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Abstract: To effectively manage water resources in agricultural production, it is necessary 

to understand the spatiotemporal variation of the water footprint (WF) and the influences of 

agricultural inputs. Employing spatial autocorrelation analysis and a geographically 

weighted regression (GWR) model, we explored the spatial variations of the WF and their 

relationships with agricultural inputs from 1998 to 2012 in Northeast China. The results 

indicated that: (1) the spatial distribution of WFs for the 36 major maize production 

prefectures was heterogeneous in Northeast China; (2) a cluster of high WFs was found in 

southeast Liaoning Province, while a cluster of low WFs was found in central Jilin Province, 

and (3) spatial and temporal differentiation in the correlations between the WF of maize 

production and agricultural inputs existed according to the GWR model. These correlations 

increased over time. Our results suggested that localized strategies for reducing the WF 

should be formulated based on specific relationships between the WF and agricultural inputs. 

Keywords: spatiotemporal differences; agricultural inputs; geographically weighted regression; 

water footprint; maize; Northeast China 
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1. Introduction 

Freshwater has an uneven temporal and spatial distribution from the perspective of availability and 

quantity. A growing population and increased demand for agricultural products have led to increasing 

competition for freshwater resources over the past several decades [1–3]. As a sector of intense water 

usage, agriculture is the largest user of freshwater, accounting for roughly 70% of total water usage [4–6]. 

Water scarcity is a major constraint in some agricultural production activities. Water usage for producing 

crops is expected to increase by 0.7% per year from its estimated level of 6400 billion m3·year−1 in  

2000 to 9060 billion m3·year−1 by 2050 as a result of the need to feed a projected global population of  

9.2 billion [7,8]. As a result, it is important to evaluate water resource utilization in agricultural 

production to meet future freshwater supply challenges [9,10].  

The water footprint (WF) concept provides a new way of evaluating water utilization in agricultural 

production [11]. For a given crop, the WF refers to the total amount of freshwater that is consumed and 

contaminated in the crop production process. It contains three components: the amount of rainwater 

consumed, the amount of irrigation water in the form of surface or ground water consumed, and the 

amount of freshwater required to assimilate the load of pollutants [12]. These components are defined as 

green WF, blue WF and grey WF, respectively [13,14]. The WF has led to a better understanding of the 

water requirement of crop production, which is attracting increased attention and has motivated a large 

number of studies [15–19]. Thus far, several studies have shed light on the spatial differences in the WFs 

of a variety of types of crops production in China. Sun et al. assessed the spatiotemporal variability of 

the WF for grain in an irrigation district of China during 1960–2008 [20]. Tian et al. analysed the 

temporal and spatial variation of the WF of China’s five major food crops from 1978 to 2010 [21].  

Wang et al. calculated and compared the WF of each grain crop and the integrated WFs of grain products 

with actual and virtual crop patterns in various regions of China for 2010 [22]. These previous studies 

suggested that the WF exhibits variability in different regions at the national level. However, to the best 

of our knowledge, few studies have tried to explore the spatial pattern characteristics of the WF at the 

prefecture level. Studies regarding the WF prefecture levels are more important because they can 

directly relate water usage to crop production. Besides, the underlying factors influencing WFs were 

mostly investigated from the perspective of climate. In fact, the WF of crop production primarily depends on 

agricultural inputs rather than the regional climate and its variation [23]. Therefore, it is essential to 

investigate the relationships between the WF and agricultural inputs. 

To better understand the correlations between the WF of crop production and agricultural inputs, an 

integrated approach is much needed. The geographically weighted regression (GWR) model is an 

expansion of the classical multivariate linear regression model, which considers not only the spatial 

non-stationary of relationships but also, in part, the spatial dependence, as it relies on local rather than 

global parameters [24]. Additionally, the GWR model has been applied in social economics, urban 

geography, meteorology, forestry and many other disciplines [25–27]. Few studies have been conducted 

on the analysis of correlations between the WF and agricultural inputs over space with the GWR method. 

We selected Northeast China, which provides one-third of China’s food production, as our study 

region. In this region, maize is one of the primary crops. The major objectives of this paper were: (1) to 

determine the spatial distribution of the WF of maize production at the prefecture level; (2) to identify 

the spatial patterns and clusters of the WF using global and local spatial autocorrelation analyses; and  
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(3) to analyse the spatial relationship between the WF and the three agricultural inputs based on the 

GWR model. This study could provide valuable information for designing and implementing effective 

measures for reducing the WF of maize production in Northeast China. 

2. Material and Methods 

2.1. Study Area 

Northeast China is located between 118°53′–135°05′ E and 38°43′–53°33′ N, and consists of 

Liaoning, Jilin, and Heilongjiang Provinces (Figure 1). The region covers an area of 7.92 × 105 km2, of 

which farmland occupies 2.64 × 105 ha, representing 16.5% of the total arable land in China [28]. The 

maize sowing area and yield at the prefecture level in 2012 are shown in Figure 2. The climate in the 

region is cold temperate and humid in the north and semi-humid in the west. The mean annual air 

temperature ranged from −4.2 °C to 10.9 °C, decreasing from south to north. The precipitation is 

generally concentrated in the summer and autumn (from May to October) [29], which coincides with the 

growing period of maize in Northeast China. The annual precipitation decreased from the southeast 

(1070 mm) to the northwest (450 mm). Maize, as the major grain crop in Northeast China, is highly 

seasonal with a single crop each year. The differences in the physical geography significantly affect the 

growth periods and crop coefficients of maize in each province [30] (Table 1). 

 

Figure 1. Location of Northeast China and the names of its 36 prefectures in three provinces. 
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Figure 2. The maize sowing area and yield at the prefecture level in 2012. 

Table 1. Growth periods and literature values of crop coefficient Kc for maize in Liaoning, 

Jilin and Heilongjiang Provinces. 

Province 

Growth Periods Crop Coefficients (Kc) 

Sowing Date Harvesting Date Total Days 
Initial 

Season (Kc ini) 

Mid-Season 

(Kc mid) 

Late-Season 

(Kc late) 

Liaoning 25-April 20-September 149 0.38 1.22 0.60 

Jilin 1-May 24-September 147 0.40 1.22 0.58 

Heilongjiang 16-May 30-September 137 0.36 1.20 0.55 

Note: Source: China Meteorological Data Sharing Service System and Huang et al. (2011) [30]. 

2.2. Data Sources 

The climate data of 36 weather stations, one location per prefecture, were taken from the China 

Meteorological Data Sharing Service System [31] for the period of 1998 to 2012, including monthly 

average maximum and minimum temperature, relative humidity, wind speed, sunshine hours and 

precipitation. The agricultural data, including maize yield, maize sowing area, agricultural machinery 

power, effective irrigation area and consumption of chemical fertilizers, were obtained from the 

statistical yearbooks 1998–2012 of the three provinces. 

2.3. Methods 

First, the WFs of maize production were accounted for in Northeast China. Next, the spatial patterns 

of the WF were investigated. Finally, the relationships between the WF and agricultural inputs were 

explored. The overall calculation process flow chart is diagrammed in Figure 3. 
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Figure 3. Diagram for WF assessment and the correlations between WF and  

agricultural inputs. 

2.3.1. WF Calculation Methodology 

The WF of crop production was estimated following the calculation framework developed by 

Hoekstra et al. [14], which is the total water consumption during crop growth process, including blue 

WF, green WF and grey WF [32], namely: 

total green blue greyWF WF WF WF= + +  (1)

where WFtotal is the WF of crop production(m3·ton−1); WFgreen is the green WF (m3·ton−1); WFblue is the 

blue WF (m3·ton−1); and WFgrey is the grey WF (m3·ton−1). 

The WFgreen and WFblue are calculated as crop water use divided by crop yield. The green and blue 

water use is calculated by accumulation of daily evapotranspiration over the growing period. 

green green
green 10

CWU ET
WF

Y Y
= = ×  (2)

blue blue
blue 10

CWU ET
WF

Y Y
= = ×  (3)

where CWUgreen and CWUblue are green and blue water usage (mm); ETgreen and ETblue are green and blue 

water evapotranspiration (mm); Y is the crop yield (ton·ha−1); and the factor 10 converts water depths in 

millimetres into water volumes per land surface in m3·ha−1. 
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The WFgrey is calculated as the chemical application rate to the field per hectare (AR, kg·ha−1) times 

the leaching-run-off fraction (α) divided by the maximum acceptable concentration (Cmax, kg·m−3) 

minus the natural concentration for the pollutant considered (Cnat, kg·m−3) and divided by the crop yield  

(Y, ton·ha−1). 

max nat
grey

(α ) ( )AR C C
WF

Y

× −=  (4)

Considering the availability of local data, in this study, we quantified the grey WF related to nitrogen 

use only. We have further taken α as 10% following Chapagain et al. [12], Cnat as zero, and Cmax as  

12 mg·L−1 following China water quality standards. 

2.3.2. ET Calculations Based on the CROPWAT Model 

The green and blue water evapotranspiration are estimated based on crop water requirement by 

employing the CROPWAT 8.0 model [33,34], which are calculated as: 

green c effmin( , )ET ET P=  (5)

blue c effmax(0, )ET ET P= −  (6)

where ETc is the crop evapotranspiration and Peff is the effective precipitation over the crop growing 

period (mm). 

ETc is calculated by employing the CROPWAT model based on the FAO Penman-Monteith  

method [35]. 

c c 0ET K ET=  (7)

where Kc is the crop coefficient; ET0 is the reference evapotranspiration, calculated as follows:  

( ) ( )
( )

n 2 s a

0
2

900
0.408 γ

273
γ 1 0.34

R G U e e
TET

U

Δ − + −
+=

Δ + +
 (8)

where Rn is the net radiation (MJ·m−2·d−1); G the soil heat flux (MJ·m−2·d−1); T the average air 

temperature (°C); U2 the wind speed at 2 m height (m·s−1); es the saturation vapor pressure (kPa); ea the 

actual vapor pressure (kPa); Δ the slope of saturation vapor pressure versus air temperature curve 

(kPa·°C−1); the hygrometer constant (kPa·°C−1). 

Peff is calculated according to a formula developed by the USDA Soil Conservation Service [34,36]: 

eff

/125(125 0.2 ) 250

125 0.1 250

P P P
P

P P

− ≤
=  + >

 (9)

where P is the precipitation at a month step (mm). 

2.3.3. Spatial Autocorrelation 

Both global and local spatial autocorrelation test results are used to confirm the presence of strong 

spatial dependence and heterogeneity in the distribution of the WF, supporting the use of the  

GWR technique. 
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Global Moran’s I is applied to detect the overall degree of spatial autocorrelation among the regions. 

The equation is given as: 

1 1

2

1 1 1

( )( )

=
( ) ( )

n n

ij i j
i j

n n n

ij i
i j i

n W X X X X

I
W X X

= =

= = =

− −

⋅ −



 
 

(10)

where n is the number of spatial unit; Xi and Xj are the values of WF of spatial units i and j, respectively; 

X  is the mean of X; Wij is a matrix of spatial weight applied to the comparison between spatial units i 

and j. Generally, W is defined using an adjacency standard. When the units i are adjacent to units j, Wij is 

equal to 1, otherwise Wij is equal to 0. The value of Moran’s I varies between −1 and 1. The significance 

of the spatial autocorrelation can be tested by Z statistics, which is given as: 

1 ( )

( )

E I
Z

Var I

−=  (11)

where E(I) and Var(I) denote the expectation value and the variance of Moran’s I, respectively [37]. If 

Z-value is greater than 0 and statistically significant, an obvious positive autocorrelation exists in the 

spatial distribution [38]. 

The local indicator of spatial autocorrelation index (LISA) takes each spatial unit as the inspection 

object and analyses its properties of spatial autocorrelation [39]. The equation is given as: 

i i ij jI Z W Z=   (12)

where Ii is the local autocorrelation index of WFand Zi and Zj are the standardization of values of WF 

of spatial units i and j. 

2.3.4. Geographically Weighted Regression (GWR) Model 

The GWR model extends the traditional regression framework by embedding the spatial location of 

the data into the regression parameter [40,41]. The local estimation of the parameters with GWR is 

expressed as follows [42]: 

0( , ) β ( , ) ε 1,2,...,i i i k i i ik i
k

y β u v u v x i n= + + =  (13)

where yi is the dependent variable in the ith location; xik is the ith value of the kth independent variable;  

k represents the number of independent variables; i represents the number of samplings; (ui, vi) denotes 

the coordinates; β0 (ui, vi) represents the intercept value, and βk (ui, vi) is the continued function; εi 

represents the model residual. 

To calculate the spatial distribution of the weightings, the optimal bandwidth is required. The 

Cross-Validation (CV) or Akaike Information Criterion (AIC) is usually used for calculation. In this 

paper the AIC was chosen, which was fixed by the maximum likelihood principle to determine the 

optimal bandwidth [43]. 

GWR model analysis was performed using the software ArcGIS10.1. In this study, the WF of maize 

production was treated as the dependent variable, and three agricultural inputs, namely, agricultural 
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machinery power (AMP), effective irrigation area (EIA) and chemical fertilizers consumption (CFC) 

were chosen as the independent variables of the models. 

3. Results 

3.1. Spatial Distribution of WF of Maize Production 

From 1998 to 2012, the average annual WF of maize production was 1029 m3·ton−1 in Northeast 

China. Green WF was the biggest part of the total WF of maize production with the proportion at 51%, 

followed by grey and blue WF, which accounted for 28% and 21%, respectively. This suggests that the 

WF of maize production in this region largely relies on green water resources, i.e., consumptive use of 

rainwater, which had a non-uniform seasonal distribution. 

The WF of maize production exhibited significant differences on the prefecture level. As can be seen 

from 1998, the highest values of WF were observed in Baicheng, where it was 1608 m3·ton−1 (Figure 4). 

This could be explained by the highest evapotranspiration. Dandong took second place with 1347 m3·ton−1. 

The lowest WFs were calculated for Siping with 691 m3·ton−1, and Tieling with 756 m3·ton−1, which 

could be explained by the higher maize yields in these two prefectures. Compared to 1998, the WFs of 

all prefectures showed a decreasing trend in 2012. Dandong had replaced Baicheng with the highest WF, 

which was 1313 m3·ton−1, followed by Baicheng with 1291 m3·ton−1. Tieling had replaced Siping as the 

prefecture with the lowest WF, which was 667 m3·ton−1. Siping ranked second, with a value of  

672 m3·ton−1. 

 

Figure 4. Spatial distribution of WF of maize production in 1998 and 2012. 

3.2. Spatial Pattern Characteristics of the WF of Maize Production 

Both the global and local spatial autocorrelation test results confirm the presence of strong spatial 

dependence and heterogeneity in the distribution of the WF, supporting the use of the GWR technique. 

Global Moran’s I of WFs in 1998 and 2012 (Table 2) were 0.5512 and 0.5530, respectively, and all 

Z-values were significant (p-value = 0.01, with 999 permutations), which demonstrated a positive spatial 
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correlation of prefecture-level WFs in the entire study region. In other words, prefecture units with 

higher and lower levels of WFs were spatially clustered. Meanwhile, the spatial autocorrelation of WFs 

in 2012 was slightly stronger than that in 1998. 

Table 2. Global Moran’s I of water footprints (WFs) of maize production in 1998 and 2012. 

Year Moran’s I Z-Value p-Value 

1998 0.5512 2.6366 0.01 

2012 0.5530 2.4741 0.01 

As for the local spatial autocorrelation, LISA statistics can be classified into four categories and 

mapped in a LISA cluster map (Figure 5). For instance, prefectures that have high WFs surrounded by 

high WFs (HH) and those with low WFs surrounded by low WFs (LL) represent potential spatial 

clusters. Prefectures with high WFs surrounded by low WFs (HL) and low WFs surrounded by high WFs 

(LH) suggest potential spatial outliers. The cluster of high WF values (HH) was located in southeast 

Liaoning in 1998 (composed of the three prefectures of Dandong, Anshan and Yingkou), but it increased 

in 2012 (composed of the five prefectures of Dandong, Liaoyang, Anshan, Yingkou and Dalian), 

indicating that the WF disparity in this region decreased. The cluster of low WF values (LL) included the 

four prefectures of Changchun, Siping, Liaoyuan and Tieling, which were primarily located in central 

Jilin Province, and the number of prefectures in this cluster remained relatively stable. Other forms of 

local spatial autocorrelation included one HL-type prefecture (Yanbian) in both years. 

 

Figure 5. LISA cluster map for WFs of maize production in 1998 and 2012. 

3.3. Spatial Variations in Correlations between Agricultural Inputs and the WF of Maize Production 

Table 3 summarizes the results of the GWR between the WF and agricultural inputs. Results of the 

GWR models demonstrated that the R2 and adjusted R2 values in 1998 and 2012 were approximately 

equal, both representing over 63% of the total variance of the WF. The local parameters are described by 

six-number summaries consisting of the minimum, maximum, mean, lower quartile, median and upper 
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quartile values, which presented large differences. In 1998, the correlation between the EIA and the WF 

was still positive; however, the AMP and CFC were either positive or negative. In 2012, the correlations 

between the AMP, EIA and the WF were positive and the CFC was negative. 

Table 3. Statistical description of the geographically weighted regression (GWR) model 

parameter for 1998 and 2012. 

Descriptive Index 
1998 2012 

AMP EIA CFC AMP EIA CFC 

Minimum value −2.283 0.464 −1.624 −3.746 1.653 −2.624 
Maximum value 0.933 2.033 0.369 −0.517 2.313 −0.347 

Mean −0.591 1.315 −0.657 −1.550 1.977 −1.598 
Upper quartile −1.610 1.091 −1.113 −2.262 1.814 −1.902 

Median −0.350 1.373 −0.648 −1.039 1.961 −1.547 
Lower quartile 0.460 1.539 −0.205 −0.748 2.174 −1.368 

AIC 481.242 487.305 
R2 0.635 0.631 

Adjusted R2 0.581 0.593 

Notes: AMP: Agricultural machinery power; EIA: Effective irrigation area; CFC: Chemical fertilizers consumption. 

The relationships between the WF and agricultural inputs were spatially non-stationary  

(Figures 6 and 7). In 1998, most regression coefficients of the AMP were found to be negative, except 

for south-central Liaoning Province. The CFC had a positive correlation with the WF in most areas, 

other than south Liaoning Province. The EIA had a positive correlation with the WF in the entire region. 

Compared to 1998, the regression coefficients of all agricultural inputs increased in 2012, suggesting the 

correlations were becoming stronger. Overall the correlations of the AMP and CFC were changing from 

positive to negative. The AMP and CFC had negative correlation with the WF in the entire region, while 

the EIA still had a positive correlation with the WF. The absolute value of regression coefficient of the 

AMP, EIA and CFC all exhibited a decreasing trend from the centre to the south and north. 

 

Figure 6. Spatial distribution of regression coefficients of agricultural inputs in 1998. 
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Figure 7. Spatial distribution of regression coefficients of agricultural inputs in 2012. 

4. Discussion 

In this study, we mapped the distribution of the WF of maize production at the prefecture level in 

Northeast China. A combination of the climatic condition, growing period and fertilizer consumption 

lead to the diversity of the WFs among 36 prefectures. The distribution of the WF in Northeast China 

was clustered, indicated by the significantly global Moran’s I values. The LISA method detected the 

regions with high or low concentrations of WF. The spatial clustered regions with high WF of maize 

production were distributed in southeast Liaoning Province. The soils in these regions are poor and 

essentially unsuitable for crop production. The spatial clustered regions with low WF of maize 

production were distributed in central Jilin Province, which is located on the Songnen Plain and 

considered the Golden-Maize-Belt in China. It can be attributed to such factors as favourable climate 

condition, soil quality, proper irrigation facilities and relatively higher maize yield. These findings can 

help policy-makers prioritize maize production area and optimize maize production distribution. 

The factors impacting the WF are miscellaneous. To explore the WF and its influence mechanisms, 

scholars began to study the relationships between WF and individual factors, such as climatic factors and 

agricultural input [23,44,45]. The methodology employed in this study only included correlation 

analysis. However, in reality, the relationships between the WF and influential factors are not always 

consistent in different areas. In particular, we employed the GWR technique to examine the spatial and 

temporal differences in the correlation between three agricultural inputs and the WF of maize 

production, including the AMP, EIA and CFC. The regression coefficients of the GWR also displayed a 

high variability in space, which could better explain the spatial differences of the correlation between the 

agricultural inputs and the WF. The spatial variations in the relationships are affected by the level of 

agricultural development. 

In addition, the GWR analysis can help decision-makers clearly see the results of past relationships 

between the WF and agricultural inputs on a local scale and make appropriate decisions for future 

planning to reduce the WF of maize production. According to the results of the GWR model, the 

correlation between the AMP and WF was mainly positive in the study area. Attention should be paid to 

improving the mechanical technologies. The AMP in south-central Liaoning shifted from a positive to a 
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negative correlation with the WF, so the amount of machinery should be adjusted appropriately. The 

correlation between the EIA and WF was positive in the study area. Thus, irrigation water should be 

reduced in this region. Water-saving irrigation techniques, such as drip or sprinkler irrigation, should be 

employed appropriately to inhibit the growing WF. The CFC had a negative correlation with the WF, 

which indicated that properly managed fertilizer use contributed to reducing the WF. Meanwhile, the 

CFC shifted from a positive to a negative correlation with the WF in south Liaoning. In these areas, 

increasing fertilizer usage or adjusting the fertilizer proportions and increasing the usage of organic 

fertilizers should be considered. 

To the best of our knowledge, this is the first study focusing on the spatial pattern of the WF and the 

relationships between the WF and agricultural inputs. Nevertheless, there are still limitations in this 

study. There are some uncertainties in the quantification of the WF of maize production. On the one 

hand, the agricultural data were primarily derived from statistical data, and there are discrepancies 

between these values and reality. On the other hand, the grey WF was estimated based on a simplified 

approach, which left out local factors that influence the precise leaching rates. In addition, our spatial 

analysis was based on the prefecture scale, but the distribution of the WF was also not homogeneous at 

the prefecture level. Therefore, this study cannot identify the spatial heterogeneity within each unit. 

5. Conclusions 

The spatial distribution and cluster areas of the WFs of maize production in Northeast China were 

investigated and the relationships between the WF and agricultural inputs were explored. The results 

demonstrated that the spatial differences of the WFs of maize production were obvious in Northeast 

China. Two cluster regions were detected. The prefectures with higher WFs were formed in southeast 

Liaoning Province while the prefectures with lower WFs were formed in central Jilin Province. From the 

perspective of the GWR results, the WF and agricultural inputs relationships were significantly spatially 

non-stationary. Finally, the combination of the GWR along with the GIS approaches constitutes a 

powerful tool for better displaying spatiotemporally varying relationships between the WF and 

agricultural inputs. Extension of this study could focus on adding other driving forces, such as 

population, plantation structure and policy in the spatiotemporal analysis of the WF in the studied areas. 
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