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Approach to ergodicity in Monte Carlo simulations

J. P. Neirotti and David L. Freeman
Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island 02881-0809

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912
(Received 12 July 2000

The approach to the ergodic limit in Monte Carlo simulations is studied using both analytic and numerical
methods. With the help of a stochastic model, a metric is defined that enables the examination of a simulation
in both the ergodic and nonergodic regimes. In the nonergodic regime, the model implies how the simulation
is expected to approach ergodic behavior analytically, and the analytically inferred decay law of the metric
allows the monitoring of the onset of ergodic behavior. The metric is related to previously defined measures
developed for molecular dynamics simulations, and the metric enables the comparison of the relative efficien-
cies of different Monte Carlo schemes. Applications to Lennard-Jones 13-particle clusters are shown to match
the model for Metropolis, J-walking, and parallel tempering based approaches. The relative efficiencies of
these three Monte Carlo approaches are compared, and the decay law is shown to be useful in determining
needed high temperature parameters in parallel tempering and J-walking studies of atomic clusters.

PACS numbss): 02.70.Lq, 05.10.Ln

[. INTRODUCTION negligible probability has been reached. In such a case we
can say that the simulation is effectively ergodic or that it has
A goal of Monte Carlo(MC) simulations in statistical reached the ergodic limit.
mechanicg1] is the calculation of ensemble mean values of For a finite walk, in the event of broken ergodicii],
thermodynamic quantities. Ensemble mean values are multphase space is effectively disconnected. The different discon-
dimensional integrals over configuration space, nected regiongcalled componenjsare separated by barriers
of zero effective probability. If a stochastic walker starts its
walk in one of these regions, it may not cross the barriers
<U>:f dx P(x)U(x), (1) within the time of the simulation. If the simulation length is
increased, some barriers may become accessible for the
) N o ] walker and phase space is better sampled. We can conclude
whereP(x) is the probability of finding a system in the state 5t 4 timer exists such that, for simulation lengths shorter
defined byx, and the functional form oP(x) depends onthe  han+, the walker becomes trapped in one of the phase space
ensemble investigated. MC simulations usually generate Bomponents. For simulation lengths much larger than
sampling of configuration spade}{_, by the use of a sto- phase space is effectively covered by the walker.
chastic process with stationary probabilyx,). The quan- In this study we imagine a system having more than one
tity U evaluated ak, is the output of the simulatiotl(xy)  time scaler;<7,<---<r7,. In a Monte Carlo simulation
=U,, and its arithmetic mean valug, in principle, must each scale comes from stochastic processes with different
approach the ensemble mean vdllE In this paper we refer correlation timeg5]. A precise definition of the correlation
to the set of configurations generated in a Monte Carlo simutimes for Monte Carlo processes is given in Sec. lll, but for
lation as a time sequence, and we study the behavior of theske moment we can think of these correlation times as iden-
temporal sequenced),} and their arithmetic mean, to un- tical to physical time scales of the system under study. To
derstand better how MC simulations approach ergodic bednderstand these time scales more fully, it is useful to focus
havior. It is important to emphasize that there are two timeon an example. Prototypical of systems having such dispar-
variables to consider. The time varialidéabels the separate ate time scales are atomic and molecular clusters. Typical
configurations generated in a Monte Carlo walk. Variationscluster potential surfaces have many local minima separated
of properties withk provide information about the short-time by significant energy barrief6—8]. The local minima can
behavior of a MC simulation. The time varialffelabels the  be grouped into basins of similar energies, with each basin
total length of the MC walk, and variations of computed separated from other basins again by energy barriers. At
properties withK provide information about the convergence short Monte Carlo times a cluster system executes small am-
of the simulation on a long time scale. plitude oscillations about one of its potential minima. We
Given an infinite time, the stochastic walker in a MC can think of these vibrational time scales as the shortest time
simulation visits every allowed point in configuration spacescales that define a cluster system. As the simulation time is
[2]. Ergodic behavior is reached when the length of the walkextended the system eventually hops between different local
is sufficiently long to sample configuration space appropri-minima within the same basin. The time scale for the first
ately [3]. In practice, this does not mean that the space haBops between local minima can be considered the next short-
been densely covered but that every region with nonest time scale for the simulation. At still longer Monte Carlo
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times, the system hops between different energy basins d@ the current work can easily be extended from the energy to
fining yet another time scale for the simulation. This group-other scalar observables of the system.
ing of time scales continues until the longest time scale for a We present two key issues in this paper. First, from the
given system is reached. At Monte Carlo times that are londgnowledge of the decay law of the nondiffusive contribu-
compared to this longest time scale, the simulation is ertions to the MC metric, we infer how long a simulation must
godic. be to be considered effectively ergodic. Second, once the
Consider a system with several time scales as mentioneergodic limit is reached, we can compare the results from
above. If the length of the simulation is smaller than thedifferent numerical algorithms to measure relative efficien-
smallest correlation time, the walker may become trapped iies. Because the outcomes of MC simulations are noisy, we
an effectively disconnected region and the sampling of phaskave found it useful to separate diffusive and nondiffusive
space is incomplete. By increasing the time, the memory oferms in the MC metric with a Fourier analysis so that we
the initial condition in the sampling decreases as the walkecan neglect the high frequency components of the noise. This
crosses to other previously unreachable regions. These osciechnique has given reproducible results.
lations and hoppings can be modeled by a superposition of To test the match between the stochastic model and actual
stochastic processes with different correlation times. Thesblonte Carlo simulations, we examine the approach to er-
processes with nonzero correlation times are knowonaks  godic behavior in simulations of Lennard-Jones clusters. Re-
ored noiseprocessegas opposed to zero correlation time cently[14,15 we have studied the thermodynamic properties
white noiseprocesses[5]. From the study of the autocorre- of Lennard-Jones clusters as a function of temperature using
lation functions of a stochastic model defined using thes&oth J-walkind 16] and parallel tempering methofls7—19.
colored noise processes, we can verify that, at a fixed ruBoth simulation techniques require an initial high tempera-
lengthK, there exist two different groups of processes; thosdure that must be ergodic when Metropolis Monte Carlo
that contribute to the autocorrelation function with terms thatmethods[20] are used. If the Metropolis method does not
decay like 1k (called diffusive processes and those that give ergodic results at the initial high temperatu_re, system-
contribute to the autocorrelation function with terms that de-2tic €rTors propagate to the lower temperatures in J-walking

cay more slowly than ¥ (called nondiffusiveprocesses and parallel tempering simulations, and the results can be

When the time of the simulation is increased, some nondif—ﬂawed or meanmgless. In most Monte Carlo S|mulat|9ns of
. : clusters at finite temperaturfl, 22, the clusters are defined
fusive processes at shorter run lengths start to contribute tg

the autocorrelation function like diffusive processes. After y enclosing the atoms within a constraining p(_)t_ential abOl.Jt
) o the center of mass of the system. The constraining potential
the walk length reaches the largest correlation time all

: ; X __is necessary because clusters at finite temperatures have fi-
processes contribute to the autocorrelation function W'trhite vapor pressures, and the association of any one atom

terms that decay like &/ At this point, the simulation is at \ith the cluster can be ill defined. From experience
the diffusive regime and effective ergodicity has beenr14 1523 we have found that if the radius of the constrain-
reached. A principal goal of this work is to investigate thejng potential and the initial high temperature are not both
way in which the MC outpufU,} reaches the diffusive limit  carefully chosen, it can be difficult to attain ergodicity with
(i.e., the ergodic limitby studying the properties of autocor- petropolis methods. A key concern then is the choice of
relation functions under changes of scale in tirie;»bK  ¢onstraining radius and the choice of initial temperature. We
with b>1. By time scaling it is possible to infer the decay yerify the stochastic model by investigating Monte Carlo
law of the nondiffusive contributions with respect to the total gjmulation results as a function of the temperature and the
simulation timeK. The functional dependence of the nondif- gjze of the constraining potential.

fusive contributions on the parametethat is used to scale  The contents of the remainder of this paper are as follows.
K'is determined empirically. We have found the decay law|n sec. Il we motivate the studies that follow by examining
so determined to be a particularly valuable method of connymerally the behavior of a set of Monte Carlo simulations
cluding when a simulation can be considered ergodic. Unlikgy 5 13-particle Lennard-Jones cluster. This cluster system is
previous studie$3,9—11 that have investigated only the be- ysed to illustrate the results throughout this paper. In Sec. IlI
havior of certain autocorrelation functions in the ergodic re-ye introduce the stochastic model based on a continuous
gime, by focusing on the approach to ergodic behavior wime sequence. In Sec. IV we extend the model to discrete
have a more careful monitor of the onset of ergodicity. Oncgjme sequences characteristic of actual Monte Carlo simula-
the nondiffusive contributions have decayed to a point whergjons. In Sec. V we test the discrete stochastic model with
they are too small to be distinguished from zero to within theapplications to Lennard-Jones clusters and in Sec. VI we
fluctuations of the calculation, we can say that the ergodigymmarize our conclusions. Many of the key derivations

limit has been reached. _ needed for the developments are found in two Appendixes.
The autocorrelation functions we use to measure the ap-

proach to the ergodic limit are based on one of the probes of
ergodicity developed by Thirumalai and co-workéB9—

11], and is often called thenergy metricThe energy metric
has been proposed as an alternative to other techn|@les  Before discussing the major developments of this work, it
(like the study of the Lyapunov exponeif?]) for the study is useful to understand the nature of the problem we are
of ergodic properties in molecular dynamics simulations.attempting to solve by examining some numerical results on
The metric has been used to study the relative efficiency oé prototypical system. We take the 13-particle Lennard-Jones
MC simulation methods as wdll3]. The MC metric as used cluster defined by the potential function

II. AN EXAMPLE CALCULATION
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N i—1 o 12 o 6 N R -18 ¢
V(x)=4e, (—) —(— + > Ve(xi,Re),
i=2j=1[\Tjj Fij i=1 20
2
wheree and o are the standard Lennard-Jones energy and -22 ik,
length parameterdy is the number of particles in the cluster N
(13 in the present cage ; is the distance between particles I ~24 !
i andj,
. -26
rij=Ixi—x;l, ()
and V. is the constraining potential discussed in Sec. |, 28
0, |xi—XJ<R %0
Vet Ry =] O TR @ 80 - - - -
0, Rc<|xi_xc|v
Where>2C is the coordinate of the center of mass of the clus- 60 4
ter andR; is the radius of the constraining sphere. The 13-
particle Lennard-Jones cluster has a complex potential sur-
face with many minima separated by significant energy <40 | ]
barriers[6—8], and ergodicity problems associated with the N
simulation of properties of this system are well knoj®].
We now consider a Metropolis MC simulation of the average
potential energy of the system in the canonical ensemble at 20r i
temperaturekgT/e =0.393 (g is the Boltzmann constant
This average potential enerdy is defined by . .
K %0 1000 2000 3000 4000 5000
— 1 k
Viep 2 Vi (5) B
k'=1 FIG. 1. The upper panel shows the “time evolution” g (in

L . . . nits of ) for M =20 independent experiments. The lower panel
and is displayed in the upper panel of '.:lg' 1 asa functhn_ Oghowsdk (in units of £2) vs k for the experiments of the upper
t.he. walk lengthk for 20 mdepende.nt simulations each ni- panel.R. has been set toddandkgT/e=0.393. At least two basins
t!al'zed from a random Co,nf',gurat'on' Over the m"’Ix'ml,meith different energies are present. Cleardy, goes to a constant
time scaleK of the walks, it '.S apparent that the potential whenk is increased within the total time scale of the simulation.
energy averaged over each independent walk has not con-
verged to the same result. Such unreproducible behavior is
symptomatic of a simulation not yet at the ergodic limit. dk:ﬂ_,_ B @)

At the ergodic limit(i.e., for maximum walk lengttK Kk ol

greater than that included in Fig) the averages displayed in

the upper panel of Fig. 1 must approach the same value fQfnerea, andBy are coefficients that are dependent on the
each walker. Using related ideas developed elsewherg| walk lengthK. As K is increased to a time where the
[3.9,10, the extent to which the walks approach the samegy5 | is ergodic,B must decay to zero. Major goals of this
limit can be measured in terms of a metdg defined by work are to understand hoB decays and to use the decay
i1 law discovered to determine the onset of ergodic behavior.
2 [V(ki)_V(kj)]z_ 6) Our approach is to introduce first a continuous stochastic
=1 model of a simulation followed by a discrete model more
clearly linked to actual MC studies.
In Eq. (6) M represents the number of independent walks,

ande(') is the average potential energy computed in walk
MC time k. The metric measures the energy fluctuations in
the walk as a function of the walk length. For an ergodic We have discussed in the Introduction how the output of
simulation, the metric must decay to zero. For the 20 simuMC simulations can be considered to be a combination of
lations of the 13-particle Lennard-Jones cluster, the metric astochastic processes with different time scales, and how the
a function ofk is plotted in the lower panel of Fig. 1. Rather contributions to autocorrelation function from these pro-
than asymptotically approaching zero, over the short lengtltesses can vary when the length of the simulation is en-
of the walk displayed hera, has decayed to a constant, andlarged. Here we present a continuous time model for the
as discussed later in this paper, over the time scale of thistochastic processes that occur in a simulation. Even though
simulation,d,, can be qualitatively represented by the func-a MC simulation occurs in a discrete tinfeach MC point

tion represents a time upjtwe find that the continuous model

2 M
A= M =1) 22

IIl. STOCHASTIC MODEL
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helps to understand better the ideas used in the modeling /e now assume that this inequality can be taken as a bound
the MC output. to possible maxima of , appearing at>0. The rightmost
In this section the ensemble mean value is used to find thmequality enables us to assurheis normalized,
expression for the autocorrelation functions of the model.
Although in actual numerical calculations the ensemble f” dtif (ﬂ) _1 (16)
mean is replaced by a mean over a finite number of indepen- w1, 1T
dent experiments, the results obtained here give information
about the limit of an infinite sample. We have identified here the time scale with the correla-
The stationary process used to sample space is a stochai®n time of the stochastic procegs . This identification is
tic process. We assume the output of the MC simulation caralid if
be modeled by a linear superposition of stochastic processes

with different correlation times, =0, f“ t|t|

/ T_) =T/, (17)
A /
U(t)=U+To&(t) + Zl VT L9.(t/7)), ®)

which implies that the behavior of, at larget must be
O(t~?%9), or smaller.

whereU, is a constant, the random varialdét) represents In addition, by the properties of the ensemble mean value,
white noise processes with zero correlation timg=0),  we have that for all real

and the{g,(t/7,)} are stochastic processes with correlation

timesz,>0. £&(t) andg,(t/7,) have units of the square root 0=<{[g,(t/7,)+\g(t'/7,)]?)

of time, andl’y andI’ , are constants with units &f?/t. If U 2 , 2 , 2
is chosen to be the thecoordinate of a particld;, andT", <(g(t/7)%)+2Ng(t/7)9,(t'[7,)) + N g (t'/7,))

have units of a diffusion constant. Consequently we referto 1 [t—t'|
these constants as generalized diffusion coefficients. The\T—[f/(O)+2?\f/ . +N%F,(0) . (18
white noise process has the following proper{i&k . .
(£(1))=0 ) Equation(18) must be true for al\. Therefore, the discrimi-
' nant of the polynomial il must be nonpositive,
(EDET))=8(t—t"), (10) t—t| t—t|
- . — - + <0.
and the remaining colored noise processes are assumed to 4 f/( T, ) fA0) f'/( T, fA0)]<0. (19
satisfy
Consequently f,(0)=maxXf, (x)¥x=0}. Other properties
(9,(t/7,))=0, (1) of f, are studied in Appendix A.
, The ensemble mean vald®)) is time independent. The
(9,(tI7)g (t'17,))= if [t—t' (12) ensemble mean value of the noise processes is zero. There-
9AVTAAIT A=A =) fore, U, must be equal t¢U). Processes defined by E®)

have two different components, uncorrelated white noise and
so that they represent processes with a menfory Even  correlated processes with correlation time. Because the
though correlations between processes with different corregoal of the simulation is the calculation of the ensemble
lation times may be nonzero, we assume the processes to h%an(u) by the analysis of the time series, we study the

independent, i.e., behavior of the temporal medui(t),
(9,7 )9, (t'[7,))=(9,(tI7))9,(t']7,1)) 1t
=0V/ %/, (13 L= ffodt u’)

(E)g (t'17,))=(&t)){g,(t'/7,))=0Vt and t'. 1 1 A
o o (14 =(U)+ W) +5 2 TG (t/7,), (20)

The memory function is assumed to be a continuous function ) ]
that depends only on the distance betweamdt’, disre- WhereW(t) is a Wiener procesgs],
garding the time origin(stationary condition The memory

function represents the correlation between two times of the W(t)= Jtdt,g(t,), (22)
processy, . In our model we impose the condition 0
t t t 1 t’ W(t))=0, 22
_f/(_)< f dt,_f/(_)@_ 15 (WD) (22)
T, \Ty o T/ \T/ ,
(WHW(t"))=t-, (23

The scope and implications of the leftmost inequality are )

explored in Appendix A. In Appendix A we also examine the With t-=min(tt') andG ,(t/7,) =[5 dt'g,(t'/7,).
conditionsf,, must satisfy in order to yield contributions to ~ Equation(20) implies that the evolution of the temporal
the autocorrelation function that decay more weakly than 1/ mean U(t) has the same structure as that Wf with an
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uncorrelated term and terms with tailed correlation functionsconditions stated in Appendix A, so that the dependence of
The autocorrelation function of the procddsat timest and ~ f, ont is weaker thanl# (for total time scales shorter than

t’ is defined by 7,; see Appendix A
We next consider the behavior of E@8) for time scales
K(t,t’)=((U(t)—(U))(U(t’)—(U))> greater thanr;. Under the scale chande-bt such thatr;

<bt. <7y, the contributions to the correlation function from
0 ) the process with correlation timg can be considered diffu-
= tt—,<W(t)W(t )) sive [in other words, by virtue of Eqg10) and (12), f, /7,
has become & function|. With bt. < 7,, the other processes
A preserve their old properties. Then the autocorrelation func-

1
+tt_’ Z ' AAG,(tlt,)G,(t'I7,)), (24) tion can be expressed

To+T, & T, [th(t)

where we have used Eq6l3) and (14) to neglect terms x(bt,bt')= ———1 + _/f/< b/ "> ) (29)

involving processes with different correlation times. bt. /=2 Ty "\ Tps

Because we have assumed thiatis a continuous func-

tion, f . reaches its maximum and minimum values within The complete derivation of E429) can be found in Appen-

any closed interval considered. Théh nondiffusive contri-  dix B. For times larger than the correlation timg , all

bution to x(t,t'), contributions to the autocorrelation function are diffusive,

the simulation can be considered ergodic, the sampling com-

1 plete, and the temporal mean is equal to the ensemble mean

u—,<G/(t/T/)G/(t'/T/)> within O(1/t) mean square fluctuations.

IV. DISCRETE TIME SEQUENCES AND

|ty — 1t
, (29 THE MC METRIC

T/

dtf dt —f
tt’ 1 21,

Monte Carlo simulations generate discrete sequehkes

is bounded of values of the quantity under study. Additionally, in actual
. . 1 ( qa!culations the ense.mblt'a of sequences is (epresented by a
f<dt1f >dt2—f/( min) finite rather than an infinite set. In this section, the model
’ developed in the previous section is extended to finite sets of
discrete sequences. We expresshheequencesU{™}K_, ,
where the labe{m) ranges from 1 tdvl. The exact ensemble
mean valugU) can be obtained in the limit th&l becomes
infinite. In analogy with the model developed in Sec. I,
1 [t each output is assumed to have the form
J’ dtlj' dt2—f/(0)

t<t> 0

1
gtt_,<G/(t/T/)G/(t'/T/)>

<

=

tts

A
U =(U)+ D&M+ 2 T g, (30)

l tmln
T—/f/( T, )<—<G/(t/7/)G/(t I7,))

where

1
=_ A0, (26) (&M)=0, (3D

wheret. =maxt,t’), andt,,;, is the time at whicl , reaches <§(km)§(kr:)>: 5 St 32)
its minimum value in the closed intervidd t- ]. There exists N
at*(t-) e[Otmin] [24] such that

(9%, )=0, (33
(GBI~ (t/(u (27 kK|
e AUT, )G, )= 1/ . (n) -
tt T/ <g(/n;1&/7/g/n, K7 >:5m,n5/,/’f/( 7, ) (34
Using EQgs.(23) and(27) in Eq. (24), we find that _
The true ensemble avera/d) does not depend on the index
1" *(t ) m.
k(t,t')= —+ E —f ( /T > (28 In the discrete case we define a metric
/=1 / /
2 i—1
For all times shorter tham; the autocorrelation function is do= Uy 3
the sum ofdiffusive contributiongproportional to 1t) plus K M(M-1) ;2 121 [Ux I @9

nondiffusive contributionsThese contributions implicitly de-
pend ont-. throught’(t-). We assume thdt, satisfies the where the bars represent the temporal mean value
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. 1 K infinite ensemble is the set of outcomes fririndependent
U(km)ZE E U(k',") numerical experiments. The metric we have defined in Eq.
k'=1 (35 can be contrasted with alternative metrj8s9,1Q pre-
\/F_o A T, viously .defined _for molec_:ular dynamics_simulations. _These
=(U)+ Tvv(km)Jr/El TG(/”;E,T/, (36)  alternative metrics examine the fluctuations of two simula-

tions initialized from different components of configuration
space averaged with respect to all the particles in the system.

with The metric we use in this work is determined using an aver-
k age with respect t¥ independent simulations that represent
wm= > &, (37)  asubset of the full ensemble.
K'=1 Using the model presented in E®0), we now develop a

way to predict the behavior of the MC simulation in the
(m) nonergodic and ergodic regimes. We first consider the case
/ k/f/ 2 9k, (38 that the total simulation tim& is larger than the first corre-
lation time 7 but shorter thanr,, i.e., y<K<7,. The ex-
Observe that in the present case our finite sample of thpression ford, is given by

2 i—-1

M
de=pn D) 2 2, LU —(U) =P —(UpP?
i=2j=1

M(M
2 M M i-1
=3 2 (U= (u)?- M(M MM=T) 2 2 (UK (UL =)
(i) A (i) 2 M () (i)

1 w2 1 X [Giw, 1 7Kl Wk G/ ki

ST L EPTVED of Rl P O DR of cay, o Ly e
i=1 i=1 =2 i=1
Al 1 M6l 6l Mo
7'/ T/r —_ _

+4 VI,T, — Ul — ) uP—(u)). 39

Zz/zzl Trg %, M(M 1)§§1<k (UNUP—(U)) (39

If the number of experimentél is sufficiently large, we can In Appendix B we present a study of the way nondiffusive
neglect terms involving processes with different correlationcontributions become diffusive under time scale changes. If
times, and products of sequences belonging to different exM is sufficiently large and; <K< 75, by virtue of Appendix

periments. Under these assumptions we obtain B, I', must be roughly a constant. Bgughly a constantve
. 5 mean a constar@ plus some rapidly fluctuating functiafy,
Ty 1 2 w2 1“1 MG k/Tl with the following properties:(a) (£ )=0 and (b) |C|
dk:zTM;T Z S>maXe1z, .. k(&) Then
A Mgl )2 D=Tx+¢ (44)
1 /il k=1 KT 6k-
+22 F/ME( " ) (40)
=2

If K is enlarged, we expect to have a larger valu&'pf Y

is a quantity related to the memory functiofs with corre-
lation times7,>K. In the continuous time model, the col-
ored noise processes contribute to the autocorrelation func-
tion with terms proportional tdf ,(t>(t-)/7,), which are

Equation(40) preserves the form of Eq28). To make this
statement explicit, let us rewrite EG0) as

k
=21 +2Yy, (41)  weakly dependent on(see Appendix A We can expecy
to be weakly dependent dg and for sequences of lengkh
where and for M sulfficiently large we consider this quantity to be
roughly a constant,
RVYOF: moGg2
1 K 1 1kiT
Fe=Toyy 2 =Ty 22— 42 Y=Y+ By (45
A Mo gl 2 where By represents additional random noise. Then, for a
Y, = 2 F/i 2 ( /;k”/) (43) given lengthk=K, the MC metricd, can be approximated
= = K by
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r 1
dk=27K+2YK+ Ve, (46) 1= ->1=¢(b), (50)

where y,=2({/k+ By) represents remaining stochastic
noise from both contributions. In this approximatidh, and
Y are the quantities that carry the long-time dependence.

Short-time features appear in the&k Hependence and in the for all b>1. Then,¢ must be either
remaining noisey, . If the sequences considered are in-

1<bg(b), (51

creased in size by a factor df, such thatr, <K<, #(b)=b"" (52)
<bK for a given I==\<A, I'k (Yk) is increased(de-
creased (see Appendix B Then or
NS S (47) L
Ybk> - -
bk™ “"p bK™" Ybk é(b) (D) +1’ (53

whereYpx must go to zero andl,x must approach a con- ,
stant wherb is increased. By virtue of the expected behaviorWith 0<v<1 and 0< »=1. Equation(53) can be thought of
of the nondiffusive contributionésee Appendix A we pro- S the limit of Eq(52) when the exponent goes to zero. We
pose the following expression faf knoyv of_ noa priori argument to justify Eq(48). However,
as is discussed in Sec. V, our numerical experience has

Ypk=Yko(b), (48)  shown Eq.(48) to be obeyed in all cases we have examined.
Our goal is to develop a criterion to decide when the
where ¢(b) is a decreasing function & Moreover,Yx is  simulation can be considered ergodic. From the previous
a sum of nondiffusive contributions. As presented in Appen-considerations it is clear that the ergodic limit is reached
dix A, each nondiffusive contribution to the autocorrelationwhen Yy is indistinguishable from zero. The output from a
function has a relative variation smaller than the relativeMC simulation is usually noisy. Thereforg, cannot be ne-
variation of the diffusive contribution, namely,-I1/b. If  glected. A useful way to separate diffusive and nondiffusive
this inequality is applicable to the sum of nondiffusive con-contributions and to eliminate the stochastic noise from Eq.

tributions, we have that (46) is to perform a Fourier analysis of the functikd, . Let
us define the frequenciesw,=(2#7/K)n, with n
1— 1 >1— & (49) =0,1, ... K—1. The discrete Fourier transform of the func-
b Y’ tion kd, is the signal¥(w,,),
Y 1<
Vi (wp) =kd(@y) = 1 kZ exp( —iw,k)kd, (54)

K K
2 _ 2 _ ~
= 2 exp—iwnk) I+ gl K exp( —iwnk) Y+ Kyi(wp)

=2 8,00k +{n oK+ 1)+ (1= 8,0 (1+i col wy/2])}Y ¢ + Ky wp)

=2 8,00+ (K8 o 1) Y +i(1= 8,0 C0l /)Y + Kyy wp). (59

In generalky,(w,,) is negligible except at high frequencies. Even though simpler than E¢56), we have found that Eq.
For small positive values of the frequency we can make th¢57) is more sensitive to the deviations df from the ap-
approximation cotf,/2)=2/w,. From this approximation proximation Eq.(46). Therefore, the data obtained from the
we have real part are of poorer quality than the data obtained from the
imaginary part.

Equation(56) implies that, for a given simulation length
K, the contributions to the MC metric from the nondiffusive
process can be determined from a simple relationship involv-
The real part of Eq(55) for positive frequencies is ing the Fourier transform of the functidd, at low frequen-

cies. By increasing the length of the rigrby a factor ofb, it
RgY(w,)]=Yk. (57) is possible to observe the dependencé’gf on bK.

2
Im[Wy(wn)]= =Y. (56)
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V. APPLICATIONS 200000

The concepts developed in the previous sections are suf-
ficiently general to be applied to any kind of MC simulation.
We devote the present section to the application of the de-
velopments of this paper to the study of the Lennard-Jones
13-particle cluster (Li%) in the canonical ensemble. This
system has been introduced previously in Sec. Il.

Some thermodynamic properties of clusters as a function
of temperature exhibit rapid changes that are reminiscent of
similar changes that occur for the same properties in bulk 50000
systems at phase transitions. In a bulk system a phase tran-
sition occurs at a single temperature. For clusters the rapid
changes in thermodynamic properties occur over a finite 0
temperature interval. To distinguish the temperature range
where thermodynamic properties change rapidly in clusters
from a true phase transition, we follow Bergy al.[25] and
refer to such changes in physical properties as associated
with a phase change. A common property that has been
found to be useful in monitoring these phase change intervals
of temperature is the heat capacity at constant vol[26& S

150000

100000

¥, (0)

1
kgT?

3
CuM = (V=)D t5Nke,  (59)

where(- )1 represents the classical canonical mean value.
In this work we consider the bare Metropoliglet) [20],

' L
] 2000 4000 6000 8000 10000

J-walking (Jw) [16], and parallel temperingPT) [17-19 e
approaches to Monte Carlo simulations. The free variable of _ _ S )
all these methods is the reduced temperakg®s. In PT FIG. 2. The upper panel is the sign#ti(0) (in units of <) vs

and Jw simulations, the highest temperature udg)l (hust K for Re=40 atkgT,/e=0.393 fromM =40 independent experi-
be sufficiently large to ensure that Met is ergofi6]. From ments on Lg;. The length of the S|mulat|on_|s toiC passes. The
experience simulating a variety of systems, we have foundPWer panel shows the “time evolution” dfi (in units of ) for
that T, must also be lower than a temperatifg where 15 |n(_jependent experiments. At Ie_ast th_ree bas!ns with dlff_erem
cluster evaporation events become frequent. It is useful tgnergies are present. Clearly, the simulation at this scale of time is
think of T,, as the cluster analog of a boiling temperature. We°t ergodic.
have found that Met is unable to sample the boiling phase
change region for clusters ergodically, using total time scaleshortly. The number of replicas used in the calculation is
accessible to current simulations. M =40, andK= 10" The upper panel of Fig. 2 shows the
For the results that follow(™ is chosen to be repre- signal¥(0) [evaluated using Eq54)], which grows along
sented by the potential energy of the system. In geng{®  the entire simulation. This is the behavior expected in the
can be any scalar property of the system. We define a pass twnergodic regime. In the lower panel we can see the “time
represent a set of single particle MC moves taken sequergvolution” of the temporal mean values of 15 experiments.
tially over the 13 particles in the cluster. We taldf™ to be ~ There are three sets of curves, each of which is indicative of
the potential energy at tHeth pass, in thenth experiment. sampling of at least three different energy basins. At low

Using Eq.(55) we can write values ofK the curves in the lower panel differ significantly.
At K=4000 the high energy basin curves begin to decrease
V(0)=2Ik+(K+1)Yk. (59)  in energy. For a value df larger than the data displayed in

Fig. 2, the curves can be expected to coalesce with the low
In the nonergodic regimel’(0) grows withK, while inthe  energy basin curves. It is clear that #§= 10 000 the simu-
ergodic regime, the signalf«(0) approaches a constant.  lation is not ergodic.

We begin by displaying results obtained for a calculation In PT and Jw studies it is essential that the initial high
that has not attained ergodicity over the time scale of théemperature walk be ergodic. Ergodicity can be attained for
simulation. We examine the 13-particle Lennard-Jones cluskJ;3 by reducing the radius of the constraining potential so
ter with the Met algorithm settinR.=4o at a temperature that evaporation events are rare. We now present a study of
of kgTp/e=0.393. The temperature is chosen to be that typi-Y x as a function oK for several values dR.. To determine
cally used as the initial high temperature in Jw and PT studY, we have calculated the Fourier transform function
ies of LJ3. By choosing a large constraining radius, the¥Wg(w,) using Eq. (54) at a series of frequencies,
evaporation events are so frequent at the chosen temperature2mn/K ~ where n has ranged from 1 to
that attaining ergodicity proves to be quite difficult. We dem-min(y/12bK/207,100). This range of frequencies ensures
onstrate the effect of reducing the constraining radiughat the linear approximation used in E§5) is valid while



PRE 62 APPROACH TO ERGODICITY IN MONTE CARLO SIMULATIONS 7453

12'0 L} L} L) L] L} 1'50 L} L L} L} L}
10.0
1.256 -
8.0 O—OR, =250
O==0 error in Y(R_ = 2.50)
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FIG. 4. Yk (in units of £2) and its error vs logb) for R,
=250 and 20, with K=10*. WhenY . is on the order of its own
error, the simulation can be considered ergodic. Rgr 20 the
simulation becomes ergodic at lglg)=4 (bK=16Xx10%. For R,
=2.50 a longer simulation is needed to reach ergodicity.

0.0 I L 1

0 1 2 3 4 5 6
log, (b)

FIG. 3. Upper panelY,x (in units of ¢?) as a function of . o
logy(b) for Re=40, 30, 2.50, and 2. For the two larger radii the =2.50 the crossing point is ahK>64x 10%. We can con-

full line is the best fit to the data points, according to E4f) with clude that forkBTh/8:0'3_93 andRC:,Z‘T the simulation
& defined in Eq(53). The lower panel shows the linear behavior of €8N be considered effectively ergodic after>18)* Met

Y /Y i Vs log(b), for R;=4¢ and 3r. K has been set to 10 passes. o o _
Once a constraining radius is chosen, PT and Jw simula-

including sufficient numbers of points for accurd®r]. Us-  tions require that the highest temperatig be chosen so

ing Eq. (56), we have calculated the slope of the imaginarythat Met is ergodic. For a giveR;, the extent of ergodicity

part of 1V (w,) as a function ofw, for these frequencies. can be tested using the same metric that has been used for
The data points appearing in Fig. 3 are the mean values oveletermining the optimum value d®., but by varying the

20 independent calculations of the slope oV L w},). temperature. For the parametekgT,/e=0.393 andR,

Starting from random configurations, we have performed=2¢ the simulation is ergodic even at very short sequence
5x 10" Met passes akgT,/e=0.393. After this warm-up lengths. We have found that fég T, /e <0.393 the simula-
process, we have created sequences of dites 10%, 2 tions are not ergodic. To be sure that the parameters are
x10%, 4x10% ...,64<10% The results are presented in appropriate, we have performed a short PT simulatiorf (10
Fig. 3 for R;=40, 30, 2.50, and 2r. The upper panel passes; ten PT passes consist of nine Met passes plus an
shows Yk as a function of log(b), for fixed K=10*. We  exchange attemptwith 40 equally spaced temperatures in
have chosen to present the data using base 2 logarithms ftite rangekgT/e €[0.028,0.393 in order to obtain a first
clarity [each increase by 1 unit of lg@p) represents a factor estimate of the position of the melting and boiling tempera-
of 2 scale increadeAll the data decrease with increasihg  ture regions. The boiling peak in the specific heat appears to
but only R.=20¢ and R,=2.50 appear to vanish to within be located at a higher temperature tkaii/e =0.393. More-
the error bars over the time scale of the current simulation. Irover, the value oCy, atkgT/e=0.393 is about one-half the
the lower panel we preseity /Y k as a function of loglb)  value ofCy, at the temperature of the melting pelakT ,,/&
for R;=4 and 3. The decay law suggested in E¢8) with =0.282. From these results we feel it is safe to chdese
¢ given by Eq.(53) is satisfied for both radii. =20 andkgTy /e =0.393 for the calculations that follow.

We have stated that the simulation can be considered ef- We now illustrate the convergence characteristicy pf
fectively ergodic wherY i is indistinguishable from zero. In when we increase the total time scale of the calculation by a
Fig. 4 we have plotted ,x and its statistical error as a func- factorb. We illustrate this behavior using a PT simulation of
tion of logy(b) for R;=2.5 and 2r. ForR.=20 the crossing LJ;3, and we focus on results at the temperature of the melt-
point of Y, and its error is atbK=16x10*. For R, ing peak in the heat capacitkgT,,/e=0.282). We choose
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FIG. 6. Comparison of the Met and Jw diffusion coefficients
with the PT diffusion coefficient as a function of the reduced tem-
perature. The dashed line represents equivalence between methods.
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It is of interest to perform a similar study of the behavior
FIG. 5. The upper panel shows the decay behavioY gf (in of Yk as a function Qf the tim_e sca_ling for a Met qalculgtion.
units of £2) as a function of log(b) for PT and Met, at the tem- We have taken the flngl _c-onflgur.atlon Qf the PT simulation at
perature of the melting peak of the heat capadigfT,,/e=0.282.  KsTm/&=0.282 as an initial configuration, and we have per-
From Eq.(52), we plot log(Yx /Y ) Vs log,(b), to extract the value ~ formed a simple Met simulation at that melting temperature.
of the exponents (the slope of the linear fit We have foundv A graph of Y, and log(Yx/Yyk) as a function of log(b)
=0.93+0.03 for PT, andu=0.94+0.02 for Met. The straight lines for Met is also presented in Fig. 5. From the upper panel of
are the best linear fits of the data points. Fig. 5, it is evident that Met results are not ergodic within the
same scaled time as the PT results. It is also evident that the
this temperature, because from experiefitd,15,23 we  power law exponents for Met and PT are not distinguishable.
know the statistical fluctuations are large at the melting heasSimilar studies of the power law using the Jw method also
capacity maximum. The large statistical fluctuations make igive the same exponent. Neither an increase in the number of
possible to emphasize the behaviorXgf. We have run the temperatures nor changing the distribution of temperatures in
PT simulation at 40 equally spaced temperatures in the rangsither Jw or PT simulations has any effect on the calculated
kgT/e €[0.028,0.393. The initial warm-up time has been exponent.
set to 16 Met passes, followed by 210* PT passes. Fol- By using the results to compare the relative efficiencies of
lowing the warm-up period, we perform simulations of10 Met, Jw, and PT simulations for the J3Jsystem, we have
2X10°, 4X10°, 8X10°, 16x10°, and 32<10° PT passes. found that PT and Jw simulations can be considered ergodic
In each case the initial configuration has been taken to be thi&the run length is on the order 0f>210° passes, while Met
last configuration of the previous run. The output of thesimulations that are initialized from configurations generated
simulation are sequences of the potential eneigy. has from an ergodic PT study are ergodic when the total run
been determined in the same way as in the calculation of thiength consists of & 10° passes or more.
high temperature parametdmesented in Fig. 3 and Fig).4 In order to compare approaches, we have calculBted
The data points appearing in the upper panel of Fig. 5 are tha function of the reduced temperature, for the three methods.
mean value over 20 independent calculations of the slope dfhe comparison of diffusion coefficients from different algo-
W (wy). In the lower panel of Fig. 5 we have plotted rithms has also been used by Andricioaei and Stidu#.
log,(Y/Yy) as a function of log(b), whereK =10* andb The comparison of Jw and Met with PT is presented in Fig.
=1,2,4...,32. The slope of the linear fit is the exponent 6. The Jw and PT simulations are found to have comparable
according to Eq.52). At the temperature of the melting efficiencies usind™ as a measure for all calculated tempera-
peak,v=0.93+0.03. tures. At intermediate temperatures, Met is significantly less
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efficient. We have chosen to truncate the Jw study atonstraining radius of & is used. It is striking that the non-
kgT/e=0.12. For temperatures belowgT/e=0.12, Jw ergodicity as measured by the energy metric is not apparent
simulations require significant effort, because a large set ah the heat capacity curve.

external distributions must be generated. Because at tem- We have constructed a metric based on an ensemble of
peratures belowgT/e =0.12 L5 is dominated by structures MC trajectories. By using an ensemble we attempt to cover
close to the lowest energy icosahedral isomer, we expect thaufficient portions of space so that all components are acces-
Jw and PT methods to have similar efficiendias measured sible. In practice only a finite subset of a full ensemble can
by I') for all temperatures. be included, and it is always possible that components of
space are missed. In such a cag may decay to zero
numerically within the subspace, and the behavior may give
misleading evidence that the simulation is ergodic. Because

In this paper we have presented a study of the approach &Pmponents of space may be missed in any finite simulation,
the ergodic limit in MC simulations. In all the cases exam-it is impossible to guarantee ergodicity. It is hoped that, by
ined, the behavior of the MC metri, can be approximated Using a sufficiently large ensemble of trajectories to define
by Eq. (46), and the behavior of ,« satisfies Eq(48). Be- thg metric, the possibility of missing components is mini-
cause the exponentis smaller than 1 for all the cases stud- Mized.
ied, the dependence of the nondiffusive contributiongdpn
is weaker(in the sense of Appendix)Ahan for the diffusive ACKNOWLEDGMENTS
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ters, we have found that the exponendepends on both the
method used and the nature of the potential energy function. APPENDIX A: WEAK DEPENDENCE
We have performed calculations, not discussed in this work, OF THE NONDIFFUSIVE CONTRIBUTIONS

where the functional form of the potential energy is modi- \ye have considered two overall time scales for a MC
fied. These studies have shownto be dependent on the gmyjation. Properties calculated at short tinfledeledk in

details of the potential. We have not found the exponeitt  he giscrete cagerovide information about each step of the
be a strong function of method. Although PT and Met haveyic process, and properties averaged over the total simula-
significantly different efficiencies as measured by their relasjgn time (labeledK in the discrete cagegive information

tive diffusion coefficientsp is nearly the same in the two gpout the approach to ergodic behavior. Wheris suffi-
methods. The difference in the decay Yk appears to be jently short we have both diffusive and nondiffusive contri-
dominated by the coefficient in Eqet8) and(52) rather than  pytions as a function of. In this Appendix we explain the

the exponent. . _ relative time dependence of the diffusive and nondiffusive
As discussed in the text, parallel tempering and J-walkinggntributions to the autocorrelation function.
studies of many-particle systems must have an initial high |t has been assumed that the autocorrelation function Eq.

temperature component that is chosen so that a Met simulgg) can be expressed as the sum of diffusive terms plus
tion is known to be ergodic. For cluster simulations that re-ygndiffusive terms, i.e.,

quire an external constraining potential to define the cluster,

the radius of the constraining potential must be carefully A

chosen in order to achieve ergodic results. We have found k(t,t")=kq(t,t")+ 2 Kna,(t,t"), (A1)
the metric and associated decay laws developed in this work /=L

to be a particularly valuable method of choosing these initial

parameters in both parallel tempering and J-walking simula\-Nhere

VI. CONCLUSIONS

tions.

We also remark that the metric introduced here may be a Kky(t,t') = Dot Tt lot +r”, (A2)
more sensitive probe of ergodicity than might be required in t>
some applications. For example, in previous J-walking stud- .
ies [26] of the 13-particle Lennard-Jones cluster, the heat ()= F/f ty A3
capacity curve determined with a constraining radius ef 4 #ng, (L) = EAT (A3)

is nearly indistinguishable from the curve obtained with a
constraining radius of @. From the results of this work, we By increasing the time variables by a factor-1, such
know the initial high temperature walk is not ergodic when athat , <bt. <7, 1, with A\=1, we can study the relative
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variations of each contribution to the correlation function,
diffusive and nondiffusivélabeled by/>\). In this Appen-
dix we consider only values d&f such that the transformation

t— bt does not increase the time scale beyond the local cor-

relation time. In Appendix B values dif are considered that
do cross such time scales.
By the relative variations we mean

ka(bt,bt') = ky(t,t")]
Ag(t,t";b)= : (A4)
’ kbt |
ApgA(t,t';b)= K”d'/(bt,;bt ::&dy/mt 1w
nd,/\t

The relative variation of each nondiffusive contribution is

bt bt’
J' dtlJ' dty f(|ty—t,|/ 7))
1 Jo 0
Apg (Lt'0)=] 1

e - ,
fodtlfo diy f(|ty—to|/7))
(AB)

whereas the relative variation of the diffusive contribution is

1
Ag(t,t’;b)=1—

b (A7)

If Ag(t,t";b)>Apq (t,t";b) for all pairs of timest andt’
and for allb>1 such thabt.<r7,, we say that the nondif-

fusive contributions are weaker than the diffusive contribu-

tion in their dependence on In the remainder of this Ap-

pendix we explore the propertiés must have in order that

the inequalityA 4(t,t";b)>A 4 (t,t";b) is satisfied.
Lemma If the functionH ,(t; 7),

t t’
H/(t;T):f dt,f/(—)>0, (A8)
0 T
satisfies the inequality
t
H/(t;r)>tf/<; Vt and r, (A9)

thenH ,(t;7) is an increasing function of.
Demonstration For / andt fixed, the functionH ,(t,7)
evaluated inr' is
t )

=

t t’
:J' dt'f/<T)
0 TT

H/(t;T/):fotdt/f/( (A].O)

(A11)
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7’ Tl u
=—J du f/<—) (A12)
TJo T
T!
= H, (7t/7";7); (A13)
then, forA+>0,
H(G7+An)—H (t7) 1 T+A7frt/(f+m)dt,f t’
At TAT T 0 ar
t t’
—J dt’f/(— (A14)
0 T

B 1 ATJTt/(T+AT)d g t’
“5r| 7)o vz
t !
—f dt'f, —)J (A15)
Tt/(7+AT) T
B 1 ATJT’(/(T+AT)d ' t’
“57| 7)o vz
tAT ; t* ALE
YN AT A (A16)

wheret* e[t7/(7+A7),t]. In the limit A7—0, and by vir-
tue of the continuity off ,, the derivative takes the form

)

ThenoH ,(t;7)/d7>0, andH ,(t;7) is an increasing func-
tion of 7.1

Here we have presented the two first conditidpsmust
satisfy, namely, Eq4A8) and(A9). From Eq.(19) f (0) is
a global maximum, and the memory functions must have a
positive peak at zero. The area below that peak must be
sufficiently large to satisfy Eq/A8). Moreover,f (0) must
be sufficiently large to satisfy E@GA9), even at points where
f /(t/7) is a local maximum. Thus, to satisfy this Lemma, we
need a memory function with a sufficiently large global
maximum att=0.

Corollary. SupposeH /(t;7,)>tf (t/7,). If b>1, then
0<Apq (t,t";b)<1 for all pair of timest andt’.

Demonstration Under the change of scale in time
—bt, knq,(t,t") can be written

0-'H/(t, 'T) _ 1

- (A17)

[H/(I;T)—tf/

T

(bt,bt") fbtdt o 4, t ('tl_t2|)
K , = —
nd,/ bztt, 0 1 0 27_/ / T/
(A18)
1 t t’ 1 b|t1_t2|)
=— dtf dt,—f (— :
ttJo “Jo C1, / T/

(A19)
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then the quotienk,qy (bt,bt")/kpq (t,t") is

t ty ta—ty
koAb _fodh{ fo dtf/[t/(r//b)]+fo dtf/[t/(r//b)]}

tt - t ty (S (A20)
Knd,/( ’ ) J' dtl[J' dt f/(t/T/)+f dt f/(t/T/)}
0 0 0

t
f dty{H (t1;7,/b)+H (t-—ty;7,/b)}
0

- t (A21)
Jodtl{H/(tl;T/)+ H (t-—ty;7,)}

b(t;—t,) t,—t
ot [ o [

Ty

numerator is smaller than the denominator. Then O

<Kng,/(bt,bt")/ kpg (t,t")<1 and 0<Apq (t,t";b)<1.0
Theorem Suppose thab>1 is such thatr,_;<bt. te b(t,—t;) t,—t,

<r71,, H(t;7,)>tf (t/7,), and allf , satisfy the Lipschitz + f dtz[bf/(T—) —f/( )H (A27)

condition [28]. This condition states that for every closed g

interval A exists a real positive numb&, such that

By Eq.(A8), H (t;7)>0V t and7. By the Lemma above the to ty
0<f dt; f dt,
0 0

te ty bt t
0<f dt J dt|bf (—)—f (—)
[f,(x)—fAy)|<C/|x—y]| (A22) 0 1[ 0 Az, 1,
for all x andy in A. ThenAq (t,t";b)<Ay(t,t";b) if and -t bt t
only if f, is non-negative in the interv@Dt-). s dt|bf, o —-f, IR (A28)

DemonstrationIf Apg (t,t";b)<Ag4(t,t’;b), then

bt bt’ t bt t t t
L L fo dtlfo dt, f (|t —to|/ 7)) 0<f dtl[ 0 1dtf/(_)_ 1dtf/<_)

B 1 0 Ty 0 T/
1 b>1 02 [ v '
Odtl o dty f(|ty—t,|/7)) J’b(t>—t1)dtf ( t ) ft>_tld'[f ( t )
+ = T’
(A23) 0 o A
) ) (A29)
dty | dtp f(Jti—tol/ 7))
1Jo 0
1<B t t’ ’ (A24)
dty | dit f(Jt,—t,]/ te [ [e LT t
fo 1 dt, Alti—tol/7)) o<f dtl[ 1dtf/(—)+f ' dtf, | —
0 tg T "t T
(A30)

where the operations to reach E&24) are valid by using
the Corollary above. Then

O<fbtdt fbt'dt Lo (-t
o Yo b1,

t ' t—t
0 0 T,

t t’ b|t1_t2|
o< dtl dtz bf/ _f/
0 0 T/

Using the intermediate value theor¢@d], we have

[oredZ)-emmed 3
dt,f/ :(b—l)tf/ (A31)
t

Ty T/

), (A25)
t
:(b_l)tf/< )

T
IRTES

T, T/

|t1_t2|“
T/ (,A26) +(b—1)t

f,
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then the remainder can be written as

t*(t) t

th(1) t.—t
+(to—1t) f/< > )—u( - ) .
1)_ (A35)

T/

wheret*(t) e[t,bt]. Let t}(t) andtz(t) be the values at
which the intermediate value theorem is satisfied, in the in-
tervals[t,bt] and[t. —t,b(t- —t)], respectively,

(b—1)tf/(t”‘(t))=fbtdt’f/( v ) (A33)
t

T, Ty

t<
R (t-,t-;b)= f dt(t
0

(b—l)(t>—t)f/(t'8(t))=fb(t>t)dt’f/
t

Ty -t

(A34) By the Lipschitz condition, we have that

to th(t) (1) to—t
R/(t< ,t>,b)$J dtj t f/ —f/ — +(t>_t) f/ _f/ (A36)
0 T, T/ T, T/
te tZ(t)—t th(t)—(t=—1)
<f dt{tc/ +(te—t)C A= - (A37)
0 T,
C/ t<
<T—'J dt{t|bt—t|+ (t= —t)|b(t=—t)— (t-—1)|} (A38)
s Jo
C, < o, )
<—(b—1)f dift+(t=—1)7] (A39)
Ty 0
C, 2,
<—(b—1)| st +t_t_(t-—1t.) (A40)
Ty 3
2 ,.C,
3 2 p—
<3zt T/(b 1), (A41)
|
where C, is a suitable positive real constant. Using Egs. t t’
(A32) and (A35) in Eq. (A30) we have F ()= fodt’ t'f, - (A46)
t< t—t is a continuous and differentiable functiontofThe inequal-
< - — |+ (t-— .
0 J; de(b 1){”/ T, (t> Uf/( T, )] ity (A45) holds for any b>1. Suppose thatF (t.)
+F, (t.)—F  (t-—t.)<O0. Then, ifb is such that
+(b= DR, (t- t= ;b), (A42) ALITRAL L)
3 T,
t< t ts t bzl_"i 3 |FA(to)+F (o) —F A(t=—to)],
0<J dttf, | — +f dttf,| —|+R,(t-,t-:b), t=C,
0 T, to—to T, (A4T)
(A43)
whereL>2, we have that
to te t s —to t
o<f dttf, | — +f dttf/(—)—f dttf/<—> O<F (to)+F, (t-)—F (t-—t-)
0 Ty 0 T, 0 Ty 1
+R/(t< ,t> ;b). (A44) +E|F/(t<)+F/(t>)_F/(t>_t<)|y (A48)
2,C, L-1
0<F/(t<)+F/(t>)—F/(t>—t<)+§t>T—/(b—l), O<——[FAt)+F (L) —FA(t-—t)], (A49)
' (A45)

in contradiction with the hypothesis th&t, (t.)+F (t-)
where —F_ (t-—t.) is negative. Then



PRE 62 APPROACH TO ERGODICITY IN MONTE CARLO SIMULATIONS 7459

O<F (t.)+F (to)—F (t-—t_). (A50) =7, /b, with b>1; i.e., when the total simulation time is
scaled to exceed the correlation time of the first colored noise
Let us define the function process.
We multiply the time variables by a numbkey such that
AF (t)=F (t)—F (t-—1), (A51)

71<bt.<7,. We have that thg, process contributes to the

wheret e (0t-). The right derivative at=0 of AF ,(t) is autocorrelation function with

AF (At)—AF (0)

lim G.(bt/7,)Gy(bt'/ T,
Jm At b2tt’< 1(bt/7,)Gy( )
F (At)—F (0)+F (t F —At 1 bt bt t—t
— iim AA)—=F (0)+F (to) —F (t- ) - J dt, dz—f1(| 1 2|> (81)
Atoo* At b2tt’ Jo 0 Ty
A52
52 1 [t |t1_t2|
= lim —{ dttf/(—)+j dttf/( )] bl
aot At o T, t. — At T,
(A53)  Wheret’=t/b and ;= 7, /b. We want to compute this con-
tribution within the neighborhood, =t, as well as outside
_ 1 . H t3 such a region. To do so, we can split the integral in (B9)
= lim = Aty | — +Att2f/ into three parts,
At—07
(A54)
wheret! e[0,At] andt} e[t —At,t_]. Thus o (CUPUT GBI T ) =11 o F s, (BY)
IAF (t t
G4 /(Z). (As5) ~ Where
at t—0t T/
1 to max (0t — €/2) 1 tl_tZ
If the right derivative at 0 ofAF (t) is negative, AF (t) l;=—| dt dt, —f4 , (B4)
; btt’ Jo 0 Th1 Th1
approaches-F ,(t.) from below, whert— 0. There exists a
time 0<t<t. such that 0>F (t-)+AF (1), in contradic-
tion with Eq. (A50). Then f, must be non-negative far t<

min(t~. t1+e/2) 1 |t1—t2|
t dt, —f;
max(0t; — €/2) Th1

e (0t.). By the property Eq(19) f,(0) must be positive. 2= btt' Jo ) (BS)

This proves thatA g ,(t,t";b)<Aq4(t,t";b)=f (t)=0 for

O<t<t.. To demonstrate that positivef, vyields .

Ang1(t,t;b)<A4(t,t";b) (i.e., the conversefollow the ar- 5 “d J dt, —f

gument backward, from EqA30). [ btt’ min(t-. t;+ef2)  Thl
In conclusion, if the memory functions are positive, sat-

isfy the Lipschitz condition, and satisfy the condition Eqgs.with t_>¢e>0 (observe that the only integral involving

(A8) and (A9), the nondiffusive contributions are more =t, isl,). Consider . If t;<<e/2 the inner integral is zero.

Th1

, (B6)

Th1

weakly dependent on time thant1/ Thereforet; must be bigger thae/2 and
The results of the present Appendix are valid in the limit
of a complete ensemble. In our numerical experiments only 1 to ty—el2 1 ti—t,
partial samples of the ensemble can be considered. The l_@f f Tblfl Tor | (B7)

memory functions that appear in our numerical calculations

come from partial mean values of the product of discontinu- Which, by virtue of the continuity of;, can be bounded as

ous functions(every noise process is a discontinuous func-,|;qus:

tion). These memory functions are discontinuous. The be-

havior of the nondiffusive contributions observed in our 1 ft< b( ¢ bt
| ) 1( m.n)

numerical experiments is in agreement with these analytic —3

—
(infinite ensemble limjt results. We can infer that there btotoJeo "7 1

might be a version of the theorem applied to discontinuous
. 1 te b € btmax
memory functions, but we have been unable to develop such sl;s—— | dtu—(t;—=|f; ,
a theorem. btotoJez "7 2 1
1(t.—e2? 1 (bt (B8)
APPENDIX B: CONSEQUENCES OF THE TIME SCALE >t —f,
CHANGE IN THE NONDIFFUSIVE CONTRIBUTIONS == 1 1
. . . : 1(t.—€/2? 1 bt

In this Appendix we show the behavior of the functibn <l,;<= = f, |

when its correlation time is changed accordingr{e- 7y, 2 tt. 0 T1
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-t /t,)/ T,

€/2+1¢

0 t

1

2t

1

-(el2-1¢)
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ty+el2 1 t.—t 1 (el2 1 t
[ 2] 3 21
0 Th1 Th1 2) ez To1 T\ Tha
1t |t|
= dt —f
2) -ty 71 T\ Tpa

(B12)

The second integral ity can be separated into two parts;
the first for e/2<t;<min(t- t-—€/2) and the second for
min(t. t.—el2)<t;<t_. If t. —t_<e/2 the second term is

min(ts .ty + e/2)

|ty =t

Th1

2

FIG. 7. The area under the curve represents the first integral in

Eqg. (B11). The darker piece is half of the integral in the interval

[—ty1,t,], the lighter is half of the integral if— e/2,e/2].

wheret 4y (tmin) is the time in the intervdle/2,t -] at which
the functionf, reaches its maximurfminimum) value. Be-
causef, is continuous, there exist € [tyin,tmax at which

1(t-—€l2? 1 (bt}
T2 e Rl ) (89)

Consider nowl;. If t;+e/2>t., the inner integral is
zero. Therefore, €&t;<min(t. ,t-—€/2) and

1 (min(te t=—el2) te 1 to—t,
|3:_ dt J dtz_fl
btt’ Jo ty+el2 Tp1 Th1
min(t. ,t-—€/2) € ]
_T >—§—§m|n(t< 1o —€/2)
1 [bt3
—f, —], (B10)
T1 T1

wheret} e[ tmintmax, and NOwt 4, (tmin) is the time in
[e/2t-] at which the functionf; reaches its maximum
(minimum) value.

Let us consider now,. First observe that, for the integra
in tq, if 0=<t;<e/2, max(0t;—€/2)=0 and mint. ,t;+¢€/2)

=t;+€el2. If el2<t;<t. then max(t;—e/2)=t,—€/2.
Then
el2 ty+el2 1 |t1—t2|)
l,= f dtf dt, —f (
2 bt<t>( o Jo 270 T Ty
t min(t ,t;+ €/2) 1 t,—t
f<dt1f >t 2_f1(|1 zl)}_
ty—el2 Th1l Th1
(B11)

The integral int, between 0 and;+ €/2 can be evaluated
with the help of Fig. 7:

zero. Then
1
fq
min(ts ,t;+€/2)

J.oe)
ty—el2 Tp1
2
o
t

[ty —t,|

Th1

min(t- ,t- —€/2)
| at, |
€l2 t1—el2
€
+0O| S +to—to
2 to—el2

2

Tph1
where © is the step function. Ift;<min(t.,t-—¢/2) then
min(t- .t;+e2)=t,+ €/2. The last integral i, can be rear-
ranged in the same way as E&§12). Then

f St f 'y ( )
1 . 27’b1 1
min(t- ,t- —€/2) €l2
j at, |
€l2 - Tbl
te
+ ® +t< t>f
t

~—€2

t
fy Sanl )
t Th1

We can observe that the correlation timg goes to zero
| whenb is increased. The function (&) f,(bt/7;) becomes
negligible outside a neighborhoodtet 0 [observe EqsB9)
and (B10)]. Equation(16) holds, then, ifb is sufficiently
large that (1#,,)f1(t/7,1) can be considered a function.
The integralsl; and |3 become zero, and the integrals in-
volving t=0 in the expression of, converge to 11, be-

1f
Tbll

|

to min(ts ,t; +€/2)

1—6/2

><dt2—f1

(B13)
Th1

min(t-. t1+e/2) [t —ty]

Thl
€2
o/ [
—€l2

1—€l2

dt—f
el2 Tp1
t]

Th1

dt—f

Th1

|

(B14)

o

t—1
dt —f
Th1

1t

comes
l,= ! inl to,t E)
Z_bt<—t> minj t—,T-> 5
€ €

+0 §+t<—t> §+t<—t>
1

b (B15
>
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which is a diffusive contribution to the autocorrelation func-
tion. The autocorrelation function then becomes

y

A

+2

/=2

To+T
bt-

tp (t=)
Th/

e T

Ty

k(bt,bt")=

) . (B16)
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7461

The same argument can be used wheis such thatr,
<bt. < 73. After such changes in the time scale, the diffu-
sion coefficieni’ =13+ 1", is enlarged, and the nondiffusive
contributions are reduced. There is an ultimate scale change,
such thatr,<bt. . Beyond this maximum time scale the
process can be considered diffusive.

[1] J.P. Valleau and S.G. Whittington, iBtatistical Mechanics,
Part A: Equilibrium Techniquesvol. 5 of Modern Theoretical
Chemistry Serigsedited by B. BerngPlenum, New York,
1976, Chap. 4.

[2] W.W. Wood and F.R. Parker, J. Chem. Phg%, 720(1957).

[3] D. Thirumalai, R.D. Mountain, and T.R. Kirkpatrick, Phys.
Rev. A 39, 3563(1989.

[4] R.G. Palmer, Adv. Phys31, 669(1982.

[5] C.W. GardinerHandbook of Stochastic Methods for Physics,
Chemistry and the Natural Scienc&Springer-Verlag, Berlin,
1983.

[6] D.L. Freeman and J.D. Doll, Annu. Rev. Phys. Chem,. 43
(1996.

[7] R.M. Lynden-Bell and D.J. Wales, J. Chem. Ph¥81, 1460
(19949.

[8] J.P.K. Doye, D.J. Wales, and M.A. Miller, J. Chem. PH@9,
8143(1998.

[9] R.D. Mountain and D. Thirumalai, J. Phys. Che@® 6975
(1989.

[10] D. Thirumalai and R.D. Mountain, Phys. Rev. 42, 4574
(1990.

[11] J.E. Straub and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A.

90, 809 (1993.

[12] A.J. Lichtenberg and M.A. LiebermaRegular and Stochastic
Motion (Springer-Verlag, New York, 1983

[13] I. Andricioaei and J.E. Straub, J. Chem. Phy€7, 9117
(1997; R. D. Mountain and D. Thirumalai, Physica 210,
453 (1994).

[14] J.P. Neirotti, F. Calvo, D.L. Freeman, and J.D. Doll, J. Chem.
Phys.112 10 340(2000.

[15] F. Calvo, J.P. Neirotti, D.L. Freeman, and J.D. Doll, J. Chem.
Phys.112 10 350(2000.

[16] D.D. Frantz, D.L. Freeman, and J.D. Doll, J. Chem. Pi®gs.
2769(1990.

[17] E. Marinari and G. Parissi, Europhys. LeiB, 451 (1992.

[18] C.J. Geyer and E.A. Thompson, J. Am. Stat. As<it;.909
(1995.

[19] M. Falcioni and M.W. Deem, J. Chem. Phy$10, 1754
(1999.

[20] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller, and E. Teller, J. Chem. Phy&l, 1087(1953.

[21] J.K. Lee, J.A. Barker, and F.F. Abraham, J. Chem. PB§s.
3166(1973.

[22] P. Labastie and R.L. Whetten, Phys. Rev. L&6 1567
(1990.

[23] J.P. Neirotti, D.L. Freeman, and J.D. Doll, J. Chem. Phy2,
3990 (2000.

[24] M. Spivak,Calculus 3rd ed.(Publish or Perish, Berkeley, CA,
1994).

[25] R.S. Berry, T.L. Beck, H.L. Davis, and J. Jellinek, Adv. Chem.
Phys.70B, 75 (1988.

[26] D.D. Frantz, J. Chem. Phy&02 3747(1995.

[27] Assuming the tolerable error to be on the order of 1%, we set
0.01=|[ cot(w/2) — 2w,/ (2lw,) | = ©2/12+ O(wh). Then
Nimax=bK\/12/20r.

[28] A.N. Kolmogorov and S.V. Fomiriptroductory Real Analysis
(Dover, New York, 1970



	Approach to Ergodicity in Monte Carlo Simulations
	Citation/Publisher Attribution

	Approach to Ergodicity in Monte Carlo Simulations
	Publisher Statement
	Terms of Use


	USING STANDARD SYSTE

