
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Mathematics Faculty Publications Mathematics 

1983 

Ergodic theory and the functional equation (I - T)x = y Ergodic theory and the functional equation (I - T)x = y 

Michael Lin 

Robert Sine 
University of Rhode Island 

Follow this and additional works at: https://digitalcommons.uri.edu/math_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
LIN, M., & SINE, R. (1983). ERGODIC THEORY AND THE FUNCTIONAL EQUATION (I — T)x = y. Journal of 
Operator Theory, 10(1), 153-166. Retrieved from http://www.jstor.org/stable/24714177 
Available at: http://www.jstor.org/stable/24714177 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Mathematics 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/math_facpubs
https://digitalcommons.uri.edu/math
https://digitalcommons.uri.edu/math_facpubs?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.jstor.org/stable/24714177
mailto:digitalcommons-group@uri.edu


Ergodic theory and the functional equation (I - T)x = y Ergodic theory and the functional equation (I - T)x = y 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/math_facpubs/54 

https://digitalcommons.uri.edu/math_facpubs/54


Theta Foundation
 

 
ERGODIC THEORY AND THE FUNCTIONAL EQUATION (I — T)x = y
Author(s): MICHAEL LIN and  ROBERT SINE
Source: Journal of Operator Theory, Vol. 10, No. 1 (Summer 1983), pp. 153-166
Published by: Theta Foundation
Stable URL: https://www.jstor.org/stable/24714177
Accessed: 27-11-2018 16:57 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Theta Foundation is collaborating with JSTOR to digitize, preserve and extend access to
Journal of Operator Theory

This content downloaded from 131.128.197.91 on Tue, 27 Nov 2018 16:57:11 UTC
All use subject to https://about.jstor.org/terms



 J. OPERATOR THEORY
 10(1983), 153-166  © Copyright by increst, 1983

 ERGODIC THEORY AND THE FUNCTIONAL

 EQUATION (/ — T)x = у

 MICHAEL LIN and ROBERT SINE

 conditions (Corollary 3). The necessa у condition sup
 k>\

 <00 is shown to

 The problem of solving the functional equation (/ — T)x = y, for a given
 linear operator T on a Banach space X and a given у e X, appears in many areas of
 analysis and probability. The well-known Neumann series gives (/ — T)~l when
 ||Г||<1. When II T\| = 1, the problem is first to know if ye(I—T)X, and then
 to find the solution x. The solution is usually found using an iterative
 procedure (see [4], [5], [6], [16]). We are interested in the convergence of

 п к—1

 = n'1 £ Yj T'y to the solution x, and obtain the precise necessary and sufficient
 k = \ j=0

 к-1 I

 £ Tiy i
 j=о I

 be sufficient if Tm (for some m > 0) is weakly compact. An example shows that

 otherwise the condition need not be sufficient. The reflexive case appears in [1],
 [2], [3].

 We then solve the problem of existence in the case of a dual operator on a

 dual space, obtaining as a corollary an application to Markov operators.

 Next, we look at the same problem for Tf(s) = f(9s), where T is induced on a

 suitable function space by a measurable map 9. A new "ergodic" proof for в a
 minimal continuous map of a Hausdorff space is given.

 Finally, we obtain results for positive conservative contractions (Markov
 operators) on LX(S, I, /;). In that case we look also at solutions which are finite

 a.e., though not necessary in Lv

 For the general Banach space approach, we need the mean ergodic theoremz

 If T"jn -> 0 strongly, and sup
 1 »-I .

 £ т]
 j-0

 < 00, then

 { x: — V TJx converges1 = {у: Ту = у} ф (/— T)X.
 I л j~o J
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 154  MICHAEL LIN and ROBERT SINE

 We call T mean ergodic if the above subspace is all of X. We mention the
 uniform ergodic theorem [19]:

 ft — 1

 (/— T)X is closed <=> n~l ^ Tk converges uniformly.
 fc = о

 J п к — 1
 In that case, I — T is invertible on (I — T)X, and — £ £ V converges

 n k=1j=о

 uniformly to (I — Ту1 (on (I — T)X), which is a generalization of the Neumann
 series theorem.

 Theorem 1. Let T be mean ergodic. The following conditions are equivalent
 for у e X:

 (i) ye (I- T)X;

 J n к—1
 (ii) x„ = — V V T'y has a weakly convergent subsequence;

 n k=\j=0

 (iii) {x„} converges strongly (and x = limx„ satisfies (I — T) x = y).

 Proof, (i) => (iii). Let у = (/ — T)x'. By the mean ergodic theorem, x' — x + z,

 with x e (I — T)X and (/ — T)z = 0. Hence у = (I — T)x with xe(I — T)X

 = n'x £ Ъ tJv ~ T^x = "_1£ (7 ~ Tk">x = * -n_1£ T"x
 k=1y=0 k=1

 But л"1 5] Tkx
 fc=l

 0, since Jt 6 (/ — ГД', so ||x„ — x|| -* 0.

 (iii) => (ii) is obvious.

 (ii) => (i). Let x„. -> x weakly. Then

 -l

 (.I - T)x = lim(/ - 7>„. = lim л г1 £ (/ - r*)j = j - lim и,"1 £ Г*у.
 4=1 &=1

 By the mean ergodic theorem the limit satisfies

 1 " k~l 1 " k~l (n + 1)
 Ex* = — S I Т>Еу = —Ъ Ъ^—^Г-Еу

 П k=\ 7=0 И A:—1 y=0 L

 so Ex„. -> is possible only if £> = 0. Hence (/ — Г)х = >>.
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 FUNCTIONAL EQUATION (Г-Г)х=У  155

 Remark. The solution x of (/ — T)x = y, obtained in (iii), is always in
 elm[T'y :j> 0}.

 Corollary 2. Let T be power-bounded, and assume that for some m > 0, Tm
 is weakly compact. Let у e X. Then the condition (iv) below is equivalent to the three

 conditions of Theorem 1 :

 (iv) sup
 k> о

 fc-i

 I TJy
 i=о

 < oo.

 Proof, (i) => (iv).

 j = (J- T)x

 (iv) => (i). By (iv),

 fc-t

 £ TJy
 ;=0

 1 k~1 ■
 S Гу

 К j assO

 ||(7 — Tk)x\\ <\\x\\(l + supimi).

 ■ 0. We restrict ourselves to clm{7"Jy :j^0},

 on which T is now mean ergodic (in fact,Г is mean ergodic on X). By (iv) and weak

 compactness of Tm,
 fc-1 . }
 £ TJ(Tmy) I is weakly sequentially compact, and so is 7-o J

 1 п к— 1

 zn = — J] Y) TJTmy, so, by Theorem 1 (iii), z„ -> z which satisfies (I—T)z=Tmy.
 n k=\j=0

 m—1

 Now x = z + Y, Т'У satisfies (I — T)x = y.
 j=о

 Example 1. T may be a mean ergodic contraction, but, in general, (iv) does
 not imply the conditions of Theorem 1.

 Let Г be a non-reflexive Banach space and T a contraction which is not mean
 Tl— 1

 ergodic (e.g., Y = ( 1; Г the shift to the right). Take ze Y such that n'1 T'z does
 J=o

 not converge (i.e., z ф(1 — T)Y ® {Tx — x}). Let у — (I — T)z, and X =
 = elm {T'y: j > 0}. X is an invariant subspace for T, and T on X is mean ergodic
 (with no fixed points). Clearly у satisfies (iv). If there were xeX with (/ — T)x = y,
 then

 (I — T)(z — x) — 0, so n_1 Y, Tkz == n"1 Y Tk(z ~ *) + n_1 Yi Tkx->z — x,
 k=1  fc-1

 contradicting the choice of z. Hence (/ — T)x = у has no solution in X.

 Remark. The previous example shows also that without ergodicity in Theo

 rem 1, (i) need not imply (ii): The {x„} is always in (/— T)Y (in fact, in X), while
 the solution is in Y, and if x„. converges weakly, the limit must be a solution.

 Hence {x„} has no weakly convergent subsequence.
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 156  MICHAEL LIN and ROBERT SINE

 Corollary 3. Let T satisfy :

 (a) sup
 N

 n-\

 N
 i=0

 < oo;

 (b) T"jn ->• 0 strongly.

 Then the following conditions are equivalent for у e X■

 (i) ye (I- T) (/ — T)X;
 (ii) as in Theorem 1;
 (iii) as in Theorem 1.

 Proof. Let Y = (/ — T)X. On Y, T is mean ergodic.

 (i) => (iii). у = (I — T)x, with x e Y.
 (iii) follows from Theorem 1, applied in Y.

 w

 (ii) => (i). If x„ -» x, the computation in the proof of Theorem 1 yields

 n.

 «Г1 £ Tky^y-(I~T)x.
 k=\

 Hence у e Y © {Tz = z} = Z. Apply Theorem 1 to Ton Z to obtain ye(I— T)Z=
 = (/- T)Y.

 Corollary 4. Let T be as in Corollary 2. Then the following conditions are
 equivalent for у e X :

 к

 (1) J] T'y converges weakly (toxeX, and then {I — T)x — y) ;
 j~o

 (2) T"y —> 0, and lim infi
 ! к

 I Tjy
 i=о

 < oo.

 Proof. (1) => (2) is easy.
 к [ i kt
 У] T'y ^ Л/, then £ T'Tmy is weakly sequentially com (2) => (!)• If
 7=o  j=o

 k.

 pact. Take a subsequence of {£;} (called still {£,}) with £ T'Tmy —> z. Then
 >=о

 (/ - 7> = - lim Tm+k'+1y =

 Hence x = z+ £ Гу_и is in с1т{Г"^} with (/ — Г)д: = у. Now also Г"х -» 0
 j-o

 weakly, so (1) holds.
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 FUNCTIONAL EQUATION (I-T)x=y  157

 Remark. For strong convergence in (1) we put strong convergence in (2). If
 к

 we know that ye(I — T)X and T"y converges (necessarily to 0) then ^ T'y will
 j=o

 converge to x (in the same topology that T"y -> 0), assuming only mean ergodi
 city, instead of weak compactness, for T power-bounded (see also [2]). However,
 (2) does not imply that у e (/ — T)X (even when || T"y\\ -* 0): see the beginning of
 Example 3.

 rfc-1 . loo

 Example 2. The condition that J £ TJy\ be weakly sequentially compact, b=o Jfc=l
 though sufficient to imply the other conditions in Theorem 1, is not necessary.

 In [17] there is an example of a real Banach space X and an isometry T, such
 1 ЛГ—1

 that for some vector x0e X we have sup — V | <x*, Tkx0} | -» 0, but for
 114=1 N ftto

 no subsequence и, does T Jx0 converge weakly to 0. Since clearly
 1 N

 ~N S Л' JV k=l

 •0,

 by restricting ourselves to clmlT7*,,:j ^ 0} we have T mean ergodic. Let
 k-1

 у = (I — T)x0. Then Yi T'y = x0 — Tkx0. The choice of x0 shows that 0 is in
 j=о

 the weak closure of {Tkx0}. If this closure were weakly compact, some subsequence
 of {Tkx(j} would converge weakly to zero, (since the weak topology on a weakly
 compact set in a separable Banach space is metrizable [7, V.6.3]) — a contradiction.

 Hence the closure is not weakly compact, and {Tkx0} is not weakly sequentially
 compact [7, V.6.1].

 Remarks. 1. Examples 1 and 2 show that we cannot, in general, reverse any

 {fc-l 1 lk-1 1 J] TJy L is w.s. compact => ye(I — T)X => . £ Tjy\
 j—Q J k>\ y=0 \ k>\

 bounded. Example 2 is new, and shows how remarks on compactness made by pre
 vious authors should be understood in relation to Theorem 1. Special examples of
 the kind of Example 1, for the shift in Л», appear in [10] (expressed in different
 terms).

 Corollary 2 improves the result of Butzer and Westphal [3] (for Cesäro ave

 rages). In that connection they too consider the linear manifold (/ — T) (/ — T)X.
 However, Corollary 3 is new. Theorem 1 is essentially given in [4].

 In many cases, we may have to identify if у* e (I—T)X* when Tis a contrac

 tion on X. Here condition (iv) works, because of weak-* compactness. For comple
 teness, we repeat the first author's proof from [17].

 Theorem 5. Let sup|| T"\\ < oo. The following conditions are equivalent for
 у* e X*.
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 158  MICHAEL LIN and ROBERT S1NF.

 (i) j* e (/ — T*)X*;
 \k-1

 (ii) sup jj £ T*Jy* ij < oo.
 j=o

 k-1

 Proo/! (ii) => (i). Let x* = и-1 ^ ^ T*Jy*. Then {л*} is bounded, hence
 k-1;=o

 is relatively compact in the weak-* topology. Let x* be a weak-* closure point of

 {x*}. For у e X there is a sequence {"}) with

 <(/ - T*)x*, j> - <x*, (/- 7» = lim<x* , (/ - 7» =

 lim<(/— T*)x*., j> = lim<v* — n} 1 £ TStky*,y)> = </=, j> .
 fi=i

 Hence (/ — r*).v* = y*.

 As an application of Theorem 5 we have the following corollary, which, in the
 measure preserving case, was proved by Browder [1, Theorem 2] by using a diffe
 rent method.

 Corollary 6. Let (S, I, p) be a a-finite measure space, and 0 a non-singular
 measurable transformation of S. Then f e Loo is of the form f(s) = 'g(s) — g(0s),

 l'fc-i . Ii

 with g€ Loo, if and only if sup
 1

 j=0

 < 00.

 Proof. On X = M(S, I, p), the space of unite signed measures absolutely
 continuous with respect to p, define Tv by Tv(A) = v(0~M). Then X* = Loo,
 and T*f(s) = f(0s), and Theorem 5 applies.

 The following result was conjectured by M. Keane and J. Aaronson
 for T positive.

 Theorem 7. Let (S, I, u) be a a-finite measure space, and let T be a contrac
 tion on L^S, 1,/л). Then /e L, is of the form f = (/ — T)g with ge Ll if and only

 Ik-1

 if sup;: У T'f
 1 :!  j=0

 < 00.

 Proof We identify L^S, I, ju), via the Radon-Nikodym theorem, with
 the space M(S, I, p) of countably additive measures 4, p. Then we have

 Г| A: — 1 _ j
 sup(j V Th\ < 00, with dv =/'dp.
 л > 1 jj у _o j

 T** acts on Loo(S, I, p)* = ba(S, Z, p), the space of bounded finitely addi
 tive measures (= charges). By Theorem 5 (applied to v in Lfx and Г**), there exists
 >1 e ba(S, Z, p) with (I — T**)r\ = v. Decompose [21] '? = *h -j- Ч2, with цх
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 FUNCTIONAL EQUATION (1-T)x=y  159

 countably additive and rjz a pure charge (i.e., |»j2j does not bound any non-negative
 measure). Then

 v = (I — T**)t] = f/j — Т**щ + <?2 — T**rj 2.

 Since T**r]1 = Г//х e Г, /i), we obtain that vx = f/2 — Г**^2 is countably ad
 ditive. Hence ||У! ^ ||Г**^2|| = ||//2 — vx|| = ||»/2|| + |К|| since ||Г**|| s? 1, while
 t]2 (a pure charge) and vx (a measure) are mutually singular [21]. Thus v, == 0 and

 ли

 v = (I — T**)r\1 — (I — Т)г1г, yielding g = —1 as a required solution.
 dß

 In the next proposition, Theorem 5 cannot be applied, since the space B{S, I)
 of bounded measurable functions is not a dual space, in general.

 Proposition 8. Let (S, Г) be a measurable space, and 0 a measurable trans
 formation of S into itself Then f e B(S, I) is of the form f(s) — g(s) — g(6s), with

 g e B(S, I), if and only if sup
 *>i

 *£ f(Ojs)
 7=0

 < oo.

 Proof For / satisfying the condition, define

 g(s) = lim sup — £ Y) f(Ojs).
 Л-»00 и fc = i J=0

 Since
 1 "-1

 и j= 0
 0, we obtain

 g(9s)=g(s) —f(s).

 Remarks. 1. The previous proof gives also a direct proof of Corollary 6.
 2. In Corollary 6, if 9 is recurrent, a function g can be obtained by setting

 к

 g(s) = sup V. f(0Js) (see the first and last paragraphs of the proof of Theorem 9).
 k> о / j=о

 Example 3. There exists a compact metric space S, a uniquely ergodic con
 tinuous map cp such that <p"s converges for every se S, and a function fe C(S)

 with supj
 к

 к- 1

 £/(<pyV)
 7=0

 < oo, such that for every geC(S), g(s) — g((ps) Ф f(s).

 Proof Let T be an operator as in Example 1, on Y. Let T = —(7+7").
 2

 Then 7 — T = — (/— 7"), so Tis mean ergodic too, on X, and T" converges strongly
 2
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 160  MICHAEL LIN and ROBERT SINE

 to zero on X (II T"(I - 7)|| = ||2-n+1(I + T')\I - J')|| -» 0). Now T yields also
 an example of (iv) ^>(i). Let S be the unit ball of X* and the weak-* topology, cp
 is the restriction of T* to S and for ,se5c X*,f(s) = (s,y), where у satisfies (iv).

 Hence sup;  s7(y*)
 j=o

 = sup

 k-l

 £ T'y
 7=0

 < oo. Now ||Г"х||-»0 for every] x'e X

 yields (p"(s) -> 0 for every s e S. Hence (p is uniquely ergodic and theToperator
 Ah(s) = h(cps) is mean ergodic on C(S), since A"h -» h(0) weakly] (=[pointwise).

 ft к— 1

 If/e(/ — A)C(S), we must have, by Theorem l(iii), that gn = и-1 £ £ A'f
 /c = 1 j=о

 converges strongly. But

 gn(s)=«-1£ lV(^)="-11 x; <>' r*y*>=
 ifc=l 7-=0 7=0

 ft At — 1

 fc=l/=0 /

 and the right-hand side does not converge uniformly on S, by the choice of T and}>.

 Hence f $ (I — A)C(S).

 Theorem 9. Let cp be a continuous map of a topological Hausdorff space S into

 itself, such that {(p"s : n > 0} is dense in S for every s e S. Then f e C(S) is of the

 form f(s) = g(s) — g(<ps), with g e C(S), if and only if sup
 k> 0

 ^f«PJs)
 7=0

 < OO.

 Proof. We have to prove only the "if" part. Defineg(i) = sup V J\(pJs). Then
 k>0 jtо

 k +1 к

 g(cps) = sup YjfWs) = SUP £/(<Р^) -/(•*)•
 7=1  7=0

 If g(s) =/(j), then £(<ps) ^ 0, so g+(cps) = 0 = g(s) -f(s). If g(s) >f(s), then
 g((ps) = g(s) — f(s) > 0, so in any case we have g+((ps) = g(s) —f(s).

 Our purpose now is to show the continuity of g. We say that a function h has a

 jump of at least ö at s0 if for every г >0 and U open containing s0 there are s', s" in U

 with Ih(s') — h(s")I > ö — e. If Js(h) is the set of points where h has a jump of
 least ö, then Jd(h) is clearly closed. It is easy to show that Js(h+) с Jö(h).

 Claim 1. <p(Jö(g)) <= Jö(g).
 We show that for s0ejö(g), (ps0e Jö(g+), which is enough. Let U be open

 with <ps0 e U, and let £ > 0. Since / is continuous, there is V open with

 \ f(s)—f(s0) I < -- for s € V. Let W — (p~\U) П V. It contains s0, so there are s',
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 e

 s" in W with I g(s') — g(s") I > ö . But cps' and cps" are in U, and using
 2

 g+(cps) = g(s) — f(s) we obtain

 I g+icps') - g+((ps") I = I «(✓) - g(s") - [M -/CO] |>5-4-24- = ^- £  2 4

 Claim 2. Js(g) = 0.
 By Claim 1 Js is closed invariant for (p. If Jö ф 0, there is s0 e Jf and

 {<p"s0} с Js, so Js = S. By definition, g is lower semicontinuous, i.e., {g > a} is
 open for every a. Let a0 = inf{g(.s): s e S}, 0 < ß < д. If J5 = S, then every open
 set Ф 0 contains two points s', s" with | g(Y) — g(s") | > ß. Now > о^} is
 open and non-empty (or g = oc0 and Jd = 0). Hence there are points s', s" e
 £ (g > ao}- Hence {#• > a0 + ß\ is not empty. Similarly {g > a0 + nß} Ф 0 for
 every n, contradicting the boundedness of g.

 We have J6(g) = 0 for every <5 > 0, hence g is continuous. Now g((ps) sg
 < g+(cps) = g(s) —f(s), so that h(s) = g(s) — g((ps) —f(s) ^ 0 is continuous
 non-negative. But

 £ Kcph) = g{s) - g(<pk+1s) - £

 so that £ h(cpJs) < oo for every s e S. But our condition on <p implies that (p"s
 j=о

 enters every non-empty open set infinitely many times. If

 infinitely many times, £ h(q>Js) = oo, a contradiction. Hence
 j~ о

 and h = 0, so that f{s) = g(s) — g(cps).

 is entered

 = 0 hv}
 Corollary 10. Let cp be as in the previous theorem and f e C(S). If

 sup
 k> 0  j=0

 Ф oo, then there is a ge C(S) with f(s) = g-(s) — g(q>s).

 < oo. Let s0e S satisfy sup Proof. We prove sup!
 k> 0

 £ Ms)
 j= 0

 = a < oo. Then, for every m and n, we have

 I П

 ■ s e S: supj £ f(q>js)
 »•m\}=m n,m

 all of S.

 €

 ocj i:

 k> 0

 t
 j=m

 £/(^o)
 /=0

 < 2a. Now

 is closed, ^-invariant, and non-empty. Hence it is

 11-1105
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 162  MICHAEL LIN and ROBERT SINE

 Remarks. 1. Theorem 9 for the compact case appears in Gottschalk and Hed

 lund [15, 14.11] with a different proof. Browder [1] generalized their approach in
 order to obtain it in the general case treated here. The problem is treated (in
 disguise) also by Furstenberg [10, p. 162].

 2. A result of Gottschalk [14] shows that if S is locally compact and cp is mi
 nimal, then in fact S must be compact.

 3. Corollary 10 for the compact case, with a proof which generalizes that of
 [15], appears in Furstenberg, Keynes and Shapiro [13, Lemma 2.2], and in Shapiro
 20, Theorem 2.3].

 4. Our proof is more direct, since it is based on the fact that if f(s) — g(s) —

 — g((ps), with inf{g(s) : s e S} = 0, then the minimality of cp implies that

 к

 max Y.f((pjs) = max [g(s) - g(<p*+1s)] = g(s) - min g(cpk+1s)
 0j = 0 Очкчп 0чкчп

 must converge everywhere to g. If S is compact the convergence is uniform, by
 Dini's theorem.

 Claim 1 in our proof of continuity in Theorem 9 is a simplification of a method

 used by Furstenberg [11] for a different functional equation (which he attributes to

 Kakutani in [12]). Claim 2 avoids Baire's theorem (used in [11]), and allows general
 spaces.

 The analogue of the previous corollary for non-singular transformations is
 easier:

 Theorem 11. Let (S, I, /0 be a a finite measure space, and 0 a non-singular
 transformation of S, which is conservative and ergodic (i.e., 0(A) с A implies ц(А) = 0

 £/(0Js) ! < ool >0,
 j=o I j

 then there is a geLwith f(s) = g(s) — g(0s) a.e. (hence /e Lm).

 or n(S\A) =- 0). If f is a.e. finite and satisfies ц \ s : sup
 k»0

 k-\

 Proof Let gk(s) = Y, f(0Js). We show sup| gk(s) | finite a.e.
 j—0 k>l

 Let A — {s : sup| gk(s) | < oo}. Then gk( Os) = gt+1(^) — f(s) shows that
 к

 0s e A for s e A, and ц(А) > 0 implies fx(S \Л)=0. Hence for a.e. s, gk(s) is bound
 1 "

 ed, yielding^~^к(я) -> 0 a.e.. Now let g(s) — Jim sup — ^ gfe(j). Then
 n k=1

 ] n ] n
 g(0s) = lim sup — Yi Ski®*) = 1™ sup— £ gk+i(s) - f(s) =

 л-»00 n ^ = 1 л-»00 n k=1

 = g(s) -f(s) + lim [ ^n+i(^) - g(s)]jn = g(s) ~f(s).
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 We have to show now that g is bounded. We have g(s) — g(6ks)
 k-1

 £ f(9Js), hence sup| g{6ks) 1 < oo a.e. .
 1= о

 Let Ар/ = {5 : sup| g(Qks) | <iV}. Then S == ^4^ (mod /i), and ß(AN) > 0
 £>0  N= 1

 for some N. But 6(AN) с AN, hence S = AN (mod /i), and |g(s)| < N a.e. .

 Remarks. 1. The previous theorem may fail for a general conservative and

 ergodic Markov opera,or o„ I.. Le, ,<S) - >. and detae V

 '4 IffeLj_ with V/d^ = 0, then
 fc-i

 I /1. But we may take f ф Loo ■ £ Tjf
 I 7=0

 2. If 0 is only conservative (i.e., 9~1(A) =>/!=> в~1(А) = A), the theorem
 may fail. (Examples are easy to construct.)

 For the general set-up of Theorem 1, if (/— T)xt = y, then T(xx — x2) =
 =л:1—x2, so uniqueness of solutions in the Banach space depends on the fixed points
 of T. We now look at a Markov operator on L1, and study the finite solutions (not
 necessarily integrable) in a special case (see [8] for the extension of T).

 Definition. A positive contraction of L^S, 1,ц) is called conservative if for
 00

 и > 0 a.e., ue Lt, we have £ Tju(s) = 00 a.e. .
 7=0

 Theorem 12. Let T be a conservative positive contraction on Lj(S, I, ц), and
 let f e L1. Let gi and g2 be a.e. finite (measurable) functions satisfying (1—T)gi — f.
 If

 Tn\gi\
 (*)

 then

 lim
 П-+СО

 0 a.e. for some 0 < ueL1}
 £ pu
 j=0

 T(Si - ft)± = (£2 - gl)*, and
 /1—1 I

 и-1 £ Pf\
 7=0

 0.

 Proof Let£ = g2-£i- Then Tg = g, hence T\g\ > |g|, and Tg±^g±.
 (Since g need not be integrable, we cannot conclude equality immediately.)

 Then Tg+ = g+ + h, with 0 < h < 00 a.e.. (By assumption, T"\g\ < 00
 a.e. for every и.) Hence also Tg~ = g~ + h.

 Without loss of generality, we may and do assume ^i(S) = 1.

 TV + ТЧг = £ T>8+ => "l T"h + g+ =
 /«=0 i*=0 I«1 /=0
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 164  MICHAEL LIN and ROBERT SINE

 We take the и e Lx with и > 0 a.e., for which (*) holds. Then

 +"£ T'h
 1=0  Т'Г  0 a.e..

 s T'u s T'u
 1=0 1=0

 Let Zt = {Ae I : T* \A = \A a.e.}. By the Chacon-Ornstein theorem (see [8])

 i T>v
 lim i=0

 n -+00

 £ T'u

 E(v 1 Ij)

 E{u I I, )
 a.e., for veLly

 1=0

 and therefore also for any finite v ^ 0. We conclude that --- — =0, so A = 0 any

 a.e., since h ^ 0. Hence 7g± =
 Now (/ — Г)#! = / implies, using (*), that

 Дм I I,)

 O^lim*-7^
 E r'«

 Jjy

 ^ Г'м I
 _ ,im i-j>_ _ * < -■>

 i—0

 Hence E(f\ I,) = 0. Since all r*-invariant functions in the conservative
 case are Immeasurable, / is orthogonal to all T*-invariant functions, hence is in

 П— 1

 0. n-1 £ T'f
 j=о

 (/ - Г)А. Thus

 Corollary 13. Let T be as above. Let f e Ll satisfy n1 "s T'f
 7=0

 gt > 0, £2 ^ 0 «zf/'s/y (/ — Г)Я/ = /, then T(gl - g,)* = (& - g2)±.

 0. If

 Proof. We show that (*) is satisfied for g;:

 gi - T"Si
 Л T'f

 j—o  E(f I I,)

 Y ТЫ TJu ""CO
 /=0 7=0

 (Since £(/| I,) must be zero.)
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 Remarks. 1. Condition (*) in Theorem 12 is a necessary and sufficient con
 dition for obtaining T\g\ — |g| from Tg = g, for T conservative. If r|g| = |g|, then
 the proof of Corollary 13 shows that (*) holds. The following example shows that

 Tg — g does not imply T\g\ = |g|. Define T on {X(Z) by (Tu)t = t + ui+1).

 Then gt — i defines an invariant function, but T\g\ Ф |^|, since (Г|^|)0 = 1.
 2. In Corollary 13 we have looked at the uniqueness of positive solutions g

 to (/ — T)g = /, when fe (I — T)LX. Fong and Sucheston [9, Theorem 2.4] proved
 that (in the conservative case) positive integrable solutions exist for a dense subset

 of (/ - T) Lx .
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