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Approach to ergodicity in Monte Carlo simulations

J. P. Neirotti and David L. Freeman
Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island 02881-0809

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 12 July 2000!

The approach to the ergodic limit in Monte Carlo simulations is studied using both analytic and numerical
methods. With the help of a stochastic model, a metric is defined that enables the examination of a simulation
in both the ergodic and nonergodic regimes. In the nonergodic regime, the model implies how the simulation
is expected to approach ergodic behavior analytically, and the analytically inferred decay law of the metric
allows the monitoring of the onset of ergodic behavior. The metric is related to previously defined measures
developed for molecular dynamics simulations, and the metric enables the comparison of the relative efficien-
cies of different Monte Carlo schemes. Applications to Lennard-Jones 13-particle clusters are shown to match
the model for Metropolis, J-walking, and parallel tempering based approaches. The relative efficiencies of
these three Monte Carlo approaches are compared, and the decay law is shown to be useful in determining
needed high temperature parameters in parallel tempering and J-walking studies of atomic clusters.

PACS number~s!: 02.70.Lq, 05.10.Ln

I. INTRODUCTION

A goal of Monte Carlo~MC! simulations in statistical
mechanics@1# is the calculation of ensemble mean values of
thermodynamic quantities. Ensemble mean values are multi-
dimensional integrals over configuration space,

^U&5E dx P~x!U~x!, ~1!

whereP(x) is the probability of finding a system in the state
defined byx, and the functional form ofP(x) depends on the
ensemble investigated. MC simulations usually generate a
sampling of configuration space$xk%k51

K by the use of a sto-
chastic process with stationary probabilityP(xk). The quan-
tity U evaluated atxk is the output of the simulationU(xk)
5Uk , and its arithmetic mean valueŪ, in principle, must
approach the ensemble mean value@1#. In this paper we refer
to the set of configurations generated in a Monte Carlo simu-
lation as a time sequence, and we study the behavior of these
temporal sequences$Uk% and their arithmetic mean, to un-
derstand better how MC simulations approach ergodic be-
havior. It is important to emphasize that there are two time
variables to consider. The time variablek labels the separate
configurations generated in a Monte Carlo walk. Variations
of properties withk provide information about the short-time
behavior of a MC simulation. The time variableK labels the
total length of the MC walk, and variations of computed
properties withK provide information about the convergence
of the simulation on a long time scale.

Given an infinite time, the stochastic walker in a MC
simulation visits every allowed point in configuration space
@2#. Ergodic behavior is reached when the length of the walk
is sufficiently long to sample configuration space appropri-
ately @3#. In practice, this does not mean that the space has
been densely covered but that every region with non-

negligible probability has been reached. In such a case we
can say that the simulation is effectively ergodic or that it has
reached the ergodic limit.

For a finite walk, in the event of broken ergodicity@4#,
phase space is effectively disconnected. The different discon-
nected regions~called components! are separated by barriers
of zero effective probability. If a stochastic walker starts its
walk in one of these regions, it may not cross the barriers
within the time of the simulation. If the simulation length is
increased, some barriers may become accessible for the
walker and phase space is better sampled. We can conclude
that a timet exists such that, for simulation lengths shorter
thant, the walker becomes trapped in one of the phase space
components. For simulation lengths much larger thant,
phase space is effectively covered by the walker.

In this study we imagine a system having more than one
time scalet1!t2!•••!tL . In a Monte Carlo simulation
each scale comes from stochastic processes with different
correlation times@5#. A precise definition of the correlation
times for Monte Carlo processes is given in Sec. III, but for
the moment we can think of these correlation times as iden-
tical to physical time scales of the system under study. To
understand these time scales more fully, it is useful to focus
on an example. Prototypical of systems having such dispar-
ate time scales are atomic and molecular clusters. Typical
cluster potential surfaces have many local minima separated
by significant energy barriers@6–8#. The local minima can
be grouped into basins of similar energies, with each basin
separated from other basins again by energy barriers. At
short Monte Carlo times a cluster system executes small am-
plitude oscillations about one of its potential minima. We
can think of these vibrational time scales as the shortest time
scales that define a cluster system. As the simulation time is
extended the system eventually hops between different local
minima within the same basin. The time scale for the first
hops between local minima can be considered the next short-
est time scale for the simulation. At still longer Monte Carlo

PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5

PRE 621063-651X/2000/62~5!/7445~17!/$15.00 7445 ©2000 The American Physical Society



times, the system hops between different energy basins de-
fining yet another time scale for the simulation. This group-
ing of time scales continues until the longest time scale for a
given system is reached. At Monte Carlo times that are long
compared to this longest time scale, the simulation is er-
godic.

Consider a system with several time scales as mentioned
above. If the length of the simulation is smaller than the
smallest correlation time, the walker may become trapped in
an effectively disconnected region and the sampling of phase
space is incomplete. By increasing the time, the memory of
the initial condition in the sampling decreases as the walker
crosses to other previously unreachable regions. These oscil-
lations and hoppings can be modeled by a superposition of
stochastic processes with different correlation times. These
processes with nonzero correlation times are known ascol-
ored noiseprocesses~as opposed to zero correlation time
white noiseprocesses! @5#. From the study of the autocorre-
lation functions of a stochastic model defined using these
colored noise processes, we can verify that, at a fixed run
lengthK, there exist two different groups of processes; those
that contribute to the autocorrelation function with terms that
decay like 1/k ~called diffusive processes!, and those that
contribute to the autocorrelation function with terms that de-
cay more slowly than 1/k ~called nondiffusiveprocesses!.
When the time of the simulation is increased, some nondif-
fusive processes at shorter run lengths start to contribute to
the autocorrelation function like diffusive processes. After
the walk length reaches the largest correlation timetL , all
processes contribute to the autocorrelation function with
terms that decay like 1/k. At this point, the simulation is at
the diffusive regime and effective ergodicity has been
reached. A principal goal of this work is to investigate the
way in which the MC output$Uk% reaches the diffusive limit
~i.e., the ergodic limit! by studying the properties of autocor-
relation functions under changes of scale in time,K→bK
with b.1. By time scaling it is possible to infer the decay
law of the nondiffusive contributions with respect to the total
simulation timeK. The functional dependence of the nondif-
fusive contributions on the parameterb that is used to scale
K is determined empirically. We have found the decay law
so determined to be a particularly valuable method of con-
cluding when a simulation can be considered ergodic. Unlike
previous studies@3,9–11# that have investigated only the be-
havior of certain autocorrelation functions in the ergodic re-
gime, by focusing on the approach to ergodic behavior we
have a more careful monitor of the onset of ergodicity. Once
the nondiffusive contributions have decayed to a point where
they are too small to be distinguished from zero to within the
fluctuations of the calculation, we can say that the ergodic
limit has been reached.

The autocorrelation functions we use to measure the ap-
proach to the ergodic limit are based on one of the probes of
ergodicity developed by Thirumalai and co-workers@3,9–
11#, and is often called theenergy metric. The energy metric
has been proposed as an alternative to other techniques@3#
~like the study of the Lyapunov exponents@12#! for the study
of ergodic properties in molecular dynamics simulations.
The metric has been used to study the relative efficiency of
MC simulation methods as well@13#. The MC metric as used

in the current work can easily be extended from the energy to
other scalar observables of the system.

We present two key issues in this paper. First, from the
knowledge of the decay law of the nondiffusive contribu-
tions to the MC metric, we infer how long a simulation must
be to be considered effectively ergodic. Second, once the
ergodic limit is reached, we can compare the results from
different numerical algorithms to measure relative efficien-
cies. Because the outcomes of MC simulations are noisy, we
have found it useful to separate diffusive and nondiffusive
terms in the MC metric with a Fourier analysis so that we
can neglect the high frequency components of the noise. This
technique has given reproducible results.

To test the match between the stochastic model and actual
Monte Carlo simulations, we examine the approach to er-
godic behavior in simulations of Lennard-Jones clusters. Re-
cently@14,15# we have studied the thermodynamic properties
of Lennard-Jones clusters as a function of temperature using
both J-walking@16# and parallel tempering methods@17–19#.
Both simulation techniques require an initial high tempera-
ture that must be ergodic when Metropolis Monte Carlo
methods@20# are used. If the Metropolis method does not
give ergodic results at the initial high temperature, system-
atic errors propagate to the lower temperatures in J-walking
and parallel tempering simulations, and the results can be
flawed or meaningless. In most Monte Carlo simulations of
clusters at finite temperatures@21,22#, the clusters are defined
by enclosing the atoms within a constraining potential about
the center of mass of the system. The constraining potential
is necessary because clusters at finite temperatures have fi-
nite vapor pressures, and the association of any one atom
with the cluster can be ill defined. From experience
@14,15,23# we have found that if the radius of the constrain-
ing potential and the initial high temperature are not both
carefully chosen, it can be difficult to attain ergodicity with
Metropolis methods. A key concern then is the choice of
constraining radius and the choice of initial temperature. We
verify the stochastic model by investigating Monte Carlo
simulation results as a function of the temperature and the
size of the constraining potential.

The contents of the remainder of this paper are as follows.
In Sec. II we motivate the studies that follow by examining
numerally the behavior of a set of Monte Carlo simulations
of a 13-particle Lennard-Jones cluster. This cluster system is
used to illustrate the results throughout this paper. In Sec. III
we introduce the stochastic model based on a continuous
time sequence. In Sec. IV we extend the model to discrete
time sequences characteristic of actual Monte Carlo simula-
tions. In Sec. V we test the discrete stochastic model with
applications to Lennard-Jones clusters and in Sec. VI we
summarize our conclusions. Many of the key derivations
needed for the developments are found in two Appendixes.

II. AN EXAMPLE CALCULATION

Before discussing the major developments of this work, it
is useful to understand the nature of the problem we are
attempting to solve by examining some numerical results on
a prototypical system. We take the 13-particle Lennard-Jones
cluster defined by the potential function
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V~x!54«(
i 52

N

(
j 51

i 21 F S s

r i j
D 12

2S s

r i j
D 6G1(

i 51

N

VC~xW i ,Rc!,

~2!

where« and s are the standard Lennard-Jones energy and
length parameters,N is the number of particles in the cluster
~13 in the present case!, r i j is the distance between particles
i and j,

r i j 5uxW i2xW j u, ~3!

andVC is the constraining potential discussed in Sec. I,

VC~xW i ,Rc!5H 0, uxW i2XW cu,Rc

`, Rc,uxW i2XW cu,
~4!

whereXW c is the coordinate of the center of mass of the clus-
ter andRc is the radius of the constraining sphere. The 13-
particle Lennard-Jones cluster has a complex potential sur-
face with many minima separated by significant energy
barriers@6–8#, and ergodicity problems associated with the
simulation of properties of this system are well known@16#.
We now consider a Metropolis MC simulation of the average
potential energy of the system in the canonical ensemble at
temperaturekBT/«50.393 (kB is the Boltzmann constant!.
This average potential energyV̄k is defined by

V̄k5
1

k (
k851

k

Vk8 ~5!

and is displayed in the upper panel of Fig. 1 as a function of
the walk lengthk for 20 independent simulations each ini-
tialized from a random configuration. Over the maximum
time scaleK of the walks, it is apparent that the potential
energy averaged over each independent walk has not con-
verged to the same result. Such unreproducible behavior is
symptomatic of a simulation not yet at the ergodic limit.

At the ergodic limit ~i.e., for maximum walk lengthK
greater than that included in Fig. 1! the averages displayed in
the upper panel of Fig. 1 must approach the same value for
each walker. Using related ideas developed elsewhere
@3,9,10#, the extent to which the walks approach the same
limit can be measured in terms of a metricdk defined by

dk5
2

M ~M21! (
i 52

M

(
j 51

i 21

@V̄k
( i )2V̄k

( j )#2. ~6!

In Eq. ~6! M represents the number of independent walks,
andV̄k

( i ) is the average potential energy computed in walki at
MC time k. The metric measures the energy fluctuations in
the walk as a function of the walk length. For an ergodic
simulation, the metric must decay to zero. For the 20 simu-
lations of the 13-particle Lennard-Jones cluster, the metric as
a function ofk is plotted in the lower panel of Fig. 1. Rather
than asymptotically approaching zero, over the short length
of the walk displayed here,dk has decayed to a constant, and
as discussed later in this paper, over the time scale of this
simulation,dk can be qualitatively represented by the func-
tion

dk5
AK

k
1BK , ~7!

whereAK andBK are coefficients that are dependent on the
total walk lengthK. As K is increased to a time where the
walk is ergodic,BK must decay to zero. Major goals of this
work are to understand howBK decays and to use the decay
law discovered to determine the onset of ergodic behavior.
Our approach is to introduce first a continuous stochastic
model of a simulation followed by a discrete model more
clearly linked to actual MC studies.

III. STOCHASTIC MODEL

We have discussed in the Introduction how the output of
MC simulations can be considered to be a combination of
stochastic processes with different time scales, and how the
contributions to autocorrelation function from these pro-
cesses can vary when the length of the simulation is en-
larged. Here we present a continuous time model for the
stochastic processes that occur in a simulation. Even though
a MC simulation occurs in a discrete time~each MC point
represents a time unit!, we find that the continuous model

FIG. 1. The upper panel shows the ‘‘time evolution’’ ofV̄k ~in
units of «) for M520 independent experiments. The lower panel
showsdk ~in units of «2) vs k for the experiments of the upper
panel.Rc has been set to 4s andkBT/«50.393. At least two basins
with different energies are present. Clearly,dk goes to a constant
whenk is increased within the total time scale of the simulation.
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helps to understand better the ideas used in the modeling of
the MC output.

In this section the ensemble mean value is used to find the
expression for the autocorrelation functions of the model.
Although in actual numerical calculations the ensemble
mean is replaced by a mean over a finite number of indepen-
dent experiments, the results obtained here give information
about the limit of an infinite sample.

The stationary process used to sample space is a stochas-
tic process. We assume the output of the MC simulation can
be modeled by a linear superposition of stochastic processes
with different correlation timest l >0,

U~ t !5Uc1AG0j~ t !1 (
l 51

L

AG l gl ~ t/t l !, ~8!

whereUc is a constant, the random variablej(t) represents
white noise processes with zero correlation time (t050),
and the$gl (t/t l )% are stochastic processes with correlation
timest l .0. j(t) andgl (t/t l ) have units of the square root
of time, andG0 andG l are constants with units ofU2/t. If U
is chosen to be the thex coordinate of a particle,G0 andG l

have units of a diffusion constant. Consequently we refer to
these constants as generalized diffusion coefficients. The
white noise process has the following properties@5#:

^j~ t !&50, ~9!

^j~ t !j~ t8!&5d~ t2t8!, ~10!

and the remaining colored noise processes are assumed to
satisfy

^gl ~ t/t l !&50, ~11!

^gl ~ t/t l !gl ~ t8/t l !&5
1

t l

f l S ut2t8u
t l

D , ~12!

so that they represent processes with a memoryf l . Even
though correlations between processes with different corre-
lation times may be nonzero, we assume the processes to be
independent, i.e.,

^gl ~ t/t l !gl 8~ t8/t l 8!&5^gl ~ t/t l !&^gl 8~ t8/t l 8!&

50 ;l Þl 8, ~13!

^j~ t !gl ~ t8/t l !&5^j~ t !&^gl ~ t8/t l !&50 ;t and t8.
~14!

The memory function is assumed to be a continuous function
that depends only on the distance betweent and t8, disre-
garding the time origin~stationary condition!. The memory
function represents the correlation between two times of the
processgl . In our model we impose the condition

t

t l

f l S t

t l
D,E

0

t

dt8
1

t l

f l S t8

t l
D,`. ~15!

The scope and implications of the leftmost inequality are
explored in Appendix A. In Appendix A we also examine the
conditionsf l must satisfy in order to yield contributions to
the autocorrelation function that decay more weakly than 1/t.

We now assume that this inequality can be taken as a bound
to possible maxima off l appearing att.0. The rightmost
inequality enables us to assumef l is normalized,

E
2`

`

dt
1

t l

f l S utu
t l

D51. ~16!

We have identified here the time scalet l with the correla-
tion time of the stochastic processgl . This identification is
valid if

E
2`

`

dt
utu
t l

f l S utu
t l

D5t l , ~17!

which implies that the behavior off l at large t must be
O(t2(21e)), or smaller.

In addition, by the properties of the ensemble mean value,
we have that for all reall

0<^@gl ~ t/t l !1lgl ~ t8/t l !#2&

<^gl ~ t/t l !2&12l^gl ~ t/t l !gl ~ t8/t l !&1l2^gl ~ t8/t l !2&

<
1

t l
H f l ~0!12l f l S ut2t8u

t l
D1l2f l ~0!J . ~18!

Equation~18! must be true for alll. Therefore, the discrimi-
nant of the polynomial inl must be nonpositive,

4F f l S ut2t8u
t l

D2 f l ~0!GF f l S ut2t8u
t l

D1 f l ~0!G<0. ~19!

Consequently,f l (0)5max$f l (x);x>0%. Other properties
of f l are studied in Appendix A.

The ensemble mean value^U& is time independent. The
ensemble mean value of the noise processes is zero. There-
fore, Uc must be equal tôU&. Processes defined by Eq.~8!
have two different components, uncorrelated white noise and
correlated processes with correlation timet l . Because the
goal of the simulation is the calculation of the ensemble
mean^U& by the analysis of the time series, we study the
behavior of the temporal meanŪ(t),

Ū~ t !5
1

t E0

t

dt8U~ t8!

5^U&1
1

t
AG0W~ t !1

1

t (
l 51

L

AG l Gl ~ t/t l !, ~20!

whereW(t) is a Wiener process@5#,

W~ t !5E
0

t

dt8j~ t8!, ~21!

^W~ t !&50, ~22!

^W~ t !W~ t8!&5t, , ~23!

with t,5min(t,t8) andGl (t/t l )5*0
t dt8gl (t8/t l ).

Equation~20! implies that the evolution of the temporal
mean Ū(t) has the same structure as that ofU, with an
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uncorrelated term and terms with tailed correlation functions.
The autocorrelation function of the processŪ at timest and
t8 is defined by

k~ t,t8!5^~Ū~ t !2^U&!~Ū~ t8!2^U&!&

5
G0

tt8
^W~ t !W~ t8!&

1
1

tt8
(

l 51

L

G l ^Gl ~ t/t l !Gl ~ t8/t l !&, ~24!

where we have used Eqs.~13! and ~14! to neglect terms
involving processes with different correlation times.

Because we have assumed thatf l is a continuous func-
tion, f l reaches its maximum and minimum values within
any closed interval considered. Thel th nondiffusive contri-
bution tok(t,t8),

1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&

5
1

tt8
E

0

t

dt1E
0

t8
dt2

1

t l

f l S ut12t2u
t l

D , ~25!

is bounded

1

t,t.
E

0

t,

dt1E
0

t.

dt2
1

t l

f l S tmin

t l
D

<
1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&

<
1

t,t.
E

0

t,

dt1E
0

t.

dt2
1

t l

f l ~0!,

1

t l

f l S tmin

t l
D<

1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&

<
1

t l

f l ~0!, ~26!

wheret.5max(t,t8), andtmin is the time at whichf l reaches
its minimum value in the closed interval@0,t.#. There exists
a t l* (t.)P@0,tmin# @24# such that

1

tt8
^Gl ~ t/t l !Gl ~ t8/t l !&5

1

t l

f l S t l* ~ t.!

t l
D . ~27!

Using Eqs.~23! and ~27! in Eq. ~24!, we find that

k~ t,t8!5
G0

t.
1 (

l 51

L
G l

t l

f l S t l* ~ t.!

t l
D . ~28!

For all times shorter thant1 the autocorrelation function is
the sum ofdiffusive contributions~proportional to 1/t) plus
nondiffusive contributions. These contributions implicitly de-
pend ont. throught l* (t.). We assume thatf l satisfies the

conditions stated in Appendix A, so that the dependence of
f l on t is weaker than1/t ~for total time scales shorter than
t l ; see Appendix A!.

We next consider the behavior of Eq.~28! for time scales
greater thant1. Under the scale changet→bt such thatt1
!bt.!t2, the contributions to the correlation function from
the process with correlation timet1 can be considered diffu-
sive @in other words, by virtue of Eqs.~10! and ~12!, f 1 /t1
has become ad function#. With bt.!t2, the other processes
preserve their old properties. Then the autocorrelation func-
tion can be expressed

k~bt,bt8!5
G01G1

bt.
1 (

l 52

L
G l

t l

f l S tbl* ~ t.!

tbl
D . ~29!

The complete derivation of Eq.~29! can be found in Appen-
dix B. For times larger than the correlation timetL , all
contributions to the autocorrelation function are diffusive,
the simulation can be considered ergodic, the sampling com-
plete, and the temporal mean is equal to the ensemble mean
within O(1/t) mean square fluctuations.

IV. DISCRETE TIME SEQUENCES AND
THE MC METRIC

Monte Carlo simulations generate discrete sequencesUk
of values of the quantity under study. Additionally, in actual
calculations the ensemble of sequences is represented by a
finite rather than an infinite set. In this section, the model
developed in the previous section is extended to finite sets of
discrete sequences. We express theM sequences$Uk

(m)%k51
K ,

where the label~m! ranges from 1 toM. The exact ensemble
mean valuê U& can be obtained in the limit thatM becomes
infinite. In analogy with the model developed in Sec. III,
each output is assumed to have the form

Uk
(m)5^U&1AG0jk

(m)1 (
l 51

L

AG l gl ;k/t l

(m) , ~30!

where

^jk
(m)&50, ~31!

^jk
(m)jk8

(n)&5dm,ndk,k8 , ~32!

^gl ;k/t l

(m) &50, ~33!

^gl ;k/t l

(m) gl 8;k8/t l 8

(n) &5dm,nd l ,l 8 f l S uk2k8u
t l

D . ~34!

The true ensemble average^U& does not depend on the index
m.

In the discrete case we define a metric

dk5
2

M ~M21! (
i 52

M

(
j 51

i 21

@Ūk
( i )2Ūk

( j )#2, ~35!

where the bars represent the temporal mean value
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Ūk
(m)5

1

k (
k851

k

Uk8
(m)

5^U&1
AG0

k
Wk

(m)1 (
l 51

L AG l

k
Gl ;k/t l

(m) , ~36!

with

Wk
(m)5 (

k851

k

jk8
(m) , ~37!

Gl ;k/t l

(m) 5 (
k851

k

gl ;k8/t l

(m) . ~38!

Observe that in the present case our finite sample of the

infinite ensemble is the set of outcomes fromM independent
numerical experiments. The metric we have defined in Eq.
~35! can be contrasted with alternative metrics@3,9,10# pre-
viously defined for molecular dynamics simulations. These
alternative metrics examine the fluctuations of two simula-
tions initialized from different components of configuration
space averaged with respect to all the particles in the system.
The metric we use in this work is determined using an aver-
age with respect toM independent simulations that represent
a subset of the full ensemble.

Using the model presented in Eq.~30!, we now develop a
way to predict the behavior of the MC simulation in the
nonergodic and ergodic regimes. We first consider the case
that the total simulation timeK is larger than the first corre-
lation time t1 but shorter thant2, i.e., t1!K!t2. The ex-
pression fordk is given by

dk5
2

M ~M21! (
i 52

M

(
j 51

i 21

@~Ūk
( i )2^U&!2~Ūk

( j )2^U&!#2

5
2

M (
i 51

M

~Ūk
( i )2^U&!22

4

M ~M21! (
i 52

M

(
j 51

i 21

~Ūk
( i )2^U&!~Ūk
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If the number of experimentsM is sufficiently large, we can
neglect terms involving processes with different correlation
times, and products of sequences belonging to different ex-
periments. Under these assumptions we obtain

dk52
G0

k

1

M (
i 51

M Wk
( i )2

k
12

G1

k

1

M (
i 51

M G1;k/t1

( i ) 2

k

12 (
l 52

L

G l

1
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i 51

M S Gl ; k/t l

( i )

k
D 2

. ~40!

Equation~40! preserves the form of Eq.~28!. To make this
statement explicit, let us rewrite Eq.~40! as

dk52
Gk

k
12Yk , ~41!

where

Gk5G0

1

M (
i 51

M Wk
( i )2

k
1G1

1

M (
i 51

M G1;k/t1

( i )2

k
, ~42!

Yk5 (
l 52

L

G l

1

M (
i 51

M S Gl ;k/t l

( i )

k
D 2

. ~43!

In Appendix B we present a study of the way nondiffusive
contributions become diffusive under time scale changes. If
M is sufficiently large andt1!K!t2, by virtue of Appendix
B, Gk must be roughly a constant. Byroughly a constantwe
mean a constantC plus some rapidly fluctuating functionzk ,
with the following properties:~a! ^zk&50 and ~b! uCu
@maxk51,2, . . . ,K(uzku). Then

Gk.GK1zk . ~44!

If K is enlarged, we expect to have a larger value ofGK . Yk
is a quantity related to the memory functionsf l with corre-
lation timest l @K. In the continuous time model, the col-
ored noise processes contribute to the autocorrelation func-
tion with terms proportional tof l „t l* (t.)/t l …, which are
weakly dependent ont ~see Appendix A!. We can expectYk
to be weakly dependent onk, and for sequences of lengthK
and for M sufficiently large we consider this quantity to be
roughly a constant,

Yk.YK1bk , ~45!

where bk represents additional random noise. Then, for a
given lengthk<K, the MC metricdk can be approximated
by
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dk52
GK

k
12 YK1gk , ~46!

where gk52(zk /k1bk) represents remaining stochastic
noise from both contributions. In this approximation,GK and
YK are the quantities that carry the long-time dependence.
Short-time features appear in the 1/k dependence and in the
remaining noisegk . If the sequences considered are in-
creased in size by a factor ofb, such thattl21!K!tl

!bK for a given 1<l<L, GK (YK) is increased~de-
creased! ~see Appendix B!. Then

dbk52
GbK

bk
12 YbK1gbk , ~47!

whereYbK must go to zero andGbK must approach a con-
stant whenb is increased. By virtue of the expected behavior
of the nondiffusive contributions~see Appendix A!, we pro-
pose the following expression forYbK :

YbK5YKf~b!, ~48!

wheref(b) is a decreasing function ofb. Moreover,YbK is
a sum of nondiffusive contributions. As presented in Appen-
dix A, each nondiffusive contribution to the autocorrelation
function has a relative variation smaller than the relative
variation of the diffusive contribution, namely, 121/b. If
this inequality is applicable to the sum of nondiffusive con-
tributions, we have that

12
1

b
.12

YbK

YK
, ~49!

12
1

b
.12f~b!, ~50!

1,bf~b!, ~51!

for all b.1. Then,f must be either

f~b!5b2y ~52!

or

f~b!5
1

h ln~b!11
, ~53!

with 0,y,1 and 0,h<1. Equation~53! can be thought of
as the limit of Eq.~52! when the exponent goes to zero. We
know of noa priori argument to justify Eq.~48!. However,
as is discussed in Sec. V, our numerical experience has
shown Eq.~48! to be obeyed in all cases we have examined.

Our goal is to develop a criterion to decide when the
simulation can be considered ergodic. From the previous
considerations it is clear that the ergodic limit is reached
whenYK is indistinguishable from zero. The output from a
MC simulation is usually noisy. Therefore,gk cannot be ne-
glected. A useful way to separate diffusive and nondiffusive
contributions and to eliminate the stochastic noise from Eq.
~46! is to perform a Fourier analysis of the functionkdk . Let
us define the frequenciesvn5(2p/K)n, with n
50,1, . . . ,K21. The discrete Fourier transform of the func-
tion kdk is the signalCK(vn),

CK~vn!5kd̂k~vn!5
1

K (
k51

K

exp~2 ivnk!kdk ~54!

5
2

K (
k51

K

exp~2 ivnk!GK1
2

K (
k51

K

k exp~2 ivnk!YK1kĝk~vn!

52 dn,0GK1$dn,0~K11!1~12dn,0!~11 i cot@vn/2# !%YK1kĝk~vn!

52 dn,0GK1~Kdn,011!YK1 i ~12dn,0!cot~vn/2!YK1kĝk~vn!. ~55!

In general,kĝk(vn) is negligible except at high frequencies.
For small positive values of the frequency we can make the
approximation cot(vn/2).2/vn . From this approximation
we have

Im@CK~vn!#.
2

vn
YK . ~56!

The real part of Eq.~55! for positive frequencies is

Re@CK~vn!#5YK . ~57!

Even though simpler than Eq.~56!, we have found that Eq.
~57! is more sensitive to the deviations ofdk from the ap-
proximation Eq.~46!. Therefore, the data obtained from the
real part are of poorer quality than the data obtained from the
imaginary part.

Equation~56! implies that, for a given simulation length
K, the contributions to the MC metric from the nondiffusive
process can be determined from a simple relationship involv-
ing the Fourier transform of the functionkdk at low frequen-
cies. By increasing the length of the runK by a factor ofb, it
is possible to observe the dependence ofYbK on bK.
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V. APPLICATIONS

The concepts developed in the previous sections are suf-
ficiently general to be applied to any kind of MC simulation.
We devote the present section to the application of the de-
velopments of this paper to the study of the Lennard-Jones
13-particle cluster (LJ13) in the canonical ensemble. This
system has been introduced previously in Sec. II.

Some thermodynamic properties of clusters as a function
of temperature exhibit rapid changes that are reminiscent of
similar changes that occur for the same properties in bulk
systems at phase transitions. In a bulk system a phase tran-
sition occurs at a single temperature. For clusters the rapid
changes in thermodynamic properties occur over a finite
temperature interval. To distinguish the temperature range
where thermodynamic properties change rapidly in clusters
from a true phase transition, we follow Berryet al. @25# and
refer to such changes in physical properties as associated
with a phase change. A common property that has been
found to be useful in monitoring these phase change intervals
of temperature is the heat capacity at constant volume@26#,

CV~T!5
1

kBT2
^~V2^V&T!2&T1

3

2
NkB , ~58!

where^•&T represents the classical canonical mean value.
In this work we consider the bare Metropolis~Met! @20#,

J-walking ~Jw! @16#, and parallel tempering~PT! @17–19#
approaches to Monte Carlo simulations. The free variable of
all these methods is the reduced temperaturekBT/«. In PT
and Jw simulations, the highest temperature used (Th) must
be sufficiently large to ensure that Met is ergodic@16#. From
experience simulating a variety of systems, we have found
that Th must also be lower than a temperatureTb where
cluster evaporation events become frequent. It is useful to
think of Tb as the cluster analog of a boiling temperature. We
have found that Met is unable to sample the boiling phase
change region for clusters ergodically, using total time scales
accessible to current simulations.

For the results that follow,Uk
(m) is chosen to be repre-

sented by the potential energy of the system. In generalUk
(m)

can be any scalar property of the system. We define a pass to
represent a set of single particle MC moves taken sequen-
tially over the 13 particles in the cluster. We takeUk

(m) to be
the potential energy at thekth pass, in themth experiment.
Using Eq.~55! we can write

CK~0!52GK1~K11!YK . ~59!

In the nonergodic regime,CK(0) grows withK, while in the
ergodic regime, the signalCK(0) approaches a constant.

We begin by displaying results obtained for a calculation
that has not attained ergodicity over the time scale of the
simulation. We examine the 13-particle Lennard-Jones clus-
ter with the Met algorithm settingRc54s at a temperature
of kBTh /«50.393. The temperature is chosen to be that typi-
cally used as the initial high temperature in Jw and PT stud-
ies of LJ13. By choosing a large constraining radius, the
evaporation events are so frequent at the chosen temperature
that attaining ergodicity proves to be quite difficult. We dem-
onstrate the effect of reducing the constraining radius

shortly. The number of replicas used in the calculation is
M540, andK5104. The upper panel of Fig. 2 shows the
signalCK(0) @evaluated using Eq.~54!#, which grows along
the entire simulation. This is the behavior expected in the
nonergodic regime. In the lower panel we can see the ‘‘time
evolution’’ of the temporal mean values of 15 experiments.
There are three sets of curves, each of which is indicative of
sampling of at least three different energy basins. At low
values ofK the curves in the lower panel differ significantly.
At K.4000 the high energy basin curves begin to decrease
in energy. For a value ofK larger than the data displayed in
Fig. 2, the curves can be expected to coalesce with the low
energy basin curves. It is clear that forK<10 000 the simu-
lation is not ergodic.

In PT and Jw studies it is essential that the initial high
temperature walk be ergodic. Ergodicity can be attained for
LJ13 by reducing the radius of the constraining potential so
that evaporation events are rare. We now present a study of
YK as a function ofK for several values ofRc . To determine
YK , we have calculated the Fourier transform function
CK(vn) using Eq. ~54! at a series of frequenciesvn
52pn/K where n has ranged from 1 to
min(A12bK/20p,100). This range of frequencies ensures
that the linear approximation used in Eq.~55! is valid while

FIG. 2. The upper panel is the signalCK(0) ~in units of«2) vs
K for Rc54s at kBTh /«50.393 fromM540 independent experi-
ments on LJ13. The length of the simulation is 104 MC passes. The

lower panel shows the ‘‘time evolution’’ ofŪK ~in units of «) for
15 independent experiments. At least three basins with different
energies are present. Clearly, the simulation at this scale of time is
not ergodic.
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including sufficient numbers of points for accuracy@27#. Us-
ing Eq. ~56!, we have calculated the slope of the imaginary
part of 1/CK(vn) as a function ofvn for these frequencies.
The data points appearing in Fig. 3 are the mean values over
20 independent calculations of the slope of 1/CK(vn).

Starting from random configurations, we have performed
53104 Met passes atkBTh /«50.393. After this warm-up
process, we have created sequences of sizesbK5104, 2
3104, 43104, . . . ,643104. The results are presented in
Fig. 3 for Rc54s, 3s, 2.5s, and 2s. The upper panel
showsYbK as a function of log2(b), for fixed K5104. We
have chosen to present the data using base 2 logarithms for
clarity @each increase by 1 unit of log2(b) represents a factor
of 2 scale increase#. All the data decrease with increasingb,
but only Rc52s and Rc52.5s appear to vanish to within
the error bars over the time scale of the current simulation. In
the lower panel we presentYK /YbK as a function of log2(b)
for Rc54 and 3s. The decay law suggested in Eq.~48! with
f given by Eq.~53! is satisfied for both radii.

We have stated that the simulation can be considered ef-
fectively ergodic whenYK is indistinguishable from zero. In
Fig. 4 we have plottedYbK and its statistical error as a func-
tion of log2(b) for Rc52.5 and 2s. For Rc52s the crossing
point of YbK and its error is atbK.163104. For Rc

52.5s the crossing point is atbK.643104. We can con-
clude that forkBTh /«50.393 andRc52s the simulation
can be considered effectively ergodic after 163104 Met
passes.

Once a constraining radius is chosen, PT and Jw simula-
tions require that the highest temperatureTh be chosen so
that Met is ergodic. For a givenRc , the extent of ergodicity
can be tested using the same metric that has been used for
determining the optimum value ofRc , but by varying the
temperature. For the parameterskBTh /«50.393 and Rc
52s the simulation is ergodic even at very short sequence
lengths. We have found that forkBTh /«,0.393 the simula-
tions are not ergodic. To be sure that the parameters are
appropriate, we have performed a short PT simulation (104

passes; ten PT passes consist of nine Met passes plus an
exchange attempt! with 40 equally spaced temperatures in
the rangekBT/«P@0.028,0.393# in order to obtain a first
estimate of the position of the melting and boiling tempera-
ture regions. The boiling peak in the specific heat appears to
be located at a higher temperature thankBT/«50.393. More-
over, the value ofCV at kBT/«50.393 is about one-half the
value ofCV at the temperature of the melting peakkBTm /«
50.282. From these results we feel it is safe to chooseRc
52s andkBTh /«50.393 for the calculations that follow.

We now illustrate the convergence characteristics ofYK
when we increase the total time scale of the calculation by a
factorb. We illustrate this behavior using a PT simulation of
LJ13, and we focus on results at the temperature of the melt-
ing peak in the heat capacity (kBTm /«50.282). We choose

FIG. 3. Upper panel:YbK ~in units of «2) as a function of
log2(b) for Rc54s, 3s, 2.5s, and 2s. For the two larger radii the
full line is the best fit to the data points, according to Eq.~48! with
f defined in Eq.~53!. The lower panel shows the linear behavior of
YK /YbK vs log2(b), for Rc54s and 3s. K has been set to 104.

FIG. 4. YbK ~in units of «2) and its error vs log2(b) for Rc

52.5s and 2s, with K5104. WhenYbK is on the order of its own
error, the simulation can be considered ergodic. ForRc52s the
simulation becomes ergodic at log2(b).4 (bK.163104). For Rc

52.5s a longer simulation is needed to reach ergodicity.
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this temperature, because from experience@14,15,23# we
know the statistical fluctuations are large at the melting heat
capacity maximum. The large statistical fluctuations make it
possible to emphasize the behavior ofYK . We have run the
PT simulation at 40 equally spaced temperatures in the range
kBT/«P@0.028,0.393#. The initial warm-up time has been
set to 104 Met passes, followed by 23104 PT passes. Fol-
lowing the warm-up period, we perform simulations of 105,
23105, 43105, 83105, 163105, and 323105 PT passes.
In each case the initial configuration has been taken to be the
last configuration of the previous run. The output of the
simulation are sequences of the potential energy.YK has
been determined in the same way as in the calculation of the
high temperature parameters~presented in Fig. 3 and Fig. 4!.
The data points appearing in the upper panel of Fig. 5 are the
mean value over 20 independent calculations of the slope of
1/CK(vn). In the lower panel of Fig. 5 we have plotted
log2(YK /YbK) as a function of log2(b), whereK5104 andb
51,2,4, . . . ,32. The slope of the linear fit is the exponenty,
according to Eq.~52!. At the temperature of the melting
peak,y50.9360.03.

It is of interest to perform a similar study of the behavior
of YK as a function of the time scaling for a Met calculation.
We have taken the final configuration of the PT simulation at
kBTm /«50.282 as an initial configuration, and we have per-
formed a simple Met simulation at that melting temperature.
A graph of YbK and log2(YK /YbK) as a function of log2(b)
for Met is also presented in Fig. 5. From the upper panel of
Fig. 5, it is evident that Met results are not ergodic within the
same scaled time as the PT results. It is also evident that the
power law exponents for Met and PT are not distinguishable.
Similar studies of the power law using the Jw method also
give the same exponent. Neither an increase in the number of
temperatures nor changing the distribution of temperatures in
either Jw or PT simulations has any effect on the calculated
exponent.

By using the results to compare the relative efficiencies of
Met, Jw, and PT simulations for the LJ13 system, we have
found that PT and Jw simulations can be considered ergodic
if the run length is on the order of 23105 passes, while Met
simulations that are initialized from configurations generated
from an ergodic PT study are ergodic when the total run
length consists of 23106 passes or more.

In order to compare approaches, we have calculatedG as
a function of the reduced temperature, for the three methods.
The comparison of diffusion coefficients from different algo-
rithms has also been used by Andricioaei and Straub@13#.
The comparison of Jw and Met with PT is presented in Fig.
6. The Jw and PT simulations are found to have comparable
efficiencies usingG as a measure for all calculated tempera-
tures. At intermediate temperatures, Met is significantly less

FIG. 5. The upper panel shows the decay behavior ofYbK ~in
units of «2) as a function of log2(b) for PT and Met, at the tem-
perature of the melting peak of the heat capacity,kBTm /«50.282.
From Eq.~52!, we plot log2(YK /YbK) vs log2(b), to extract the value
of the exponenty ~the slope of the linear fit!. We have foundy
50.9360.03 for PT, andy50.9460.02 for Met. The straight lines
are the best linear fits of the data points.

FIG. 6. Comparison of the Met and Jw diffusion coefficients
with the PT diffusion coefficient as a function of the reduced tem-
perature. The dashed line represents equivalence between methods.
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efficient. We have chosen to truncate the Jw study at
kBT/«50.12. For temperatures belowkBT/«50.12, Jw
simulations require significant effort, because a large set of
external distributions must be generated. Because at tem-
peratures belowkBT/«50.12 LJ13 is dominated by structures
close to the lowest energy icosahedral isomer, we expect the
Jw and PT methods to have similar efficiencies~as measured
by G) for all temperatures.

VI. CONCLUSIONS

In this paper we have presented a study of the approach to
the ergodic limit in MC simulations. In all the cases exam-
ined, the behavior of the MC metricdk can be approximated
by Eq. ~46!, and the behavior ofYbK satisfies Eq.~48!. Be-
cause the exponenty is smaller than 1 for all the cases stud-
ied, the dependence of the nondiffusive contributions ondk
is weaker~in the sense of Appendix A! than for the diffusive
contributions. The assumptions on which we have built the
stochastic model have been verified numerically for a system
having a sufficiently complex potential surface to be viewed
as prototypical of a large set of many-particle systems.

The MC metric used in this work appears to be a valuable
tool to study the ergodicity properties of MC simulations.
The nonergodic components of the MC metric enable the
prediction of the minimum length a MC simulation must
have in order to be considered ergodic. Comparison ofG
from different algorithms gives a reasonable estimate of their
relative efficiencies.

From the study of the melting region of 13-particle clus-
ters, we have found that the exponenty depends on both the
method used and the nature of the potential energy function.
We have performed calculations, not discussed in this work,
where the functional form of the potential energy is modi-
fied. These studies have showny to be dependent on the
details of the potential. We have not found the exponenty to
be a strong function of method. Although PT and Met have
significantly different efficiencies as measured by their rela-
tive diffusion coefficients,y is nearly the same in the two
methods. The difference in the decay ofYK appears to be
dominated by the coefficient in Eqs.~48! and~52! rather than
the exponent.

As discussed in the text, parallel tempering and J-walking
studies of many-particle systems must have an initial high
temperature component that is chosen so that a Met simula-
tion is known to be ergodic. For cluster simulations that re-
quire an external constraining potential to define the cluster,
the radius of the constraining potential must be carefully
chosen in order to achieve ergodic results. We have found
the metric and associated decay laws developed in this work
to be a particularly valuable method of choosing these initial
parameters in both parallel tempering and J-walking simula-
tions.

We also remark that the metric introduced here may be a
more sensitive probe of ergodicity than might be required in
some applications. For example, in previous J-walking stud-
ies @26# of the 13-particle Lennard-Jones cluster, the heat
capacity curve determined with a constraining radius of 4s
is nearly indistinguishable from the curve obtained with a
constraining radius of 2s. From the results of this work, we
know the initial high temperature walk is not ergodic when a

constraining radius of 4s is used. It is striking that the non-
ergodicity as measured by the energy metric is not apparent
in the heat capacity curve.

We have constructed a metric based on an ensemble of
MC trajectories. By using an ensemble we attempt to cover
sufficient portions of space so that all components are acces-
sible. In practice only a finite subset of a full ensemble can
be included, and it is always possible that components of
space are missed. In such a caseYK may decay to zero
numerically within the subspace, and the behavior may give
misleading evidence that the simulation is ergodic. Because
components of space may be missed in any finite simulation,
it is impossible to guarantee ergodicity. It is hoped that, by
using a sufficiently large ensemble of trajectories to define
the metric, the possibility of missing components is mini-
mized.
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APPENDIX A: WEAK DEPENDENCE
OF THE NONDIFFUSIVE CONTRIBUTIONS

We have considered two overall time scales for a MC
simulation. Properties calculated at short times~labeledk in
the discrete case! provide information about each step of the
MC process, and properties averaged over the total simula-
tion time ~labeledK in the discrete case! give information
about the approach to ergodic behavior. WhenK is suffi-
ciently short we have both diffusive and nondiffusive contri-
butions as a function ofk. In this Appendix we explain the
relative time dependence of the diffusive and nondiffusive
contributions to the autocorrelation function.

It has been assumed that the autocorrelation function Eq.
~28! can be expressed as the sum of diffusive terms plus
nondiffusive terms, i.e.,

k~ t,t8!5kd~ t,t8!1 (
l 5l11

L

knd,l ~ t,t8!, ~A1!

where

kd~ t,t8!5
G01G11G21•••1Gl

t.
, ~A2!

knd,l ~ t,t8!5
G l

t l

f l S t l*

t l
D . ~A3!

By increasing the time variables by a factorb.1, such
that tl!bt.!tl11, with l>1, we can study the relative
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variations of each contribution to the correlation function,
diffusive and nondiffusive~labeled byl .l). In this Appen-
dix we consider only values ofb such that the transformation
t→bt does not increase the time scale beyond the local cor-
relation time. In Appendix B values ofb are considered that
do cross such time scales.

By the relative variations we mean

Dd~ t,t8;b!5Ukd~bt,bt8!2kd~ t,t8!

kd~ t,t8!
U , ~A4!

Dnd,l ~ t,t8;b!5Uknd,l ~bt,bt8!2knd,l ~ t,t8!

knd,l ~ t,t8!
U . ~A5!

The relative variation of each nondiffusive contribution is

Dnd,l ~ t,t8;b!5U12
1

b2

E
0

bt

dt1E
0

bt8
dt2 f l ~ ut12t2u/t l !

E
0

t

dt1E
0

t8
dt2 f l ~ ut12t2u/t l !

U ,

~A6!

whereas the relative variation of the diffusive contribution is

Dd~ t,t8;b!512
1

b
. ~A7!

If Dd(t,t8;b).Dnd,l (t,t8;b) for all pairs of timest and t8
and for allb.1 such thatbt.!t l , we say that the nondif-
fusive contributions are weaker than the diffusive contribu-
tion in their dependence ont. In the remainder of this Ap-
pendix we explore the propertiesf l must have in order that
the inequalityDd(t,t8;b).Dnd,l (t,t8;b) is satisfied.

Lemma. If the functionH l (t;t),

H l ~ t;t!5E
0

t

dt8 f l S t8

t D.0, ~A8!

satisfies the inequality

H l ~ t;t!.t f l S t

t D;t and t, ~A9!

thenH l (t;t) is an increasing function oft.
Demonstration. For l and t fixed, the functionH l (t,t)

evaluated int8 is

H l ~ t;t8!5E
0

t

dt8 f l S t8

t8
D ~A10!

5E
0

t

dt8 f l S tt8

t8t
D ~A11!

5
t8

t E0

tt/t8
du fl S u

t D ~A12!

5
t8

t
H l ~tt/t8;t!; ~A13!

then, forDt.0,

H l ~ t;t1Dt!2H l ~ t;t!

Dt
5

1

Dt H t1Dt

t E
0

tt/(t1Dt)

dt8 f l S t8

t D
2E

0

t

dt8 f l S t8

t D J ~A14!

5
1

Dt H Dt

t E
0

tt/(t1Dt)

dt8 f l S t8

t D
2E

tt/(t1Dt)

t

dt8 f l S t8

t D J ~A15!

5
1

Dt H Dt

t E
0

tt/(t1Dt)

dt8 f l S t8

t D
2

tDt

t1Dt
f l S t*

t D J , ~A16!

wheret* P@ tt/(t1Dt),t#. In the limit Dt→0, and by vir-
tue of the continuity off l , the derivative takes the form

]H l ~ t;t!

]t
5

1

t H H l ~ t;t!2t f l S t

t D J . ~A17!

Then ]H l (t;t)/]t.0, andH l (t;t) is an increasing func-
tion of t.h

Here we have presented the two first conditionsf l must
satisfy, namely, Eqs.~A8! and~A9!. From Eq.~19! f l (0) is
a global maximum, and the memory functions must have a
positive peak at zero. The area below that peak must be
sufficiently large to satisfy Eq.~A8!. Moreover,f l (0) must
be sufficiently large to satisfy Eq.~A9!, even at points where
f l (t/t) is a local maximum. Thus, to satisfy this Lemma, we
need a memory function with a sufficiently large global
maximum att50.

Corollary. SupposeH l (t;t l ).t f l (t/t l ). If b.1, then
0,Dnd,l (t,t8;b),1 for all pair of timest and t8.

Demonstration. Under the change of scale in timet
→bt, knd,l (t,t8) can be written

knd,l ~bt,bt8!5
1

b2tt8
E

0

bt

dt1E
0

bt8
dt2

1

t l

f l S ut12t2u
t l

D
~A18!

5
1

tt8
E

0

t

dt1E
0

t8
dt2

1

t l

f l S but12t2u
t l

D ;

~A19!
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then the quotientknd,l (bt,bt8)/knd,l (t,t8) is

knd,l ~bt,bt8!

knd,l ~ t,t8!
5

E
0

t

dt1H E
0

t1
dt f l @ t/~t l /b!#1E

0

t.2t1
dt f l @ t/~t l /b!#J

E
0

t

dt1H E
0

t1
dt f l ~ t/t l !1E

0

t.2t1
dt f l ~ t/t l !J ~A20!

5

E
0

t

dt1$H l ~ t1 ;t l /b!1H l ~ t.2t1 ;t l /b!%

E
0

t

dt1$H l ~ t1 ;t l !1H l ~ t.2t1 ;t l !%

. ~A21!

By Eq. ~A8!, H l (t;t).0; t andt. By the Lemma above the
numerator is smaller than the denominator. Then 0
,knd,l (bt,bt8)/knd,l (t,t8),1 and 0,Dnd,l (t,t8;b),1.h

Theorem. Suppose thatb.1 is such thatt l 21!bt.

!t l , H l (t;t l ).t f l (t/t l ), and all f l satisfy the Lipschitz
condition @28#. This condition states that for every closed
interval A exists a real positive numberCl such that

u f l ~x!2 f l ~y!u<Cl ux2yu ~A22!

for all x andy in A. ThenDnd,l (t,t8;b),Dd(t,t8;b) if and
only if f l is non-negative in the interval@0,t.).

Demonstration. If Dnd,l (t,t8;b),Dd(t,t8;b), then

12
1

b
.12

1

b2

E
0

bt

dt1E
0

bt8
dt2 f l ~ ut12t2u/t l !

E
0

t

dt1E
0

t8
dt2 f l ~ ut12t2u/t l !

,

~A23!

1,
1

b

E
0

bt

dt1E
0

bt8
dt2 f l ~ ut12t2u/t l !

E
0

t

dt1E
0

t8
dt2 f l ~ ut12t2u/t l !

, ~A24!

where the operations to reach Eq.~A24! are valid by using
the Corollary above. Then

0,E
0

bt

dt1E
0

bt8
dt2

1

b
f l S ut12t2u

t l
D

2E
0

t

dt1E
0

t8
dt2 f l S ut12t2u

t l
D , ~A25!

0,E
0

t

dt1E
0

t8
dt2H b f l S but12t2u

t l
D2 f l S ut12t2u

t l
D J ,

~A26!

0,E
0

t,

dt1H E
0

t1
dt2Fb f l S b~ t12t2!

t l
D2 f l S t12t2

t l
D G

1E
t1

t.

dt2Fb f l S b~ t22t1!

t l
D2 f l S t22t1

t l
D G J , ~A27!

0,E
0

t,

dt1H E
0

t1
dtFb f l S bt

t l
D2 f l S t

t l
D G

1E
0

t.2t1
dtFb f l S bt

t l
D2 f l S t

t l
D G J , ~A28!

0,E
0

t,

dt1H E
0

bt1
dt f l S t

t l
D2E

0

t1
dt f l S t

t l
D

1E
0

b(t.2t1)

dt f l S t

t l
D2E

0

t.2t1
dt f l S t

t l
D J ,

~A29!

0,E
0

t,

dt1H E
t1

bt1
dt f l S t

t l
D1E

t.2t1

b(t.2t1)

dt f l S t

t l
D J .

~A30!

Using the intermediate value theorem@24#, we have

E
t

bt

dt8 f l S t8

t l
D5~b21!t f l S t* ~ t !

t l
D ~A31!

5~b21!t f l S t

t l
D

1~b21!tF f l S t* ~ t !

t l
D2 f l S t

t l
D G , ~A32!
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where t* (t)P@ t,bt#. Let ta* (t) and tb* (t) be the values at
which the intermediate value theorem is satisfied, in the in-
tervals@ t,bt# and @ t.2t,b(t.2t)#, respectively,

~b21!t f l S ta* ~ t !

t l
D 5E

t

bt

dt8 f l S t8

t l
D , ~A33!

~b21!~ t.2t ! f l S tb* ~ t !

t l
D 5E

t.2t

b(t.2t)

dt8 f l S t8

t l
D ;

~A34!

then the remainder can be written as

Rl ~ t, ,t. ;b!5E
0

t,

dtH tF f l S ta* ~ t !

t l
D 2 f l S t

t l
D G

1~ t.2t !F f l S tb* ~ t !

t l
D 2 f l S t.2t

t l
D G .

~A35!

By the Lipschitz condition, we have that

Rl ~ t, ,t. ;b!<E
0

t,

dtH tU f l S ta* ~ t !

t l
D 2 f l S t

t l
DU1~ t.2t !U f l S tb* ~ t !

t l
D 2 f l S t.2t

t l
DUJ ~A36!

,E
0

t,

dtH tCl Uta* ~ t !2t

t l
U1~ t.2t !Cl Utb* ~ t !2~ t.2t !

t l
UJ ~A37!

,
Cl

t l
E

0

t,

dt$tubt2tu1~ t.2t !ub~ t.2t !2~ t.2t !u% ~A38!

,
Cl

t l
~b21!E

0

t,

dt@ t21~ t.2t !2# ~A39!

,
Cl

t l
~b21!S 2

3
t,
3 1t,t.~ t.2t,! D ~A40!

,
2

3
t.
3 Cl

t l
~b21!, ~A41!

where Cl is a suitable positive real constant. Using Eqs.
~A32! and ~A35! in Eq. ~A30! we have

0,E
0

t,

dt~b21!H t f l S t

t l
D1~ t.2t ! f l S t.2t

t l
D J

1~b21!Rl ~ t, ,t. ;b!, ~A42!

0,E
0

t,

dt t f l S t

t l
D1E

t.2t,

t.

dt t f l S t

t l
D1Rl ~ t, ,t. ;b!,

~A43!

0,E
0

t,

dt t f l S t

t l
D1E

0

t.

dt t f l S t

t l
D2E

0

t.2t,

dt t f l S t

t l
D

1Rl ~ t, ,t. ;b!, ~A44!

0,F l ~ t,!1F l ~ t.!2F l ~ t.2t,!1
2

3
t.
3 Cl

t l
~b21!,

~A45!

where

F l ~ t !5E
0

t

dt8 t8 f l S t8

t l
D ~A46!

is a continuous and differentiable function oft. The inequal-
ity ~A45! holds for any b.1. Suppose thatF l (t,)
1F l (t.)2F l (t.2t,),0. Then, ifb is such that

b511
3

2L

t l

t.
3 Cl

uF l ~ t,!1F l ~ t.!2F l ~ t.2t,!u,

~A47!

whereL.2, we have that

0,F l ~ t,!1F l ~ t.!2F l ~ t.2t,!

1
1

L
uF l ~ t,!1F l ~ t.!2F l ~ t.2t,!u, ~A48!

0,
L21

L
@F l ~ t,!1F l ~ t.!2F l ~ t.2t,!#, ~A49!

in contradiction with the hypothesis thatF l (t,)1F l (t.)
2F l (t.2t,) is negative. Then
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0<F l ~ t,!1F l ~ t.!2F l ~ t.2t,!. ~A50!

Let us define the function

DF l ~ t !5F l ~ t !2F l ~ t.2t !, ~A51!

wheretP(0,t.). The right derivative att50 of DF l (t) is

lim
Dt→01

DF l ~Dt !2DF l ~0!

Dt

5 lim
Dt→01

F l ~Dt !2F l ~0!1F l ~ t.!2F l ~ t.2Dt !

Dt

~A52!

5 lim
Dt→01

1

Dt H E0

Dt

dt t f l S t

t l
D1E

t.2Dt

t.

dt t f l S t

t l
D J

~A53!

5 lim
Dt→01

1

Dt H Dtt1* f l S t1*

t l
D 1Dtt2* f l S t2*

t l
D J ,

~A54!

wheret1* P@0,Dt# and t2* P@ t.2Dt,t.#. Thus

]DF l ~ t !

]t U
t→01

5t. f l S t.

t l
D . ~A55!

If the right derivative at 0 ofDF l (t) is negative,DF l (t)
approaches2F l (t.) from below, whent→0. There exists a
time 0, t̃ ,t. such that 0.F l (t.)1DF l ( t̃ ), in contradic-
tion with Eq. ~A50!. Then f l must be non-negative fort
P(0,t.). By the property Eq.~19! f l (0) must be positive.
This proves thatDnd,1(t,t8;b),Dd(t,t8;b)⇒ f l (t)>0 for
0<t,t. . To demonstrate that positivef l yields
Dnd,1(t,t8;b),Dd(t,t8;b) ~i.e., the converse!, follow the ar-
gument backward, from Eq.~A30!. h

In conclusion, if the memory functions are positive, sat-
isfy the Lipschitz condition, and satisfy the condition Eqs.
~A8! and ~A9!, the nondiffusive contributions are more
weakly dependent on time than 1/t.

The results of the present Appendix are valid in the limit
of a complete ensemble. In our numerical experiments only
partial samples of the ensemble can be considered. The
memory functions that appear in our numerical calculations
come from partial mean values of the product of discontinu-
ous functions~every noise process is a discontinuous func-
tion!. These memory functions are discontinuous. The be-
havior of the nondiffusive contributions observed in our
numerical experiments is in agreement with these analytic
~infinite ensemble limit! results. We can infer that there
might be a version of the theorem applied to discontinuous
memory functions, but we have been unable to develop such
a theorem.

APPENDIX B: CONSEQUENCES OF THE TIME SCALE
CHANGE IN THE NONDIFFUSIVE CONTRIBUTIONS

In this Appendix we show the behavior of the functionf 1
when its correlation time is changed according tot1→tb1

5t1 /b, with b@1; i.e., when the total simulation time is
scaled to exceed the correlation time of the first colored noise
process.

We multiply the time variables by a numberb, such that
t1!bt.!t2. We have that theg1 process contributes to the
autocorrelation function with

1

b2tt8
^G1~bt/t l !G1~bt8/t l !&

5
1

b2tt8
E

0

bt,
dt1E

0

bt.
dt2

1

t1
f 1S ut12t2u

t1
D ~B1!

5
1

btt8
E

0

t,

dt18E
0

t.

dt28
1

tb1
f 1S ut182t28u

tb1
D , ~B2!

wheret85t/b andtb15t1 /b. We want to compute this con-
tribution within the neighborhoodt15t2 as well as outside
such a region. To do so, we can split the integral in Eq.~B2!
into three parts,

1

b2tt8
^G1~bt/t l !G1~bt8/t l !&5I 11I 21I 3 , ~B3!

where

I 15
1

btt8
E

0

t,

dt1E
0

max(0,t12e/2)

dt2
1

tb1
f 1S t12t2

tb1
D , ~B4!

I 25
1

btt8
E

0

t,

dt1E
max(0,t12e/2)

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D , ~B5!

I 35
1

btt8
E

0

t,

dt1E
min(t. ,t11e/2)

t.

dt2
1

tb1
f 1S t22t1

tb1
D , ~B6!

with t,.e.0 ~observe that the only integral involvingt1
5t2 is I 2). ConsiderI 1. If t1,e/2 the inner integral is zero.
Therefore,t1 must be bigger thane/2 and

I 15
1

bt,t.
E

e/2

t,

dt1E
0

t12e/2

dt2
1

tb1
f 1S t12t2

tb1
D , ~B7!

which, by virtue of the continuity off 1, can be bounded as
follows:

1

bt,t.
E

e/2

t,

dt1
b

t1
S t12

e

2D f 1S btmin

t1
D

<I 1<
1

bt,t.
E

e/2

t,

dt1
b

t1
S t12

e

2D f 1S btmax

t1
D ,

1

2

~ t,2e/2!2

t,t.

1

t1
f 1S btmin

t1
D

<I 1<
1

2

~ t,2e/2!2

t,t.

1

t1
f 1S btmax

t1
D ,

~B8!
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wheretmax (tmin) is the time in the interval@e/2,t,# at which
the functionf 1 reaches its maximum~minimum! value. Be-
causef 1 is continuous, there existst1* P@ tmin ,tmax# at which

I 15
1

2

~ t,2e/2!2

t,t.

1

t1
f 1S bt1*

t1
D . ~B9!

Consider nowI 3. If t11e/2.t. , the inner integral is
zero. Therefore, 0,t1,min(t, ,t.2e/2) and

I 35
1

btt8
E

0

min(t, ,t.2e/2)

dt1E
t11e/2

t.

dt2
1

tb1
f 1S t22t1

tb1
D

5
min~ t, ,t.2e/2!

t,t.
F t.2

e

2
2

1

2
min~ t, ,t.2e/2!G

3
1

t1
f 1S bt3*

t1
D , ~B10!

where t3* P@ tmin ,tmax#, and nowtmax (tmin) is the time in
@e/2,t.# at which the functionf 1 reaches its maximum
~minimum! value.

Let us consider nowI 2. First observe that, for the integral
in t1, if 0<t1<e/2, max(0,t12e/2)50 and min(t. ,t11e/2)
5t11e/2. If e/2<t1<t, then max(0,t12e/2)5t12e/2.
Then

I 25
1

bt,t.
H E

0

e/2

dt1E
0

t11e/2

dt2
1

tb1
f 1S ut12t2u

tb1
D

1E
e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D J .

~B11!

The integral int2 between 0 andt11e/2 can be evaluated
with the help of Fig. 7:

E
0

t11e/2

dt2
1

tb1
f 1S ut12t2u

tb1
D5

1

2E2e/2

e/2

dt
1

tb1
f 1S utu

tb1
D

1
1

2E2t1

t1
dt

1

tb1
f 1S utu

tb1
D .

~B12!

The second integral int1 can be separated into two parts;
the first for e/2<t1<min(t, ,t.2e/2) and the second for
min(t, ,t.2e/2)<t1<t, . If t.2t,,e/2 the second term is
zero. Then

E
e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D

5E
e/2

min(t, ,t.2e/2)

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D

1QS e

2
1t,2t.D E

t.2e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

3dt2
1

tb1
f 1S ut12t2u

tb1
D , ~B13!

where Q is the step function. Ift1<min(t, ,t.2e/2) then
min(t. ,t11e/2)5t11e/2. The last integral int2 can be rear-
ranged in the same way as Eq.~B12!. Then

E
e/2

t,

dt1E
t12e/2

min(t. ,t11e/2)

dt2
1

tb1
f 1S ut12t2u

tb1
D

5E
e/2

min(t, ,t.2e/2)

dt1E
2e/2

e/2

dt
1

tb1
f 1S utu

tb1
D

1
1

2
QS e

2
1t,2t.D E

t.2e/2

t,

dt1F E
2e/2

e/2

dt
1

tb1
f 1S utu

tb1
D

1E
t12t.

t.2t1
dt

1

tb1
f 1S utu

tb1
D G . ~B14!

We can observe that the correlation timetb1 goes to zero
whenb is increased. The function (1/t1) f 1(bt/t1) becomes
negligible outside a neighborhood oft50 @observe Eqs.~B9!
and ~B10!#. Equation ~16! holds, then, ifb is sufficiently
large that (1/tb1) f 1(t/tb1) can be considered ad function.
The integralsI 1 and I 3 become zero, and the integrals in-
volving t50 in the expression ofI 2 converge to 1.I 2 be-
comes

I 25
1

bt,t.
H minS t, ,t.2

e

2D
1QS e

2
1t,2t.D S e

2
1t,2t.D J

5
1

bt.
, ~B15!

FIG. 7. The area under the curve represents the first integral in
Eq. ~B11!. The darker piece is half of the integral in the interval
@2t1 ,t1#, the lighter is half of the integral in@2e/2,e/2#.
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which is a diffusive contribution to the autocorrelation func-
tion. The autocorrelation function then becomes

k~bt,bt8!5
G01G1

bt.
1 (

l 52

L
G l

t l

f l S tbl* ~ t.!

tbl
D . ~B16!

The same argument can be used whenb is such thatt2

!bt.!t3. After such changes in the time scale, the diffu-
sion coefficientG5G01G1 is enlarged, and the nondiffusive
contributions are reduced. There is an ultimate scale change,
such thattL!bt. . Beyond this maximum time scale the
process can be considered diffusive.
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