run for an unbounded number of iterations, the probability of this

algorithm examining every convex set of the specified DFG approaches one. This

quality is proven in Subsection 7.5.3.

When this algorithm is used in its full form, examining every convex set of the

DFG implies finding a global minimum.

As noted earlier, this thesis’ implementation of the full-task-set optimization al-

gorithm uses just part of this single-convex-set optimization algorithm. However,

even the excerpted portions of this algorithm visit all convex sets of the DFG with

a provable asymptotic probability of one.

Per-iteration Efficiency We show that each individual iteration of this algorithm has

a running time that is polynomial with respect to the size of the DFG. We establish

this (Subsection 7.5.2) to demonstrate the practical usefulness of the algorithm.

Usefulness to the Full Task-set Optimization Problem Because the single-

convex-set optimization problem is not identical to the full-task-set optimization

algorithm which motivates this work, it remains necessary to show that this

algorithm is at least a step towards solving the motivating problem. This thesis’

proof-of-concept (Chapter 8) provides empirical evidence of this.

This algorithm draws upon a third group of algorithms, basic convexity algorithms,

described below.

1.2.3 Basic Convexity Algorithms

Appendix C presents a collection of algorithms which create a new convex set, or grow

or shrink an existing convex set. These algorithms are required by the single-convex-
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set optimization algorithm, and by implication the full-task-set optimization algorithm,

both described above.

Two alternative groups of these algorithms are developed and studied. One group of

algorithms is based on predecessor and successor sets (Chapter 5), and the other group is

based on topological sorts (Chapter 4). The comparative merits of these two approaches

are discussed in Section 7.4.

1.3 Structure of Thesis

The remainder of this work is structured as follows. This chapter presents this work’s

contribution (Section 1.4) and related work (Section 1.5).

Chapter 2 presents the notation and basic graph theory concepts used in this work.

Chapter 3 describes in detail the a parallel-program optimization problems which moti-

vate this present work.

Chapters 4 and 5 develop two distinct approaches to creating, growing, and shrinking

some arbitrary convex set of a DAG. Chapter 4 develops these basic convexity operations

based upon a DAG’s topological sorts. Chapter 5 presents the same basic convexity

operations, computed in terms of the predecessor and successor sets.

Chapter 6 establishes that given some DAG D and any two convex sets of D, X and Y,

one can always evolve X into Y using a sequence of single-vertex additions, deletions, or

replacements, such that the set resulting from each modification is itself a convex set of

D.

Chapter 7 discusses the design of this work’s single-convex-set stochastic optimization

algorithm, Algorithm 3. Algorithm 3 is implemented in terms of topological sort-based

basic convexity algorithms (see Chapter 4 and Appendix D). However, the optimization

algorithm may be trivially modified to instead use operations based on predecessor/suc-
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cessor sets (see Chapter 5 and Appendix D). The relative merits of these two approaches

is discussed. This chapter also discusses a modification to the optimization algorithm in

order to achieve local refinement.

Chapter 8 presents experimental results obtained in the empirical validation of this

work’s algorithms.

Chapter 9 provides the thesis’ conclusions and suggestions for future work.

Appendix A details the primitive operations used by this work’s algorithms. For each

primitive operation we state an asymptotic running time and, when appropriate, the

randomness properties exhibited by the operation.

Appendix B presents utility algorithms which are called by this work’s higher-level al-

gorithms, but which are not the focus of this work.

Appendix C presents algorithms for initializing, growing, and shrinking an arbitrary

convex set of a DAG. This appendix discusses both the basic algorithms based upon

topological sort as well as those based on predecessor and successor sets. A running-

time analysis is given for each algorithm in this appendix, to support the running-time

analysis of the single-convex-set algorithm, Algorithm 3. Analyses are also given for the

randomness properties of the algorithms which grow or shrink convex sets, to support

related proofs in Section 7.5.

Appendix D presents algorithms which are not used by the optimization algorithm which

is the focus of this work (Algorithm 3), but are instead used in the constructive proofs

of Algorithm 3’s correctness.

Appendix E presents an algorithm for the deconfliction of task sets, an issue raised in

Subsection 3.3.1.3.

Appendix F presents one of the task-parallel C++ codes produced during that same

experiment.
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1.4 Contribution

In Chapter 4, Theorem 4.2.2 establishes that for any convex set X of some DAG D,

there exists a topological sort of D in which the vertices of X appear as a contiguous

subsequence.

Theorems 4.2.6 and 4.2.7 show that for any convex set X of some DAG D, one can

always generate a superset or subset of X , having an arbitrary order (i.e., number of

vertices), that is also convex set of D.

In Chapter 5, Lemma 5.2.11 shows that the formula used in [3, Fig. 4-7] and possibly

referenced in [2], called in this present work an internal path closure, is sufficient to

ensure the convexity of a set.

Corollary 5.3.5 shows that the internal path closure of any set X is the uniquely smallest

improper superset of X that is also convex.

Theorem 5.4.7 provides a precise formula for identifying which vertices in some convex

set X have the quality that deleting just that one vertex from X yields another convex

set.

Section 7.5 presents an efficient stochastic optimization algorithm (Algorithm 3) whose

domain is all convex sets of a DAG. As the algorithm’s iterations increase without bound,

its probability of exploring the entire search space approaches 1. To the author’s knowl-

edge this is the first presentation of an optimization algorithm over this domain having

these qualities.

In Appendix D, Algorithm 19 demonstrates that given any DAG D and any two sets

X and Y that are convex sets of D, one can always evolve X into Y using a sequence

of single-vertex additions, deletions, and replacements, such that each intermediate set

produced by the single-vertex changes is itself a convex set of D.

8



1.5 Related Work

1.5.1 Iterative / Optimal Compiling

Numerous projects have used machine learning and/or iterative compilation to improve

the optimization heuristics employed by compilers[4, 5]. Fursin et al[6] developed a

system that repeatedly compiles a target program, searching for the optimal optimization

parameters for each individual construct in the target. Cooper et al[7] seek to reduce the

time required for iterative compilation by using models rather than actual executions to

determine the running times of various optimized compilations of the target program.

1.5.2 Automated Algorithm Selection

The FFTW project[8, 9] provides a library for calculating discrete Fourier transforms

(DFTs). It benchmarks the running times of algorithm fragments, and then composes

them to handle arbitrarily large inputs. The Spiral[10] system searches through the space

of valid employments of interchangeable algorithms in order to minimize program running

time. As in FFTW, Olszewski and Voss[11] use benchmark-informed search for optimal

algorithm choices, but do so for parallel sorting algorithms. The PetaBricks project[12]

goes further by allowing application programmers to specify a set of functionally similar

algorithms, which the PetaBricks system seeks to optimally compose.

1.5.3 Task Partitioning and Forking

Extensive research has occurred regarding finding the optimal partitioning of applicative

programs into tasks for parallel execution. This research typically involves partitioning

a dataflow-graph representation of the target program[13, 14, 3]. Smyk et al[15] describe

a genetic algorithm for partitioning dataflow graphs, but with the goal of defining a

computational mesh for a distributed system, rather than a set of tasks to be activated

as needed on a shared-memory system.
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The Mul-T system[16] requires programs to explicitly indicate which function calls may

be safely executed in parallel, unlike my proposed work and [17] whose functions are

parallel-safe by construction. Our work also can reorganize the original program to have

parallel functions that never existed in the original source code, whereas Mul-T cannot.

1.5.4 Conditional Parallelism

The Mul-T system[16] decides at runtime, based on issues such as current system load,

whether to spawn a function call as a parallel task or to instead directly call the function

from within the thread of the caller. Rus et al[18] use runtime analysis to decide the

safety, not the profitability, of executing a program fragment asynchronously. Huelsber-

gen et al[19] use static analysis to estimate the cost of each function call based on the

size of its parameters, and at runtime use that information to decide whether or not the

overhead of an asynchronous call is worth incurring.

Duran et al[20] and Prechelt et al[21] use machine learning to decide whether to make a

recursive function call synchronously or asynchronously based on the level of recursive

nesting and on current system load. Both of these systems use decision functions whose

form is fixed by their learning systems.

1.5.5 Parallelization of Sisal Programs

Various projects have parallelized Sisal or IF1 codes. Sarkar[3] uses modeling to estimate

the execution cost of each task created by a particular partitioning of a target program’s

IF1 representation, ultimately producing tasks whose estimated running time always ex-

ceeds some minimum threshold. The OSC compiler[22] offers automatic data parallelism

of some loops (via loop slicing), based on factors including the estimated cost of certain

units of work, and on thresholds specified during compilation. Beard[23] developed a

Sisal compiler back-end to target distributed (e.g., message-passing) computers.
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1.5.6 POSC

This work is most directly a continuation of the work done by Sarkar and Cann for

the POSC [17] extension to the OSC compiler. In POSC, each function is potentially

a different child task; compile-time-specified dofork flags determine whether a given

function call is performed inline or asynchronously via a fork operation. My work goes

beyond this by actually formulating new functions to be parallelized.

1.5.7 Convex Sets

Sarkar and Hennesy [2] describe an approach to parallelization in which the vertices

of a dataflow graph may be grouped together into one or more parallel tasks. Their

paper recognizes the need for convexity to ensure freedom from deadlock at runtime.

They present an algorithm which potentially generates non-convex tasks, which are later

converted into similar, convex sets using what the author’s call the convex hull of the

non-convex set. The paper provides no obvious definition for that term, but later work

([3]) suggests that their convex hull is the same as this present work’s internal path

closure concept (see Section 5.3).

The algorithm in [2, 3] uses a deterministic optimization technique to efficiently obtain

a collection of convex sets representing parallel tasks. However, the problem which they

seek to solve has NP time complexity ([3, section 4.2-4.3]), and so their approach cannot

guarantee optimality.

Sanchez and Trystram [24] use a genetic algorithm to obtain a collection of tasks from

a dataflow graph. As with [2, 3], all convex sets in a collection are mutually disjoint.

However, [24] assigns every vertex to some convex set, whereas [2, 3] permits some

vertices in the dataflow graph to remain unassigned. It is not clear from this paper

whether or not the genetic algorithm has a non-zero probability of searching the entire

problem space when starting with an arbitrary seed and allowed to run for a finite but

unbounded number of iterations.
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Pecero and Bouvry [25] provide a different genetic algorithm to obtain a collection of

convex sets in a dataflow graph. As with [2], a local heuristic is employed to convert a

non-convex task into a convex one. However, whereas [2] obtains convexity by adding

vertices, Pecero and Bouvry’s algorithm obtains convexity by deleting vertices.

The mutation operator of [25] splits some convex set X into two convex sets: for some

u ∈ X , the sets {u} and (X \ {u}). [25] states that u is drawn from the “top” or

“bottom” of X , suggesting a recognition of the validity of Theorem 5.4.5 in Section 5.4

of this present work.

Andersen et al [26] consider a problem domain in which groups of operations are permit-

ted to overlap. This is motivated by the fact that in distributed systems, the performance

impact of moving data between processors may outweigh the cost of redundantly com-

puting the data at whichever additional processors require it.

Baslister et al [27] and Bang-Jensen and Gutin [1, section 17.2.3] present an efficient

algorithm for enumerating all convex sets of any directed acyclic graph.

1.5.8 Coverage of Search Space by Stochastic Algorithms

Rudolf and others have studied the problem of proving that certain classes of stochastic

optimization algorithms cover the entire search space of a specified problem, given enough

iterations. Rudolf uses Markov chains to demonstrate that for a particular conception

of genetic algorithms, convergence to a globally optimal solution is entirely contingent

on whether or not elitism is used to retain the best result [28]. [29] extends this analysis

to a broader class of evolutionary algorithms.
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CHAPTER 2

Terminology, Notation, and Preliminaries

The circumflex diacritic appearing in P̂ and Ŝ (see Chapter 5) is used exclusively to

denote those two sets and has no broader meaning. Other notational conventions are

presented in the appropriate subsections below.

2.1 Sets

This work considers sets of several kinds of objects. Items surrounded by curly braces

({ }) always indicate the specification of a set’s content, either using set-builder notation

{x|P (x)}, or by explicit enumeration of a set’s values, i.e. {a, b, c}.

2.2 Sequences

This work uses several different kinds of sequences: sequences of vertices, which some-

times represent paths (see Section 2.3), and sequences of vertex sets. In this subsection

we give the sequence-related notation that applies regardless of the kind of element

contained within the sequence.

A sequence may be identified by its elements, enclosed in square brackets and with

individual elements separated by commas, as in [a, b, c]. Ellipses indicate an region of

the sequence having zero or more unspecified elements, for example [a, b, . . . , z].

Names of paths and other vertex sequences are given as upper-case non-script letters

with an overhead arrow, e.g., ~Q. An upper-case script letter with an overbar denotes a

sequence of sets. For example, T = [T1, T2, . . . , Tn] denotes a sequence of n sets.

The elements of each sequence are numbered 1, 2, etc. As with sets, enclosing a sequence’s

name within vertical bars (e.g., | ~X |) indicates the number of elements in the sequence,
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called its length.

Suppose ~X is some sequence. Then ~XJiK denotes the ith element of the sequence.

~XJi . . . jK denotes the subsequence of ~X from ~XJiK to ~XJjK, inclusive.

Suppose ~X and ~Y are two sequences. Then the notation [ ~X~Y ] indicates the concatenation

of the elements of the ~X and ~Y :

[ ~X~Y ] = [ ~XJ1K, ~XJ2K, . . . , ~XJ| ~X|K, ~Y J1K, ~Y J2K, . . . , ~Y J|~Y |K]

[ ~X~Y ] does not indicate a two-element-long sequence of sequences.

When the same letter is used to name both a path and an unordered vertex set, e.g. ~Q

and Q, the two objects implicitly contain the same vertex set.

2.3 Directed Graphs, Paths, Cycles

A directed graph D = (V, A), also called a digraph, is defined as a set V of vertices,

and a set A of arcs.

Lower-case letters indicate individual vertices within a graph. Unordered sets of vertices

are named with upper-case script letters, e.g. X . The letter D always names an entire

digraph, A always indicates the complete set of arcs in a digraph, and V always indicates

the complete vertex set in a digraph.

The number of vertices in a graph is called the graph’s order, and the number of arcs

in a graph is called its size. Each arc a ∈ A is denoted (u, v), where u and v are called

the arc’s source and destination, respectively.

In some cases an unnamed digraph may be identified by its vertex set and arc set. For

example, (V, A) rather than D. We treat these two notations as interchangeable.

This work uses a shorthand notation for arcs, in that an arc’s source and/or destination

may be specified as a set, for example (X , y). This notation indicates that the arc is
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an unspecified member of the set of arcs whose source and/or destination vertex is a

member of the indicated set. For example, “(X , y)” is shorthand for “(u, y) for some

u ∈ X”.

Suppose D = (V, A) is a digraph, and ~P is a vertex sequence in V. We say that ~P is a

path of D if and only if (~P J1K, ~P J2K) ∈ A, (~P J2K, ~P J3K) ∈ A, . . ., (~P J|~P − 1|K, ~P J |~P | K) ∈

A. ~P J1K is called the initial vertex of ~P , ~P J |~P | K is called the terminal vertex of ~P ,

and all other vertices in ~P are called internal vertices.

Let ~P be any path in some digraph D. Using the notation of [1], we say that ~P is an

(x,y)-path if ~P J1K = x and ~P J|~P |K = y. We say that ~P is an (X ,Y)-path if ~P J1K ∈ X

and ~P J|~P |K ∈ Y. This notation also entails (x,Y) and (X , y) constructions with the

obvious meaning.

A subpath is any contiguous subsequence within a given path. For example, in the path

~P with |~P | = 3, the subpaths are [~P J1K], [~P J2K], [~P J3K], [~P J1K, ~P J2K], [~P J2K, ~P J3K],

and [~P J1K, ~P J2K, ~P J3K]. Note that if ~P is a path in some digraph D, then every subpath

of ~P is also a path in D.

A path is direct if it has a length of exactly two, and is indirect if it has length greater

than two.

Consider a digraph D = (V, A). A vertex x ∈ V is a source of D if any only if there is

no arc in A which has x as the arc’s destination. Similarly, x ∈ X is a sink of D if any

only if there is no arc in A which has x as the arc’s source.

2.4 Directed Acyclic Graphs (DAG’s)

A directed acyclic graph (DAG) is a digraph which contains no cyclic paths. That is a

digraph D is a DAG if and only if there exists no (x, x) path in D. In this present work

we assume that all DAG’s are simple graphs (i.e., for any two vertices x, y ∈ V, the

graph contains at most one (x, y) arc.)
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Theorem 2.4.1. Let D = (V, A) be a DAG. Then |A| ≤ |V|(|V| − 1)/2.

Proof. A sketch of this proof is as follows. Readers unfamiliar with topological sorts may

wish to review Chapter 4 before proceeding.

A DAG is acyclic precisely if there exists at least one topological sort of its vertices. Let

~T be any total ordering of V. We now consider what set of arcs A would permit ~T to be

a topological sort of D while maximizing |A|.

~T is a topological sort of D if and only if for every arc (x, y) ∈ A, x appears before y

in ~T . We assert but do not prove that the maximally large arc set Amax meeting this

requirement is constructed as follows. For each vertex ~T JiK in ~T , create an arc from ~T JiK

to every higher-indexed vertex in ~T . That is,

Amax = { (~T JiK, ~T JjK) | 1 ≤ i < j ≤ |T | }

Then for any i ∈ [1, |T |], Amax contains |T | − i arcs whose source vertex is ~T JiK. From

this we have:

|Amax| =

|T |
∑

i=1

(|T | − i) = |T |(|T | − 1)/2

Because T = V, we have |Amax| = |V|(|V| − 1)/2.

2.5 Contractions of Digraphs

Let D = (V, A) be a directed graph, and let X be any non-empty subset of V. Informally,

the contraction of X in D (see also [1, sect. 1.3]) is based on D, but replaces all of X

with a single placeholder vertex x′.

More precisely, let DC = (VC , A
′
C) be the contraction of the vertex set X to x′ in D.

Then DC is constructed as follows:

VC = (V \ X ) ∪ {x′}

AC = {(u, v) | ((u, v) ∈ A) ∧ (u /∈ X ) ∧ (v /∈ X )} ∪

{(u, x′) | ((u, v) ∈ A) ∧ (u /∈ X ) ∧ (v ∈ X )} ∪

{(x′, v) | ((u, v) ∈ A) ∧ (u ∈ X ) ∧ (v /∈ X )} ∪

{(x′, x′) | ((u, v) ∈ A) ∧ (u ∈ X ) ∧ (v ∈ X )}
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Algorithm 5 (Appendix B.1) computes the contraction of a digraph.

Note that the contraction of a DAG might contain a cycle. Suppose D = (V, A) is a

DAG, and X is the subset of V to be replaced by the new vertex x′ in contracted directed

graph. If A contains at least one arc having both endpoints in X , then the contracted

graph contains the the arc (x′, x′).

2.6 Induced Subdigraphs

Let D = (V, A) be a digraph, and let X be any non-empty subset of V. The subdigraph

D<X >= (VS, AS), read “the subdigraph of D induced by X”, is defined as follows (see

also ([1, sect. 1.2]):

VS = X

AS = { (u, v) | ((u, v) ∈ A) ∧ (u ∈ X ) ∧ (v ∈ X ) }

Algorithm 6 (Appendix B.2) computes induced subdigraphs.

2.7 Transitive Closure

Every DAG D has a transitive closure, denoted TC(D).

Informally, TC(D) has the same vertices asD, but a superset of the arcs inD. The added

arcs indicate the existence of indirect paths between any two vertices in D. Suppose u

and v are vertices in D. Then TC(D) contains the arc (u, v) if any only if there exists

a (u, v) path in D.

It has been shown that TC(D) can be computed for a given directed graph of order n

in time O(n2.376) [1, Prop. 2.3.5].

2.8 In/Out-neighbors

For a DAG D = (V, A), we define the in-neighbors of a vertex x as the set of

vertices {w | (w, x) ∈ A }. Similarly, the out-neighbors of a vertex x are the vertices
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{ y | (x, y) ∈ A }.

The concept of in-neighbors and out-neighbors may be extended to the neighbors of a

set rather than of an individual vertex, as follows. The in-neighbors of a vertex set

X is the set of vertices {w | ((w,X ) ∈ A) ∧ (w /∈ X ) }. Similarly, the out-neighbors

of a vertex set X is the set of vertices { y | ((X , y) ∈ A) ∧ (y /∈ X ) }. Note that our

definitions ensure that a vertex is not both a member and an in/out-neighbor of the

same set.

A vertex w is an strictly direct in-neighbor of a vertex set B if and only if w is an

in-neighbor of B and D contains no path of the form [w, . . . , x, . . . , B], with x /∈ B.

That is, there must be an arc from w to B, but there must not be any indirect paths

that begin in w, and then pass through other vertices not in B, and then enter B.

Similarly, a vertex y is an strictly direct out-neighbor of a vertex set B if and only

if y is an out-neighbor of B and D no path of the form [B, . . . , x, . . . , y], with x /∈ B.

The set of strictly direct in-neighbors of a set X is denoted N⊖(X ), and its set of strictly

direct out-neighbors is denoted N⊕(X ). Algorithms 7 and 8 (Appendix B.3) compute

N⊖ and N⊕, respectively

2.9 Convexity and C-paths

Let D = (V, A) be a DAG, and ∅ ⊂ X ⊆ V. A directed acyclic path ~Q in D is a C-path

of X 1 if ~Q’s initial and terminal vertices are members of X , ~Q has at least one internal

vertex, and and all of ~Q’s internal vertices are members of D \ X .

Let D = (V, A) be a DAG, and ∅ ⊂ X ⊆ V. We say X is a convex set of D if and only

if D contains no C-path of X . If D does contain at least one C-path of X then X is a

concave set of D.

1Identical to the notion of S-path in [27]. Renamed for notational purposes.
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g()

42 -1X Y Z

- /+

f()

*

(a) The gray vertex set
{+, /, ∗, f} is a convex set of
this DFG.

g()

42 -1X Y Z

- /+

f()

*

(b) The gray vertex set {+, /, f}
is not a convex set of this DFG, be-
cause there exists a path, [+, ∗, f ],
which originates within the set, and
then exits the set, and then re-enters
the set.

Figure 1: Dataflow graph for computing the expression
g( f(42 −X, (X + Y )× Z) , ((X + Y )× Z) , (Z ÷ (−1)) ).

Examples of convex and concave sets of a DAG are given in Figure 1a and Figure 1b,

respectively.

A DAG D = (V, A) may have as many as 2|V|− 1 convex sets. This occurs when A = ∅,

in which case every non-empty subset of V is also convex set of D.

2.10 Threads vs. Tasks

For this work we assume that the term thread has the usual meaning of a mechanism

for executing a sequence of program instructions. Examples of thread implementations

include POSIX pthreads, the std::thread class provided by the C++11 standard

library, and low-level portions of the Thread Building Blocks library.

This present work does not strongly distinguish between threads and tasks, as both are

units of execution which can be created, used to execute a specified subroutine, and then

be deleted.
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The only difference in this work between threads and tasks is one of connotation, rein-

forced by the terminology of the Thread Building Blocks library used in this work’s proof

of concept implementation (Chapter 8). In some parallel programming environments

(including the Thread Building Blocks), a thread is a long-lived object which executes

zero or more tasks over its lifetime. Within that framework, this work’s optimization

technique concerns the assignment of program instructions to tasks, not threads.

2.11 Algorithm Pseudocode

This work contains numerous algorithms presented as pseudocode. For readability, com-

mon mathematical notation is used when possible. For example, X ← ∅ denotes assigning

the vertex set identifier X to the value empty-set. To clarify the semantics and running

time of a given line of pseudocode, supplemental text is often provided on the right-hand

side of the algorithm’s text.

For statements other than loop-control statements, both the name of the primitive op-

eration or subroutine, and an asymptotic running time may be provided. For example:

This indicates that each activation of this line requires running time O(|V|).

1: X ← u vset init by vertex(X , u ) O(|V|)

For pseudocode loop-control lines such as the following: the O(|V|) indicates the running

1: for all u ∈ X do vset iterate(X ) O(|V|)
2: . . .
3: end for

time required for the loop iterator to obtain all |X | members of X for use in the loop.

For pseudocode statements appearing within the body of a loop, a specified running time

denotes the execution of that statement during a single iteration of the loop.

In some cases, one line of algorithm pseudocode may imply multiple operations, each of

which has a running time that must be considered. In such cases, one of the underlying
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operations is presented on the same line as the pseudocode, and the remaining underlying

operations are listed on subsequent lines, as in this example:

1: if P̂ (y) ∩ Ŝ(X ) ⊆ X then tc vtx pred(TC(D), y ) O(|V|)
tc vset succ(TC(D),X ) O(|V|2)
vset is subset( . . . ) O(|V|)

2: . . .
3: end if

When a single line of pseudocode indicates multiple operations, in some cases for brevity

only the operation with the dominant asymptotic running time is provided.

21



CHAPTER 3

Motivation and Problem Statement

The primary motivation for this work is the problem of efficiently finding an adaptation

of a program for task-parallel execution which approximately minimizes its running time.

Section 3.1 provides a brief overview of the automatic task parallelization problem.

Section 3.2 describes several execution models which motivate this work.

Section 3.3 provides a complete description of the process used by this present research

to convert one or more convex sets to a task-parallel computer program with a measured

average running-time. Of particular interest is Subsection 3.3.1.2, which discusses the

need for parallel tasks to be convex sets. This provides the fundamental connection

between this thesis’ focus on convex sets and the motivating problem of parallel tasks.

Section 3.4 presents the formalization of an optimization problem for solving automatic

task parallelization. In this problem, the solution space is all non-overlapping convex

sets of a dataflow graph. This present research is a step towards solving this problem,

but does not fully solve this optimization problem.

Section 3.5 presents a special case of the full optimization problem discussed in Sec-

tion 3.4. In the special case, solutions are restricted to containing just one convex set.

A solution to this problem is the focus of this present work.

Section 3.6 discusses one approach that may be used to solve the full task-set optimization

problem using an algorithm which solves only the single task-set optimization problem.
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3.1 Automatic Task Parallelization

In task-parallel computing, fragments of a computer program’s code are grouped to-

gether into units of work called tasks, which at certain points in the program’s execution

may be executed in parallel with other running parts of the program.

A parallel program’s running time can be significantly affected by the particular mapping

of program instructions to tasks. Automatic task parallelization is the problem of

using machine learning to identify a grouping of program instructions into tasks such

that the running time of the resulting program is approximately minimized.

When automating task parallelization, it is convenient to represent the logic of the source

program as a dataflow graph (DFG) (see Figure 4). A DFG is a directed acyclic graph

(Section 2.3) in which each vertex represents either a program input source, a program

output destination, or basic program operation. Each arc (u, v) in the DFG indicates

that the data provided by vertex u is required by vertex v. Each task is defined as a

particular subset of that DFG’s vertices. An example of mapping each vertex in a DFG

to some task or to no task at all can be seen in Figure 5 (pages 88-88). In that figure,

all vertices contained within the same dash-outlined region belong to the same task.

A DFG, paired with a collection of tasks defined over that DFG, may then be translated

into a standard parallel executable program.

3.2 Execution Models

For this work we consider two execution models. The first is an intermediate execution

model for task-parallel DFG’s. This first execution model is used to reason about task-

parallel optimization in graph-theoretical terms. The second is a more concrete target

execution model, in which DFG’s are translated into compiled C++ code for actual

execution. This second execution model is used in this work’s proof of concept (see

Chapter 8).
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The theorems and algorithms developed within this thesis are concerned primarily with

this intermediate model. The translation of a DFG into this C++ code is not the focus

of this thesis. Both models are described below.

3.2.1 Task-parallel DFG Execution Model

3.2.1.1 Overview

In the task-parallel DFG execution model, the program is executed by evaluating each

vertex in the given DFG precisely once per activation of that DFG. The inputs to the

program are given by the source vertices (see Section 2.3) of the DFG. When a DFG is

activated, the source vertices’ values have already been set by whichever code or entity

activated the DFG. A DFG’s outputs are indicated by the values supplied to the DFG’s

sink vertices (see Section 2.3) during the DFG’s execution.

We assume a strict execution model, in which a vertex may begin execution any time

after all of its input data are available. An input datum is available immediately if it is

a program input or a constant value. Otherwise, an input datum is available as soon as

the vertex producing it has completed execution. Parallel execution of a DFG is possible

precisely when all input data are available for two or more vertices that have not yet

completed execution.

When a DFG is executed within a thread, the DFG’s vertices are executed in some

particular total order, called a thread-local schedule. For this work, we consider

a thread-local schedule to be valid if and only if it orders the vertices in a sequence

compatible with the assumptions of a strict execution model. In other words, a thread-

local schedule is valid if any only if it is a topological sort of the DFG (see Chapter 4).

A multi-threaded schedule is set of thread-local schedules for all threads in the pro-

gram. A two-threaded program may use DFG’s which admit only one thread-local sched-

ule per thread, and yet have a multiple multi-threaded schedules. This arises because we

make no assumption about the relative paces at which two threads execute the vertices
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of their currently respective DFG’s. In the execution model assumed by this work, a

task-parallel DFG executes to completion if and only if each individual task executes to

completion.

3.2.1.2 Computational Vertices

This model does not limit the kinds of operations that may be performed by a given

vertex. However, some assumptions are made about all vertices.

• A vertex’s output is assumed to be purely a function of its inputs.

• A vertex can only influence the output of the program through the particular values

it produces on its output arcs.

• Once a vertex begins execution, it runs to completion within a finite amount of

time.

3.2.1.3 Threading

For this work we assume a two-level hierarchical threading model, with one parent thread

and zero or more child threads. Each thread may execute up to one DFG at a time.

The parent thread’s DFG may contain SPAWN(D) and WAIT(D) vertices, where D is

the name of some other DFG to be executed within a child thread. Child DFG’s may

not contain SPAWN and WAIT vertices. This limitation is imposed only to constrain the

size of the search space treated by this thesis.

The SPAWN and WAIT vertices provide both synchronization and data transfer in the

multi-threaded environment.

A SPAWN(D) vertex creates a new task in which the DFG D executes to completion.

The SPAWN(D) vertex does not necessarily create a new thread; instead it creates a

task which is to be executed at sometime in the future by an otherwise idle thread. For
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each arc in the parent DFG whose destination is a SPAWN vertex, the data carried by

that arc are treated as external inputs to DFG D.

A WAIT(D) vertex can begin execution at any time, but will not complete its execution

until the entire DFG D has completed its execution. For each arc in the parent DFG

whose source is a SPAWN vertex, the data carried by that arc are treated as external

outputs of the DFG D.

For each child DFG D, we assume a one-to-one pairing of SPAWN(D) and WAIT(D)

vertices in the parent DFG.

3.2.1.4 Task-parallel DFG Specification

We define a task as any non-empty subset of vertices in a DFG. For a given DFG D,

we define a task set P = {T1 . . . Tn} as a set of tasks of D.

For this work’s purposes, we assume that within a given task set P , all tasks are pairwise

disjoint. That is, ∀i 6= j, Ti∩Tj = ∅.
1 One example of a task set may be seen in Figure 5a

(page 88). In that figure, the DFG has eleven vertices, and the dashed regions col-

lectively indicate a task set containing six tasks: {{randomize1, quicksort2},

{randomize3, quicksort4}, {randomize6, quicksort7}, {quicksort9},

{mergesort5, mergesort10}, {mergesort11}}.

Let D be a DFG, and let P be a task set of D. As described below (Section 3.3),

the translation from (D,P ) to a system-native executable program is a deterministic

function of only D and P . This present work therefore considers the pair (D,P ) to fully

specify a task-parallel program in its optimization problems.

1To accommodate a machine-learning process in which each task is independently
evolved, we allow the tasks in P to overlap, and apply an overlap-elimination algorithm
(Algorithm 20) as needed.
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3.2.2 C++ Program Execution Model

For this work, the target is C++ source code, using the Thread Building Blocks library,

compiled and executed on a computer running the Linux operating system.

Each DFG (the parent and each child-task DFG) is represented as a C++ function.

Each input arc for a DFG is represented by an input parameter to the function, and

each output arc is represented by an output parameter to the function.

Each vertex in a DFG is translated to a pre-defined group of one or more C++ state-

ments. The C++ renditions of a DFG’s vertices are ordered within the C++ function

in a manner consistent with some topological sort of the DFG.

The C++ program has a predefined main function, which calls the C++ function repre-

senting the top-level DFG. The top-level DFG uses Thread Building Block library calls

to spawn each child DFG’s function as a parallel task, and to later block on that task

until it completes.

3.3 Translation Chain: From Multiple Convex Sets to Task-Parallel Exe-
cutables

Translating the pair (D,P = {T1, T2, . . . , Tn}) into a measured average running time

involves several steps, described in detail below.

1. Translate the pair (D,P = {T1, T2, . . . , Tn}) into an equivalent collection of

DFG’s, {Dparent, Dchild 1, Dchild 2, . . . , Dchild m}, with m ≤ n. (See Subsec-

tion 3.3.1.)

2. Translate the DFG’s {Dparent, Dchild 1, Dchild 2, . . . , Dchild m} into C++ source

code, and use a system-supplied C++ compiler to create an executable program.

(See Subsection 3.3.2.)

3. The executable program is repeatedly run a fixed number of times to obtain an
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average running time. (See Subsection 3.3.3.)

We show in Subsection 3.3.1 that certain limitations exist regarding which task sets can

be translated into DFG sets. The existence of these limitations provides the structure of

the search space over which the optimization problems of interest (Sections 3.4 and 3.5)

search.

3.3.1 From Task-set to DFG Set

The approach studied in this thesis to translate a pair (D,P = {T1, T2, . . . , Tn}) into an

equivalent collection of DFG’s {Dparent, Dchild 1, Dchild 2, . . . , Dchild m} is given below.

We begin, however, with describing one obvious approach to such translation (Subsec-

tion 3.3.1.1), and examine the problems to which that approach leads (Subsections 3.3.1.2

and 3.3.1.3). Those issues motivate a corrected translation algorithm, described in Sub-

section 3.3.1.4.

3.3.1.1 Näıve Translation Algorithm

One obvious translation of (D,P = {T1, T2, . . . , Tn}) into an equivalent collection of

DFG’s {Dparent, Dchild 1, Dchild 2, . . . , Dchild m} is as follows:

• Each child task Ti is formed into a new DFG by simply using computing the

subgraph of D induced by Ti (see Section 2.6). That is, Dchild i = D<Ti>.

• The parent DFG Dparent is formed by replacing each task Dchild i with a

pair of vertices SPAWN(Dchild i) and WAIT(Dchild i) , and an implicit arc

(SPAWN(Dchild i), WAIT(Dchild i)) as described in Subsection 3.2.1.3.
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3.3.1.2 Necessity of Child-task Convexity

Consider the DFG and task set pair (D,P = {T1, T2, . . . , Tn}). If using the näıve

translation technique described above, every task Ti must be a convex set (see Section 2.9)

of the D. The reason is as follows.

Recall that the execution of a DFG in the task-parallel DFG execution model terminates

if and only if the DFG is acyclic (Subsection 3.2.1.1).

Suppose Di
parent is the graph which results from replacing, in D, Vi with the vertices

SPAWN(Ti) and WAIT(Ti) . Because D is a DFG, it is by definition acyclic. However,

Di
parent will contain a cycle if and only if Ti is not a convex set of D, for reasons explained

below. If Di
parent contains a cycle, it cannot be executed to completion in our execution

model. We therefore require that every task Ti is a convex set of D.

Ti being a concave set of D implies convexity in Di
parent as follows. By the definition of

convex sets, Ti is concave if and only if there exists at least one vertex v /∈ Ti such that

D contains both a (Ti, v) path and a (v,Ti) path.

Now consider Di
parent. Because v /∈ Ti, v resides in Di

parent rather than in some child-task

DFG. However, either directly or indirectly, Ti requires the output of v as an input to

the DFG for the child task Ti. Therefore Di
parent contains a (v, SPAWN(Dchild i)) path.

However, due to the concavity of Ti, D also contains a (Ti, v) path. That is, either

directly or indirectly, v requires the output of Ti as an input to v. Therefore Di
parent

contains a (WAIT(Dchild i), v) path.

Finally, recall that Di
parent contains an implicit arc (SPAWN(Dchild i), WAIT(Dchild i)), to

express the fact that SPAWN(Ti) must complete before WAIT(Ti) .

It follows then that Di
parent contains a cyclic path of the form

[v, . . . , SPAWN(Dchild i), WAIT(Dchild i), . . . , v].
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3.3.1.3 Insufficiency of Child-task Convexity with Multiple-Task Sets

Consider again the DFG and task-set pair (D,P = {T1, T2, . . . , Tn}).

When P contains precisely one task (i.e., n = 1), and T1 is a convex set of D, the näıve

translation algorithm described above (Subsection 3.3.1.1) always yields a parent DFG

Dparent which is a convex set of D.

However, when n > 1, there are some DFG’s D and task sets P such that the näıve

algorithm yields a parent graph Dparent contain a cycle. This is possible even when

every task in P is itself a convex set of D. An example of this is shown in Figure 2 on

page 31.

This issue arises because, while all the tasks in P are convex sets within the original

DFG D, they are not necessarily convex sets within the DFG’s formed as the individual

tasks within P are successively replaced with SPAWN and WAIT vertices.

3.3.1.4 Corrected Translation Algorithm

Here we consider improvements to the näıve translation algorithm (Subsection 3.3.1.1)

such that the problem of induced cycles described above (Subsection 3.3.1.3) is not a

problem. The corrected algorithm is given in Algorithm 1 (page 32). The algorithm’s

correction comes from the calls on lines 1 and 2 of the functions eliminate overlap and

eliminate cycle induction. See Appendix E for a discussion of how those functions

ensure that top-level DFG produced by Algorithm 1 is acyclic.

3.3.2 From DFG Set to Executable Program

In this thesis’ research, a family of dataflow graphs

{Dparent, Dchild 1, Dchild 2, . . . , Dchild m} is is translated into a multi-threaded

imperative computer program. This work produces a C++11 code, using the Thread

Building Blocks library to provide the multi-threading functionality.
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(a) The original DFG
D.
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v2

v3

v4

(b) D with the task
{v1, v4} delineated.
Note that {v1, v4} is
a convex set of D.

v1

v2

v3

v4

(c) D with the
task {v2, v3} de-
lineated. Note that
{v2, v3} is a convex
set of D, and that
{v1, v4}∩{v2, v3} =
∅.

(v1,v2)

(v3,v4) v3

v2

SPAWN(v1v4)

WAIT(v1v4)

(d) The DFG D1
parent, resulting

from the contraction (see Sec-
tion 2.5) of task {v1, v4} in D.
The task {v2, v3} has not yet
been contracted. Note that task
{v2, v3} is a convex set of D,
but is not a convex set ofD1

parent.
The arc (v3, SPAWN(v1v4)) is
present because the output of v3
is a required input to v4. The
arc (WAIT(v1v4), v2) is present
because the output of v1 is a re-
quired input to v2.

(v1,v2)

(v3,v4)

SPAWN(v1v4)

WAIT(v2v3)

SPAWN(v2v3)

WAIT(v1v4)

(e) The graphD2
parent, resulting from the con-

traction of task {v2, v3} in D1
parent. D

2
parent

contains a cycle, and is therefore not a DFG.

Figure 2: Example of how the näıve transformation (Subsection 3.3.1.1) can create a
cycle in the parent DFG, even when the constituent tasks are mutually disjoint and are
all convex sets of the original DFG D.
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Algorithm 1 Corrected Task-Set to DFG-Set Translation

Function task set to DFG set corrected : (D, P ) → S
Require:

(R1) D = (V, A) is a DAG.

(R2) P = {T1 . . . Tn}

(R3) Each Ti ∈ P is a convex set of D
Ensure:

(E1) R = {Dparent, Dchild 1 . . . Dchild m}

(E2) Each graph Di ∈ R is a DFG.

(E3) R is functionally equivalent to D.

1: P ′ ← call eliminate overlap(D,P ) (Algorithm 20)
2: P ′′ ← call eliminate cycle induction(D,P ′ ) (Algorithm 21)
3: Dparent ← clone of D
4: R← ∅
5: for all i ∈ [1, n] do
6: if T ′′

i 6= ∅ then
7: Dchild i ← Dparent<T

′′
i >

8: R← R ∪ {Dchildi}
9: Add vertex SPAWN(Dchild i) to Dparent.
10: Update each (u, dummy i) arc in Dparent to be (u, SPAWN(Dchild i)).
11: Update each (dummy i, v) arc in Dparent to be (WAIT(Dchild i), v).
12: Delete dummy i from Dparent.
13: end if
14: end for
15: R← R ∪ {Dparent}
16: return R
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For each DFG Di, an equivalent C++ function is defined. Each arc in the DFG which

enters Ti is an input parameter of the C++ function, and each arc leaving Ti is an output

parameter of the C++ function. If a given task Ti = ∅, then the translation proceeds as

though Ti does not exist as a task.

The DFG Dparent is translated into a C++ function which directly executes within

the C++ program’s main thread. SPAWN and WAIT vertices are directly mapped to

equivalent Thread Building Blocks constructs.

Within this present work, each DFG vertex maps to an equivalent block of C++ code.

Some topological sort of the DFG’s vertices is computed, and the C++ renditions of the

DFG vertices appear in the C++ function according to that sort.

DFG’s sometimes have multiple topological sorts, and it is possible that different order-

ings of the translated DFG vertices within the C++ function lead to different running

times for that function. The freedom to choose among different topological sorts could be

a reasonable component of any optimization algorithm which seeks to minimize running

time. The careful selection of this topological sort lies outside the scope of this present

research.

3.3.3 Obtaining Program Running Time

For this research, we assume that a program’s average running time is obtained by

repeatedly executing a program some number of times to obtain an average. More

sophisticated approaches may be used to optimally estimate the program’s mean running-

time, assuming some particular underlying distribution and a desired confidence interval

for the mean. However, these more sophisticated approaches were not employed, as the

focus of this thesis’ research lies elsewhere.
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3.4 Full Task-set Optimization Problem

One approach to parallelization is to identify one or more groups of tasks in a DFG such

that (1) each task can be safely run in parallel with the rest of the program, and (2)

program running time is approximately minimized [2, 3, 24, 25, 30].

We define the full task-set optimization problem as follows.

Let D = (V, A) be a dataflow graph representing part or all of a program’s logic. Let S

be the collection of all valid task sets for D. A task set P = {T1 . . . Tn} is considered a

valid task set of D if and only if it has the following qualities:

1. Every task T ∈ P is a convex set of D. See Subsection 3.3.1.2 for the origin of this

requirement.

2. For any two tasks Ti and Tj in P , with i 6= j, Ti ∩ Tj = ∅. See Subsection 3.2.1.4

for the origin of this requirement.

3. Each of the DFG’s in {D′, fT1 , fT2 , . . . , fTn}, the contraction2 of P in D, is

acyclic. See Subsection 3.3.1.3 for the origin of this requirement.

Note that the corrected translation algorithm (Algorithm 1) accepts inputs in which only

the first of those three requirements, convexity, is guaranteed. The output of Algorithm 1

is a task set which ensures all three of the above-listed requirements are satisfied. By

providing this mapping, we allow a greater variety of solution-generating kernels to be

used for this optimization problem, as we have a strategy for using output from kernels

whose outputs do not necessarily meet the second or third requirements listed above.

Let cost : S → R be a cost function. A typical definition of cost might be the average

running time of the program obtained by translating a task set S into an executable

program and then averaging its running time from several runs, as described in Subsec-

tion 3.3.1.4.

2See Section 2.5
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The task-set optimization problem is to find a task set Pmin ∈ S which approximately

minimizes cost.

The author is unaware of an efficient deterministic solution for this optimization problem.

Solution by full evaluation of the solution space is impractical for non-trivial dataflow

graphs, as the size of the solution space can be at least exponential in the number of

vertices |V| depending on the arc set A. Convex-function optimization techniques are

problematic as well, as we make no assumption that the cost function is globally convex

for any obvious presentation of the search space.

3.5 Single-task Optimization Problem

We define the single-task optimization problem as the special form of the task-set

optimization in which we impose the additional limitation that the solution space is

limited to task sets containing precisely one task. By imposing this constraint on the

solution space of the more general full task-set optimization problem, several other con-

straints in the task-set optimization problem become moot, as they’re trivially satisfied

for task sets containing just one task.

By permitting the task set to contain only a one task, the search space described for

the full task-set optimization problem (Section 3.4) is greatly simplified, leaving only the

first requirement that the task in the task set is a convex set of the DFG.

As with the task-set optimization problem, the single-task optimization problem cannot

be practically solved via full evaluation of the search space for any but the smallest

DFG’s, and our lack of assumptions about the structure of the cost function prevents

the use of optimization algorithms which assume a globally convex cost function.
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3.6 Extending Single-task to Full Task-set Optimization

The research presented in this thesis was motivated by the full task-parallelization prob-

lem (Section 3.4), and yet the research focuses on a significantly restricted form of the

problem (Section 3.5). We demonstrate here that an algorithm which solves the restricted

optimization problem does in fact help to solve the full optimization problem.

Algorithm 3 is a per-iteration-efficient stochastic optimization algorithm for the single-

task optimization problem. Consider a variation of Algorithm 3, which we’ll call Z. Each

iteration of Z yields some convex set of the specified DFG, but may also emit the empty

set.

From this we may construct a stochastic algorithm which seeks to solve the full task-set

optimization problem. A as sketch of which is given by Algorithm 2. It works as follows.

The algorithm Z evolves each convex set, but can also yield the empty set. Any empty

sets which do occur are eliminated, in line 8 of the algorithm, from the current candidate-

solution task set P . In this manner Algorithm 2 potentially searches task sets containing

anywhere between zero and |V| tasks. The capacity to examine task sets of any size

between 1 and |V| is clearly a necessity for any algorithm which seeks to solve the full

task-set optimization problem.

This thesis does not attempt to show that Algorithm 2 is constructed in a manner that,

given enough iterations, has a non-zero probability of searching the entire search space

of all valid task sets.

Algorithm 2 is presented merely to demonstrate that Algorithm 3 is a step toward solving

the full task-set optimization problem, in that it can be a building block of algorithms

such as Algorithm 2 which may in fact solve the full task-set optimization problem.
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Algorithm 2 Algorithm which Solves the Full Task-Set Optimization Problem

Function optimize full task set : (D, P ) → Pbest

Require:
(R1) D = (V, A) is a DAG.

(R2) max iter is the maximum number of iterations to perform.

(R3) Z is a single-task-set optimization algorithm like that presented in
Algorithm 3. Z is also permitted to return the empty set, which is
by definition not a convex set.

Ensure:
(E1) Pbest is the fastest-performing task set discovered in max iter

iterations.

1: Instantiate |V| copies of the algorithm Z. Each algorithm instance Zi evolves the
task (or empty set) Ti, for i ∈ [1, |V|].

2: time best←∞
3: for iter = 1, 2, . . . ,max iter do
4: for all i ∈ [1, |V|] do
5: Ti ← set yielded by one iteration of Zi

6: end for
7: P ← [T1, T2, . . . , T|V|]
8: Delete from P any members which are the empty set.
9: S ← call task set to DFG set corrected(D,P ) (Algorithm 1)
10: Translate S to equivalent C++ code and compile it to a native executable, E.
11: time← average running time from 3 executions of E.
12: if time < time best then
13: Pbest ← P
14: end if
15: end for
16: return Pbest
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CHAPTER 4

Topological Sort Theory

4.1 Introduction

Let D = (V, A) be a directed graph, and let ~Q be a total ordering of the vertices in V.

Then ~Q is a topological sort of D if and only if for every ( ~QJiK, ~QJjK) ∈ A, i < j. 1

Every directed acyclic graph has at least one topological sort of its vertices [1,

Prop. 2.1.3]. As shown in [1, Thm. 2.1.4] and elsewhere, a topological sort for a DAG

D = (V, A) may be generated in time O(|V|+ |A|).

Some directed graphs have multiple topological sorts. For example, consider the di-

rected graph D = (V = {a, b, c}, A = {(a, c)}). Any total ordering of V in which a

appears before c is a topological sort of D. The total orderings [a, b, c] and [a, c, b] are

topological, but [c, a, b] is not.

4.2 Results

Theorem 4.2.1. Let D = (V, A) be a DAG, and let ~Q be any topological sort of D. Let

~X be any contiguous subsequence of ~Q, so that the structure of ~Q = [. . . , ~X, . . .]. Then

X , the set of vertices comprising ~X, is a convex set of D. 2

Proof. Suppose for contradiction that ~X is a contiguous subsequence of ~Q, but X is not

a convex set of D.

Because X is not convex, D must contain at least one C-path of X . Let ~C be such

a C-path. By the definition of C-path, ~CJ1K and ~CJ | ~C| K are members of X , and all

1Based on the definition given in [1, Prop. 2.1.2]. The authors of [1] recommend the
term acyclic order for this concept.

2A similar conclusion may be recorded in [3, p. 57], however the author’s wording
makes this uncertain.
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internal vertices of ~C are not members of C. Note that every C-path must have at least

three elements.

By the definition of a path of D, each adjacent pair of vertices in ~C is an arc in A. That

is, ( ~CJ1K, ~CJ2K) ∈ A, ( ~CJ2K, ~CJ3K) ∈ A, . . ., ( ~CJ|C| − 1K, ~CJ | ~C| K) ∈ A.

From the definition of topological sorts, (u, v) ∈ A implies that every topological sort of

D must have the structure [. . . , u, . . . , v, . . .]. Applying this to ~Q and ~C, it follows

that the structure of ~Q is:

~Q = [. . . , ~CJ1K, . . . , ~CJ2K, . . . , ~CJ | ~C| K, . . .]

Recall that ~CJ2K /∈ X and ~CJ1K, ~CJ | ~C| K ∈ X . It follows then that ~X is not a contiguous

subsequence of ~Q, violating our assumption to the contrary.

Theorem 4.2.2. Let D = (V, A) be a DAG, and let X by any convex set of D. Then

there exists a total ordering ~X of X , such that ~Q = [. . . , ~X, . . .] is a topological sort of

D.

Proof. The existence of Algorithm 9 (see Appendix B.4) demonstrates that this is true.

Theorem 4.2.3. Let D = (V, A) be a DAG, and let X by any convex set of D. Let

~T1 = [ ~W, ~X1, ~Y ] be any topological sort of D such that ~X1 is a total ordering of X .

Then for any topological sort ~X2 of D<X>, ~T2 = [ ~W, ~X2, ~Y ] is a topological sort of D.

Proof. Suppose for contradiction that ~T2 were not a topological sort of D. Then there

must be some vertices u, v ∈ V such that u appears before v in ~T2, but (v, u) ∈ A.

We now consider where u and v might reside within ~T2. Because we assume that u

precedes v in ~T2, we have six possible cases. We show that each of these six cases yields

a contradiction.

Case 1: u ∈ W, v ∈ W:
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Case 1 implies that u precedes v in ~Y . Therefore no total ordering of D containing ~Y

could be a topological sort of D. This violates our assumption that ~T1 is a topological

sort of D.

Case 2: u ∈ W, v ∈ X :

Like ~T2, ~T1 has the structure [ ~W, ~X, . . .]. Therefore we have u preceding v not only in

~T2, but also in ~T1. This violates our assumption that ~T1 is a topological sort of D.

Case 3: u ∈ W, v ∈ Y:

The same logic applies here as for Case 2 above.

Case 4: u ∈ X , v ∈ X :

By the definition of D<X>, every (X ,X ) arc in D is also an arc in D<X>.

By our original assumptions the arc (v, u) is an arc in D. By Case 4’s assumption, u

and v are both members of X . Therefore the arc (v, u) is also an arc in D<X>.

However, if (v, u) is an arc in D<X>, and u precedes v in ~X2, it cannot be true that ~X2

is a topological sort of D<X>. This violates our assumption to the contrary.

Case 5: u ∈ X , v ∈ Y:

The same logic applies here as for Case 2 above.

Case 6: u ∈ Y, v ∈ Y:

The same logic applies here as for Case 1 above.

Lemma 4.2.4. Let D = (V, A) be a DAG, let ∅ ⊂ T ⊆ V, let ~S be any topological sort

of D, and let i and j be any two integers with 1 ≤ i < j ≤ |V|. Then the vertex sequence

~T = ~SJi . . . jK is a topological sort of the induced subgraph D<T>.

Proof. Suppose for contradiction that ~T were not a topological sort of D<T >. Then
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there would be two vertices u, v ∈ T such that ~T = [. . . , u, . . . , v, . . .] and (v, u) is an

arc in D<T>.

~T is a subsequence of ~S. Therefore because u precedes v in ~T , u precedes v in ~S.

Similarly, every arc in D<T> is also an arc in D. Therefore we have (v, u) ∈ A.

Because u precedes v in ~S, and (v, u) ∈ A, ~S is not a topological sort of D. This

contradicts our assumption to the contrary.

Theorem 4.2.5. Let D = (V, A) be a DAG, and let X by any convex set of D. Let

v ∈ V \ X be any vertex such that X ∪ {v} is also a convex set of D. Let ~X be any

topological sort of D<X>. Then there exists a topological sort of D having either the

form ~T = [. . . v, ~X . . .] or ~T = [. . . ~X, v . . .].

Proof. Both of the induced subgraphs D<X >= (X , AX ) and D<X ∪ {v}>= (X ∪

{v}, AX∪{v}) only have a subset of the arcs in D, and cannot contain cycles. Therefore

both D<X> and D<X ∪ {v}> are DAG’s.

Clearly from the definition of induced subgraphs (Section 2.6) we have AX ⊆ AX∪{v}.

Any arc present in D<X ∪ {v}> but not D<X> must have the form (v,X ) or (X , v).

It is impossible that D<X ∪ {v}> has both (v,X ) arcs and (X , v). If both kinds of arcs

were present in D<X ∪ {v}>, there would exist a vertex v ∈ P̂ (X ) ∩ Ŝ(X ). This would

be a contradiction, as it would indicate that X was not in fact convex (Theorem 5.3.3).

We therefore have three possibilities for the structure of the arcs found in AX∪{v} but

not in AX . For each of the three cases we demonstrate how to construct a topological

sort ~R of D<X ∪ {v}> such that v appears as either the first or last element of the ~R.

After showing this for each of the three cases below, we proceed provide the rest of the

proof.

Case 1: AX = AX∪{v}:
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Every DAG has at least one topological sort [1, Prop. 2.1.3]. Let ~Q be any topological

sort of D<X>, and let ~R = [v, ~Q].

~R is a topological sort of D<X ∪ {v}> if and only if ~R is a total ordering of X ∪ {v},

and for each arc (p, q) ∈ AX∪{v}, p appears before q in ~R.

~R is clearly a total ordering of X ∪ {v}, because its structure is ~R = [v, ~Q] and ~Q is a

total ordering of X .

For every (u, v) arc of the form (X ,X ), u appears before v in ~Q. Because ~R preserves

the relative ordering of each arc in ~Q, we have that the ordering of ~R is consistent with

every arc of the form (X ,X ).

In Case 1 we have AX = AX∪{v}, and therefore we’ve established that the ordering ~R

is consistent with every arc in AX∪{v}. Therefore ~R = [v, ~Q] is a topological sort of

D<X ∪ {v}> for Case 1.

Note that in Case 1, placing v anywhere in within ~R would have preserved ~R’s status

as a topological sort of D<X ∪ {v}>. However our overall goal is to show that we can

always place v either immediately before or after X in some topological sort of D, and

so we place it at the beginning of ~R.

Case 2: AX∪{v} \ AX is a set of arcs of the form (v,X ):

The reasoning for Case 2 is essentially the same as for Case 1, except that there are

additional arc in AX∪{v} that must be respected in the ordering of ~R.

These additional arcs are all of the form (v,V), and are clearly respected by the order

~R = [v, ~Q]. Therefore ~R = [v, ~Q] is a topological sort of D<X ∪ {v}> for Case 2.

Case 3: AX∪{v} \ AX is a set of arcs of the form (X , v):

The reasoning for Case 3 is similar to that of Case 2, except the additional arcs to be

respected are all of the form (X , v), not (v,X ).
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These additional arcs are clearly satisfied by the ordering ~R = [ ~Q, v]. Therefore ~R =

[ ~Q, v] is a topological sort of D<X ∪ {v}> for Case 3.

We now complete our proof. Because X ∪ {v} is a convex set of D, there exists some

topological sort ~S in which the vertices X ∪ {v} appear as a contiguous subsequence

(Theorem 4.2.2). We therefore have ~S = ~E ~F ~G, where ~F is some ordering of X ∪ {v}.

From Lemma 4.2.4, we have that ~F is a topological sort of D<X ∪ {v}>.

We now have that both ~F and ~R are topological sorts ofD<X∪{v}>, and ~S = [ ~E, ~F , ~G]

is a topological sort of D. Applying Theorem 4.2.3 it follows that ~T = [ ~E, ~R, ~G] is also

a topological sort of D. Furthermore, ~R has either the structure [v, ~X] or [ ~X, v].

Theorem 4.2.6. Let D = (V, A) be a DAG, and let X ⊂ V by any convex set of D.

Then for every 1 ≤ δ ≤ |V \X |, D contains a convex superset of X having order |X |+ δ.

Proof. The existence of Algorithm 15 (see Appendix C.6) proves this.

Theorem 4.2.7. Let D = (V, A) be a DAG, and let X ⊂ V by any convex set of D, with

|X | > 1. Let 1 ≤ δ < |X |. Then D contains a convex subset of X having order |X | − δ.

Proof. The existence of Algorithm 17 (see Appendix C.8) proves this.
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CHAPTER 5

Predecessor and Successor Theory

This section develops a number of results regarding predecessor and successor sets, and

their relationships to convex sets.

Let D = (V, A) be a DAG, and let X be any set with ∅ ⊂ X ⊆ V. The predecessor set

P̂ (X ) is the set of all vertices q ∈ V such that D contains a (q,X )-path. Similarly, the

successor set Ŝ(X ) is the set of all vertices q ∈ V such that D contains a (X , q)-path.

We define P̂ (∅) = Ŝ(∅) = ∅.

P̂ and Ŝ are useful concepts because they can be used to efficiently describe which

vertices lie on paths contributing to a set’s concavity (i.e., C-paths of that set), and

provide an indication of which vertices must be added to a concave vertex set in order

to achieve convexity (see Theorem 5.3.4).

P̂ and Ŝ are closely related to the notion of a directed graph’s transitive closure. A

vertex x’s in-neighbors in TC(D) are precisely x’s predecessor set in D. Similarly, a x’s

out-neighbors in TC(D) are x’s successor set in D.

5.1 Relationship between P̂ /Ŝ and N⊖/N⊕

Here we briefly discuss the relationship between P̂ /Ŝ and N⊖/N⊕. N⊖(X ) can be

calculated using P̂ and Ŝ:

N⊖(X ) = {v | ((v,X ) ∈ A) ∧ (v /∈ X ) ∧ (Ŝ(v) ∩ P̂ (X ) ⊂ X )} (1)

As sketch for validity of Equation (1) is as follows. The terms

((v,X ) ∈ A) ∧ (v /∈ X )
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limit N⊖(X ) to only those vertices which are in-neighbors (strictly direct or otherise) of

X . For an in-neighbor of X, vertex v, to be a strictly direct in-neighbor, there must not

exist any path [v, . . . , u, . . . , X ] in D, with u /∈ X . Any such vertex u is a member

of (Ŝ(v) ∩ P̂ (X )) but not a member of X . This gives rise to the final clause 1 in our

formula:

(Ŝ(v) ∩ P̂ (X ) ⊂ X )

By similar reasoning we may obtain:

N⊕(X ) = {v | ((X , v) ∈ A) ∧ (v /∈ X ) ∧ (P̂ (v) ∩ Ŝ(X ) ⊂ X )} (2)

5.2 Basic P̂/Ŝ and N⊖/N⊕ Results

In this section we present a number of basic results pertaining to P̂ and Ŝ.

Lemma 5.2.1. Let D = (V, A) by a DAG, and let X be any set with ∅ ⊂ X ⊆ V. If X

is a convex set of D, then (P̂ (X ) ∩ Ŝ(X )) ⊆ X .

Proof. Proof by contradiction. Suppose D contains no C-path of X , but

¬((P̂ (X ) ∩ Ŝ(X )) ⊆ X ). By the second premise, there must exist a vertex x such that

x ∈ (P̂ (X ) ∩ Ŝ(X )) and x 6∈ X . We’ll show that this allows us to construct a C-path in

X , thus contradicting our first premise.

Let x be an arbitrary vertex with x ∈ (P̂ (X ) ∩ Ŝ(X )) and x 6∈ X . Because x ∈ Ŝ(X ),

there exists a path in in D of the form [s1, A, x], with s1 ∈ X and with A being a

subpath of zero or more vertices not in X . Similarly, because x ∈ P̂ (X ), there exists a

path in in D of the form [x, B, s2], with s2 ∈ X and with B being a subpath of zero

or more vertices not in X . Therefore D contains a path of the form [s1, A, x, B, s2],

which is by definition a C-path in X .

1Note that in the clause (Ŝ(v)∩ P̂ (X ) ⊂ X ), we could equally well have used ⊆ rather
than ⊂, because it is always the true in any DAG that P̂ (X ) 6= X . I.e., (P̂ (X ) ⊂ X )↔
(P̂ (X ) ⊆ X ).
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Lemma 5.2.2. Let D = (V, A) be a DAG, let ∅ ⊂ X ⊆ V, and let ∅ ⊂ Y ⊆ V. Then

P̂ (X ∪ Y) = P̂ (X ) ∪ P̂ (Y).

Proof. The proof flows directly from the definition of P̂ . First prove that P̂ (X ∪ Y) ⊆

(P̂ (X ) ∪ P̂ (Y)). Suppose for contradiction that there exists a vertex v ∈ P̂ (X ∪ Y), but

v /∈ P̂ (X ) and v /∈ P̂ (Y). By the first premise, there must be a directed path in D that

passes through v and terminates at some vertex in X and/orY. But this contradicts the

second premise that v /∈ P̂ (X ) and v /∈ P̂ (Y).

Now prove that (P̂ (X ) ∪ P̂ (Y)) ⊆ P̂ (X ∪ Y), again by contradiction. Suppose there

exists a vertex v ∈ (P̂ (X ) ∪ P̂ (Y)), but v /∈ P̂ (X ∪ Y). By the first premise, v must lie

on some directed path in D that terminates in either X orY. But the existence of such

a path contradicts the second premise.

Lemma 5.2.3. Let D = (V, A) be a DAG, let ∅ ⊂ X ⊆ V, and let ∅ ⊂ Y ⊆ V. Then

Ŝ(X ∪ Y) = (Ŝ(X ) ∪ Ŝ(Y)).

Proof. This proof is identical in structure to the proof of Lemma 5.2.2.

Although P̂ and Ŝ distribute over union (Lemmas 5.2.2 and 5.2.3), they do not distribute

over intersection. For this reason the following two lemmas are weaker than the previous

two.

Lemma 5.2.4. Let D = (V, A) be a DAG, let ∅ ⊂ X ⊆ V, and let ∅ ⊂ Y ⊆ V. Then

Ŝ(X ∩ Y) ⊆ Ŝ(X ) ∩ Ŝ(Y).

Proof. Suppose for contradiction that there exists a vertex v ∈ Ŝ(X ∩ Y), and yet

v /∈ (Ŝ(X ) ∩ Ŝ(Y)).

From the premise that v ∈ Ŝ(X ∩ Y), there must be a vertex u ∈ (X ∩ Y) such that

~Q = [u, . . . , v] is a path in D. Because ~Q originates at a vertex in X , v ∈ Ŝ(X ). And
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because ~Q also originates at a vertex in Y, v ∈ Ŝ(Y). Therefore v ∈ (Ŝ(X ) ∩ Ŝ(Y)),

which contradicts the second premise, v /∈ (Ŝ(X ) ∩ Ŝ(Y)).

Lemma 5.2.5. Let D = (V, A) be a DAG, and let ∅ ⊆ X ⊆ V. Then P̂ (P̂ (X )) ⊆ P̂ (X ).

Proof. By the definition of P̂ , every vertex e ∈ P̂ (P̂ (X )) lies on a path of the form

~Q = [. . . , e, . . . , f ], with f ∈ P̂ (X ).

Also by the definition of P̂ , every vertex f ∈ P̂ (X ) lies on a path of the form ~R =

[. . . , f, . . . , x], with x ∈ X .

Therefore, for every e ∈ P̂ (P̂ (X )), there exists a path in D of the form ~S =

[. . . , e, . . . , f, . . . , x], with f ∈ P̂ (X ) and x ∈ X . Therefore e is also a non-

terminal vertex of some path (~S) terminating in X , and thus e ∈ P̂ (X ). Because every

e ∈ P̂ (P̂ (X )) is also a member of P̂ (X ), we have P̂ (P̂ (X )) ⊆ P̂ (X ).

Lemma 5.2.6. Let D = (V, A) be a DAG, and let ∅ ⊆ X ⊆ V. Then Ŝ(Ŝ(X )) ⊆ Ŝ(X ).

Proof. This proof is similar in structure to the proof for Lemma 5.2.5.

Lemma 5.2.7. Let D = (V, A) be a DAG, and let ∅ ⊂ X ⊆ Y ⊆ V. Then Ŝ(X ) ⊆ Ŝ(Y).

Proof. This proof has the same structure as that for Lemma 5.2.10.

Lemma 5.2.8. Let D = (V, A) be a DAG, let ∅ ⊂ X ⊆ V, and let X be a convex set of

D. Then P̂ (X ∪ (P̂ (X ) ∩ Ŝ(X ))) = P̂ (X ).

Proof. We derive the right-hand side of the equation from the left-hand side, as follows.

First distribute using Lemma 5.2.2:

P̂ (X ∪ (P̂ (X ) ∩ Ŝ(X ))

= P̂ (X ) ∪ P̂ (P̂ (X ) ∩ Ŝ(X ))

47



Using Lemma 5.2.1:

= P̂ (X ) ∪ P̂ (Y),withY ⊆ X

By Lemma 5.2.10, if Y ⊆ X , then P̂ (Y) ⊆ P̂ (X ). This gives us:

= P̂ (X ) ∪ Z,withZ ⊆ P̂ (X )

which trivially reduces to:

= P̂ (X )

Lemma 5.2.9. Let D = (V, A) be a DAG, let ∅ ⊂ X ⊆ V, and let X be a convex set of

D. Then Ŝ(X ∪ (P̂ (X ) ∩ Ŝ(X ))) = Ŝ(X ).

Proof. This proof has the same structure as the proof of Lemma 5.2.8.

Lemma 5.2.10. Let D = (V, A) be a DAG, and let ∅ ⊂ X ⊆ Y ⊆ V. Then P̂ (X ) ⊆

P̂ (Y).

Proof. Because X ⊆ Y, every path ending in X is also a path ending in Y. Therefore the

non-terminal vertices of paths ending X constitute a subset of the non-terminal vertices

of paths ending in Y.

Lemma 5.2.11. Let D = (V, A) by a DAG, and let X be any set with ∅ ⊂ X ⊆ V. If

(P̂ (X ) ∩ Ŝ(X )) ⊆ X , then X is a convex set of D.

Proof. Proof by contradiction. Suppose that (P̂ (X ) ∩ Ŝ(X )) ⊆ X , but D does contain

a path ~Q which is a C-path of X . Let x be an arbitrary internal vertex of ~Q. From

Lemma 5.3.1, x ∈ ((P̂ (X )∩ Ŝ(X )). Because of our premise that (P̂ (X )∩ Ŝ(X )) ⊆ X , we

have x ∈ X . However, the definition of a C-path of X indicates that each internal vertex

is not in X . Because x cannot be both in X and not in X , we have a contradiction.
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Lemma 5.2.12. Let D = (V, A) be a DAG, and let ∅ ⊆ X ⊂ V be a convex set of D.

Then N⊖(X ) ⊆ P̂ (X ) \ Ŝ(X ).

Proof. N⊖(X ) ⊆ P̂ (X ) is trivially true, because every vertex that has an strictly direct

path to X also has a path to X .

From Lemma 5.2.1, we have that a vertex v which is external to a convex set X cannot

be in both P̂ (X ) and Ŝ(X ).

Lemma 5.2.13. Let D = (V, A) be a DAG, and let ∅ ⊆ X ⊂ V be a convex set of D.

Then N⊕(X ) ⊆ Ŝ(X ) \ P̂ (X ).

Proof. This proof is similar to that of Lemma 5.2.12.

5.3 Obtaining Convexity via Internal Path Closure

Let D = (V, A) be a DAG, and let X be an arbitrary non-empty subset of V. We define

the internal path closure of X to be the set X ∪ (P̂ (X ) ∩ Ŝ(X )) 2.

Theorem 5.3.3 and Theorem 5.3.4 below demonstrate that all internal path closure sets

are convex.

Furthermore, Lemma 5.2.1 shows that if a given set is already convex, its internal path

closure is identical to the original set. Therefore stochastic algorithms may indiscrimi-

nately apply the internal path closure formula to each candidate solution, without the

risk of pointlessly modifying an already valid solution.

Finally, Corollary 5.3.5 establishes that the internal path closure of some set X is the

smallest convex set containing X . This result is useful for search algorithms that establish

2This approach is used in [3, Fig. 4-7]. However, that work does not appear to offer
proof for the validity of the approach.
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convexity by adding vertices to a concave set, but strive to modify the original set as

little as possible.

Lemma 5.3.1. Let D = (V, A) by a DAG, let X be any set with ∅ ⊂ X ⊆ V, and let ~Q

be any C-path of X . Then every internal vertex of ~Q is a member of (P̂ (X ) ∩ Ŝ(X )).

Proof. By the definition of C-path of X , ~Q’s initial and terminal vertices are in X .

Because ~Q’s initial vertex is in X , there exists a directed path from X to each of ~Q’s

internal vertices. Therefore each of ~Q’s internal vertices is a member of Ŝ(X ). Similarly,

because ~Q’s terminal vertex is in X , there exists a directed path from each internal vertex

of ~Q to X . Therefore each of ~Q’s internal vertices is a member of P̂ (X ).

Theorem 5.3.2. Let D = (V, A) be a DAG, let ∅ ⊆ X ⊂ V be a convex set of D, and

let v ∈ (V \X ), with v /∈ P̂ (X ) and v /∈ Ŝ(X ). Then the set Y = X ∪ {v} is a convex set

of D.

Proof. Suppose for contradiction that Y is not a convex set of D. Then there must be

some C-path of D, ~C = [a, . . . , w, . . . , z], with a, c ∈ Y and w /∈ Y.

Because Y = X ∪ {v}, we consider four possible variations of ~C: a ∈ X or a = v,

and z ∈ X or z = v. We show below that each of the four possible variations leads to a

contradiction. Note that these four cases are not necessarily mutually exclusive, however

the following proofs do not depend their mutual exclusion.

Case 1: a ∈ X , z ∈ X :

Because a ∈ X , and [a, . . . , w] is a path in D, we have w ∈ Ŝ(X ). Similarly, because

z ∈ X , and [w, . . . , z] is a path inD, we have w ∈ P̂ (X )). Therefore w ∈ (P̂ (X)∩Ŝ(X)).

From Lemma 5.2.1, we have (P̂ (X) ∩ Ŝ(X)) ⊆ X . From the transitivity of the subset

relation, this gives us w ∈ X , which violates our assumption to the contrary.

Case 2: a = v, z = v:
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Case 2 implies that [v, . . . , w, . . . , v] is a path in D, which violates the assumption

that D is acyclic.

Case 3: a ∈ X , z = v:

Case 3 implies that [X , . . . , w, . . . , v] is a path in D, which violates our assumption

that v /∈ Ŝ(X).

Case 4: a = v, z ∈ X :

Case 4 implies that [v, . . . , w, . . . , X ] is a path in D, which violates our assumption

that v /∈ P̂ (X).

Theorem 5.3.3. Let D = (V, A) be a DAG, and let ∅ ⊂ X ⊆ V. Then (X is a convex

set of D) ⇐⇒ ((P̂ (X ) ∩ Ŝ(X )) ⊆ X ).

Proof. By the definition of convexity, X is a convex set of D if and only if D contains

no C-path of X . For convenience we’ll use that fact to restate the theorem to be proven:

D contains no C-path of X if and only if ((P̂ (X ) ∩ Ŝ(X )) ⊆ X ).

First, prove that (D contains no C-path of X ) → ((P̂ (X ) ∩ Ŝ(X )) ⊆ X ). This directly

follows from Lemma 5.2.1.

Second, prove that ((P̂ (X ) ∩ Ŝ(X )) ⊆ X )→ (D contains no C-path ofX ). This directly

follows from Lemma 5.2.11.

Theorem 5.3.4. Let D = (V, A) be a DAG, and let X be any set with ∅ ⊂ X ⊆ V, and

let T = P̂ (X ) ∩ Ŝ(X ). Then X ∪ T is a convex set of D.

Proof. Suppose for contradiction that X ∪ T is concave in D. Then there exists in D a

C-path of X ∪T in D. Let ~C = [x, . . . , y, . . . , z] be such a path, with with x, z ∈ X ∪T

and y /∈ X ∪ T .

51



We’ll use case analysis to show that four possible forms exist for ~C, and none of those

forms can exist.

Case 1: x ∈ X , z ∈ X :

Because [x, . . . , y] is a path in D, y ∈ Ŝ(X). Because [. . . , z] is a path in D, y ∈ P̂ (X).

Therefore y ∈ (P̂ (X) ∩ Ŝ(X)), i.e., y ∈ T . This contradicts our assumption that y /∈

X ∪ T .

Case 2: x ∈ X , z ∈ T :

Because [x, . . . , y] is a path in D, y ∈ Ŝ(X).

Because [y, . . . , z] is a path in D, y ∈ P̂ (T ), i.e., y ∈ P̂ (P̂ (X) ∩ Ŝ(X)). Because

y ∈ P̂ (P̂ (X)∩Ŝ(X)), it trivially follows that y ∈ P̂ (P̂ (X)). By Lemma 5.2.5, P̂ (P̂ (X)) ⊆

P̂ (X), and therefore y ∈ P̂ (X).

Having established then that y ∈ Ŝ(X) and y ∈ P̂ (X), it follows that y ∈ (P̂ (X)∩Ŝ(X)),

i.e., y ∈ T . This contradicts our assumption that y /∈ T .

Case 3: x ∈ T , z ∈ X :

This case is false for reasoning similar to that used in Case 2. However, this case’s logic

requires Lemma 5.2.6, not Lemma 5.2.5.

Case 4: x ∈ T , z ∈ T :

Because [x, . . . , y] is a path in D, we have y ∈ Ŝ(T ), i.e., y ∈ Ŝ(P̂ (X)∩ Ŝ(X)). Because

y ∈ Ŝ(P̂ (X) ∩ Ŝ(X)), it’s trivially true that y ∈ Ŝ(Ŝ(X)). By Lemma 5.2.6, we have

Ŝ(Ŝ(X)) ⊆ Ŝ(X), and so y ∈ Ŝ(X).

Similarly, because [y, . . . , z] is a path inD, we have y ∈ P̂ (T ), i.e., y ∈ P̂ (P̂ (X)∩Ŝ(X)).

Because y ∈ P̂ (P̂ (X) ∩ Ŝ(X)), it’s trivially true that y ∈ P̂ (P̂ (X)). By Lemma 5.2.5,

we have P̂ (Ŝ(X)) ⊆ P̂ (X), and so y ∈ P̂ (X).

Having established then that y ∈ Ŝ(X) and y ∈ P̂ (X), it follows that y ∈ (P̂ (X)∩Ŝ(X)),
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i.e., y ∈ T . This contradicts our assumption that y /∈ T .

Corollary 5.3.5. Let D = (V, A) be a DAG, let X be any set with ∅ ⊂ X ⊆ V, and let

Y = X ∪ (P̂ (X ) ∩ Ŝ(X )). Then Y is the uniquely smallest improper superset of X that

is also a convex set of D.

Proof. Suppose for contradiction that there exists another set Z 6= Y that is also a

convex improper superset of X , and yet is no larger than Y. We’ll show that Z cannot

exist.

Because Z 6= Y and |Z| ≤ |Y|, there must be some vertex in v ∈ Y that is not present

in Z.

Because v ∈ Y, and by the definition of Y, we have v ∈ X and/or v ∈ (P̂ (X ) ∩ Ŝ(X )).

We’ll consider those two cases separately, and show that both lead to contradictions.

Suppose for contradiction that v ∈ X . Then v is a vertex in X that is absent from Z.

This contradicts our assumption that Z is an improper superset of X .

Suppose for contradiction the second case: v ∈ (P̂ (X ) ∩ Ŝ(X )). By Lemmas 5.2.10

and 5.2.7, (X ⊆ Z) =⇒ P̂ (X ) ⊆ P̂ (Z) and (X ⊆ Z) =⇒ Ŝ(X ) ⊆ Ŝ(Z). It

follows then that not only is v ∈ (P̂ (X ) ∩ Ŝ(X )), as assumed for this case, but also that

v ∈ (P̂ (Z) ∩ Ŝ(Z)).

Because v ∈ (P̂ (Z) ∩ Ŝ(Z)), and v /∈ Z (by our definition of v), it is not the case that

(P̂ (Z) ∩ Ŝ(Z)) ⊆ Z). According to Theorem 5.3.3, this implies that Z is not a convex

set of D, which contradicts our definition of Z.
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5.4 Modifying Convex Sets with P̂/Ŝ and N⊖/N⊕

In this subsection we develop a theoretical basis for algorithms which seek to grow or

shrink an existing convex set by adding or deleting vertices.

Theorem 5.4.1. Let D = (V, A) be a DAG, let ∅ ⊆ X ⊂ V be a convex set of D and let

v ∈ (V \X ) with v ∈ P̂ (X ). Then X ∪{v} is a convex set of D if and only if v ∈ N⊖(V).

Note: By assumption v /∈ X , and v ∈ P̂ (X ). It follows then from Lemma 5.2.1 that

v /∈ Ŝ(X ).

Informally, this Lemma states the following. Suppose X is a convex set of D, and

v ∈ P̂ (X ) is not in X . Then a necessary and sufficient criterion for the convexity in D

of the set Y = X ∪ {v} is that the only paths from v to X are direct. That is, (v,X ) is

an arc in A, but that indirect path goes from the v to X . A path from v to X is indirect

if and only if it contains one or more intermediate vertices.

Proof. We begin by showing that if an indirect path from v to V exists, then Y is concave.

Suppose without loss of generality that ~P = [v, . . . , w, . . . , X] is a path in D. By the

definition of convexity, a set is a convex set of D if and only if no C-path of that set

exists in D. Then ~P is a C-path of the set Y, and therefore Y is not a convex set of D.

We now show that when the only paths from v to V are direct, Y is convex. We do

this using Lemma 5.2.11, which states that a set Y is a convex set of D if (and only

if) (P̂ (Y) ∩ Ŝ(Y)) ⊆ Y). We proceed by developing the left-hand size of the relation,

(P̂ (Y) ∩ Ŝ(Y)) to obtain a result that is trivially a subset of Y.

We begin with the left-hand-side expression P̂ (Y)∩ Ŝ(Y), and replace Y with its defini-

tion:

P̂ (Y) ∩ Ŝ(Y) = P̂ (X ∪ {v}) ∩ Ŝ(X ∪ {v}) (3)
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Distribute P̂ over union (Lemma 5.2.2):

P̂ (Y) ∩ Ŝ(Y) = (P̂ (X ) ∪ P̂ ({v})) ∩ Ŝ(X ∪ {v})) (4)

Distribute Ŝ over union (Lemma 5.2.3):

P̂ (Y) ∩ Ŝ(Y) = (P̂ (X ) ∪ P̂ ({v})) ∩ (Ŝ(X ) ∪ Ŝ({v})) (5)

Apply the distributive law of sets A∩(B∪C) = (A∩B)∪(A∩C), with A = P̂ (X )∪P̂ ({v}),

B = Ŝ(X ), and C = Ŝ({v}):

P̂ (Y) ∩ Ŝ(Y) = [ (P̂ (X ) ∪ P̂ ({v})) ∩ Ŝ(X ) ] ∪

[ (P̂ (X ) ∪ P̂ ({v})) ∩ Ŝ({v}) ]
(6)

Again apply the distributive law of sets A∩ (B ∪C) = (A∩B)∪ (A∩C) to the left side

of (6), with A = Ŝ(X ), B = P̂ (X ), and C = P̂ ({v}):

P̂ (Y) ∩ Ŝ(Y) = [ [ P̂ (X ) ∩ Ŝ(X ) ] ∪ [ P̂ ({v}) ∩ Ŝ(X ) ] ] ∪

[ [ P̂ (X ) ∪ P̂ ({v}) ] ∩ Ŝ({v}) ]
(7)

Now apply the distributive law of sets A∩ (B ∪C) = (A∩B)∪ (A∩C) to the right side

of (7), with A = Ŝ({v}), B = P̂ (X ), and C = P̂ ({v}):

P̂ (Y) ∩ Ŝ(Y) = [ [ P̂ (X ) ∩ Ŝ(X ) ] ∪ [ P̂ ({v}) ∩ Ŝ(X ) ] ] ∪

[ [ Ŝ({v}) ∩ (P̂ (X )) ] ∪ [ Ŝ({v}) ∩ P̂ ({v}) ] ]
(8)

We now have an expression of the form [A ∪ B] ∪ [C ∪D]. By the associativity rules of

set union, we may eliminate some grouping:

P̂ (Y) ∩ Ŝ(Y) =

(9a) (P̂ (X ) ∩ Ŝ(X )) ∪

(9b) (P̂ ({v}) ∩ Ŝ(X )) ∪

(9c) (Ŝ({v}) ∩ P̂ (X )) ∪

(9d) (Ŝ({v}) ∩ P̂ ({v}))

(9)

We now show that each of the four major expressions (9a) to (9d) in Eq. (9) is, individ-

ually, a subset of Y. When that has been established for each of the four subexpressions,
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we can conclude that the conjunction of those four expressions is itself a subset of Y,

which completes our proof.

Case 9a: P̂ (X ) ∩ Ŝ(X ):

Because X is convex, Lemma 5.2.1 indicates that P̂ (X )∩ Ŝ(X ) ⊆ X . Therefore we have

P̂ (X ) ∩ Ŝ(X ) ⊆ X .

We also have Y = X ∪ {v}, and so X ⊆ Y. Therefore P̂ (X ) ∩ Ŝ(X ) ⊆ Y.

Case 9b: P̂ ({v}) ∩ Ŝ(X ):

This expression must be the empty set. Suppose for contradiction that there exists

a vertex q ∈ P̂ ({v}) ∩ Ŝ(X ). Because q ∈ P̂ ({v}, there exists a path in D of the

form [q, . . . , v]. Because q ∈ Ŝ(X ), there exists a path in D of the form [X , . . . , q].

Combining these paths at q, we have that D contains a path of the form X . . . v. This

implies that v ∈ Ŝ(X ). However, this theorem also has by assumption v ∈ P̂ (X ).

Therefore we have v ∈ (P̂ (X ) ∩ Ŝ(V)), and yet v /∈ X . This implies that v lies on a

C-path of X . This violates our assumption that X is a convex set of D.

Case 9c: Ŝ({v}) ∩ P̂ (X ):

This must be the empty set. Suppose for contradiction that it was not. Then there would

be a vertex q in D such that [v, . . . , q] and [q, . . . , V] are both paths in D. Therefore,

D would contain a path of the form [v, . . . , q, . . . , V], which violates our assumption

that D contains no indirect path from v to V.

Case 9d: Ŝ({v}) ∩ P̂ ({v}):

This must be the empty set. If not, D would contain a path of the form [v . . . v], violating

the assumption that D is acyclic.

Theorem 5.4.2. Let D = (V, A) be a DAG, let ∅ ⊆ X ⊂ V be a convex set of D, and

let v ∈ (V \ X ), with v ∈ Ŝ(X ). Then X ∪ {v} in D if and only if v ∈ N⊕(V).
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Note: By assumption v /∈ X , and v ∈ Ŝ(X ). It follows then from Lemma 5.2.1 that

v /∈ P̂ (X ).

Proof. The proof for this is similar to that of Theorem 5.4.1.

Theorem 5.4.3. Let D = (V, A) be a DAG. let ∅ ⊆ X ⊂ V be a convex set of D. Let

R = V \ (X ∪ P̂ (X ) ∪ Ŝ(X )). 3 Let Y = N⊖(X ) ∪ N⊕(X ) ∪ R) Then the collection of

convex supersets of X having order |X |+ 1 is given precisely by {X ∪ {y}|y ∈ Y}.

Proof. We divide the vertices which might be added to X into several groups, each of

which we consider separately. Note that we limit our consideration to vertices in V \ X ,

because we’re only interested in vertices that are not yet members of X .

We distinguish the vertices in V \ X based on their memberships in P̂ (X ) and in

Ŝ(X ). Note that the vertices in P̂ (X ) ∩ Ŝ(X ) are already members of X , as proven

in Lemma 5.2.1. This leaves us with just three groups of vertices to examine:

Case 1: v ∈ P̂ (X ), v /∈ Ŝ(X ), v /∈ X :

By Theorem 5.4.1, we have that for any vertex w ∈ P̂ (X ) \ Ŝ(X ), X ∪ {w} is a convex

set of D if and only if w ∈ N⊖(X ).

Furthermore, every vertex in N⊖(X ) is covered by Case 1 (Lemma 5.2.12).

It follows then that each vertex w ∈ N⊖(X ) has the quality that X ∪ {w} is a convex

set of D.

Furthermore, we conclude that no other vertex in covered by Case 1 (that is, no other

single vertex in P̂ (X ) \ Ŝ(X )) may be added to X to yield a convex set.

Case 2: v /∈ P̂ (X ), v ∈ Ŝ(X ), v /∈ X :

3The set R is defined only for notational convenience and carries no special meaning.
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By Theorem 5.4.2, we have that for any vertex w ∈ Ŝ(X ) \ P̂ (X ), X ∪ {w} is a convex

set of D if and only if w ∈ N⊕(X ).

Furthermore, every vertex in N⊕(X ) is covered by Case 2 (Lemma 5.2.13).

It follows then that each vertex w ∈ N⊕(X ) has the quality that X ∪ {w} is a convex

set of D.

Furthermore, we conclude that no other vertex in covered by Case 2 (that is, no other

single vertex in Ŝ(X ) \ P̂ (X )) may be added to X to yield a convex set.

Case 3: v /∈ P̂ (X ), v /∈ Ŝ(X ), v /∈ X :

Theorem 5.3.2 indicates that any one vertex w in this group has the quality that X ∪{w}

is a convex set of D.

We have shown that Groups 1, 2, and 3 collectively cover all of the vertices that are

candidates for single-vertex additions to X .

The vertices from Group 1 that may be added to X are precisely the set N⊖(X )

The vertices from Group 2 that may be added to X are precisely the set N⊕(X ).

The vertices from Group 3 that may be added to X are precisely all vertices in Group

3. That is, V \ (X ∪ P̂ (X ) ∪ Ŝ(X )), or R.

Therefore, the vertex set of which any one may be added to X to yield a convex set is

given by N⊖(X ) ∪ N⊕(X ) ∪R.

Corollary 5.4.4. The formula {X ∪ {y} | y ∈ Y} in Theorem 5.4.3 always provides at

least one superset of X .

Proof. Theorem 4.2.6 establishes that any convex set X may always be grown by the
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addition of exactly one vertex, yielding another convex set.

Theorem 5.4.3 identifies {X ∪ {y} | y ∈ Y } as the exact set of such vertices. This set

cannot be empty if at least one such superset of X exists.

Theorem 5.4.5. Let D = (V, A) be a DAG. Let X ⊆ V be a convex set of D, with

|X | ≥ 2. Let Y = X \ (P̂ (X ) ∩ Ŝ(X )). Let Z ⊆ Y. Then X \ Z is a convex set of D.

Note that a result similar to Theorem 5.4.5 is presented in [1, Lemma 17.2.4]:

Let D be an acyclic graph, let X be a convex set of D and let s ∈ X be
a source or sink of D<X>. Then X \ {s} is a convex set of D.

The sources and sinks of D<X > are precisely those vertices in Y. Theorem 5.4.5

strengthens [1, Lemma 17.2.4] by establishing that deleting from X any subset of Y,

rather than just a single vertex s ∈ Y, yields another convex set of D.

Proof. Suppose for contradiction that X \ Z is not a convex set of D. Then D must

contain a C-path of X \ Z, having the structure ~C = [(X \ Z), . . . , w, . . . , (X \ Z)],

with w /∈ (X \ Z).

We consider the three possible regions of V in which w could reside, and show that w’s

presence in each of those regions leads to a contradiction. The three possibilities are

w ∈ V \ X , w ∈ X \ Z, and w ∈ Z.

Case 1: w ∈ V \ X :

Recall that the presumed structure of ~C is

~C = [(X \ Z), . . . , w, . . . , (X \ Z)]

Because (X \ Z) ⊆ X , it is also true that the structure of ~C is

~C = [X , . . . , w, . . . , X ]
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In Case 1, we have w ∈ V \ X , and therefore w /∈ X . Therefore the structure of ~C is

~C = [X , . . . , (w /∈ X ), . . . , X ]. However, such a path is a C-path of X in D. The

existence of such a path in D indicates that X is not a convex set of D, in contradiction

of our assumptions.

Case 2: w ∈ X \ Z:

Case 2 is not possible by the definition of w.

Case 3: w ∈ Z:

Because w ∈ Z, and Z ⊆ Y, we have w ∈ Y. By the definition of Y, no vertex in Y is a

member of P̂ (X ) ∩ Ŝ(X ). Therefore, w /∈ P̂ (X ) ∩ Ŝ(X ).

From Lemma 5.2.7, we have Ŝ(X \Z) ⊆ Ŝ(X ). From Lemma 5.2.10, we have P̂ (X \Z) ⊆

P̂ (X ). Now using the algebra of sets we may conclude that (P̂ (X \ Z) ∩ Ŝ(X \ Z)) ⊆

(P̂ (X ) ∩ Ŝ(X )).

Therefore, because w /∈ P̂ (X ) ∩ Ŝ(X ), we also have w /∈ (P̂ (X \ Z) ∩ Ŝ(X \ Z)).

The structure of ~C is ~C = [(X \ Z), . . . , w, . . . , (X \ Z)]. From that structure it

follows that w ∈ P̂ (X \Z), and w ∈ Ŝ(X \Z), and therefore w ∈ (P̂ (X \Z)∩ Ŝ(X \Z))

This contradicts our determination above that w /∈ (P̂ (X \ Z) ∩ Ŝ(X \ Z)).

Corollary 5.4.6. In Theorem 5.4.5, Y 6= ∅.

Proof. Recall that in Theorem 5.4.5, Y = X \ (P̂ (X ) ∩ Ŝ(X )).

By the assumptions of Theorem 5.4.5 we have that X 6= ∅. Therefore, in order to have

Y = ∅, it must the case that X ⊆ (P̂ (X ) ∩ Ŝ(X )). That is, ∀x ∈ X , (x ∈ P̂ (X ) ∧ x ∈

Ŝ(X )).

However, if every vertex in X is a predecessor of some other vertex in X , then X contains

60



a cycle. This contradicts the assumption of Theorem 5.4.5 thatD, the digraph containing

X , is acyclic.

Theorem 5.4.7. Let D = (V, A) be a DAG. Let ∅ ⊂ X ⊆ V be a convex set of D,

with |X | ≥ 2. Let v ∈ X . Then X \ {v} is a convex set of D if and only if v ∈

X \ (P̂ (X ) ∩ Ŝ(X )).

This theorem complements Theorem 5.4.5, which states that given a convex set X , one

can remove from X any combination of vertices in (X \ (P̂ (X )∩ Ŝ(X ))) to yield another

convex set. However, Theorem 5.4.5 only establishes the sufficiency of that condition.

This present theorem (5.4.7) establishes that when removing just a single vertex v from

X , it is not merely sufficient, but also necessary, that v ∈ X \ (P̂ (X ) ∩ Ŝ(X )) in order

for X \ {v} to be convex. That is, the set X \ (P̂ (X ) ∩ Ŝ(X )) is the precise formula for

which individual vertices may be removed from X to yield a convex subset of X having

order |X | − 1.

Note that one of the this theorem’s assumptions is that |X | > 1. This is because the

empty set is, by definition, not a convex set of D. Therefore removing a single vertex

from X when |X | = 1 would not yield a convex set of D.

Proof. From Theorem 5.4.5 we have that if v ∈ X \ (P̂ (X ) ∩ Ŝ(X )) then V \ {v} is a

convex set of D.

What remains is to show the opposite implication: if X \ {v} is a convex set of D, then

v ∈ X \ (P̂ (X ) ∩ Ŝ(X )).

Suppose for contradiction that X\{v} is a convex set ofD, and yet v /∈ X\(P̂ (X )∩Ŝ(X )).

v /∈ X \ (P̂ (X ) ∩ Ŝ(X )) is satisfied by v /∈ X or v ∈ (P̂ (X ) ∩ Ŝ(X )). However, v ∈ X is

a requirement of the theorem, and so the only remaining possibility is that v ∈ (P̂ (X )∩

Ŝ(X )).
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From v ∈ (P̂ (X ) ∩ Ŝ(X )), it follows that D contains a path of the form ~C =

[X , . . . , v, . . . , X ].

Because D is acyclic, a vertex cannot appear more than once in any path of D. We may

therefore refine the structure of ~C to be ~C = [(X \ {v}), . . . , v, . . . , (X \ {v})].

However, we see from the structure of ~C that it is a C-path of the set (X \{v}). Therefore,

we have that (X \ {v}) is not a convex set of D. This violates our assumption to the

contrary.

Corollary 5.4.8. Let D = (V, A) be a DAG. Let X ⊆ V be a convex set of D, with

|X | ≥ 2. Let Y = X \(P̂ (X )∩Ŝ(X )). Let Z ⊆ Y, with |Z| ≥ 2. Then for δ ≥ 2, there are

some graphs D and convex sets X , such that {X \ Z |Z ⊆ X \ (P̂ (X ) ∩ Ŝ(X )), |Z| = δ}

does not generate all subsets of X that are convex sets of D and that have order |X |− δ.

Theorem 5.4.7 established that when δ = 1, the formula

{X \ Z |Z ⊆ X \ (P̂ (X ) ∩ Ŝ(X )), |Z| = δ}

yields exactly those convex sets of D that are subsets of X , and have order |X | − δ.

This corollary demonstrates that when δ > 1, there are some DAG’s D with particular

convex sets X , such that the formula {X \ Z |Z ⊆ X \ (P̂ (X ) ∩ Ŝ(X )), |Z| = δ} gener-

ates only some of convex sets of D that are subsets of X and have order |X | − δ.

Proof. We prove this with a counterexample.

Let D = (V, A), with V = {a, b, c} and A = {(a, b), (b, c)}. To keep our example small,

let X = V. Let δ = 2.
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From this we have:
P̂ (X ) = P̂ ({a}) ∪ P̂ ({b}) ∪ P̂ ({c})

= ∅ ∪ {a} ∪ {a, b}

= {a, b}

Ŝ(X ) = Ŝ({a}) ∪ Ŝ({b}) ∪ Ŝ({c})

= {b, c} ∪ {c} ∪ ∅

= {b, c}

Y = X \ (P̂ (X ) ∩ Ŝ(X ))

= {a, b, c} \ {b}

= {a, c}

Now consider the collection of subsets generated by the approach under consideration:

{X \ Z |Z ⊆ X \ (P̂ (X ) ∩ Ŝ(X )), |Z| = δ}

Only one value of Z meets all of the generator’s criteria when δ = 2: Z = {a, c}.

Therefore this generator produces only one subset of X : X \Z = {a, b, c}\{a, c} = {b}.

However, by inspection of D and X , we may easily identify other subsets of X that are

convex sets of D, and have order |X | − δ = 1. Those sets are {a} and {c}.

Theorem 5.4.9. et D = (V, A) be a DAG. Let X ⊆ V be a convex set of D, with

|X | ≥ 2. Let Y = X \ (P̂ (X ) ∩ Ŝ(X )). Let Z ⊆ Y. Then X \ Z is a convex set of D.

Proof. Theorem 4.2.7 establishes that any convex set X may always be shrunk by the

deletion of exactly one vertex, yielding another convex set.

Theorem 5.4.7 identifies {X ∪ {y} | y ∈ Y } as the exact set of such vertices. This set

cannot be empty if at least one such subset of X exists.
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CHAPTER 6

Arbitrary Transformation of Convex Sets

In this section we show that given any two convex sets X and Y of the same DAG D, it is

always possible to transform X into Y using a sequence of single-vertex changes, such that

each intermediate set produced is also a convex set of D. We establish this by showing

the existence of an algorithm (Algorithm 19 in Appendix D.2) which performs such a

transformation. This provides the basis for our proof (Theorem 7.5.3 in Subsection 7.5.3)

that the probability of Algorithm 3 searching all convex sets of any DAG approaches 1

as the number of algorithm iterations approaches infinity.

This section is structured as follows. In Section 6.1 we give an overview of the ap-

proach used by Algorithm 19. In Section 6.2 we walk through an example execution of

Algorithm 19 to clarify its approach.

In keeping with the structure of this work, a proof of Algorithm 19’s correctness is

presented alongside the algorithm itself (see Appendix D.2.1).

The focus of this chapter is to demonstrate that particular evolutionary chains always

exist for convex sets. This thesis presents Algorithm 19 solely for the purpose of estab-

lishing that fact. Algorithm 19 is not intended to for use in any actual optimization

system, and for this reason we do not study its asymptotic running time.

6.1 General Approach

The general approach taken by Algorithm 19 is as follows. Variable and parameter names

used below have the meanings given in Algorithm 19 on page 134.

We first identify a sequence S of |X | − 1 single-vertex deletions that transforms X into

a one-vertex convex set {u}.
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Next, we identify a sequence T of |Y| − 1 single-vertex deletions that transforms Y into

a one-vertex convex set {v}. Importantly, the reversal of this sequence T is a sequence

of single-vertex additions which transforms {v} into Y.

From this we obtain the overall transformation sequence of X to Y as follows. We begin

with X . Apply, in order, each of the |X |−1 single-vertex deletions indicated by S, giving

us {u}.

Now replace {u} with {v}. This swap operation is valid because it only changes one

vertex in our evolving set, and every single-vertex set is trivially a convex set.

Finally, grow {v} into Y using the sequence of single-vertex additions indicated by the

reversal of T .

A concrete example of this follows.

6.2 Example of Algorithm 19

Here we step through an instance of evolve between convex sets (Algorithm 19) in

order to provide an intuitive understanding of its operation. As shown in Figure 3, we

use the DAG:

D = ({a . . . h}, {(a, c), (b, d), (c, e), (c, f), (d, f), (e, g), (f, g), (f, g)})

an initial convex set X = {c, e, f, g} and a final convex set Y = {a, c, d}.

On line 1 of evolve between convex sets we invoke the algorithm

evolve convex set to vertex (Algorithm 18) with the arguments D and X .

On line 1 of evolve convex set to vertex we compute some arbitrary topological sort

of D in which X appears as a contiguous subsequence. For this example let that ordering

be ~Q = [a, b, d, c, e, f, g, h].

On line 2 of evolve convex set to vertex we set x low ← 4 and x high← 7.
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On lines 3-6 of evolve convex set to vertex we build the sequence:

[{c, e, f, g}, {e, f, g}, {f, g}, {g}]

which is then returned to evolve between convex sets where it is named Q. Note that

as required, each set in Q is itself a convex set of D. This progression is shown in Figures

3a through 3d.

Line 2 of the algorithm evolve between convex sets again invokes

evolve convex set to vertex, this time with arguments Y and D. For this ex-

ample we assume that this invocation of evolve convex set to vertex returns

the sequence R = [{a, c, d}, {a, d}, {d}]. This is then reversed on line 3 of

evolve between convex sets to give us S = [{d}, {a, d}, {a, c, d}], shown in Figures

3e through 3g.

Finally on line 6 of evolve between convex sets, Q and S are combined into the final

sequence:

T = [{c, e, f, g}, {e, f, g}, {f, g}, {g}, {d}, {a, d}, {a, c, d}]

The progression of modifications made to X is therefore as follows: delete c, delete e,

delete f , replace g with d, add a, add c. Notice that each of these operations makes

only a single-vertex change to the current vertex set, and preserves the convexity of the

set as it evolves.
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Figure 3: Evolution of the convex set X = {c, e, f, g} to the convex set Y = {a, c, d}
using Algorithm 19. The algorithm ensures that each intermediate set (Figure 3b-3f) is
also a convex set of D.
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CHAPTER 7

Stochastic Optimization of a Single Convex Set

In this chapter, we consider in detail the optimization problem of finding a global mini-

mum over all convex sets of a DAG, as motivated by the program parallelization problem

described in Section 3.1.

Section 7.1 formally states the optimization problem. In Section 7.2 we discuss how

simulated annealing may be useful in this kind of optimization algorithm. Section 7.3

discusses options regarding seeding such an optimization algorithm, and Section 7.4

discusses the choice of using choosing predecessor/successor sets versus topological sorts

when evolving convex sets. Finally, Section 7.5 presents an algorithm which optimizes a

single convex set of a DFG.

7.1 Problem Statement

Our optimization problem is as follows. Given a DAG D and a cost function cost :

(any convex set of D) → R, find some convex set M of D that minimizes cost(M ).

This optimization problem is addressed by Algorithm 3 in Section 7.5.

Note that Algorithm 3 only attempts to evolve one convex set at a time, rather than a

collection of convex sets as discussed in Section 3.1.

Algorithm 3 is presented primarily to demonstrate the existence of an evolutionary algo-

rithm which is efficient on a per-iteration basis, and which always retains the possibility

to cover the entire search space in a finite number of future iterations. This is in contrast

to some genetic algorithms which may become trapped in local minima due to premature

convergence [31], or whose designs a priori may preclude parts of the search space for

certain inputs.

68



We make no assumption that, as presented, Algorithm 3 is likely to identify approxi-

mately an optimal solution within a usefully small number of iterations. Below we discuss

several adaptations to Algorithm 3 which may be useful in pursuing such an algorithm.

These may be fruitful areas of future investigation.

Note that when proving that Algorithm 3 potentially covers the entire search space, for

generality we make no assumption that the function cost. It follows then that in order

to find a global minimum, Algorithm 3 must potentially visit every convex set in a DAG.

In contrast, the algorithm modifications described below are only effective when the cost

function contains at least some structure to guide the search.

7.2 Simulated Annealing

Simulated annealing (SA) [32, 33] is an evolutionary optimization method in which initial

iterations permit large changes to the trial solutions, but as the algorithm continues,

successive iterations permit progressively smaller changes to the trial solutions.

SA requires a distance function δ : (X ,Y) → R to be defined over members of the

search space. SA further requires a random perturbation operator π which, given a trial

solution X and an upper-limit ∆, returns a new trial solution Y such that δ(X ,Y ) ≤ ∆.

That is, δ(X , π(∆,X ) ) ≤ ∆.

The basic convexity algorithms presented in this work may be well-suited to sim-

ulated annealing-type optimizers. If we define δ to be the number of vertices

added or deleted from an existing convex set, then δ may be easily defined using

the algorithms grow convex set PS, grow convex set TS, shrink convex set PS, and

shrink convex set TS (Appendix C).

Another potentially useful approach is to let δ be the number of single-vertex changes

applied to some trial solution X , and for π to simply be the random application of up to ∆

single-vertex changes. Algorithm 3 implicitly provides an example of such perturbation
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operator, when δ iterations of its main loop are executed.

7.3 Initialization by Seed Set vs. Order

In Appendix C we present to separate two variations of algorithms for initializing a con-

vex set.

init convex set by seeds PS and init convex set by seeds TS take a potentially

non-convex seed set of vertices and return some convex set which is a superset of the

seed set. In contrast, init convex set by order PS and

init convex set by order TS return a convex set having some specified number of ver-

tices, without regard to which particular vertices constitute that set.

There may exist applications in which a seed set carries special significance, such that the

optimization algorithm benefits from beginning its search in the neighborhood of the seed

set(s). For such applications, it may be preferable to use init convex set by seeds PS

rather than init convex set by order TS.

init convex set by seeds PS is guaranteed to return the smallest superset of the seed

set that is also a convex set, whereas init convex set by order TS makes no provi-

sion for limiting the size of the resulting set. Therefore init convex set by seeds PS

may initialize the search algorithm with a trial solution that is closer to an ac-

ceptable solution, leading to faster convergence than would be obtained if using

init convex set by order TS.

However, if any of the P̂/Ŝ-based basic convexity algorithms is employed by the opti-

mization algorithm, it must first compute the transitive closure of the dataflow graph,

which for a DAG of order |V| requires time O(|V|2.376) (see Section 2.7). Algorithm 3

uses init convex set by order TS and so limits the running time of its initialization

phase to just O(|V|2).
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7.4 P̂/Ŝ vs. Topological Sort

Appendix C presents two essentially interchangeable collections of basic convexity algo-

rithms, one based on predecessor and successor sets, and one based on topological sorts.

Algorithm 3 could be trivially modified to use either group of basic convexity algorithms,

or any combination thereof.

In general the basic convexity algorithms in Appendix C which are based upon P̂ and

Ŝ have longer asymptotic running times than those using topological sort. All of the

P̂/Ŝ-based algorithms require the initial computation of the DAG’s transitive closure,

requiring time O(|V|2.376). Furthermore, the algorithms

init convex set by order PS and grow convex set PS require time O(|V|3) each time

they execute.

From a running-time perspective there appears to be little reason to use the P̂/Ŝ-based

algorithms. If reasons exist to initialize the search using a seed set as discussed in Sec-

tion 7.3, a hybrid approach may be desirable in which

init convex set by seeds PS is used during initialization of the optimization algo-

rithm, but convex set growth and shrinking are accomplished using the topological sort-

based algorithms grow convex set TS and shrink convex set TS, which have running

time O(|V|2).

Note that this work assumes the existence of a random algorithm which has a positive

probability of producing each topological sort of a given DAG (Appendix A.3).

7.5 Convex Set Stochastic Optimization Algorithm

In this section we present and discuss a stochastic optimization algorithm, Algorithm 3,

whose domain is all convex sets of a given DAG. This section is structured as follows.

The pseudocode for Algorithm 3 is presented on page 73.
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Subsection 7.5.1 provides a brief overview of the algorithm’s approach.

Subsection 7.5.2 demonstrates that each individual iteration of the Algorithm 3 is fairly

efficient (time O|V2|), and Subsection 7.5.3 presents a proof that the when permitted

to run indefinitely, the probability of Algorithm 3 searching all convex set of a DAG

approaches 1.

7.5.1 Overview of Algorithm 3

Algorithm 3 operates as follows.

A convex set, Xtrial is initialized to some arbitrary convex set (line 2). Although line 2

selects a random convex set of order 1, any convex set of D would be acceptable as an

initial value of Xtrial.

Each iteration of the loop evaluates the cost function score of the current value of Xtrial

(line 4), and if the score is the minimum value so far discovered, both the score and the

convex set which yielded it are recorded (lines 5-10).

Line 11 calls is done to provide the user an opportunity to terminate the search for any

reason, such as time constraints. As stated in the algorithm’s preconditions, we permit

is done to retain state between calls so that it may detect convergence over multiple

iterations of the optimization algorithm.

Lines 12-29 choose and apply any valid single-vertex change to the current value of Xtrial.

7.5.2 Running Time of Algorithm 3

We easily see that the algorithm lines other than 4 and 11 have a maximum running

time of O(|V|2). We make no assumption about the running times of the functions cost

and is done. Therefore the overall running time of each iteration of this algorithm is

max( O(|V|2), (running time of cost), (running time of is done) ).
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Algorithm 3 Stochastically Optimize over all Convex Sets of a DAG

Function stochastic search TO : (D, cost, is done) → Xbest

Require:
(R1) D = (D, A) is a DAG.

(R2) cost : (all convex sets of D) → R

(R3) is done : (vertex set, R) → Boolean is a subroutine which may
retain internal state between invocations, and whose internal state
is assumed to be properly initialized prior to the execution of this
algorithm.

Ensure:
(E1) Of all sets evaluated by cost before is done returns true, Xbest is

one of the sets for which cost returned the lowest value.

1: first iter ← true (bind identifier) O(1)
2: Xtrial ← call vset random subset(V, 1 ) O(|V|)
3: repeat
4: costtrial ← call cost(Xtrial ) (time of cost)
5: promote← (costtrial < costbest) or first iter (scalar op) O(1)
6: if promote then (scalar op) O(1)
7: first iter ← false (bind identifier) O(1)
8: costbest ← costtrial (bind identifier) O(1)
9: Xbest ← Xtrial (bind identifier) O(1)
10: end if
11: done← call is done(Xtrial, costtrial ) (time of is done)
12: if not done then (scalar op) O(1)
13: if |Xtrial| = 1 then (scalar op) O(1)
14: valid ops← {SWAP} symset init( . . . ) O(1)
15: else
16: valid ops← {SWAP, SHRINK} symset init( . . . ) O(1)
17: end if
18: if |Xtrial| < |V| then (scalar op) O(1)
19: valid ops← valid ops ∪ {GROW} symset add( . . . ) O(1)
20: end if
21: op← call symset random elem( valid ops ) O(1)
22: if op = GROW then
23: Xtrial ← call grow convex set TS(Xtrial, 1 ) O(|V|2)
24: else if op = SHRINK then
25: Xtrial ← call shrink convex set TS(Xtrial, 1 ) O(|V|2)
26: else (Comment: op = SWAP)
27: Xtrial ← call vset random subset(V, 1 ) O(|V|)
28: end if
29: end if
30: until done
31: return Xbest
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This search algorithm is efficient insofar as, aside from the unconstrained running times

of cost and is done, its per-iteration running time is polynomial with respect to the

order of the DAG. The relevance of such efficiency is clearly dictated by the running

times of cost and is done in any particular application of this algorithm.

7.5.3 Complete Search Coverage of Algorithm 3

In this subsection we show that given enough iterations, stochastic search TO always

discovers some vertex setM which minimizes cost.

Lemma 7.5.1. Let D = (V, A) be a DAG, and let cost and is done be defined as

required by Algorithm 3.

Let m be the minimal value that cost returns for any convex set of D, and letM be any

convex set of D such that cost(M ) = m.

Let stochastic search TO (D, cost, is done ) (Algorithm 3) be mid-execution, with

line 3 as the next instruction to be executed, and with the loop spanning lines 3-30 having

previously executed i − 1 times for some i ≥ 1. Let is done return false during next

2 × |V| − 1 iterations of the algorithm’s loop. (I.e., iterations i . . . (i + 2 × |V| − 1)).

Then there is a finite, positive probability that the algorithm sets Xtrial =M during loop

iteration s, with s ∈ [1, (i + 2× |V| − 1)].

Informally, Lemma 7.5.1 states that regardless of where Algorithm 3 is in the search

process, as encoded by its current values for Xtrial, Xbest, first iter and cost best, there

is a finite, positive probability that during its next (2× |V| − 1) iterations the algorithm

discovers some global minimum M. However, because the function is done could ter-

minate the algorithm after any loop iteration, we require the assumption that is done

doesn’t terminate the algorithm until the next (2× |V| − 1) iterations have completed.

Proof. Let T = evolve between convex sets (D,X
(i)
trial,M ) . (Note that
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evolve between convex sets is used only in our analysis, and is invoked neither directly

nor indirectly by stochastic search TO.)

Let X
(i)
trial indicate the value of Xtrial immediately prior to the ith iteration of the loop.

We proceed by showing that there is a finite, positive probability that the next |T | − 1

iterations of the algorithm’s loop evolve Xtrial intoM in precisely the sequence indicated

by T . That is, for all j ∈ [1, |T |], the algorithm sets X
(i+j−1)
trial = T JjK.

We proceed inductively. Assuming that X
(i+j−1)
trial = T JjK, we demonstrate that there is

a finite, positive probability that the next iteration of the algorithm’s loop (the (i+ j)th

iteration overall) evolves the convex set X
(i+j−1)
trial into X

(i+j)
trial such that X

(i+j)
trial = T Jj + 1K.

For our inductive base case, we must show that when j = 1, there is a finite, posi-

tive probability that X
(i+j−1)
trial = T JjK. This is trivially established by the definition of

evolve between convex sets, which deterministically ensures that T J1K = X
(i)
trial.

Our inductive step covers 1 < j < |T |, that is, the (i + 1)th through the (i + |T | − 1)th

loop iterations. By our inductive assumption, prior to each of these loop iterations we

have X
(i+j−1)
trial = T JjK. Our goal is to demonstrate that each of these loop iterations has

a finite, positive probability of setting X
(i+j)
trial = T Jj + 1K.

We consider three cases reflecting the different relationships that may exist between T JjK

and T Jj + 1K. We show that for each of these cases, the next (i.e., the (i+j−1)th overall)

loop iteration has a finite, positive probability of setting X
(i+j)
trial = T Jj + 1K.

Case 1: Delete one vertex:

In Case 1, there is some vertex u ∈ T JjK, such that T Jj + 1K = T JjK \ {u}.

By the definition of evolve between convex sets, every element of T is a non-empty

set. Therefore |T Jj + 1K| ≥ 1. Because T Jj + 1K is the result of deleting a vertex from

T JjK, we have |T JjK| > 1. This ensures that line 16 of the algorithm executes, and so
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we have SHRINK ∈ valid ops.

Line 21 has a finite, positive probability of selecting any symbol in valid ops, and so

after line 21 there’s a finite, positive probability that op = SHRINK, causing line 25 to

execute.

Line 25 performs the operation

X
(i+j)
trial ← shrink convex set TS(X

(i+j−1)
trial , 1 ). As stated in postcondition (E4) of Algo-

rithm 17 (see Appendix C.8), this invocation of

shrink convex set TS has a finite, positive probability of returning any convex subset

of X
(i+j−1)
trial resulting from the deletion of a single vertex.

By our inductive assumption we have X
(i+j−1)
trial = T Jj + 1K. Therefore line 25 has a finite,

positive probability of returning any convex subset of T JjK resulting from the deletion

of a single vertex from T JjK. T Jj + 1K is one such set, and so there is a finite, positive

probability that line 25 sets X
(i+j)
trial = T Jj + 1K.

Case 2: Add one vertex:

In Case 2, there is some vertex u /∈ T JjK, such that T Jj + 1K = T JjK ∪ {u}.

The proof for Case 2 is similar in structure to that of Case 1, and for brevity we provide

only a sketch.

|T JjK| ≤ |V|, and so |T Jj + 1K| < |V|. Therefore there is a finite, positive probability

that line 23 of the algorithm executes during this loop iteration.

Similarly to shrink convex set TS, there is a finite, positive probability that

grow convex set TS produces any one of the convex sets of D which is a superset of

T JjK and has order |T JjK|+1. T Jj + 1K is one such set, and so there is a finite, positive

probability that that line 23 of the algorithm sets X
(i+j)
trial = T Jj + 1K.

Case 3: Swap vertex:
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From the definition of evolve between convex sets, Case 3 only arises when we have

|T Jj + 1K| = |T JjK| = 1.

In Case 3 there is a finite, positive probability that line 21 of the algorithm sets op = SWAP,

leading to the execution of line 27.

vset random subset (V, 1 ) function is defined to have a finite, positive probability of

returning any set {v} such that v ∈ V. T Jj + 1K is one such set, and so there’s a finite,

positive probability that line 27 of the algorithm sets X
(i+j)
trial = T Jj + 1K.

Through induction we’ve shown that there is a finite, positive probability that

X
(i+|T |−1)
trial = T J |T | K. By the definition of

evolve between convex sets (D,X
(i)
trial,M ) we have T J |T | K =M.

We conclude with proving the final claim of this Lemma: that (2× |V| − 1) iterations of

the algorithm’s loop have a finite, positive probability of yielding Xtrial =M, regardless

of the initial state of the algorithm.

This follows directly from the maximum length of T .

evolve between convex sets (D,X
(i)
trial,M ) returns a vertex set sequence with the

following structure. The first |X
(i)
trial| elements of T are improper subsets X

(i)
trial. The

remaining elements of T are subsets ofM, either |M| or |M| − 1 in number. Therefore

the maximum length of T is |X
(i)
trial|+ |M|.

Both Xtrial and M are constrained to be improper subset of V, giving us |Xtrial| ≤ |V|

and |M| ≤ |V|. From this we have |T | ≤ 2× |V|. Note however that immediately prior

to the ith iteration of the algorithm’s loop, we already have Xtrial = T J1K. Therefore we

need only |T | − 1, or 2 × |V| − 1, loop iterations to obtain Xtrial = T J |T | K using the

evolutionary sequence indicated by T .

Lemma 7.5.2. Let D = (V, A) be a DAG and let cost be a cost function as required by

Algorithm 3. For any particular activation of Algorithm 3, let Pi be the probability that
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Algorithm 3 finds a global minimum within the first i iterations, with Pi < 1. Let Pj be

the probability that Algorithm 3 finds a global minimum within the first i+ (2× |V| − 1)

loop iterations. Then Pi < Pj ≤ 1.

Informally, Lemma 7.5.2 states that the more iterations executed by the loop in Algo-

rithm 3, the greater the cumulative probability that a global minimum is found and

returned.

Note that the theorem does not claim that every single iteration following the ith increases

the probability of finding a global minimum. We avoid such a claim because there is

no assurance that the convex set indicated by Xtrial just prior to the ith iteration of the

algorithm’s loop can be evolved into some global minimum of cost by adding, deleting,

or swapping precisely one vertex. However, Lemma 7.5.1 establishes that regardless of

the graph topology of D and regardless of the state of the algorithm just prior to the ith

loop iteration, there is a finite, positive probability of reaching a global minimum within

the subsequent 2× |V| − 1 iterations.

Proof. From Lemma 7.5.1 we have that there is a finite, positive probability that during

iterations i to i+ (2× |V|− 1) of the algorithm, there is some finite, positive probability

that Xtrial is set to some global minimum of cost. Let Pij by the probability of some

particular global minimumM being found during these 2× |V| − 1 iterations.

Then the cumulative probability Pj of the algorithm findingM after i + (2 × |V| − 1)

loop iterations have been performed is:

Pj = Pi + (1− Pi)× Pij

From Lemma 7.5.1 we have that Pij > 0, and so Pj > Pi.

Theorem 7.5.3. Let D = (V, A) be a DAG and let cost be a cost function as required by

Algorithm 3. For any particular activation of Algorithm 3, let P (i) be the probability that

Algorithm 3 finds a global minimum within the first i iterations. Then limi→∞ P (i) = 1.
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Proof. Lemma 7.5.1 shows that for every 2×|V|−1 consecutive iterations of Algorithm 3,

there is a finite, non-zero probability that the algorithm discovers some global minimum.

Without loss of generality, let p be the lowest-valued probability with which Algorithm 3

discovers a global minimum of cost during any 2× |V| − 1 consecutive iterations.

Then the probability P (i) of Algorithm 3 discovering some particular global minimum

M during its first i× (2× |V| − 1) loop iterations is given by:

P (i) = p+ (1− p)p+ (1− p)2p+ . . .+ (1− p)(i−1)p (10)

= p×
i−1∑

j=0

(1− p)j (11)

= p×









i∑

j=0

(1− p)j



− (1− p)i



 (12)

Equation (10) gives our basic formula. For any j, the jth term in the series provides the

the probability that loop iterations 1 . . . (j − 1) did not discover a global minimum but

the jth loop iteration does.

Equation (11) restructures the series to clarify that it’s a geometric series, and Equa-

tion (12) simplifies the upper bound of the series so that a standard formula may be

applied later in Equation (16).
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We now consider the limit of Equation (12) as i→∞:

limi→∞P (i) = limi→∞



p×









i∑

j=0

(1− p)j



− (1− p)i









= p× limi→∞









i∑

j=0

(1− p)j



− (1− p)i



 (13)

= p×







limi→∞

i∑

j=0

(1− p)j



−
(

limi→∞(1− p)i
)



 (14)

= p×







limi→∞

i∑

j=0

(1− p)j



− 0



 (15)

= p×

((

(1− p)0

1− (1− p)

)

− 0

)

(16)

= 1 (17)

Equation (13) simplifies by factoring p out of the limit expression.

Equation (14) separates terms in the limit expression to obtain two separate limits, and

Equation (15) solves the second limit.

Equation (16) applies the standard formula for the limit of an infinite series of a geometric

sequence, and Equation (17) simplifies, completing our proof.
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CHAPTER 8

Proof of Concept

The optimization algorithms presented in this thesis were implemented to validate the

correctness of the theoretical results, and to clarify the potential for this approach to

optimizing the performance of task-parallel codes. The methodology and results are

discussed below.

A model program, represented as an abstract DFG, was developed to generate and then

sort a collection of pseudo-random floating-point numbers (see Section 8.1). Several

alternative approaches were used optimize the DFG’s task set:

• A program named evolver1 , an implementation of the full-task-set optimization

algorithm outlined in Algorithm 2 (page 37). See Section 8.2 for a more complete

description of evolver1 .

• A task set was selected based on the author’s experience in developing multi-

threaded software (see Subsection 8.3.3). This is to provide a baseline against

which the learning algorithm’s results are compared. The manual creation of a

task set was tractable because the program being optimized was represented with

a DFG having only 11 vertices (see Section 8.3).

• Two task sets representing extremes of the search space were manually chosen:

the empty task set, and the task set in which each of the DFG’s 11 vertices is

assigned to its own separate task. Their performance was examined to confirm

that the optimization problem treated by this thesis was not simply solved by

trivial selection of one of these extrema.
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8.1 Model Problem : Sorting an Array of Numbers

The model problem chosen is a program which sorts an array of floating-point number,

as follows.

A DFG representation of this program is shown in Figure 4. For this work, we generate

the sort program’s DFG in terms of a single pre-runtime parameter, l. l gives the number

of levels of mergesort vertices in the DFG. For a given value of l, this work produces a

DFG with 2l randomize vertices, 2l quicksort vertices, and 2l − 1 mergesort vertices.

The DFG is represented as a simple text file, and is produced by a program named

generate-DFG .

Note that the value of l is only loosely related to the number of data to be sorted by the

program at runtime. The number of data to be sorted is specified as a runtime parameter,

whereas l is a pre-runtime parameter. Our only assumption is that the specified number

of data to sort is an integer multiple of 2l, to simplify the runtime logic governing the

number of data produced by each randomize vertex.

The vertex types behave as follows.

• Each randomize vertex produces an array of pseudo-randomly generated floating-

point numbers. The size of the array is provided as a runtime parameter.

• Each quicksort performs an in-place sorting of the array provided by its in-

neighbor. The vertex passes a reference to that same array on to the vertex’s

out-neighbor.

• Each mergesort allocates a new array capable of storing the combined content of

the vertex’s two input arrays. It then uses a simple mergesort algorithm to merge

the two (pre-sorted) input arrays, and provides a reference to that array to its

out-neighbor.

This model problem was chosen for several reasons. Its simple, recursive structure per-
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randomize 3 randomize 6

quicksort 4 quicksort 9

mergesort 11

mergesort 5 mergesort 10

randomize 1 randomize 8

quicksort 7quicksort 2

Figure 4: A generated DFG for the proof-of-concept. The number of mergesort levels is
specified when the DFG is generated. The number within each box is its vertex number,
a unique identifier for the vertex.

mits the easy generation of DFG’s of vastly various sizes without altering the program’s

semantics. The regular structure also lends itself to intuitive parallelization by a hu-

man programmer, which simplifies the exercise of comparing the results produced by the

proof-of-concept optimization algorithm to what a human programmer may be expected

to produce.

With this approach, several parameters govern the static and runtime qualities of the

sorting program:

• l. This is depth of the mergesort portion of the DFG, as described above.

• Number of data to be sorted. This is the number of floating-point numbers to be

randomly generated and sorted.

• Task set. The collection of convex sets which forms the basis for Thread Building

Block tasks in the resulting executable program.

8.2 Task-set Optimization Algorithm

evolver1 implements a simple evolutionary algorithm whose structure is consistent with

that of Algorithm 2 (page 37).
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Note that Algorithm 2 is parameterized by which algorithm it uses to optimize a single

convex set (the Z parameter). For this work, Z = Algorithm 3 (see page 73). Additional

details of evolver1 are as follows.

8.2.1 Initialization

The initial generation is created by pseudo-randomly generating a user-specified number

of task sets, population size. A user-specified probability of inclusion parameter

influences the content of each task in each task set of the initial population, as indicated

in Algorithm 4.

Algorithm 4 Initialization Algorithm for Proof-of-Concept System

Function init : (D = (V, A), probability of inclusion, population size)

→ population
1: population← ∅
2: for i = 1 . . . population size do
3: task set← {}
4: for all v ∈ V do
5: if random draw in range(0.0, 1.0) < probability of inclusion then
6: task set← task set ∪ {v}
7: end if
8: end for
9: population← population ∪ {task set}
10: end for
11: return population

8.2.2 Reproduction and Mutation

Each subsequent generation of task sets is formed as follows. population size copies

of the fastest-running task set from the previous generation are created. An additional

⌊
population size

3

⌋

copies are the fastest-running task set from any previous generation are created. These

two groups are task sets are the basis for the subsequent generation. All of these task

sets are then mutated as follows.
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As an invocation of evolver1 iterates from its first to its last evolved generation, a

“temperature” value decreases linearly from 1.0 to 0.0. The temperature indicates the

fractional number of tasks within each task set which are to be mutated during that

iteration of the algorithm. This mechanism is provided to allow broad search of the

entire solution space in early iterations of the algorithm, followed by more precise local

refinement in the later stages so that locally optimum solutions are more likely to be be

discovered.

Any task which is to be mutated is mutated using the convex-set-mutation approach

described in Section 7.5.

8.2.3 Termination

The proof-of-concept evolutionary algorithm terminates after running for a user-specified

number of iterations. A more sophisticated evolutionary algorithm might use convergence

analysis, rather than a fixed number of iterations, to decide after which iteration to

terminate execution.

8.3 Methodology

For this work, the computer used was a laptop computer with an Intel Core i7-Q820

microprocessor, with four CPU cores and a nominal clock speed of 1.73 GHz. The

computer has 4 GB of RAM. The computer’s operating system is the 64-bit Ubuntu

version of Linux Mint 14. The compiler used is gcc 4.7.2. The version of the Thread

Building Blocks library used is 4.0.

For each parallelization of the program, the resulting executable program was run three

times to obtain the average running time. During these executions, the computer was

running in the typical fashion, with one user logged into a desktop environment, and

several desktop applications open but untouched by the user.
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8.3.1 Problem Details

This experiment used a DFG with two mergesort levels (l = 2), as shown in Figure 4.

This was based on several considerations, most notably that early prototyping showed

no significant performance benefit to the optimized program by using values of l greater

than 2.

All runs of the sort program generated and sorted 10 million floating-point numbers.

This number was chosen to minimize the impact of other system activity on the sort

program’s measured running time, while keeping the sort program’s running times brief

enough to allow research to proceed at a reasonable pace.

8.3.2 Evolutionary Algorithm Parameters

Based on common practices for the evaluation of evolutionary algorithms, each run

of this work’s evolutionary algorithm ran for 50 generations. Each generation had

population size = 100. As described in Subsection 8.2.2, this led to an effective popula-

tion size of 133 in all generations after the first generation.

8.3.3 Manually Chosen Task Set

The manually designed task set for the DFG is

{{1, 2}, {3, 4}, {6, 7}, {5}}

This task set is visually depicted in Figure 5f (page 89).

The following reasoning led to the task set in Subsection 8.3.3. The sort program was

to run with 1 × 107 input data, and so each of the randomize vertices would likely

require a quantity of CPU time which significantly exceeded the time required to launch

a parallel task. Therefore it seemed profitable to in fact run all four randomize vertices

concurrently. This is achieved by having three of those vertices run in separate child

tasks, and the fourth randomize vertex run in the parent thread.
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Task Set Name Tasks Best Time
(Seconds)

Run 1 { {9} {5 , 10} {6 , 7} {3 , 4} {11} {1 , 2} } 1.047

Run 2 { {2 , 9} {3 , 4 , 6 , 7} {5} {10} } 1.315

Run 3 { {2} {3 , 4} {8 , 9} {5 , 10} {11} {6 , 7} } 1.048

Run 4 { {2 , 9} {3 , 4 , 7} {5} {10} {8} {6} } 1.315

Run 5 { {2 , 9} {3 , 4 , 6 , 7} {5} } 1.318

Manually designed { {1 , 2} {3 , 4} {6 , 7} {5} } 1.387

Empty {} 2.110

One task per vertex { {1} {2} . . . {11} } 1.383

Table 1: Average Running Times of a DFG with two mergesort levels (shown in Figure 4).
The program generated for each of the listed task sets was run three times, and each
run generated and sorted 1× 107 floating-point numbers. The non-degenerate task sets
from this table are graphically depicted in Figure 5.

By similar reasoning, all four of the quicksort appeared suitable for running in parallel

on separate CPU cores. Furthermore, each quicksort could be run in the same task as

the randomize vertex which supplied its input data. This grouping appeared sensible

because it might reduce the overhead of launching the quicksort vertices in new tasks,

and there appeared to be no way in which it could cause additional delay in the start of

execution of a quicksort vertex.

Each of the two non-DFG-sink mergesort vertices merges together two arrays of 2.5×106

floating-point numbers. Intuitively, this large CPU burden for each mergesort vertex

appears to make a strong case for running the mergesort vertices in parallel if at all

possible. For this reason that the task set {5} was specified to be in a child task and

vertex 6 was left to run separately in the parent thread.

8.4 Proof-of-Concept Results

Each run of the stochastic optimization algorithms took approximately 12 hours.

Table 1 presents the running times obtained from each of the task sets considered by

this proof of concept. Six of the task sets are shown in Figure 5. (The two degenerate
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mergesort 5

randomize 3
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(a) Stochastic Run 1

mergesort 5
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randomize 1
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randomize 6
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(b) Stochastic Run 2
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randomize 3

quicksort 4 quicksort 9

randomize 8
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randomize 1

quicksort 2

randomize 6

quicksort 7

mergesort 10

(c) Stochastic Run 3

Figure 5: Visual depictions non-degenerate task sets in Table 1.
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(d) Stochastic Run 4
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(e) Stochastic Run 5

randomize 1
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quicksort 7

mergesort 5

quicksort 9

randomize 8

mergesort 11

mergesort 10

(f) Manually Designed Task Set

Figure 5: Visual depictions non-degenerate task sets in Table 1 (continued).
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task sets are not shown.)

From Table 1 we see that all of the stochastically optimized task sets outperformed the

manually designed one. The fastest stochastically optimized task set (Run 1) completed

its work 32.2% faster than did the manually developed task set ( 1.384÷ 1.047 seconds).

Figure 5 (pages 88-89) shows shows the comparative results of the five stochastic opti-

mization runs, on a per-generation basis.

We see that the stochastically developed task sets fall into two groups: a slower group

(average runnings times of 1.315, 1.315, and 1.318 seconds), and a much faster group

(average running times of 1.047 and 1.048 seconds).

The best-performing stochastic optimization runs (Run 1 and Run 3) produced remark-

ably similar task sets. The worse-performing stochastic optimization runs (Runs 2, 4,

and 5) also significantly similar task sets as each other, however with more apparent

variation.

8.5 Limitations of Proof-of-Concept

This proof-of-concept is provided to help validate the algorithms developed in this thesis.

Care must be take to not draw overly broad conclusions from this exercise.

In particular, this exercise has not established that either the evolutionary algorithm or

the human-crafted parallelization offers the best possible performance for that kind of

endeavor. A programmer with more skill or luck than this author could perhaps produce

a parallelization of the test programmer which outperformed any that the evolutionary

algorithm is likely to discover. Conversely, a better-tuned evolutionary algorithm could

perhaps outperform a human in nearly all circumstances.

Another limitation of this exercise is that the selected DFG was quite small, with only 11

vertices, and each those vertices is computationally intensive. Given the good efficiency
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(a) Comparative absolute performances of the five runs of the stochastic
optimization algorithm.

(b) Relative pace, in generations, at which each run of the stochastic opti-
mization algorithm discovered its final result.

Figure 6: Performance Comparison of Five Auto-parallelization Runs
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of the Thread Building Blocks library, this means that even a full parallelization of this

DFG, in which each vertex is assigned to a separate task, will have very low book-keeping

overhead for the tasks. Therefore this proof-of-concept does little to explore how this

thesis’ algorithms would perform on a very large DFG with shorter-running vertices.

This search algorithm initializes, grows, and shrinks convex sets using only algorithms

based on topological sort, not the alternative algorithms based on predecessor and suc-

cessor sets. This limitation was deemed acceptable because the primary goal of this

proof-of-concept was to examine both the quality of the solutions produced by the task

set optimization algorithm, and speed with which it obtained those solutions. Any dif-

ference in performance between these two groups of support algorithms were expected to

be negligible for this purpose, in particular because the target program’s DFG contained

only 11 vertices.

8.6 Discussion

The machine-learning algorithm developed in this work outperformed what appears to

be a sensibly chosen manual tuning of the same problem by 32%. This result was

obtained from two of the five stochastic optimization runs, which collectively required

approximately 60 hours of computer time.

This appears to validate several assumptions of this present research. The first is that

on modern computing hardware, even a seasoned programmer’s expectation about the

ideal parallelization of a simple program isn’t necessarily accurate.

The second validated assumption is that, at least in this one test case, the evolutionary

algorithm can uncover a good parallelization of the subject program in a relatively small

amount of time.

The solution space over which this proof of concept’s evolutionary algorithm ranges is

all task sets containing six or fewer convex sets. However, the deconfliction process (see
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Appendix E) maps that space onto the smaller space of task sets which will not cause the

parent DFG to contain a cycle. Having the evolutionary algorithm range over a search

space larger than the space of acceptable answers may reduce its efficiency.

93



CHAPTER 9

Conclusions and Future Work

9.1 Central Conjecture Proven

This thesis proves the central conjecture that a single convex set can be evolved in a

per-iteration efficient manner, such that as the number of iterations approaches infinity,

the probability of all convex sets being explored approaches one.

The primary motivation for this work was to advance the state of the art in machine-

learned task parallelism, so that parallel programs can run faster and be developed with

less human labor. The proof-of-concept developed in this work shows that for the one

subject program studied, the resulting parallel program was substantially faster (32%)

than the version produced by a human programmer. This suggests that automatic task

parallelization may continue to be a fruitful area for future research.

9.2 Alternative Search Spaces

Under the execution model assumptions made in this present work, the true optimization

space is all valid task sets, not merely all valid convex sets. Either of two definitions

of task-set validity is appropriate, depending on the execution model assumed: In the

weak definition of task-set validity, a task set is valid merely if each contained task is

a convex set, and no two tasks contain the same vertex. A more demanding definition

of task-set-validity, based in this work’s assumed execution models, is that it must also

be possible to replace each task in the task set with a pair of SPAWN and WAIT vertices

without inducing cycles in the parent DFG.

While this thesis shows that a single convex set can be efficiently evolved to cover the

space of all convex sets, it does establish the existence of a search algorithm which

covers precisely the space of all valid task sets, using either of the stated definitions of
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validity. The development of algorithms covering either of those valid task-set spaces,

in a manner that is per-iteration efficient and which will cover the entire search space

given enough iterations, may lead to better-performing machine learning systems than

the one demonstrated in this work’s proof-of-concept.

9.3 Enumeration of Search Spaces

[27] and Bang-Jensen and Gutin [1, section 17.2.3] present an efficient algorithm for

enumerating all convex sets of any directed acyclic graph. Such an algorithm may be

useful in studying the rate at which a stochastic search algorithm visits the full search

space.

To this author’s knowledge, no similar algorithm has been discovered for enumerating

either of the valid task-set search spaces described above. The development of such

algorithms may be a useful area of future endeavor.

95



LIST OF REFERENCES

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications,
2nd ed. Springer, 2009.

[2] V. Sarkar and J. Hennessy, “Partitioning parallel programs for macro-dataflow,” in
LFP ’86 Proceedings of the 1986 ACM conference on LISP and functional program-
ming. Assoc. of Computing Machinery, 1986.

[3] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT
Press Cambridge, MA, USA, 1989.

[4] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, J. Thomson, H. Leather, C. Williams, M. O’Boyle,
P. Barnard, E. Ashton, E. Courtois, and F. Bodin, “Milepost gcc: machine
learning based research compiler,” in Proceedings of the GCC Developers’ Summit,
July 2008. [Online]. Available: http://hal.inria.fr/inria-00294704/fr/

[5] M. Stephenson, S. Amarasinghe, M. Martin, and U. O’Reilly, “Meta Optimization:
Improving Compiler Heuristics with Machine Learning,” ACM SIGPLAN Notices,
vol. 38, no. 5, p. 90, 2003.

[6] G. G. Fursin, M. F. P. O’Boyle, and P. M. W. Knijnenburg, “Evaluating Iterative
Compilation,” in Languages and Compilers for Parallel Computing, 15th Workshop,
LCPC 2002, ser. LNCS, no. 2481. Springer, 2005, pp. 362–376.

[7] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, and
T. Waterman, “Acme: adaptive compilation made efficient,” in LCTES ’05: Pro-
ceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages, compilers,
and tools for embedded systems. New York, NY, USA: ACM, 2005, pp. 69–77.

[8] M. Frigo and S. Johnson, “FFTW: An adaptive software architecture for the FFT,”
in IEEE International Conference on Acoustics Speech and Signal Processing, vol. 3.
Citeseer, 1998.

[9] M. Frigo and S. Johnson, “The design and implementation of FFTW 3,” Proceedings
of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[10] M. Pueschel, J. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua, M. Veloso,
and R. Johnson, “Spiral: A Generator for Platform-Adapted Libraries of Signal
Processing Alogorithms,” International Journal of High Performance Computing
Applications, vol. 18, no. 1, 2004.

[11] M. Olszewski and M. Voss, “An install-time system for the automatic generation of
optimized parallel sorting algorithms,” in Proceedings of PDPTA‘04: The Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tions, June 2004.

96



[12] C. Chan, J. Ansel, Y. L. Wong, S. Amarasinghe, and A. Edelman, “Autotuning
multigrid with petabricks,” in SC ’09: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis. New York, NY, USA:
ACM, 2009, pp. 1–12.
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APPENDIX A

Algorithm Assumptions and Primitive Operations

In this appendix we provide asymptotic running times, and when appropriate the ran-

domness properties, of primitive operations and algorithms used within this work. The

operations and algorithms described below are not the ones of primary interest in this

work. They are called by this work’s more interesting algorithms, and are presented

here to facilitate the analysis of the running times and randomness properties of the

algorithms which call them.

Some primitive operations on sequences backed by linked lists have running times that are

proportional to the current size of the sequence, as opposed to the sequence’s maximum

possible size. However, for the sake of simplified worst-case running-time analyses, for

each we primitive operation we indicate a worst-case asymptotic running time, typically

in terms of |V|, the order of the overall DAG being considered.

The remainder of this appendix is structured as follows.

Table A.2 summarizes the asymptotic running times the operations and algorithms pre-

sented in this appendix.

Appendix A.1 provides an overview of the role of random primitive operations in this

work.

Appendices A.2-A.8 describe primitive operations on the collections underlying this

work’s algorithms.

Appendix A.9 states additional assumptions used in this work’s analysis of algorithm

asymptotic running-times, and discusses the use of |V| as the non-constant value in the

stated bounds.
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Operation Time

random integer ( a, b ) O(1)

symset random elem ( L ) O(1)

symset init ( S ) O(1)

symset add ( S, t ) O(1)

dag rand topo sort ( D ) O(|V|2)

dag transitive closure ( D ) O(|V|2.376)

vset clear ( X ) O(|V|)

vset init by vertex ( X , v ) O(|V|)

vset clone ( X ) O(|V|)

vset union ( X ,Y ) O(|V|)

vset isect ( X ,Y ) O(|V|)

vset diff ( X ,Y ) O(|V|)

vset is member ( X , v ) O(1)

vset is subset ( X ,Y ) O(|V|)

vset is equal ( X ,Y ) O(|V|)

vset random subset ( X , n ) O(|V|)

vset iterate ( X ) O(|V|)

vset add ( X , v ) O(1)

aset clear ( B ) O(|V|2)

aset add ( B, c ) O(1)

aset del ( B, c ) O(1)

aset iterate ( B ) O(|V|2)

aset iterate ( B ) O(|V|2)

aset in nbors ( B,X ) O(|V|2)

aset out nbors ( B,X ) O(|V|2)

vseq random slice ( ~X, n ) O(|V|)

vseq slice ( ~X, i, j ) O(|V|)

vseq find ( ~X, v ) O(|V|)

vseq find bounds ( ~X,Y ) O(|V|2)

vseq to vset ( ~X ) O(|V|)

vss append ( T ,V ) O(1)

vss concat ( T ,U ) O(1)

vss reverse ( T ) O(|T |)

tc vtx pred ( TC(D), x ) O(|V|)

tc vtx succ ( TC(D), x ) O(|V|)

tc vset pred ( TC(D),X ) O(|V|2)

tc vset succ ( TC(D),X ) O(|V|2)

Table A.2: Summary of Primitive Operations
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A.1 Primitive Random Operations

Primitive random operations particular to some primitive data structure presented in

the appropriate subsection below.

A critical property of all primitive random operations used in this work is that each

valid outcome of the operation has a finite, positive probability each time the operation

is performed. From this foundation we establish certain randomness properties in the

algorithms presented in Appendix C and Section 7.5.

We present here our one primitive random on integers. All random operations on prim-

itive data structures are described in appropriate subsection below.

random integer : ([in] a : integer, [in] b : integer) → integer

This returns an integer from the interval [a, b]. For any integer i ∈ [a, b], there is a

non-zero probability that this operation returns i. This operation requires time O(1).

A.2 Primitive Operations on Literal Sets

A literal set is a set of zero-or-more pseudocode literal values. In particular, the set

{GROW, SHRINK, SWAP} in Algorithm 3.

We assume each instance of this kind of set to be a random-access array of Boolean

values, having the following operations.

symset random elem : ([in] S : set of symbols) → symbol

This returns one symbol from L. For any symbol s ∈ S, there is a finite, positive

probability that this operation returns s. This operation requires time O(1)S.

symset init : ([in] S : literal set of symbol values) → literal value

This is the type constructor for symbol sets using literal values. This operation requires

time O(1).
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symset add : ([in,out] S : set of symbols, [in] t : symbol)

This modifies S to be the set S ∪ {t}. This operation requires time O(1).

A.3 Primitive Operations on a DAG

We assume for this work that the order (i.e., number of vertices) in DAG are known

a priori, and that all data structures are pre-allocated or whose allocation requires a

negligible amount of running-time.

Let D = (V, A) be the DAG. Each vertex in the DAG is named by a distinct number in

the range [1, |V|]. Unless stated otherwise, any mention of D, V or A in this appendix

refers to the DAG over which the primitive operations work.

D is represented by a random-access |V| × |V| array of Boolean values, where the value

of element (x, y) indicates the presence or absence of an arc from vertex x to vertex y.

dag rand topo sort : ([in] D : DAG) → vertex sequence

This returns a topological sort of D. For any topological sort ~Q of D, there is a finite,

positive probability that this operation returns ~Q each time this operation executes.

As shown in [1, Thm. 2.1.4] and elsewhere, some arbitrary topological sorting for a DAG

D = (V, A) may be deterministically calculated in time O(|V|+ |A|). We assume but do

not prove that a non-deterministic algorithm exists and has running time O(|V|+ |A|).

In Section 2.3 we show that |A| is O(|V|2), giving us a simplified running-time of O(|V|2)

for this operation.

dag transitive closure : ([in] D : DAG) → (vertex set, arc set)

This returns TC(D), the transitive closure of D, as described in Section 2.7.
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A.4 Primitive Operations on a Set of Vertices

A vertex set is represented as a random-access vector of O(|V|) Boolean values, with the

following operations.

vset clear : ([out] X : vertex set)

Modifies X to have the empty-set value. The running time of this operation is O(|V|).

vset init by vertex : ([out] X : vertex set, [in] v : vertex)

Modifies X to have precisely the value {v}. The running time of this operation is O(|V|).

vset clone : ([in] X : vertex set) → vertex set

Returns an independent copy of X . Later modifications to X are not visible in the clone

returned by this function, and vice versa. Assuming that the domains of X and Y are

the subsets of V, the running time of this operation is O(|V|).

vset union : ([in] X : vertex set, [in] Y : vertex set) → vertex set

Returns the set X ∪Y. Assuming that the domains of X and Y are the subsets of V, the

running time of this operation is O(|V|).

vset isect : ([in] X : vertex set, [in] Y : vertex set) → vertex set

Returns the set X ∩Y. Assuming that the domains of X and Y are the subsets of V, the

running time of this operation is O(|V|).

vset diff : ([in] X : vertex set, [in] Y : vertex set) → vertex set

Returns the set X \Y. Assuming that the domains of X and Y are the subsets of V, the

running time of this operation is O(|V|).

vset is member : ([in] X : vertex set, [in] v : vertex) → Boolean

Returns true if v ∈ X , and false if not. The running time of this operation is O(1).

vset is subset : ([in] X : vertex set, [in] Y : vertex set) → Boolean

Returns true if X ⊆ Y, and false if not. The running time of this operation is O(|V|).
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vset is equal : ([in] X : vertex set, [in] Y : vertex set) → Boolean

Returns true if X = Y, and false if not. The running time of this operation is O(|V|).

vset random subset : ([in] X : vertex set, [in] n : integer) → vertex set

This operation assumes 1 ≤ n ≤ |X |, and returns some subset of X with order n. For

every subset Y of X , where |Y| = n, there is a finite, positive probability that Y is

returned by this operation. The running time of this operation is O(|V|).

vset iterate : ([in] X : vertex set)

This is a pseudo-operation which generates each vertex in X for use in loop iteration. We

document it here to facilitate running-time analyses of “for all”-style loops over vertex

sets. This pseudo-operation requires time O(|V|) to emit all vertices of X over time.

vset add : ([in,out] X : vertex set, [in] v : vertex)

Modifies X to be the set X ∪ {v}. This operation requires time O(1).

A.5 Primitive Operations on a Set of Arcs

For simplicity we assume that a set of arcs has the same representation as a DAG: A set

of arcs potentially connecting any two vertices in some vertex set V is represented as a

|V| × |V| array of Boolean values.

aset clear : ([out] B : arc set)

Modifies B to have the empty-set value. The running time of this operation is O(|V|2).

aset add : ([in,out] B : arc set, [in] c : arc)

Modifies B to be the set B ∪ {c}. This operation has running time O(1).

aset del : ([in,out] B : arc set, [in] c : arc)

Modifies B to be the set B \ {c}. This operation has running time O(1).

aset iterate : ([in] B : arc set)
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This pseudo-operation generates each arc in B for use in loop iteration in some unspec-

ified order. We document it here to facilitate running-time analyses of “for all”-style

loops over arc sets. This pseudo-operation requires time O(|V|2) to emit all vertices of

B over all iterations occurring during one activation of the loop.

aset in nbors : ([in] B : arc set, [in] X : vertex set)

Returns the in-neighbors of X : {v | ((v,X ) ∈ B) ∧ (v /∈ B) }. This operation has running

time O(|V|2).

aset out nbors : ([in] B : arc set, [in] X : vertex set)

Returns the out-neighbors of X : {v | ((X , v) ∈ B) ∧ (v /∈ B) }. This operation has

running time O(|V|2).

A.6 Primitive Operations on a Sequence of Vertices

We assume that each vertex V is unambiguously identified by an integer, and that a

vertex sequence is represented as a linked list of these integers. We further assume that

allocation of storage for linked list elements requires negligible running time.

No vertex sequence manipulated by this work’s algorithms contain multiple occurrences

of the same vertex. (This is ultimately stems from this work’s focus on acyclic graphs.)

Therefore, for the sake of asymptotic running-time analyses, we assume that the length

of a given vertex sequences is O(|V|).

The primitive operations on this type are as follows.

vseq random slice :

([in] ~X : vertex sequence, [in] n : integer) → vertex sequence

This operation assumes 1 ≤ n ≤ |X |, and returns some contiguous subsequence of ~X of

length n. Let ~Y be any contiguous subsequence of ~X with length n. Then there is a

finite, positive probability that this operation returns ~Y . This operation requires time
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O(|V|).

vseq slice :

([in] ~X : vertex sequence, [in] i : integer, [in] j : integer) →

vertex sequence

This operation assumes 1 ≤ i ≤ j ≤ |X |. It returns the subsequence ~XJi . . . jK. This

operation requires time O(|V|).

vseq find :

([in] ~X : vertex sequence, [in] v : vertex) → integer

This operation assumes that v ∈ Y. It returns the index into ~X at which v is located.

This operation requires time O(|V|).

vseq find bounds :

([in] ~X : vertex sequence, [in] Y : vertex set) → (integer, integer)

This operation assumes that X ∩Y 6= ∅. It returns (first, last), where first and last are,

respectively, the lowest- and highest-numbered indices into ~X containing any member of

Y. This operation requires time O(|V|2).

vseq to vset :

([in] ~X : vertex sequence) → vertexset

This operation returns a vertex set with precisely the same vertices as those comprising

~X. This operation requires time O(|V|).

A.7 Primitive Operations on a Sequence of Vertex Sets

We assume that a sequence of vertex sets is represented as a linked list of references to

existing vertex set objects, and that allocating nodes in the linked list requires negligible

time. The primitive operations on this type are as follows. A sequence of vertex sets is

implicitly empty until modified.
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vss append :

([in,out] T : sequence of vertex sets, [in] V : vertex set)

Modifies T by appending a reference to V. This operation has running time O(1).

vss concat : (

[in,out] T : sequence of vertex sets,

[in,out] U : sequence of vertex sets)

→ sequence of vertex sets

This operation modifies T to have the value [T , U ], and modifies U to be the empty

sequence. This operation requires time O(1).

vss reverse :

[in] T : sequence of vertex sets, → sequence of vertex sets

This returns a copy of T in which the order of the elements has been reversed. This

operation requires time O(|T |).

A.8 Primitive Operations on the Transitive Closure of a DAG

We assume the following representation for the transitive closure of a DAG. Suppose

D = (V, A) is a DAG with transitive closure TC(D) = (V, ATC).

The transitive closure has two components: a vertex set and a vertex adjacency matrix.

The D and TC(D) have the same vertex set, and we assume that TC(D) merely holds

a reference to the vertex set of D.

Both ATC and A are |V| × |V| adjacency matrices, in which the indices along both axes

are in correspondence with the elements of V. The difference between A and ATC is the

meaning of a given cell in the matrix. A(i, j) = true indicates that the arc (vi, vj) ∈ A.

ATC(i, j) = true indicates that a path of the form vi . . . vj exists in D.

We first provide the operation for computing the transitive closure of a DAG. We then
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provide operations which use the DAG’s transitive closure to computing P̂ and Ŝ (see

Chapter 5).

The predecessor set (P̂ ) and successor set (Ŝ) for a vertex or vertex set can be computed

in various ways. The approach used in this work’s algorithms is to pre-compute the

predecessor and successor set for each individual vertex in the DAG. Note that this is

directly given by a DAG’s transitive closure, which is given as a primitive operation in

Appendix A.3.

Once we have P̂ and Ŝ for each individual vertex in the DAG, computing P̂ and Ŝ for a

vertex set X is simply a matter of computing the obtaining and merging the predecessor

and successor sets, respectively, of each vertex in V. These operations are as follows.

tc vtx pred : ([in] TC(D) : transitive closure, [in] x : vertex) → vertex set

This operation assumes that TC(D) is the transitive closure of the DAG D = (V, A).

The operation returns the vertices P̂ (x). It has running time O(|V|).

tc vtx succ : ([in] TC(D) : transitive closure, [in] x : vertex) → vertex set

This operation assumes that TC(D) is the transitive closure of the DAG D = (V, A).

The operation returns the vertices Ŝ(x). It has running time O(|V|).

tc vset pred : ([in] TC(D) : transitive closure, [in] X : vertex set) → vertex set

This operation assumes that TC(D) is the transitive closure of the DAG D = (V, A).

The operation returns the vertices P̂ (X ).

Note however that 1 ≤ |X | ≤ |V|. Therefore the running time of this algorithm in terms

of |V| is O(|V|2).

tc vset succ : ([in] TC(D) : transitive closure, [in] X : vertex set) → vertex set

This operation assumes that TC(D) is the transitive closure of the DAG D = (V, A).

The operation returns the vertices Ŝ(X ).
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Note however that 1 ≤ |X | ≤ |V|. Therefore the running time of this algorithm in terms

of |V| is O(|V|2).

A.9 Other Assumptions

Below are the remaining assumptions made in our analyses of this work’s algorithms.

We assume that assignments (denoted x ← y) have negligible running times, and are

treated as having time O(1). For simple objects such as integers, this is clearly an

appropriate assumption for modern computers. For complex objects such as vertex sets,

we assume that the assignment is is the binding of an identifier to a pre-existing object,

and not the creation of a new object or a new copy of the object.

Simple scalar operations on numbers (addition, comparison, etc.) or Boolean values

(negation, conjunction, etc.) are assumed to have time O(1).

As noted in Section 2.3, |A| is bounded as |A| ≤ |V|(|V| − 1)/2. From this we have

|A| = O(|V|2). This result is used in various running-time analyses throughout this

work.

The asymptotic running times of the primitive operations and algorithms presented in

this work are generally bounded by some function of |V|, the order of the overall DAG

under consideration. It is often possible to obtain tighter bounds on the worst-case

running time of a primitive operation when additional terms are considered, such as

the particular number of elements in a sequence, or the particular number of arcs in

an arc set. However, for the sake of simplified running-time analyses, |V| is the only

non-constant value to appear in our statements of asymptotic running time.
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APPENDIX B

Utility Algorithms

In this appendix we present algorithms which are not the main focus of this work, but

which are called by the more interesting algorithms elsewhere in the work.

The algorithms presented here differ from the operations in Appendix A in that their

function, asymptotic running time, and/or randomness properties merit more explana-

tion than do the operations presented in Appendix A.

Table B.3 below provides a the subroutine name and running time for each algorithm

described in this appendix. Sections B.1-B.4 follow with a detailed presentation of each

algorithm.

Operation Time

contract ( D, X , x′ ) O(|V|2)

induce subdigraph ( D, X ) O(|V|2)

get strict dir innbrs ( TC(D), X ) O(|V|2)

get strict dir outnbrs ( TC(D), X ) O(|V|2)

topsort with embedded cvx set ( D, X ) O(|V|2)

Table B.3: Summary of Utility Algorithms

B.1 Contracting a Digraph

We present below an algorithm for computing the contraction of a digraph (see Sec-

tion 2.5).

This algorithm is a trivial implementation of the definition given in Section 2.5, and we

consider its correctness to be easily verified by inspection. The algorithm’s asymptotic

running time is as follows.

The loop spanning lines 2-6 may have up to |V| iterations, and each iteration of the loop
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Algorithm 5 Contract a Digraph

Function contract : (D, X , x′) → D′

Require:
(R1) D = (V, A) is a DAG.

(R2) ∅ ⊂ X ⊆ V

(R3) x′ /∈ X
Ensure:

(E1) D′ = (V ′, A′) is the contraction of X to x′ in D.

1: V ′ ← x′ vset init by vertex(V ′, x′ ) O(|V|)
2: for all V ∈ v do vset iterate( v ) O(|V|)
3: if v /∈ X then vset is member(X , v ) O(1)
4: V ′ ← V ′ ∪ {v} vset add(V ′, v ) O(1)
5: end if
6: end for

7: A′ ← ∅ vset clear(A′ ) O(|V|)
8: for all A ∈ (u1, v1) do aset iterate( (u1, v1) ) O(|V|2)
9: if u1 /∈ V then vset is member(V, u1 ) O(1)
10: u2 ← u1 (bind identifier) O(1)
11: else
12: u2 ← x′ (bind identifier) O(1)
13: end if
14: if v1 /∈ X then vset is member(X , v1 ) O(1)
15: v2 ← v1 (bind identifier) O(1)
16: else
17: v2 ← x′ (bind identifier) O(1)
18: end if
19: A′ ← A′ ∪ {(u2, v2)} aset add(A′, (u2, v2) ) O(1)
20: end for
21: return D′ = (V ′, A′)
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body is O(1). Therefore the running time of lines 1-6 is clearly O(|V|).

As shown in Section 2.3, |A| = O(|V|2). Therefore the loop spanning lines 8-20 has

O(|V|2) iterations, each of which has an running time of O(1) (lines 9-19). From this we

have a running time of lines 8-20 of O(|V|2).

The running time of lines 8-20 dominates, giving the overall algorithm a running time

of O(|V|2).

B.2 Inducing a Subgraph

Algorithm 6 computes an induced subdigraph, as described in Section 2.6.

Algorithm 6 Induce Subgraph

Function induce subdigraph : (D, X ) → D<X>
Require:

(R1) D = (V, A) is a DAG.

(R2) X ⊆ V
Ensure:

(E1) D<X>= (X , A′) is the subdigraph of D induced by X .

1: A′ ← ∅ aset clear(A′ ) O(|V|2)
2: for all A ∈ (u, v) do aset iterate( (u, v) ) O(|V|2)
3: if (u /∈ X ) ∧ (v /∈ X ) then vset is member(X , u ) O(1)

vset is member(X , v ) O(1)
4: A′ ← A′ ∪ {(u, v)} aset add(A′, (u, v) ) O(1)
5: end if
6: end for
7: return D<X>= (X , A′)

This algorithm is a trivial implementation of the definition given in Section 2.6, and we

consider its correctness to be easily verified by inspection. The algorithm’s asymptotic

running time is as follows.

Lines 1 and 2 are each timeO(|V|2). As shown in Appendix A.9, |A| = O(|V|2). Therefore

the loop body on lines 3-4 executes O(|V|2) times, and each iteration of the body is O(1).

Therefore the overall running time of this algorithm O(|V|2).
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B.3 Computing N⊖(X ) and N⊕(X )

Algorithms 7 and 8 below compute the strictly direct in-neigbors and out-neigbors,

respectively, of a vertex set (see Section 2.8).

Algorithm 7 Compute Strictly Direct In-Neighbors

Function get strict dir innbrs : (TC(D), X ) → N⊖(X )
Require:

(R1) D = (V, A) is a DAG.

(R2) TC(D) is the transitive closure of D.

(R3) ∅ ⊂ X ⊂ V is a convex set of D.
Ensure:

(E1) N⊖(X ) = {u | ((u,X ) ∈ A) ∧ (u /∈ X ) ∧ (Ŝ(v) ∩ P̂ (X ) ⊆ X ) }

1: N⊖(X )← ∅ vset clear(N⊖(X ) ) O(|V|)
2: IX ← call aset in nbors(A,X ) O(|V|2)
3: PX ← P̂ (X ) tc vset pred(TC(D),X ) O(|V|2)
4: for all v ∈ IX do vset iterate(IX ) O(|V|)
5: use← (Ŝ(v) ∩ PX ) ⊆ X tc vtx succ(TC(D), v ) O(|V|)

vset isect( . . . ) O(|V|)
vset is subset( . . . ) O(|V|)

6: if use then (scalar op) O(1)
7: N⊖(X )← N⊖(X ) ∪ {v} vset add(N⊖(X ), v ) O(1)
8: end if
9: end for
10: return N⊖(X )

Algorithms 7 and 8 are trivial implementations of the formulae given in Equation (1)

and Equation (2), respectively. Using the assumptions stated in Appendix A, these

algorithms’ runnings times are clearly O(|V|2).

113



Algorithm 8 Compute Strictly Direct Out-Neighbors

Function get strict dir outnbrs : (TC(D), X ) → N⊕(X )
Require:

(R1) D = (V, A) is a DAG.

(R2) TC(D) is the transitive closure of D.

(R3) ∅ ⊂ X ⊂ V is a convex set of D.
Ensure:

(E1) N⊕(X ) = {u | ((X , u) ∈ A) ∧ (u /∈ X ) ∧ (P̂ (v) ∩ Ŝ(X ) ⊆ X ) }

1: N⊕(X )← ∅ vset clear(N⊕(X ) ) O(|V|)
2: OX ← call aset out nbors(A,X ) O(|V|2)
3: SX ← Ŝ(X ) tc vset succ(TC(D),X ) O(|V|2)
4: for all v ∈ OX do vset iterate(OX ) O(|V|)
5: use← (P̂ (v) ∩ SX ) ⊆ X tc vtx pred(TC(D), v ) O(|V|)

vset isect( . . . ) O(|V|)
vset is subset( . . . ) O(|V|)

6: if use then (scalar op) O(1)
7: N⊕(X )← N⊕(X ) ∪ {v} vset add(N⊕(X ), v ) O(1)
8: end if
9: end for
10: return N⊕(X )

B.4 Topological Sorting with Embedded Convex Set

Given X , a convex set of D, Algorithm 9 returns some topological sort of D in which

the vertices of X appears as a contiguous subsequence.

B.4.1 Running Time of Algorithm 9

From inspection, algorithm clearly has running time O(|V|2). We proceed below with an

overview of the algorithm’s approach, followed by more formal arguments its correctness.

B.4.2 Overview of Algorithm 9

This algorithm ensures that ~Q a topological sort of D by establishing that for every arc

(u, v) ∈ A, u appears before v in ~Q.

The arcs of D are implicitly divided into four groups, differentiated on whether or not a
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Algorithm 9 Topologically Sort with an Embedded Contiguous Convex Set

Function topsort with embedded cvx set : (D, X ) → ~Q
Require:

(R1) D = (V, A) is a DAG.

(R2) ∅ ⊂ X ⊆ V is a convex set of D.
Ensure:

(E1) ~X is a topological sort of D<X >.

(E2) ~Q is a topological sort of D.

(E3) ~Q has the structure ~Q = [. . . , ~X, . . .].

(E4) Let ~Z be any topological sort of D with structure
[. . . , u, ~X, . . .]. Then there is a non-zero probability that each
invocation of this algorithm returns ~Q such that ~Q = ~Z.

(E5) Let ~Z be any topological sort of D with structure
[. . . , ~X, u, . . .]. Then there is a non-zero probability that each
invocation of this algorithm returns ~Q such that ~Q = ~Z.

1: (V ′, A′)← call contract(D,X , x′ ) O(|V|2)
2: A′ ← A′ \ (x′, x′) aset del(A′, (x′, x′) ) O(1)

(Comment: ~T = ~Wx′~Y for some ~W , ~Y )
3: ~T ← call dag rand topo sort(DC = (V ′, A′) ) O(|V|2)
4: xpos← call vseq find( ~T , x′ ) O(|V|)
5: ~W ← ~T J1 . . . (xpos− 1)K vseq slice( ~T , . . . ) O(|V|)
6: ~Y ← ~T J(xpos+ 1) . . . |~T |K vseq slice( ~T , . . . ) O(|V|)

7: D<X>← call induce subdigraph(D,X ) O(|V|2)
8: ~X ← call dag rand topo sort(D<X> ) O(|V|2)
9: ~Q← ~W ~X~Y vss concat( ~W, ~X ) O(1)

vss concat( ~W ~X, ~Y ) O(1)

10: return ~Q
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given arc originates in X , and whether or not the arc terminates in X .

Although ~T is a topological sort ofDC rather thanD, DC may have some arcs in common

with D. The algorithm ensures that for the vertices ordered by these common arcs, the

relative ordering of these vertices as provided by ~T is preserved during the construction

of ~Q.

Similarly, although ~X is a topological sort of D<X> rather than of D, D<X> and D,

and (X ,X )-arc in D is also an arc in D<X>. By ensuring that ~Q has the same relative

ordering of all vertices in X as does ~X , the algorithm guarantees that ~Q is consistent

with all (X ,X ) arcs of D.

Line 1. Recall that in the contraction X → x′ of D, every arc in D that terminates in

X is replaced by an arc terminating at the vertex x′. Similarly, any arc originating in

X in D is replaced by an arc originating at x′. In all other regards, the directed graph

(V ′, A′) is identical to D.

Line 2. Although D is by assumption acyclic, the possibility exists that (V ′, A′) contains

a cycle. If A has any arc of the form (X ,X ), then the arc (x′, x′) is be present in (V ′, A′).

The presence of such an arc in (V ′, A′) is not problematic for our overall purposes, but

if present, (V ′, A′) is not acyclic and therefore has no topological sort. Therefore on line

2 we ensure (V ′, A′) is a DAG by ensuring (x′, x′) /∈ A′.

Lines 3-6. Here we create a topological sort of (V ′, A′). A crucial correspondence exists

between ~T and every topological sort of D. The correspondence is discussed in terms of

the four categories of arcs in A identified above. All four categories are covered in our

analyses of the remaining lines of this algorithm. Lines 4-6 simply decompose ~T into the

components ~W , x′, and ~Y .

Lines 7-9. The induced digraph D<X > contains all vertices in X , and all of the (X ,X )

arcs in A. Because D<X > has a subset of the arcs in a DAG (D), it is not possible

that D<X > contains any cycle. Therefore D<X > is also a DAG. All DAG’s have at
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least one topological sort 1, which here we call ~X.

Line 8 obtains an arbitrary topological sort of D<X >, and line 9 constructs a total

ordering of V. In the following subsections we show that ~Q satisfies all of this algorithm’s

postconditions.

B.4.3 Correctness of Algorithm 9 postconditions (E1) - (E3)

Postconditions (E1) and (E3) are clearly satisfied by lines 7 an 9 of the algorithm. We

now prove postcondition (E2).

~Q is a topological sort of D if and only if for every arc (u, v) ∈ A, u appears before v in

~Q. We divide the arcs of A into four groups, and for each group show that this ordering

requirement is satisfied by D.

Case 1: (u, v) ∈ A, with u ∈ X ∧ v ∈ X :

Every arc of this form is also an arc in the DAG D<X>. ~X is a topological sort of

D<X>. Therefore for every arc (u, v) ∈ A, u appears before v in ~X.

~Q contains ~X, and therefore if u appears before v in ~X , u also appears before v in ~Q.

Thus every arc in A covered by Case 1 is respected by ~Q.

Case 2: (u, v) ∈ A, with u /∈ X ∧ v ∈ X :

~T is a topological sort of the DAG (V ′, A′). Therefore for every arc of the form (u, x′) ∈

A′, u appears before x′ in ~T .

From lines 4-5 of the algorithm, we have u ∈ W. From lines 7-8 of the algorithm, we

have that if v ∈ X , then v ∈ ~X. Therefore every arc covered by Case 2 is an arc of the

form (W,X ).

Line 9 of the algorithms constructs ~Q such that all vertices inW occur before all vertices

1See [1, Prop. 2.1.3].
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of X . Therefore every arc in A covered by Case 2 is respected by ~Q.

Case 3: (u, v) ∈ A, with u ∈ X ∧ v /∈ X :

The proof for Case 3 has the same structure as the proof for Case 2, above.

Case 4: (u, v) ∈ A, with u /∈ X ∧ v /∈ X :

Because neither u nor v is a member of X , the arc (u, v) is an arc in both D and in the

contracted digraph (V ′, A′). ~T is a topological sort of (V ′, A′), therefore for every arc

(u, v) covered by Case 4, u appears before v in ~T .

We now show that for the arcs (u, v) covered by Case 4, u also appears before v in ~Q.

There are three possible locations for u and v: u, v ∈ W, or u, v ∈ Y, or u ∈ W ∧ v ∈ Y.

If u, v ∈ W, then any topological sort with ~W as an embedded subpath respects the

(u, v) arc. ~Q is one such topological sort, and therefore u appears before v in ~Q.

By similar reasoning, if u, v ∈ Y, then u appears before v in ~Q.

Finally, if u ∈ W ∧ v ∈ Y, then u appears before v in ~Q because line 9 of the algorithm

~Q such that all vertices of ~W appear before all vertices of ~Y .

This concludes our proof of postcondition (E3).

B.4.4 Correctness of Algorithm 9 postconditions (E4)-(E5)

We now demonstrate that postcondition (E4) holds: If ~Z = . . . u,X . . . is a topological

sort of D for any u /∈ X , then there’s a non-zero probability that this algorithm returns

~Z.

This follows directly from our assumptions about the randomness of the

dag rand topo sort subroutine as detailed in Appendix A.3.

Postcondition (E5) holds by the same logic.
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APPENDIX C

Basic Convexity Algorithms

In this appendix we present algorithms for initializing a convex set according to either

of two criteria, and for growing or shrinking an existing convex set by some specified

number of vertices.

For each of these four kinds of algorithms, we provide two variations based on their un-

derlying approach. One group of algorithms is implemented using the transitive closure

of the DAG and P̂ and Ŝ sets, and the other group is implemented in terms of topolog-

ical sorts of the DAG. Section 7.3 discusses the relative merits of using these different

implementation approaches.

Operation Time

init convex set by seeds PS ( TC(D),X ) O(|V|2)

init convex set by seeds TS ( D,X ) O(|V|2)

init convex set by order PS ( TC(D), σ ) O(|V|3)

init convex set by order TS ( D,σ ) O(|V|2)

grow convex set PS ( TC(D),X , δ ) O(|V|3)

grow convex set TS ( D,X , δ ) O(|V|2)

shrink convex set PS ( TC(D),X , δ ) O(|V|2)

shrink convex set TS ( D,X , δ ) O(|V|2)

Table C.4: Summary of Basic Convexity Algorithms

C.1 Initializing Convex Set by Seeds using P̂ and Ŝ

Algorithm 10 computes the smallest convex superset of the specified set of seed vertices.

If the seed set X is a convex set of D, this simply returns X .

The correctness of Algorithm 10 is clearly established by Theorem 5.3.4 and Corol-

lary 5.3.5. From inspection the running time of this algorithm is clearly O(|V|2).
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Algorithm 10 Initialize a Convex Set by Seeds using P̂ and Ŝ

Function init convex set by seeds PS : (TC(D), X ) → W
Require:

(R1) D = (V, A) is a DAG.

(R2) TC(D) is the transitive closure of D.

(R3) ∅ ⊂ X ⊂ V
Ensure:

(E1) W is the smallest superset of X that is a convex set of D.

1: PX ← P̂ (X ) tc vset pred(TC(D),X ) O(|V|2)
2: SX ← Ŝ(X ) tc vset succ(TC(D),X ) O(|V|2)
3: W ← X ∪ (PX ∩ SX ) vset isect(PX ,SX ) O(|V|)

vset union(X , . . . ) O(|V|)
4: return W

C.2 Initializing Convex Set by Seeds using Topological Sort

Algorithm 11 computes some convex superset of the specified set set. Note that unlike

Appendix C.1, this algorithm makes no assurance that it returns the smallest convex

superset of the seed set. This stems from this algorithm’s use of a random topological

sort, which may not arrange the vertices of X into the smallest possible subsequence of

the topological sort.

Algorithm 11 Initialize a Convex Set by Seeds using Topological Sort

Function init convex set by seeds TS : (D, X ) → W
Require:

(R1) D = (V, A) is a DAG.

(R2) ∅ ⊂ X ⊆ V
Ensure:

(E1) Z is a convex set of D.

(E2) X ⊆ Z

1: ~T ← call dag rand topo sort(D ) O(|V|2)
2: (p, q)← call vseq find bounds( ~T ,X ) O(|V|2)
3: ~Z ← ~T Jp . . . qK vseq slice( ~T , . . . ) O(|V|)
4: Z ← call vseq to vset( ~Z ) O(|V|)
5: return Z

From inspection, the running time of this algorithm is clearly O(|V|2).

We establish the algorithm’s correctness as follows. Clearly X ⊆ Z, because the subse-

120



quence of ~T from which Z is formed contains all members of X .

What remains is to show that Z is a convex set of D. This follows from Theorem 4.2.1,

which states that any contiguous subsequence of any topological sort of D is itself a

convex set of D.

C.3 Initializing Convex Set by Order using P̂ and Ŝ

Algorithm 12 creates a convex set of the specified order σ using the predecessor and

successor set operations.

Algorithm 12 Initialize a Convex Set by Order using P̂ and Ŝ

Function init convex set by order PS : (TC(D), σ) → Z
Require:

(R1) D = (V, A) is a DAG.

(R2) TC(D) is the transitive closure of D.

(R3) 1 ≤ σ ≤ |V|
Ensure:

(E1) Z is a convex set of D.

(E2) |Z| = σ

1: X ← call vset random subset(V, 1 ) O(|V|)
2: Z ← call grow convex set PS(TC(D),X , (σ − 1) ) O(|V|3)
3: return Z

From inspection, the running time of this algorithm is clearly dominated by line 2, and

is therefore O(|V|3).

The correctness of this algorithm is trivially given by the correctness of the subroutine

grow convex set PS (Algorithm 14), which is established in Appendix C.5.

C.4 Initializing Convex Set by Order using Topological Sort

Algorithm 13 creates a convex set with the specified number of vertices, without regard

to which particular vertices appear in the set.
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Algorithm 13 Initialize Convex Set by Order using Topological Sort

Function init convex set by order TS : (D, σ) → X
Require:

(R1) D = (V, A) is a DAG.

(R2) 1 ≤ σ ≤ |V|
Ensure:

(E1) X is a convex set of D.

(E2) |X | = σ

1: ~T ← call dag rand topo sort(D ) O(|V|2)
2: X ← ~T J1 . . . σK vseq slice( ~T , . . . ) O(|V|)
3: return X

The running time of this algorithm is dominated by line 1, and is therefore O(|V|2).

This algorithm is trivially correct due to Theorem 4.2.1, which states that any contiguous

subsequence of any topological sort of D is itself a convex set of D.

C.5 Growing Convex Sets Using P̂ and Ŝ

Given a convex set X , Algorithm 14 returns some superset of X having |X |+ δ vertices.

C.5.1 Running Time of Algorithm 14

We now consider the running time of Algorithm 14, using the assumptions stated in

Appendix A.

Lines 3-6 have the highest asymptotic running-times of any in the algorithm, O(|V|2)

per activation. Furthermore, these lines are within a loop that might execute up to δ

times.

δ represents the number of vertices to be added to X . Because |X | ≥ 1, and the set

produced by this algorithm must be an improper subset of V, it must always be true

that δ < |V|.

Therefore the overall running time for this algorithm is O(δ × |V|2), or O(|V|3).

122



Algorithm 14 Grow Convex Set Using Predecessor and Successor Sets

Function grow convex set PS : (TC(D), X , δ) → Z
Require:

(R1) D = (V, A) is a DAG.

(R2) TC(D) is the transitive closure of D.

(R3) ∅ ⊂ X ⊂ V is a convex set of D.

(R4) 1 ≤ δ ≤ |V \ X |
Ensure:

(E1) Z is a convex set of D.

(E2) X ⊂ Z

(E3) |Z| = |X |+ δ

(E4) Let u /∈ X be any vertex such that X ∪ {u} is a convex set of D.
Then if δ = 1, there is a non-zero probability that this algorithm
returns with Z = X ∪ {u}.

1: Z ← call vset clone(X ) O(|V|)
2: for i = 1 to δ do (scalar op) O(δ − 1)
3: PZ ← P̂ (Z) tc vset pred(TC(D),Z ) O(|V|2)
4: SZ ← Ŝ(Z) tc vset succ(TC(D),Z ) O(|V|2)
5: N⊖(Z)← call get strict dir innbrs(TC(D),Z ) O(|V|2)
6: N⊕(Z)← call get strict dir outnbrs(TC(D),Z ) O(|V|2)
7: R ← (V \ (Z ∪ PZ ∪ SZ)) vset union( . . . ) O(|V|)

vset union( . . . ) O(|V|)
vset diff( . . . ) O(|V|)

8: Y ← N⊖(Z) ∪ N⊕(Z) ∪R vset union( . . . ) O(|V|)
vset union( . . . ) O(|V|)

9: W ← call vset random subset(Y, 1 ) O(|V|)
10: Z ← Z ∪W vset union(Z,W ) O(|V|)
11: end for
12: return Z
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C.5.2 Correctness of Algorithm 14 postconditions (E1)-(E3)

Each activation of the loop body spanning lines 3-9 grows Z by one vertex, using the

formula given by Theorem 5.4.3. The algorithm’s preconditions ensure that Z is a convex

set of D prior to the first activation of the loop body, and Theorem 5.4.3 ensures that

the new value of Z is a convex set of D after each completion of the loop body.

The for-loop spanning lines 2-10 repeatedly applies Theorem 5.4.3 to obtain a convex

set of order |X |+ δ.

C.5.3 Correctness of Algorithm 14 postcondition (E4)

Theorem 5.4.3 states that Y is the precise vertex set such that X ∪ {y} is a convex set

of D if and only if y ∈ Y.

When δ = 1, this algorithm clearly ensures that whichever vertex was added to X is a

vertex from Y. What remains is to show that this algorithm has a non-zero probability of

selecting each vertex y ∈ Y. This comes from our definition of the vset random subset

operation, which in Appendix A.4 is defined to have a non-zero probably of returning

any subset of the specified order.

C.6 Growing Convex Sets Using Topological Sort

Given a convex set X , this algorithm returns some superset of X having |X |+ δ vertices.

From inspection, the running time of this algorithm is clearly O(|V|2). We now consider

the algorithm’s correctness.

C.6.1 Correctness of Algorithm 15 postconditions (E1)-(E3)

Line 1 computes a topological sort of D in which the members of X are contiguous.

Theorem 4.2.2 demonstrates that it is always possible to attain such an ordering.
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Algorithm 15 Grow Convex Set Using Topological Sort

Function grow convex set TS : (D, X , δ) → Z
Require:

(R1) D = (V, A) is a DAG.

(R2) ∅ ⊂ X ⊂ V is a convex set of D.

(R3) 1 ≤ δ ≤ |V \ X |
Ensure:

(E1) Z is a convex set of D.

(E2) X ⊂ Z.

(E3) |Z| = |X |+ δ.

(E4) Let u /∈ X be any vertex such that X ∪ {v} is a convex set of D.
Then if δ = 1, there is a non-zero probability that this algorithm
returns with Z = X ∪ {v}.

(Comment: ~T = ~W ~X~Y for some ~W , ~X , and ~Y )
1: ~T ← call topsort with embedded cvx set(D,X ) O(|V|2)
2: (xstart, xend)← call vseq find bounds( ~T ,X ) O(|V|2)

3: num w← call random integer( 0, (xstart − 1) ) O(1)
4: num y ← (δ − num w) (scalar op) O(1)

5: slicestart ← (xstart − num w) (scalar op) O(1)
6: sliceend ← (xend + num y) (scalar op) O(1)
7: ~Z ← ~T Jslicestart . . . sliceendK vseq slice( ~T , . . . ) O(|V|)
8: Z ← call vseq to vset( ~Z ) O(|V|)
9: return Z
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Lines 2-8 randomly select a contiguous subsequence ~Z of ~T . ~Z has |X |+ δ elements, and

contains ~X. Because ~X contains precisely the vertices of V, Z is a superset of X .

Because ~Z is a contiguous subsequence of a topological sort of D, we have from Theo-

rem 4.2.1 that Z is a convex set of D.

C.6.2 Correctness of Algorithm 15 postcondition (E4)

From Theorem 4.2.5, we have that for any vertex v ∈ V \X such that X ∪{v} is a convex

set of D, there exists at least one topological sort of the form ~T = [. . . , v, ~X, . . .] or of

the form ~T = [. . . , ~X, v, . . .]. We show that when δ = 1, line 1 of this algorithm has a

non-zero probability of producing such a topological sort for any such vertex v. We then

show that given such a topological sort, there’s a non-zero probability of v subsequently

being selected to appear in Z.

In Appendix B.4 it is shown that topsort with embedded cvx set if a topological sort

exists having either of those two forms, there is a non-zero probability that an invocation

of topsort with embedded cvx set returns a topological sort having that form. And

so in line 1 of this algorithm we have a non-zero probability that for any u ∈ V \X such

that X ∪ {v} is a convex set of D, ~T has either the structure ~T = [. . . , v, ~X, . . .] or of

the form ~T = [. . . , ~X, v, . . .].

Line 3 determines which neighbors in ~T of ~X appear in Z. Because the random integer

is defined to have a non-zero probability of returning any value in the closed interval

[0, (xstart − 1)], there is a non-zero probability that line 3 causes Z to contain either the

vertex in ~T that immediately precedes ~X, and/or the vertex that immediately follows

~X.
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C.7 Shrinking Convex Sets Using P̂ and Ŝ

Given a convex set X , this algorithm returns some subset of X having |X | − δ vertices.

The basis for our approach to shrinking existing convex sets is provided in Theorem 5.4.5.

Algorithm 16 Shrink Convex Set Using Predecessor and Successor Sets

Function shrink convex set PS : (TC(D), X , δ) → Z
Require:

(R1) D = (V, A) is a DAG.

(R2) TC(D) is the transitive closure of D.

(R3) ∅ ⊂ X ⊆ V is a convex set of D.

(R4) |X | > 1

(R5) 1 ≤ δ < |X |
Ensure:

(E1) Z is a convex set of D.

(E2) Z ⊂ X

(E3) |Z| = |X | − δ

(E4) Let u /∈ X be any vertex such that X ∪ {v} is a convex set of D.
Then if δ = 1, there is a non-zero probability that this algorithm
returns with Z = X \ {v}.

1: PX ← P̂ (X ) tc vset pred(TC(D),X ) O(|V|2)
2: SX ← Ŝ(X ) tc vset succ(TC(D),X ) O(|V|2)
3: Z ← call vset clone(X ) O(|V|)
4: to remove← δ (bind identifier) O(1)
5: while to remove > 0 do (scalar op) O(1)
6: Y ← Z \ (P̂ (Z) ∩ Ŝ(Z)) vset isect( P̂ (Z), Ŝ(Z) ) O(|V|)

vset diff(Z, . . . ) O(|V|)
7: W ← call vset random subset(Y,min(|Y|, to remove) ) O(|V|)
8: Z ← Z \W vset diff(Z,W ) O(|V|)
9: to remove← to remove− |W| (scalar op) O(1)
10: end while
11: return Z

C.7.1 Running Time of Algorithm 16

Because δ represents the number of vertices to be removed from X , and the resulting

set Z cannot be the empty set, we have δ < |V|. This provides the upper limit for the

number of iterations of the loop spanning lines 5-10.
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The longest-running statements within the loop body are O(|V|). Therefore the overall

loop has a running time of O(|V|2). This matches the running times of lines 1-2, and so

the overall running time of this algorithm is O(|V|2).

C.7.2 Correctness of Algorithm 16 postconditions (E1)-(E3)

The correctness of this algorithm comes from Theorem 5.4.5, which indicates that for a

given convex set X of D, any subset of X \ (P̂ (X ) ∩ Ŝ(X )) may be removed from X to

obtain a new convex set of D.

The loop body spanning lines 5-9 deletes as many vertices as possible from Z using

the formula given by Theorem 5.4.5. The algorithm’s preconditions ensure that Z is a

convex set of D before the first activation of the loop body, and Theorem 5.4.5 ensures

that the new version of Z is a convex set of D after each completion of the loop body.

Corollary 5.4.6 ensures that Y 6= ∅, and therefore each activation of the loop body always

reduces the order of Z by at least one. Therefore this algorithm always terminates.

Because there is no assurance that |Y| ≥ δ, repeated applications of the formula from

Theorem 5.4.5 may be necessary, provide by the loop spanning lines 5-10.

C.7.3 Correctness of Algorithm 16 postcondition (E4)

We begin by showing that when δ = 1, the loop body spanning lines 6-9 is executed

precisely once. When δ = 1, to remove > 0 is clearly true, and so at least one loop

iteration occurs.

From Corollary 5.4.6, we have that for every activation of line 6, |Y| > 0. From this if

follows that lines 7-9 always cause to remove to be decremented by at least 1. When

δ = 1, this ensures that after the first iteration of the loop, to remove is set to 0.

We now show that when the loop body executed precisely one time, this algorithms
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returns Z = X \ {y}, where there is a non-zero probability that y is any of the vertices

in V \ X such that X \ {y} is a convex set of D.

Observe that in the first (and in this case, only) iteration of the loop, we have Z = X .

Therefore line 6 computes the formula Y = X \(P̂ (X )∩Ŝ(X )). Theorem 5.4.7 establishes

that this is the precise vertex set such that the deletion of any one of them from X yields

another convex set of D.

Our goal now is to show that for any y ∈ Y, there is a non-zero probability that Z =

X \ {y}. This comes from our definition of the vset random subset operation, which

in Appendix A.4 is defined to have a non-zero probably of returning any subset of the

specified order.

C.8 Shrinking Convex Sets Using Topological Sort

Given a convex set X , this algorithm returns some superset of X having |X |+ δ vertices.

Algorithm 17 Shrink Convex Set Using Topological Sort

Function shrink convex set TS : (D, X , δ) → Z
Require:

(R1) D = (V, A) is a DAG.

(R2) ∅ ⊂ X ⊆ V is a convex set of D.

(R3) |X | > 1

(R4) 1 ≤ δ < |X |
Ensure:

(E1) Z is a convex set of D.

(E2) Z ⊂ X .

(E3) |Z| = |X | − δ

(E4) Let u /∈ X be any vertex such that X ∪ {v} is a convex set of D.
Then if δ = 1, there is a non-zero probability that this algorithm
returns with Z = X \ {v}.

1: D<X >← call induce subdigraph(D,X ) O(|V|2)
2: ~U ← call dag rand topo sort(D<X > ) O(|V|2)
3: ~Z ← call vseq random slice( ~U, |X | − δ ) O(|V|)
4: Z ← call vseq to vset( ~Z ) O(|V|)
5: return Z
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From inspection the running time of this algorithm is clearly O(|V|2).

C.8.1 Correctness of Algorithm 17 postconditions (E1)-(E3)

Lines 1-2 compute a topological sort of D<X >, from which a subsequence is drawn in

line 3.

As shown in the discussion of Algorithm 15, it is possible to compute a topological sort

~T of all of D, where ~U is a subsequence of ~T . However, determining a topological sort for

all of D is unnecessary for Algorithm 17, because only the relative ordering of elements

in X is relevant here.

Because ~Z is a contiguous subsequence in of some topological sort of D, Z is a convex

set of D (see Theorem 4.2.1), satisfying postcondition (E1).

~U is a total ordering of X , and so any proper subsequence of ~U is an ordering of a proper

subset of X . Because delta > 0, line 3 establishes ~Z as one such proper subsequence of

~U , and therefore Z ⊂ X , satisfying postcondition (E2).

Postcondition (E3) is obtained directly by the definition of

vseq random slice (see Appendix A.6).

C.8.2 Correctness of Algorithm 17 postcondition (E4)

From Theorem 5.4.7 we have that X \ {y} is a convex set of D if and only if y ∈

X \ (P̂ (X ) ∩ Ŝ(X )). It follows then that either y /∈ P̂ (X ), and/or y /∈ Ŝ(X ).

If y /∈ P̂ (X ), then there must be some topological sort of D<X > in which y is the

last element of the sequence. If no such topological sort existed, it would indicate that

D<X > contains a (y,X \ {y}) arc, contradicting our assumption that y /∈ P̂ (X ).

For similar reasons, if y /∈ Ŝ(X ), then there must exist a topological sort of D<X > in
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which y appears as the first element of the topological sort.

The function dag rand topo sort is defined to have a non-zero probability of returning

any topological sort of the supplied DAG, and therefore has a non-zero probability of

returning a topological sort with y as the first or last element.

When δ = 1, vseq random slice is constrained to return the subsequence of ~U contain-

ing all elements of ~U except either the first or last. Furthermore, vseq random slice is

defined to have a non-zero probability of yielding either subsequence. Therefore regard-

less of whether y appears as the first or last element of ~U , there is a non-zero probability

of Z = X \ {y}.
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APPENDIX D

Arbitrary Transformation Algorithms

Below we present the convex set transformation algorithms supporting the arbitrary

transformation of convex sets as discussed in Chapter 6.

D.1 Transforming Convex Set into a Single Vertex with Convex Intermedi-
ate Sets

Given a convex set X of some DAG D, Algorithm 18 discovers a sequence R of single-

vertex removals that may be progressively applied to X , such that the set resulting from

each single-vertex removal is itself a convex set of D. That is, for any n ∈ [1, |R|],

removing from X the first n vertices of R yields a convex set.

Algorithm 18 Transform Convex Set into a Single Vertex with Convex Intermediate
Sets

Function evolve convex set to vertex : (D, X ) → R
Require:

(R1) D = (V, A) is a DAG.

(R2) ∅ ⊂ X ⊂ V
Ensure:

(E1) RJ1K = X

(E2) |RJ |R| K| = 1

(E3) ∀i∈1...|X |−1,∃u ∈ (V \ RJiK) such that RJi+ 1K = RJiK \ {u}

1: ~Q← call topsort with embedded cvx set(D,X )
2: (x low, x high)← call vseq find bounds( ~Q,X )
3: R← ∅
4: for i = x low to x high do
5: ~Y ← ~QJi . . . x highK
6: Y ← call vseq to vset( ~Y )
7: call vss append(R,Y )
8: end for
9: return R
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D.1.1 Correctness of Algorithm 18

The correctness of this algorithm is rooted in the correctness of

topsort with embedded cvx set and Theorem 4.2.1.

For any given convex set such as X , we can use topsort with embedded cvx set to

produce a topological sort ~Q ofD in which the elements X form a contiguous subsequence

of ~Q. This is accomplished by line 1.

Lines 2-8 cause each RJiK ∈ R to contain the vertices from a contiguous subsequence of

~Q. Because each RJiK is a contiguous subsequence of some topological sort of D, it is a

convex set of D (see Theorem 4.2.1).

When i = x low, line 5 gives us RJ1K = QJx low . . . x highK, satisfying postcondition

(E1).

When i = x high, line 5 gives us RJ |R| K = {~QJx highK}, satisfying postcondition (E2).

Now consider each iteration of the loop spanning lines 4-8. i is incremented by exactly

one during each loop iteration. From this it follows that for the ith iteration of the loop,

where i > 1, Y is the same set as was produced by the previous iteration, except that

the vertex ~QJi− 1K has been deleted. This ensures postcondition (E3).

D.2 Transforming between Arbitrary Convex Sets

Algorithm 19 provides a constructive proof that given any two convex sets X and Y

of some digraph D, one can always evolve X into Y using a sequence of single-vertex

additions, removals, and/or replacements, such that the set produced by each of those

single-vertex changes is also itself convex.
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Algorithm 19 Transform between Arbitrary Convex Sets

Function evolve between convex sets : (D, X , Y) → T
Require:

(R1) D = (V, A) is a DAG.

(R2) ∅ ⊂ X ⊆ V is a convex set of D.

(R3) ∅ ⊂ Y ⊆ V is a convex set of D.
Ensure:

(E1) Each vertex set in T is a convex set of D

(E2) T J1K = X

(E3) T J |T | K = Y

(E4) ∀i<|T |(|T Ji+ 1K| < |T JiK|) =⇒ ∃u ∈ T JiK such that

T Ji+ 1K = T JiK \ {u}

(E5) ∀i<|T |(|Ti+1| = |Ti|) =⇒ (|Ti+1| = |Ti| = 1) ∧ (Ti+1 6= Ti)

(E6) ∀i<|T |(|T Ji+ 1K| > |T JiK|) =⇒ ∃u ∈ (V \ T JiK) such that

T Ji+ 1K = T JiK ∪ {u}

1: Q ← call evolve convex set to vertex(D,X )
2: R← call evolve convex set to vertex(D,Y )
3: S ← call vss reverse(R )
4: if QJ |Q| K = SJ1K then
5: T = [Q, SJ2 . . . K]
6: else
7: T = [Q, S]
8: end if
9: return T
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D.2.1 Correctness of Algorithm 19

We consider each of the algorithm’s postconditions in turn.

Every vertex set in T is one of the vertex sets produced by

evolve convex set to vertex (Algorithm 18), and is therefore a convex set of

D. Thus postcondition (E1) holds.

The first vertex set of T is also the first vertex set of Q, which

evolve convex set to vertex ensures has the value X . This satisfies postcondi-

tion (E2).

The last element T is the first element of S, which in turn is the last element of R.

evolve convex set to vertex ensures that that vertex set is Y. Therefore postcondi-

tion (E3) is satisfied.

We now consider postconditions (E4)-(E6).

Recall that evolve convex set to vertex returns a sequence of vertex sets such that for

elements i and (i+1) of some returned sequence Z, we have |ZJi+ 1K| = |ZJiK|−1. That

is, as one proceeds through the sequence, each vertex set in the sequence is one vertex

smaller than the previous. This corresponds to the antecedent predicate in postcondition

(E4).

Because S is the reversal of a sequence produced by evolve convex set to vertex, in

general for the elements of S we have |SJi+ 1K| = |SJiK| + 1. This corresponds to the

antecedent predicate in postcondition (E6).

We consider two possibilities, corresponding to the test on line 4 of the algorithm.

Case 1: QJ |Q| K = SJ1K:

In Case 1, lines 1 and 2 of the algorithm yielded values for Q and R, respectively, in

which both vertex sets evolved down to the same single-vertex set. That is, for some
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u ∈ (X ∩ Y), QJ |Q| K = {u} and RJ |R| K = {u}:

T =[ QJ1 . . . |Q| − 1K, {u}, SJ2 . . . |S|K ]

︸ ︷︷ ︸

Q
︸ ︷︷ ︸

S

It follows then that the only adjacent pairs of vertices (T JiK, (T Ji+ 1K) to which postcon-

dition (E4) applies are those pairs with lie entirely within the part of T that is identical

to Q. Therefore, every adjacent pair of vertices in T to which postcondition (E4) applies

is known to satisfy postcondition (E4) because all of Q satisfies postcondition (E4).

Postcondition (E6) is satisfied by similar reasoning, with S rather than Q.

Postcondition (E5) does not pertain to Case 1, because there is no pair of adjacent

elements (T JiK,T Ji+ 1K) in T such that |T JiK| = |T Ji+ 1K|.

Case 2: QJ |Q| K 6= SJ1K:

In Case 2, from line 7 of the algorithm we have:

T = [QJ1 . . . |Q|K, SJ1 . . . |S|K]

As discussed in Case 1 above, the first |Q| elements of T comprise the only portion of T

to which postcondition (E5) applies, and is satisfied by that portion’s equality with Q.

Similarly, the remaining portion of T is the only portion to which postcondition (E6)

applies, and is satisfied by that portion’s equality with S.

Unlike Case 1 above, postcondition (E5) does pertain to Case 2. Both the final element

of Q (i.e., T J|Q|K) and the first element of S (i.e., T J|Q|+ 1K) containing just one vertex.

It is this pair of vertices to which postcondition (E5) applies. However, this if-then test

on line 4 ensures that in Case 2, we have T J|Q|K 6= T J|Q|+ 1K.
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APPENDIX E

Task Set Deconfliction

This appendix presents a pair of algorithms to modify a task set P such that no two

tasks overlap, and that the cycle-induction problem described in Subsection 3.3.1.3 is

avoided.

Suppose D = (V, A) is a DFG, and P = {T1, T2, . . . , Tn}. For each set Ti ∈ P , let

∅ ⊂ Ti ⊆ V and let Ti be a convex set of D.

Here we make no assumption that the sets in P are mutually disjoint (that is, ∀i 6=

i,Ti ∩ Tj = ∅). We also make no assumption that if P were translated to a collection of

graphs {Dparent, Dchild 1, Dchild 2, . . . , Dchild m}, that Dparent would be free of cycles.

E.1 Obtaining Disjoint Tasks

One approach to ensuring that independently evolved convex sets do not overlap is as

follows.

Let X and Y be two convex sets of some DFG, in which X ∩ Y 6= ∅. Either X or Y is

chosen as a “victim” set. Let us assume that Y is chosen as the victim. Vertices shall

be deleted from Y to yield a set Y ′, such that Y ′ is a convex set and X ∩ Y ′ = ∅.

Note that, but the definition of convex sets, the empty set is not a convex set. However,

it may be necessary for the victim set to become the empty set in order to eliminate

overlap. This is most easily seen in the example X = Y = {v} for some vertex v.

We assert but do not prove that either of the two formulae in Equation (E.18) ensure

that Y ′ is a subset of Y’, and is either a convex set of the DFG or is the empty set.

Y ′ = Y \ ((X ∩ Y) ∪ P̂ (X ∩ Y)))

Y ′ = Y \ ((X ∩ Y) ∪ Ŝ(X ∩ Y)))
(E.18)
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Informally, the formulae in Equation (E.18) may be understood as follows. By removing

X ∩Y from Y, we potentially introduce concavity in the resulting set, Y \ (X ∩Y). This

is because there may exist a path in the DFG which originates within Y \ (X ∩Y), then

passes through X ∩ Y, and then re-enters Y \ (X ∩ Y). Any such path is eliminated by

deleting from Y not just the vertices X ∩Y, but also any vertices which complete a cycle

between X ∩ Y and any vertices which are to remain in Y ′. This cycle may be broken

by further removing either P̂ (X ∩ Y) or Ŝ(X ∩ Y), which is why two variations of the

this approach are presented in Equation (E.18).

This approach for eliminating overlap within a pair of convex sets may be generalized

to eliminating any such pairwise overlap of convex sets in a task set of arbitrary order.

Algorithm 20 presents one such algorithm.

Algorithm 20 Elimination of Overlap in Multiple Convex Sets

Function eliminate overlap : (D, P ) → P ′

Require:
(R1) D = (V, A) is a DAG.

(R2) P = {T1 . . . Tn} is a set of tasks of D.
Ensure:

(E1) P ′ = {T ′
1 . . . T

′
n} is a set of tasks of D.

(E2) Each vertex set in P ′ is a convex set of D or is the empty set.

(E3) ∀i ∈ 1 . . . n,T ′
i ⊆ Ti

1: P ′ ← call vset clone(P )
2: for i = 1 to n− 1 do
3: for j = i+ 1 to n do
4: X ← P ′JiK
5: Y ← P ′JjK
6: I ← X ∩ Y
7: if I 6= ∅ then
8: P ′JjK← Y \ (I ∪ P̂ (I)))
9: end if
10: end for
11: end for
12: return P ′
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(a) DFG D with the task set
P ′ = {T ′

1 , T
′
2}, and tasks T ′

1 =
{B,C}, T ′

2 = {D,E}.

C

A

B

D E

F G

H

(b) For hyper-P̂ , if even one
vertex u of some task T ′

i pre-
cedes a vertex v, then all ver-
tices in T ′

i are considered to
precede v.

Figure E.7: Example of hyper-P̂ . P̂ ({F}) = {D}. However, hyper-P̂ ({F}) =
{A, B, C, D, E}.

E.2 Preventing Cycle-Induction during Translation

Algorithm 21 assumes that the input sets are individually convex sets of D, and are

collectively disjoint with each other. It produces a new collection of sets which are

guaranteed to be free of the cycle-induction problem described in Subsection 3.3.1.3.

E.2.1 Hyper-predecessor Sets and Hyper-successor Sets

Algorithm 21 makes use of the concepts of hyper-P̂ and hyper-Ŝ sets, described below.

An illustration of hyper-P̂ is provided in Figure E.7.

Let D = (V, A) be a DFG. Recall that the predecessor set of some vertex set X , denoted

P̂ (X ), is the collection of all vertices u /∈ X such that a (u,X ) path exists within D (see

Chapter 5).

Suppose that P ′ = {T ′
1 . . . T

′
n} is a set of convex, mutually disjoint tasks of D, such as
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produced by Algorithm 20.

We define the hyper-P̂ (X ) as follows:

• If D contains an arc (u,X ), then every member of hyper-P̂ (u) is also a member of

hyper-P̂ (X ).

• If there exists a task T ′
i ∈ P ′ such that u ∈ T ′

i , then for all v ∈ T ′
i , every vertex in

hyper-P̂ (v) is also a member of hyper-P̂ (X ).

Hyper-Ŝ is defined in a similar manner, using successors rather than predecessors. In

general, hyper-P̂ (X ) ⊇ P̂ (X ), and hyper-Ŝ(X ) ⊇ Ŝ(X ).

Hyper-P̂ /Ŝ are defined so as to anticipate the (non-hyper) P̂ /Ŝ sets that would arise

from replacing, in D, every task P ′ with the corresponding pair of SPAWN ans WAIT

vertices.

Note that these definitions depend upon D being acyclic, but remain well-defined even

when if the graph resulting from replacing each task T ′
i ∈ P ′ with a pair of WAIT and

SPAWN vertices contains a cycle.

E.2.2 Hyper-Predecessor/Successor Sets as Cycle Predictors

Algorithm 21 produces a set of tasks P ′′ = {T ′′
1 , T ′′

2 , . . . , T ′′
m}.

This crucial difference between the supplied task set P ′ and P ′′ is as follows. If the

DFG D is modified by replacing each task T ′
i ∈ P ′ with the two vertices SPAWN(T ′

i )

and WAIT(T ′
i ) , the resulting graph Dparent may contain a cycle, as described in Sub-

section 3.3.1.3.

In contrast, if D is modified by replacing each task in P ′′, rather than each task in P ′,

with SPAWN(T ′
i ) and WAIT(T ′

i ) vertices, the resulting graph Dparent is guaranteed to

by acyclic, solving the cycle-induction problem described in Subsection 3.3.1.3.
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The insight which drives this algorithm’s design is the following: Suppose P is a task

set for some DFG D. We assert but only informally prove the following: If P contains

two tasks Ti and Tj such that

hyper–P̂ (Ti) ∩ hyper–Ŝ(Ti) ∩ Tj 6= ∅ (E.19)

then producing Dparent as described above will cause Dparent to contain a cycle.

That proposition is based on the observation that hyper-P̂ (Ti), as computed in the

context of the DFG D, is identical to the set P̂ (SPAWN(Ti)) as computed in the graph

Dparent.

We may similarly observe that hyper-Ŝ(Ti), as computed in the context of the DFG D,

is identical to the set Ŝ(WAIT(Ti)) as computed in the graph Dparent.

Let Di
parent be the graph produced by replacing Ti with SPAWN(T ′

i ) and WAIT(T ′
i ) in

D. Further assume that Di
parent still contains the vertices Tj (i.e., Tj has not yet been

replaced by SPAWN(T ′
j ) and WAIT(T ′

j ) vertices in Di
parent).

Let P̂D and ŜD be the functions P̂ and Ŝ, respectively, evaluated in the context of the

DFG D. Let P̂Di
parent

and ŜDi
parent

be the functions P̂ and Ŝ, respectively, evaluated in

the context of the graph Di
parent. Then we have the following:

hyper–P̂D(Ti) ∩ hyper–ŜD(Ti) = P̂Di
parent

(SPAWN(Ti)) ∩ ŜDi
parent

(WAIT(Ti)) (E.20)

From Equation (E.20) it follows that ( Tj intersects both hyper-P̂ (Ti) and hyper-Ŝ(Ti)

in the DFG D ) if any only if ( Tj intersects both P̂ (SPAWN(Ti)) and Ŝ(WAIT(Ti)) in the

graph Di
parent ).

From this one can extend the principles used in Theorem 5.3.3 to show that further

modifying Di
parent by replacing Tj with the vertices SPAWN(Tj) and WAIT(Tj) would

induce a cycle in the graph.

Our conclusion then is the following.
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• LetD be a DFG, and let P ′ be a task set with the qualities ensured by Algorithm 20.

• Let Di
parent be the DFG produced by replacing some T ′

i ∈ P ′ with the vertices

SPAWN(Ti) and WAIT(Ti) .

• Let T ′
j ∈ P ′ be a task which has not yet been replaced by the vertices SPAWN(Tj)

and WAIT(Tj) in Di
parent.

• Let Dj
parent be the graph produced by replacing T ′

j with the vertices SPAWN(Tj)

and WAIT(Tj) in Di
parent.

• ThenDj
parent contains a cycle if and only if hyper–P̂D(Ti) ∩ hyper–ŜD(Ti) ∩ Tj 6= ∅.

In summary, once can use the hyper-P̂ and hyper-Ŝ operators to anticipate whether or

not two tasks are destined to participate in a parent-graph cycle should all of the task

set’s tasks be replaced with SPAWN and WAIT vertices.

E.2.3 Algorithm Overview

Algorithm 21 visits every pair of tasks in the supplied task set P ′. For each pair of

tasks, Equation (E.19) is used to predict whether or not those two tasks will ultimately

participate in the creation of a parent-graph cycle.

If a cycle is indicated, then vertices are deleted from one of the two tasks (the “victim”

task) such that Equation (E.19) no longer indicates that a cycle would be formed.

Line 9 of the algorithm is certain to produce a subset of Y which not only has no cycle

with X , but is also a convex set of D. This is because HSX ∩ Y = P̂ (Y), and removing

all predecessors or all successors of a set ensures that what remains is acyclic.

E.2.4 Algorithm Observations

Algorithm 21 has several noteworthy qualities, in light of its intended use to ensure that

machine-learned task sets can be translated into task-parallel programs.
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The first observation is that this algorithm may be systematically biased toward modi-

fying high-numbered tasks within the supplied task set P ′, because when two tasks are

found to be in conflict, the higher-numbered task is chosen as the victim. The impact of

this bias on the performance of the overall machine-learning system is unclear.

Secondly, without further study it’s not obvious that Algorithm 21 makes the smallest-

possible modifications to the tasks in P ′ in order to obtain P ′′. It may in fact be the

case that the algorithm’s statement P ′′JjK ← Y \HSX is equivalent to simply deleting

the victim task, P ′′JjK. This possibly over-aggressive modification of the victim task

may lead to small changes in the task set P ′ causing unnecessarily large and unintuitive

modifications in the modified task set P ′′. It may be the case that this causes avoidable

performance problems in the machine-learning system which evolves the task sets.
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Algorithm 21 Eliminating Cycle-Induction by Multiple Convex Sets

Function eliminate cycle induction : (D, P ′) → P ′′

Require:
(R1) D = (V, A) is a DAG.

(R2) P ′ = {T ′
1 . . . T

′
n} is a task set.

(R3) Each task in Ti ∈ P ′ is a convex set of D, or is the empty set.

(R4) ∀i 6= j,T ′
i ∩ T

′
j = ∅

Ensure:
(E1) Each task in P ′′ = {T ′′

1 . . . T ′′
n } is a convex set of D, or is the

empty set.

(E2) ∀i ∈ 1 . . . n,T ′′
i ⊆ T

′
i

(E3) The graph formed by replacing every set T ′
i ∈ P ′ with the vertex

pair SPAWN(Ti) and WAIT(Ti), as described in Subsection 3.3.1.1,
is acyclic.

1: P ′′ ← call vset clone(P ′ )
2: for i = 1 to n− 1 do
3: for j = i+ 1 to n do
4: X ← P ′′JiK
5: Y ← P ′′JjK
6: HPX ← compute hyper-P̂ (X ) using current value of P ′′

7: HSX ← compute hyper-Ŝ(X ) using current value of P ′′

8: if HPX ∩HSX ∩ Y 6= ∅ then
9: P ′′JjK← Y \HSX
10: end if
11: end for
12: end for
13: return P ′′
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APPENDIX F

Experimentally Derived Source Code

1 #include < s t r i n g u t i l . h>

2 #include <p a r s e u t i l . h>

3 #include <tbb / t i ck coun t . h>

4 #include <tbb /atomic . h>

5 #include <tbb / task group . h>

6 #include < l im i t s>

7 #include <c s td l i b>

8 #include <memory>

9 #include <vector>

10 #include <ca s s e r t>

11 #include <sstream>

12 #include <i ostream>

13

14 using namespace std ;

15

16 tbb : : atomic<int> randomizer seed ;

17

18 //=======================================================================

19

20 void v e r i f y s o r t ( unsigned int num data , const vector<double> & v ) {

21 i f (v . s i z e ( ) != num data ) {

22 os t r ings t r eam os ;

23 os << ” v e r i f y s o r t : num data=” << num data << ” , but v−>s i z e ( )=”

24 << v . s i z e ( ) ;

25 throw os . s t r ( ) ;

26 }

27

28 i f ( num data == 0) {

29 return ;

30 }

31

32 // Confirm tha t the vec tor data are s t r i c t l y non−decreas ing . . .

33 double prev = v [ 0 ] ;

34 for (unsigned int i = 1 ; i < v . s i z e ( ) ; ++i ) {

35 i f (v [ i ] < prev ) {

36 os t r ings t r eam os ;
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37 os << ”Unsorted data encountered : v [ ” << i << ”]=” << v [ i ]

38 << ” , prev=” << prev ;

39 throw os . s t r ( ) ;

40 }

41 prev = v [ i ] ;

42 }

43 }

44

45 //=======================================================================

46 // C++ func t i on s f o r v e r t i c e s

47 //=======================================================================

48

49 void op RANDOMIZE(

50 int num elements ,

51 std : : shar ed ptr<std : : vector<double>> & output r e c e i v e r

52 )

53 {

54 std : : shar ed ptr<std : : vector<double>> output ( new std : : vector<double> ) ;

55 output−>r e s e r v e ( num elements ) ;

56

57 // Create a pseudo−random seed va lue . This w i l l l ead to the same se t

58 // of seeds f o r a l l runs o f a g i ven DFG, but t ha t ’ s not a problem for

59 // our app l i c a t i on . We’ re j u s t generat ing load , anyway .

60 unsigned int seed = randomizer seed++;

61

62 for ( int i = 0 ; i < num elements ; ++i ) {

63 int r = rand r ( & seed ) ;

64 output−>push back ( r / double(RANDMAX) ) ;

65 }

66

67 ou tpu t r e c e i v e r = output ;

68 }

69

70 //=======================================================================

71

72 stat ic int l e s s t h an ( const void ∗ pa , const void ∗ pb ) {

73 const double a = ∗( reinterpret cast<const double ∗>(pa ) ) ;

74 const double b = ∗( reinterpret cast<const double ∗>(pb ) ) ;

75 i f ( a < b) {

76 return −1;

77 }
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78 else i f ( a > b) {

79 return 1 ;

80 }

81 else {

82 return 0 ;

83 }

84 }

85

86 /// Performs an in−p lace so r t o f @c v .

87 void op QUICKSORT(

88 std : : shar ed ptr< std : : vector<double>> & v1 ,

89 std : : shar ed ptr< std : : vector<double>> & output r e c e i v e r

90 )

91 {

92 a s s e r t ( ! v1−>empty ( ) ) ;

93 // doub le ∗ data = v1−>beg in () ;

94 double ∗ data = &(v1−>operator [ ] ( 0 ) ) ;

95 qsor t ( data , v1−>s i z e ( ) , s izeof (double) , l e s s t h an ) ;

96 ou tpu t r e c e i v e r = v1 ;

97 }

98

99

100 //=======================================================================

101

102 void op MERGESORT(

103 std : : shar ed ptr<std : : vector<double>> v1 ,

104 std : : shar ed ptr<std : : vector<double>> v2 ,

105 std : : shar ed ptr<std : : vector<double>> & output r e c e i v e r

106 )

107 {

108 a s s e r t ( ! v1−>empty ( ) ) ;

109 a s s e r t ( ! v2−>empty ( ) ) ;

110

111 std : : shar ed ptr<std : : vector<double>> v out ( new std : : vector<double>() ) ;

112 v out−>r e s e r v e ( v1−>s i z e ( ) + v2−>s i z e ( ) ) ;

113

114 auto p1 = v1−>begin ( ) ;

115 auto p2 = v2−>begin ( ) ;

116

117 // This could be done somewhat f a s t e r , but I don ’ t r e a l l y care .

118 // We’ re j u s t t r y i n g to generat e CPU workload anyway .
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119 while ( ( p1 != v1−>end ( ) ) | | ( p2 != v2−>end ( ) ) ) {

120 i f ( p1 == v1−>end ( ) ) {

121 v out−>push back ( ∗p2 ) ;

122 ++p2 ;

123 }

124 else i f ( p2 == v2−>end ( ) ) {

125 v out−>push back ( ∗p1 ) ;

126 ++p1 ;

127 }

128 else {

129 // We need to a c t u a l l y compare numbers . . .

130 i f ( (∗p1 ) < (∗p2 ) ) {

131 v out−>push back (∗p1 ) ;

132 ++p1 ;

133 }

134 else {

135 v out−>push back (∗p2 ) ;

136 ++p2 ;

137 }

138 }

139 }

140

141 ou tpu t r e c e i v e r = v out ;

142 }

143

144 //=======================================================================

145

146 void execute DFG( int num data , bool v e r i f y ) ;

147

148 extern int NUMBEROF RANDOMIZEVERTICES;

149

150 //=======================================================================

151

152 int main ( int argc , const char∗ argv [ ] ) {

153 try {

154 i f ( argc != 3) {

155 throw ”Usage : dfg−s o r t <num−data> <t rue | f a l s e> <−−− v e r i f y ”

156 ” s o r t edne s s ” ;

157 }

158

159 const int num data = pa r s e i n t ( argv [ 1 ] ) ;
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160 const s t r i n g v e r i f y s t r = argv [ 2 ] ;

161

162 bool v e r i f y ;

163 i f ( v e r i f y s t r == ” true ” ) {

164 v e r i f y = true ;

165 }

166 else i f ( v e r i f y s t r == ” f a l s e ” ) {

167 v e r i f y = fa l se ;

168 }

169 else {

170 throw ”The ’ v e r i f y ’ argument must be e i t h e r ’ t rue ’ or ’ f a l s e ’ ” ;

171 }

172

173 i f ( num data < 1) {

174 throw ”<num−data> must be p o s i t i v e . ” ;

175 }

176

177 i f ( ( num data % NUMBEROF RANDOMIZEVERTICES) != 0) {

178 os t r ings t r eam os ;

179 os << ”<num−data> must be an i n t e g e r mul t ip l e o f ”

180 << NUMBEROF RANDOMIZEVERTICES;

181 throw os . s t r ( ) ;

182 }

183

184 execute DFG ( num data , v e r i f y ) ;

185 }

186 catch ( const char ∗ e ) {

187 c e r r << ”Exception : ” << e << endl ;

188 return 1 ;

189 }

190 catch ( const s t r i n g & e ) {

191 c e r r << ”Exception : ” << e << endl ;

192 return 1 ;

193 }

194

195 return 0 ;

196 }

197

198 int NUMBEROF RANDOMIZEVERTICES = 4 ;

199

200 //=======================================================================
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201

202 void f 1 (

203 shar ed ptr<vector<double>> output 1 ,

204 shar ed ptr<vector<double>> output 8 ,

205 shar ed ptr<vector<double>> & output 2 ,

206 shar ed ptr<vector<double>> & output 9 ,

207 int num data ,

208 bool v e r i f y )

209 {

210 // Vertex # 9

211 op QUICKSORT( output 8 , output 9 ) ;

212 output 8 . r e s e t ( ) ;

213

214 // Vertex # 2

215 op QUICKSORT( output 1 , output 2 ) ;

216 output 1 . r e s e t ( ) ;

217 }

218

219 class Functor f 1 {

220 public :

221 Functor f 1 (

222 shar ed ptr<vector<double>> & output 1 ,

223 shar ed ptr<vector<double>> & output 8 ,

224 shar ed ptr<vector<double>> & output 2 ,

225 shar ed ptr<vector<double>> & output 9 ,

226 int num data , bool v e r i f y ) :

227 m output 1 ( output 1 ) ,

228 m output 8 ( output 8 ) ,

229 m output 2 ( output 2 ) ,

230 m output 9 ( output 9 ) ,

231 m num data ( num data ) ,

232 m ver i f y ( v e r i f y )

233 {

234 }

235

236 void operator ( ) ( )

237 {

238 f 1 (

239 m output 1 ,

240 m output 8 ,

241 m output 2 ,
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242 m output 9 ,

243 m num data , m ver i f y ) ;

244 }

245

246 private :

247 shar ed ptr<vector<double>> & m output 1 ;

248 shar ed ptr<vector<double>> & m output 8 ;

249 shar ed ptr<vector<double>> & m output 2 ;

250 shar ed ptr<vector<double>> & m output 9 ;

251 int m num data ;

252 bool m ver i f y ;

253 } ;

254

255 //=======================================================================

256

257 void f 2 (

258 shar ed ptr<vector<double>> output 3 ,

259 shar ed ptr<vector<double>> & output 4 ,

260 shar ed ptr<vector<double>> & output 7 ,

261 int num data ,

262 bool v e r i f y )

263 {

264 // Vertex # 6

265 shar ed ptr<vector<double>> output 6 ;

266 op RANDOMIZE( ( num data / 4) , output 6 ) ;

267

268 // Vertex # 7

269 op QUICKSORT( output 6 , output 7 ) ;

270 output 6 . r e s e t ( ) ;

271

272 // Vertex # 4

273 op QUICKSORT( output 3 , output 4 ) ;

274 output 3 . r e s e t ( ) ;

275 }

276

277 class Functor f 2 {

278 public :

279 Functor f 2 (

280 shar ed ptr<vector<double>> & output 3 ,

281 shar ed ptr<vector<double>> & output 4 ,

282 shar ed ptr<vector<double>> & output 7 ,
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283 int num data , bool v e r i f y ) :

284 m output 3 ( output 3 ) ,

285 m output 4 ( output 4 ) ,

286 m output 7 ( output 7 ) ,

287 m num data ( num data ) ,

288 m ver i f y ( v e r i f y )

289 {

290 }

291

292 void operator ( ) ( )

293 {

294 f 2 (

295 m output 3 ,

296 m output 4 ,

297 m output 7 ,

298 m num data , m ver i f y ) ;

299 }

300

301 private :

302 shar ed ptr<vector<double>> & m output 3 ;

303 shar ed ptr<vector<double>> & m output 4 ;

304 shar ed ptr<vector<double>> & m output 7 ;

305 int m num data ;

306 bool m ver i f y ;

307 } ;

308

309 //=======================================================================

310

311 void f 3 (

312 shar ed ptr<vector<double>> & output 8 ,

313 int num data ,

314 bool v e r i f y )

315 {

316 // Vertex # 8

317 op RANDOMIZE( ( num data / 4) , output 8 ) ;

318 }

319

320 class Functor f 3 {

321 public :

322 Functor f 3 (

323 shar ed ptr<vector<double>> & output 8 ,
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324 int num data , bool v e r i f y ) :

325 m output 8 ( output 8 ) ,

326 m num data ( num data ) ,

327 m ver i f y ( v e r i f y )

328 {

329 }

330

331 void operator ( ) ( )

332 {

333 f 3 (

334 m output 8 ,

335 m num data , m ver i f y ) ;

336 }

337

338 private :

339 shar ed ptr<vector<double>> & m output 8 ;

340 int m num data ;

341 bool m ver i f y ;

342 } ;

343

344 //=======================================================================

345

346 void f 4 (

347 shar ed ptr<vector<double>> output 2 ,

348 shar ed ptr<vector<double>> output 4 ,

349 shar ed ptr<vector<double>> & output 5 ,

350 int num data ,

351 bool v e r i f y )

352 {

353 // Vertex # 5

354 op MERGESORT( output 2 , output 4 , output 5 ) ;

355 output 2 . r e s e t ( ) ;

356 output 4 . r e s e t ( ) ;

357 }

358

359 class Functor f 4 {

360 public :

361 Functor f 4 (

362 shar ed ptr<vector<double>> & output 2 ,

363 shar ed ptr<vector<double>> & output 4 ,

364 shar ed ptr<vector<double>> & output 5 ,
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365 int num data , bool v e r i f y ) :

366 m output 2 ( output 2 ) ,

367 m output 4 ( output 4 ) ,

368 m output 5 ( output 5 ) ,

369 m num data ( num data ) ,

370 m ver i f y ( v e r i f y )

371 {

372 }

373

374 void operator ( ) ( )

375 {

376 f 4 (

377 m output 2 ,

378 m output 4 ,

379 m output 5 ,

380 m num data , m ver i f y ) ;

381 }

382

383 private :

384 shar ed ptr<vector<double>> & m output 2 ;

385 shar ed ptr<vector<double>> & m output 4 ;

386 shar ed ptr<vector<double>> & m output 5 ;

387 int m num data ;

388 bool m ver i f y ;

389 } ;

390

391 //=======================================================================

392

393 void execute DFG(

394 int num data ,

395 bool v e r i f y )

396 {

397 // Vertex # 10003

398 shar ed ptr<vector<double>> output 8 ;

399 tbb : : task group tgroup 3 ;

400 Functor f 3 f u n c t o r i n s t a n c e f 3 (

401 output 8 ,

402 num data , v e r i f y ) ;

403 tgroup 3 . run ( f u n c t o r i n s t a n c e f 3 ) ;

404

405 // Vertex # 3
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406 shar ed ptr<vector<double>> output 3 ;

407 op RANDOMIZE( ( num data / 4) , output 3 ) ;

408

409 // Vertex # 10002

410 shar ed ptr<vector<double>> output 4 ;

411 shar ed ptr<vector<double>> output 7 ;

412 tbb : : task group tgroup 2 ;

413 Functor f 2 f u n c t o r i n s t a n c e f 2 (

414 output 3 ,

415 output 4 ,

416 output 7 ,

417 num data , v e r i f y ) ;

418 tgroup 2 . run ( f u n c t o r i n s t a n c e f 2 ) ;

419

420 // Vertex # 1

421 shar ed ptr<vector<double>> output 1 ;

422 op RANDOMIZE( ( num data / 4) , output 1 ) ;

423

424 // Vertex # 10001

425 tgroup 3 . wait ( ) ;

426 shar ed ptr<vector<double>> output 2 ;

427 shar ed ptr<vector<double>> output 9 ;

428 tbb : : task group tgroup 1 ;

429 Functor f 1 f u n c t o r i n s t a n c e f 1 (

430 output 1 ,

431 output 8 ,

432 output 2 ,

433 output 9 ,

434 num data , v e r i f y ) ;

435 tgroup 1 . run ( f u n c t o r i n s t a n c e f 1 ) ;

436

437 // Vertex # 10004

438 tgroup 1 . wait ( ) ;

439 tgroup 2 . wait ( ) ;

440 shar ed ptr<vector<double>> output 5 ;

441 tbb : : task group tgroup 4 ;

442 Functor f 4 f u n c t o r i n s t a n c e f 4 (

443 output 2 ,

444 output 4 ,

445 output 5 ,

446 num data , v e r i f y ) ;
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447 tgroup 4 . run ( f u n c t o r i n s t a n c e f 4 ) ;

448

449 // Vertex # 10

450 shar ed ptr<vector<double>> output 10 ;

451 op MERGESORT( output 7 , output 9 , output 10 ) ;

452 output 7 . r e s e t ( ) ;

453 output 9 . r e s e t ( ) ;

454

455 // Vertex # 11

456 tgroup 4 . wait ( ) ;

457 shar ed ptr<vector<double>> output 11 ;

458 op MERGESORT( output 5 , output 10 , output 11 ) ;

459 output 5 . r e s e t ( ) ;

460 output 10 . r e s e t ( ) ;

461

462

463 i f ( v e r i f y ) {

464 v e r i f y s o r t ( num data , ∗ output 11 ) ;

465 }

466 }

Listing F.1: Primary C++ source file generated by a run of the evolutionary algorithm

run discussed in Chapter 8. Comments and formatting of this file have been manually

adjusted for cosmetic purposes.
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