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Abstract 

 A number of methods of drawing down atmospheric carbon dioxide are 

being investigated as a result of concerns over the impacts of global warming. 

Mineral carbonation is a proven manner of sequestering carbon dioxide and 

functions by binding carbon dioxide with iron-, calcium-, and magnesium-containing 

minerals—including olivine, pyroxene, and serpentine— to form carbonate 

minerals.  The Coast Range Ophiolite (CRO) in California is a 700 km long body of 

ultramafic rocks containing vast amounts of olivine and serpentine.  By assessing 

the mineralogical and geochemical characteristics of the minerals in these rocks, I 

assess the potential quantity of CO2 that could be sequestered in these rocks.  

 Olivine is the most ideal mineral reactant for carbon sequestration, based on 

abundance and reactivity. My data show that the first 45 m of surface rocks of the 

CRO contain very little olivine, but petrography shows olivine at least 110 m below 

the surface, and olivine has been previously identified in various sections of  the  

CRO.  Using energy-dispersive x-ray spectroscopy, I showed that the amount of Mg 

in olivine in the rocks is 24% and the amount of total Mg + Fe + Ca is 38%.  Based on 

these figures and volume, density, and the percentage of rock reacted with CO2, I 

calculate that the CRO can sequester ~ 6.9x1013 kg CO2 for Mg-only sequestration 

and ~9.1x1013 kg CO2 for Mg, Fe, and Ca sequestration, which correspond to 14% 

and 39% of the amount of atmospheric CO2 that would return us to 350 ppm CO2,   

Thus the CRO, while not capable of eliminating enough CO2 to halt global warming 

by itself, still can sequester a considerable amount and should be considered a 

viable option for mineral sequestration. 
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1.  Introduction 

Warm Earth surface temperatures rely on a functioning planetary 

greenhouse, and CO2 is a powerful gas component of this greenhouse. Industrial 

fossil fuel burning has increased atmosphere CO2 dramatically in recent times:  

atmospheric scientists measured atmospheric carbon dioxide levels since 1958 and 

found that atmospheric CO2 concentrations have increased since then reached a 

record high 396.78 ppm in May of 2012, as of the latest Mauna Loa Observatory 

readings (NOAA-ESRL, 2012).  With global temperatures having already risen 1.4°F 

since the start of the 20th century, and with temperatures likely rise at least another 

2 °F—and possibly more than 11 °F— over the next 100 years, the level of CO2 in the 

atmosphere is a serious concern (NAS, 2008).   

With global population and industrialization increasing, CO2 levels are 

unlikely to drop in the near future.  The Intergovernmental Panel on Climate Change 

(IPCC) has modeled possible future atmospheric CO2 concentrations based on 

scenarios where certain variables such as population, renewable energy sources as 

a percentage of total energy, affluence, energy demands, and economic output are 

altered.  Emissions could reach as high as 80 Gt C/yr by 2058 if no action is taken 

(Mathez, 2009).  Both CO2 levels and global temperatures could reach levels high 

enough to cause negative impacts on people, agriculture, and wildlife across the 

world (Fig. 3) (Smith et al., 2009; Thornton, 2012; Doney et al., 2012).  The El Niño 

Southern Oscillation affects ecosystems, agriculture, freshwater supplies, hurricanes 

and other severe weather events worldwide and is a temperature-sensitive 

phenomenon, and while it is unclear as to the effects increased temperature will 
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have (Collins et al., 2010), increasing the risk of permanently changing the way 

those natural systems function could be perilous. 

 

 

 

1.1 Carbon Sequestration Fundamentals 

Carbon sequestration occurs naturally and is responsible for moderating 

carbon dioxide levels in the atmosphere over geologic time.  An enormous reserve of 

carbon is stored in sediment and rocks in the Earth: Ruddiman (2001) estimates 66 

million Gt of carbon are stored in sediment and rocks in the Earth.  Pre-industrial 

levels of atmospheric carbon are estimated to be about 600 Gt.  Plainly, if the Earth 

did not have a way to fix carbon dioxide, atmospheric levels would be orders of 

magnitude higher (Ruddiman, 2001).   

Natural sequestration of carbon begins with carbon dioxide in the 

atmosphere dissolving in the ocean, and is effected through chemical precipitation 

of carbonate minerals (often biologically mediated) and subsequent compaction 

into limestone, and/or deposition of mineralized carbon in organic-rich 

sedimentary shales, the largest reservoirs of carbon on Earth.  In natural waters, the 

speciation of CO2 is pH-dependent. At low pH values (<6.4), dissolved CO2 or 

carbonic acid, H2CO3 , is the dominant species (pKH = 1.5 at 25°C).  At intermediate, 

near-neutral pH values, bicarbonate, HCO3-, dominates (pK1 = 6.3 at 25°C). The 

carbonate ion, CO32- , dominates at elevated pH (pK2 = 10.3 at 25°C) (Fetter Jr., 

1980). The carbonate system modulates global biogeochemical cycles in the ocean 
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and in reactive rock environments, providing essential dissolved inorganic carbon 

to the biosphere. 

Carbon is also naturally stored in plant remains that have been buried and 

preserved over time to become coal, oil, and natural gas.  While the quantity of 

carbon stored this way is volumetrically subordinate to the carbon stored in 

limestone, it represents the portion of carbon that is currently being re-released 

into the atmosphere. 

Carbonation of mafic and ultramafic rocks on the Earth’s surface occurs 

naturally as well, locking carbon in geological formations over deep time.  Natural 

carbonation of basalt consumes ~1.8 x 108 tons of CO2 per year globally, and is quite 

a rapid process (Matter and Kelemen, 2009). In Oman, ~103 tons of CO2 km3/yr are 

estimated to be consumed by peridotite carbonation occurring in naturally exposed 

mantle units of ophiolites (Matter and Kelemen, 2009).  Given increased (and 

increasing) CO2 generation from anthropogenic sources, the rates of natural 

sequestration reactions are not sufficient to stabilize Earth’s rising temperature.  

 Human-facilitated carbon sequestration methods include (a) subterranean 

burial of biomass or biochar (i.e., charcoal created by pyrolysis of biomass), (b) 

ocean storage of biomass, where biomass is transported down rivers and buried 

where the river meets the sea (Strand and Bedford, 2009), and (c) injecting aqueous 

CO2 below the Earth’s surface to be locked in place by carbonation reactions.  Iron 

fertilization of nutrient-limited patches of the global ocean surface has been 

considered as a means of stimulating primary production (thus drawing down 

atmospheric CO2), but the practice could be ecologically disruptive, and models have 
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consistently shown that at the limit, the approach could not substantially change the 

trajectory of global warming (Strong et al., 2009).  Mineral sequestration has both 

the largest potential for storage and the lowest potential for CO2 leakage among 

sequestration methods (Herzog, 2009), and is the focus of this study.   

The largest ongoing mineral sequestration operation is the Carb Fix project 

in Iceland (Gislason et al., 2010).   The project captures CO2 emitted from the nearby 

Hellisheidi geothermal power plant and combines it with water to create a carbon-

rich fluid.  The fluid is then injected into boreholes anywhere from 200 m-2000 m 

deep, where it reacts with calcium-rich basaltic rocks to form calcium carbonate 

(CaCO3) (Gislason et al., 2010).  Iceland is located on a divergent plate boundary and 

is composed almost entirely of basalt. As a mafic rock with abundant divalent 

cations, basalt presents an excellent opportunity for in situ capture and storage.  

Assuming 10% porosity of the rocks, of which only 10% will eventually be filled 

with calcite, 0.01 km3 volume is available for calcite precipitation. This volume can 

accommodate 12 million tons (1.10 x 1010 kg or 10.9 Mt) of CO2. At the present CO2 

emission rate of magmatic CO2 from the geothermal power plant at Hellisheidi 

Iceland (60,000 tons/year), it would take about 200 years to fill this available pore 

space (Gislason et al., 2010).   

However, there are currently no mineral carbon sequestration facilities in 

the United States, yet ample opportunity exists.   For example, the Central Atlantic 

Magmatic Province (CAMP) — located off the eastern U.S. coast— is partially 

suboceanic continental flood basalt stretching from Newfoundland in Canada down 

to Florida (Goldberg et al., 2009). With such an expanse of flood basalt existing 
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below the ocean, the CAMP presents an opportunity for mineral sequestration using 

CO2 dissolved in seawater.    

A serpentinite-based mineral sequestration project is being planned in New 

South Wales, Australia by the GreenMag Group and the University of Newcastle. 

Because of the lack of suitable geology for deep injection of fluids, the group plans to 

construct a mineral sequestration plant that takes advantage of the abundance of 

serpentinite rocks and soils in the area.  Plans are underway for its construction, 

and with a fledgling carbon tax law, there is economic incentive.  The successful 

operation of this plant would provide empirical proof that serpentinite-hosted 

carbon sequestration is a viable method of carbon capture (GreenMag Group media 

release, 2010). 

       In the United States, numerous teams are engaged in research evaluating 

mineral sequestration in serpentine- and olivine-rich matrices. The Albany Research 

Center in Albany, OR has conducted research on serpentine and olivine-based 

mineral sequestration and proposed that moderately high temperature (185 °C for 

olivine) carbonate mineralization reactions spurred in olivine-bearing rock can 

convert between 49% and 91% of gas phase or aqueous CO2 to carbonate mineral 

phases (O’Connor, 2001).  

On the west coast of the United States, continental ultramafic serpentinites 

and some olivine-rich rocks stretch from Oregon to central California, with 

enormous potential for carbon storage. These rocks are in close proximity to cities 

with high populations--San Francisco, Oakland, Sacramento, Napa, Fresno, and San 

Jose.  These cities all demand resources such as electricity, fuel, and cement, all of 
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which are high-volume CO2 emitters. Additionally, oceanic crust off the Atlantic and 

Pacific coasts is broadly suitable for seabed carbon sequestration projects, as 

described theoretically in Kelemen and Matter (2008) and Goldberg et al. 

(2009).  Xu et al. (2004) state that aquifers containing ‘basic’ silicate minerals with a 

high proportion of Mg and Ca, such as olivine, serpentine, pyroxenes and 

plagioclase, have the greatest potential to fix CO2 as carbonate minerals because 

they have a high molar proportion of divalent cations and they react rapidly to form 

carbonate minerals.  

In the following work, I synthesize new data for serpentinite rock cores with 

regional data pertinent to ultramafic rock characteristics, to quantify the total 

carbonate sequestration potential of the Coast Range Ophiolite in northern 

California. Cored rocks comprise  two, 31 m and 46 m-deep serpentinite sections, 

and data include  lithostratigraphic columns descriptions, petrography of thin 

sections, x-ray diffraction results, and bulk and spot solid geochemistry data 

obtained through x-ray fluorescence (XRF) and scanning electron microscopy 

coupled to energy dispersive x-ray spectroscopy (EDS). These results will anchor 

quantitative modeling of the carbon storage possible in these rocks. Recent progress 

in ultramafic rock carbonation reactions provides context for this study, enabling 

assessment of Coast Range Ophiolite serpentinites as geological repositories of 

carbon; Coast Range Ophiolite ultramafic rocks may well represent a significant 

carbon sequestration option for northern California and serve as a model for other 

locations.  
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1.1.1 Carbon Sequestration Chemistry 

 In the presence of CO2-rich fluids, with certain temperature and pressure 

conditions, the following minerals react predictably to from new carbonate minerals 

(O’Connor, 2005).  Note Eq. 1 also involves serpentinization of olivine into 

serpentine (Mg3Si2O5(OH)4. 

     2Mg2SiO4 (forsteritic olivine) + CO2 + 2H2O  Mg3Si2O5(OH)4 + MgCO3                (1)              

      Mg2SiO4 (forsteritic olivine) + 2CO2 + 2H2O  2MgCO3 + H4SiO4                             (2) 

      Mg3Si2O5(OH)4 (serpentine)+ 3CO2 + 2H2O  3MgCO3 +2H4SiO4                            (3) 

      Fe2SiO4 (fayalitic olivine) + 2CO2 + 2H2O  2FeCO3 + H4SiO4                                   (4) 

      CaSiO3 (wollastonite) + CO2 + 2H2O  CaCO3 + H4SiO4                                               (5) 

 

These are simplified reactions.  In reality, the process from ore mineral to 

carbonate mineral contains multiple steps.  The primary step is the dissolution of 

gaseous carbon dioxide into the aqueous phase via  

 

      CO2 (g) + H2O(l) → H2CO3 (l) → HCO3- (aq) + H+(aq)                                                               (6) 

 

The second step is the dissolution of the primary cation reactants from the 

mineral lattices into solution.  The following reaction depicts the dissolution of 

serpentine from Krevor and Lackner (2011) and olivine from O’Connor et al. (2005). 

      
1
3 Mg3Si2O5(OH)4 (s) + 2H+ → Mg2+ +  

2
3 SiO2 (aq) +  

2
3 H2O(l)                                             (7) 

       Mg2SiO4 (s) + 4H+ → 2Mg2+ + H4SiO4 (aq)                                                                             (8) 



 

8 
 

 

With aqueous bicarbonate and magnesium ions, the final step of the carbonation 

reaction is ready to proceed. 

 

      Mg2+ + HCO3- → MgCO3(s) + H+                                                                                             (9) 

 

The magnesium and bicarbonate ions react to form magnesite and a proton.  The 

reaction in Eq. 9 will obviously not proceed unless protons are consumed.  Proton 

consumption conveniently takes place during magnesium dissolution in ultrabasic 

rocks, as seen in Eqs. 7and 8.   Thus we have a multi-step process for the 

carbonation reaction, with a natural proclivity— in ultramafic rocks— to proceed to 

the right.  This is another reason ultramafic rocks are idea candidates for carbon 

sequestration. 

 

 
   

 

 

2. Geologic Setting 

The Coast Range Ophiolite (CRO) — the oceanic basement beneath the 

Jurassic and Cretaceous  sedimentary rocks of the Great Valley sequence— is an 

assemblage of ultramafic, mafic, and minor felsic igneous rocks of Jurassic age 

scattered in a 700 km long segment (Fig. 4) in Northern California (Shervais, 1985; 

Bailey, 1971).  An ophiolite is a section of oceanic lithosphere that has been uplifted 
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and exposed above sea level and often emplaced onto continental crustal rocks. 

Geochemical evidence indicates that the CRO formed in a supra-subduction zone.  

Shervais et al. (2004) propose that the Coast Range Ophiolite formed in multiple 

stages, beginning with mantle melting at a nascent subduction zone. Further melting 

induced increased fluid flux from the subducting slab, creating an assemblage of 

wehrlite and feldspathic peridotite born from refractory melt.  As time progressed, 

the subduction zone matured and stabilized, underlaying the refractory rocks with 

calc-alkaline and tholeiitic rocks.  Finally, the incomplete ophiolite sequence was 

underthrust by sheet basalts from the subduction of a nearby spreading center.  As 

the spreading center subducted, the leading slab detached and sank into the mantle.  

When the tailing slab of the spreading center entered the subduction zone, 

sediments were scraped off, forming an accretionary wedge (the Franciscan 

Complex, in this case).  The newly formed accretionary wedge provided enough 

buoyant force to uplift and expose the overlying ophiolite sequence (Shervais et al., 

2004).  Presently, both obduction and accretionary uplift are plausible sources of 

CRO emplacement. 

 
Ophiolites expose rocks that are stable kilometers below the ocean floor to 

shallow crustal, continental environments.  When basalts, pyroxenites, and 

peridotites are exposed to water at elevated temperatures and pressures, either 

through hydrothermal fracturing, convergent margin volatile cycling, or post-

emplacement weathering, the pyroxene and olivine in those rocks may be 

transformed into serpentine minerals.  As this is the scenario for the creation of the 



 

10 
 

Coast Range Ophiolite, outcrops of the CRO comprise: mantle peridotite, gabbro, 

pyroxenite, basalt, and serpentinite.  
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3. Methods 
 
3.1 Equipment Used 
 
 
 
3.1.1 X-Ray Powder Diffraction 

A Terra Field Portable XRD/XRF Instrument (University of Rhode Island) was used 

to determine the mineralogy of the core samples.  The Terra is designed for powder 

diffraction, requiring that rocks be pulverized before analysis. At least 15 mg of a 

sample is crushed and sieved to a grain size of 150µm or less, then transferred to 

the sampling cell.  The Terra uses a cobalt anode with 30 kV x-ray tube voltage and 

10W x-ray tube power, with the x-ray energy range varying from 3-25 keV.  

Laboratory default parameters for the instrument are set for 250 exposures, 

producing both x-ray diffraction (XRD) patterns for mineral characterization and x-

ray fluorescence (XRF) spectra for summary geochemical data. 

 

The diffraction patterns are analyzed using XPowder ( http://xpowder.com/) 

software, which compares the diffraction pattern against a database of known 

mineral patterns and attempts to match based on peak location d-spacings.  The 

user can decide to keep the match or search for specific minerals to attempt to make 

a match themselves.   

 

Core samples from the field site were generally clay, cobbles, or veins within the 

cobbles.  Isolated samples of each (clay, cobbles, and veins) were run to ensure 

accuracy of identification of each sample and then a larger sample of cobbles 
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entrained in clay is run to estimate each constituent.  At least one sample from each 

section of core (a core section is approximately 1 m in length) was sampled, and in 

the case of a noticeable change in mineralogy, multiple samples from a single core 

may have been obtained. The corresponding depth and depth interval of each 

section was noted and a core log was compiled. 

 

 

3.1.2 Thin Section Petrography 

Thin sections were made of a number of cobbles and solid intervals within 

the cores.  Thin sections were cut at the Spectrum Petrographics facility (a fee-for-

service lab, petrography.com) and analyzed using an Olympus BH-2petrographic 

microscope, utilizing both plane- and cross-polarized light.  Fields of interest 

identified via petrography were further studied with a scanning electron 

microscope. 

 

3.1.3 Energy-Dispersive X-ray Spectroscopy 

Thin sections were further analyzed on the JEOL 5900 SEM at the 

Environmental Scanning Electron Microscope facility in [University of Rhode 

Island].  Geochemical mapping of points (or tagging) and lines across thin section 
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surfaces were performed on a portion of a sample to determine elemental 

abundances within individual crystals or within the groundmass of the slide. 

 
3.1.4 X-Ray Fluorescence 
 

 A Thermo Scientific Niton XL3 Series XRF Analyzer was used to determine 

elemental abundance within each sample.  One sample from each core interval was 

taken.   The elements used for analysis are as follows:  Zr, Sr, Rb, Pb, Zn, Ni, Co, Ca, 

Fe, Mn, Cr, V, Ti, K. 

 
 
 
 
3.2 Quantifying Carbon Sequestration Potential 
 

A reasonable quantification strategy takes into account the reactive 

components in the country rock, available rock volume, and reasonable reaction 

rates under environmental conditions.  

Abundant divalent cations can bind with carbonate anions to form carbonate 

minerals (O’Connor et al., 2005). O’Connor et al. 2005 suggested the use of a simple 

equation to develop a 1st order notion of the potential of carbon storage of a system: 

                                              (10) 
 

where RCO2 is the mass ratio of rock or mineral necessary to convert a unit mass of 

CO2 to the solid carbonate, MW is the molecular weight of the CO2, and ΣCa2+ + Fe2+ + 

Mg2+ is the sum of the molar concentrations for the specified cations.  The 

carbonation potential is defined here as the mass ratio of rock or mineral necessary 
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to convert a unit mass of CO2 to the solid carbonate.  Thus a low RCO2 is preferable to 

a higher one (O’Connor et al., 2005).  As a result, minerals with relatively high wt% 

of Ca2+, Fe2+, and Mg2+ are preferred.  Typically the silicate anion (SiO44-) makes up 

the majority of the remaining mass of ultramafic rocks and in serpentinized rocks 

OH- layers add additional mass from hydration reactions.  A list of some ultramafic 

minerals and their elemental constituents is found in Table 1. 

The RCO2 equation (Eq. 10) is a deliberate oversimplification of the carbon 

sequestration potential of any mineral, providing a first order estimate.  The 

minerals in which the cations are bound are important as well; more strongly held 

Mg, Fe, or Ca ions will require more energy to liberate. 

 

Accurate estimation of the volume of ultramafic rocks in the Coast Range 

Ophiolite (CRO) is not simple since the CRO is present in many disparate sections, 

but this is a necessary step in calculating total carbon sequestration potential.  

Wakabayashi and Dilek (2000) quantify the length of the of the CRO as 900 km, with 

most outcrops not exceeding 10 km in length, and with an average depth of 5 km. If 

the CRO were to occupy all of this land, we could constrain a maximum volume as a 

simple l x w x d calculation, to set a maximum volume of 4.5 x 104 km3.   If we 

compare the idealized maximum area of 9000 km2 to a map of the Coast Range (Fig. 

4.), we can see that ultramafic rocks certainly do not span its entire length and 

width—thus  9000 km2 is an overestimation, but provides a working estimate for a 

maximum possible area. 
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 An ArcGIS-facilitated area estimation of CRO serpentinite better quantifies 

the serpentinite extent. Through ArcGIS, it is straightforward to sum the areas of 

each individual rock type on the USGS geologic map of California (Fig. 7). The total 

area of serpentinites determined in this way is 3865 km2.  Given this area and an 

average depth of 5 km, the approximate volume of the CRO is 19,000 km3; this 

volume is used below as the basis for the carbonation calculation. 

 

 

3.3 Uncertainty  

 The calculations made in this paper were based either upon data obtained 

from previous works or from data obtained from work done specifically for this 

thesis.  There is variable uncertainty with each component used to calculate total 

sequestration potential, including rock volume, rock density, olivine:serpentine 

percentage, and magnesium percentage of olivine. 

 The volume of the CRO contains uncertainty more in the depth component of 

calculating volume than area.  The area component was obtained using reliable GIS 

data from USGS, while depth was obtained from Wakabayashi and Dilek, (2000).  

The value of 5 km depth from Wakabayashi and Dilek (2000) was the only source 

that provided a depth for the Coast Range Ophiolite.  As such, it is subject to 

question, however, it falls within acceptable values for ophiolite depths and will be 

used despite the inherent uncertainty.  Thus, values for depth were chosen using 5 

km as a median for the calculations in tables 22 and 23. 
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 Density of the ophiolite was chosen based on known densities of peridotite 

and serpentinite.  Olivine, the primary component of peridotite, has a density of 

3300 kg/m3 and serpentine, the primary component of serpentinite, has a density of 

2700 kg/m3.  Values were chosen for density bracketed by the density of olivine and 

the density for serpentine.  The uncertainty of density originates in the uncertainty 

contained in determining the olivine % of the ophiolite.  As the percentage of olivine 

increases, the density also increases. 

 The olivine proportion of serpentinite was taken from Choi et al. (2008).  

Choi et al. (2008) provided % olivine and % serpentine for various sections along 

the entire length of the CRO.  Two outliers were eliminated and the remaining 

values were assessed.   Kelemen and Matter (2008) cited 30% as the amount of 

peridotite remaining in the Semail Ophiolite.   The values of Choi et al. (2008) 

converged on 38%, thus to continue with estimating conservatively, 30% was 

chosen as a median value for the calculations in tables 22 and 23. 

 The magnesium content of olivine crystals was measured by energy 

dispersive spectroscopy (EDS).  The values obtained were then averaged and that 

value was used in calculating sequestration potential.  The value obtained via EDS 

(24.4% Mg) was lower than what Choi et al. (2008) had reported (29% Mg) for the 

Del Puerto Canyon portion of the Coast Range Ophiolite, however, Choi et al. (2008) 

had dunite data for only one portion of the CRO.  Thus 24.4% Mg was chosen as a 

median value for the calculations in tables 22 and 23, since the aim of this paper is 

to achieve a conservative estimate. 

  



 

17 
 

4. Results and Discussion 

 
Carbon sequestration rate and total potential are dependent on a number of 

factors: most fundamentally, available carbon dioxide and free reactive cations, (e.g., 

Mg2+, Fe2+ and Ca2+) are necessary.  CO2 can be readily dissolved in a manufactured 

fluid, naturally occurring groundwater or seawater. Sufficient cations result from 

alteration of ultramafic rocks.  Sequestration also responds to pressure-temperature 

conditions, mineralogy, rock chemistry, porosity/permeability, and solution 

chemistry.  Each of these items impacts net carbon sequestration and affects 

calculations of the total mass of carbon that can be fixed through the idealized 

reaction of Coast Range Ophiolite ultramafic rocks. 

 
 It is important to note that the sequestration outlined in this paper is not that 

of drawing CO2 out of the atmosphere to reduce atmospheric CO2 levels, but rather 

delineating the CRO as a repository for sequestering future carbon emissions.  

Drawing CO2 out of the atmosphere in an attempt to reduce atmospheric levels of 

would be unfeasible, as the amount of time it would take to accomplish the level of 

sequestration desirable would be overwhelmed by the amount  of CO2 generated  by 

human input during that time.  Thus, “sequestration” in this sense could more 

accurately be worded as “storage,” however , the term “sequestration” has 

historically been used to convey what “storage” entails. 
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4.1 Temperature-Pressure Constraints on Carbonation Reactions 
 
 Like most processes in nature, carbonation of olivine and serpentine are both 

greatly aided by the presence of heat.  Heating the rocks is a necessary step, as the 

carbonation reaction is slow at lower temperatures.  Natural carbonation occurs 

wherever there are mafic and ultramafic rocks exposed to either atmospheric or 

dissolved CO2. Kelemen and Matter (2008) showed that 4x107 kg yr -1 of CO2 are 

sequestered in this manner every year at the Semail Ophiolite.  While that is an 

impressive figure, that rate needs to increase by orders of magnitude to use mineral 

sequestration as a primary carbon dioxide mitigation process. O’Connor et al. 

(2005) showed that olivine reacts most ideally at 185 °C and 150 atm PCO2, whereas 

serpentine requires a costly 600 °C preheating procedure that costs too much 

money and energy to be considered useful.  The rate of CO2 sequestration can be 

elevated to as high as an estimated 2x109 tons of CO2/km3 per year (Kelemen and 

Matter, 2008). 

 Thus, olivine rocks should be preheated with hot fluid before they are 

reacted with any CO2.  Fortuitously, the carbonation reaction is exothermic, so the 

reaction of creating carbonate minerals (Eq. 9) can generate enough heat to 

sufficiently warm the surrounding rocks and aid in boosting the reaction kinetics to 

keep carbonation reactions continuous and rapid and to prevent the constant need 

to heat and pump non-CO2 fluid down into the borehole.  With the aid of heat 

pretreatment and increasing the partial pressure of CO2 in solution, rates can be 

increased anywhere from 106 to 109 times the natural rate (Kelemen and Matter, 

2008). 
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4.2 Serpentinite and Peridotite Mineralogy 
 
 Minerals in mafic and ultramafic rocks (i.e., rocks rich in magnesium and iron 

compared to silica) provide cations necessary for mineralization of carbonate.  The 

most common mafic minerals include olivine, pyroxene, serpentine, and amphibole.  

Wollastonite (CaSiO3), olivine (Mg2SiO4) and serpentine [Mg3Si2O5(OH)4] are the 

best candidate minerals for carbon sequestration (O’Connor et al., 2005; Matter and 

Kelemen, 2011).   However, serpentine>>olivine>wollastonite in terms of 

abundance at Earth’s surface, (O’Connor et al., 2005), underscoring the interest in 

serpentine as a candidate mineral reactant. 

  

 
4.2.1 Constituent Minerals 
 

Serpentinite minerals that figured prominently in XRD and petrographic 

findings are discussed briefly below: 

 

Magnetite is a common accessory mineral in serpentinites. Its presence can be 

explained via the oxidation of iron(ii) hydroxide:  

 
3Fe(OH)2 (iron(ii) hydroxide) → Fe3O4 (magnetite) + 2H2O(l) + H2(g)                      (11) 
 
 where the iron(ii) oxide originates from the serpentinization of olivine: 
  
5Mg2SiO4 (forsterite) + 9H2O(l) + Fe2SiO4 (fayalite) → 3Mg3Si2O5(OH)4      
(serpentine) + Mg(OH)2 (brucite) + 2Fe(OH)2 (iron(ii) hydroxide)                             (12) 
(Schulte et al., 2006). 
 
or by: 
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(Mg,Fe)2SiO4 + nH2O + CO2 → Mg3Si2O5(OH)4 + Fe3O4 + CH4                                               (13) 
(Oze and Sharma, 2005). 
 

under CO2-rich conditions, such as might be expected in submarine serpentinization, 
or a shallow crustal continental setting with active meteoric water inputs. 
 
Olivine (Mg2SiO4) is the predominant mineral in peridotite, which comprises the 

bulk of the Earth’s upper mantle.  Olivine is one of the two minerals—the other 

being pyroxene—that commonly transforms into serpentine minerals via exposure 

to water, heat, and pressure.    

 

Albite (NaAlSi3O8) is a common igneous and low grade metamorphic mineral.  It is 

the most sodic form of plagioclase.  The albite in the Coast Range Ophiolite region 

originates from oceanic crust portion of the ophiolite, which is composed mostly of 

basalt (Shervais and Kimbrough 1985).  Albite is also a common mineral found in 

greenstones, basalts that have undergone low-grade greenschist facies 

metamorphism at temperatures between 300 and 450 °C and pressures of 1 to 4 

kbar (Deer et al., 1992).  Many of the rocks in the CRO have been subject to 

hydrothermal alteration under greenschist facies pressure/temperature conditions 

(Shervais and Kimbrough 1985).  In the landscape, more weather-resistant 

greenstones protrude from the surrounding serpentine.  The basalt, greenstone, and 

serpentinized peridotite occur together in a regional-scale mélange (Shervais and 

Kimbrough, 1985), and also intermix sporadically in the cores examined here.  
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Clay and clay minerals: The clay mineralogy of weathered serpentinites is complex.  

The heterogeneity of serpentinite textures—mesh, hourglass, blade (Wicks and 

Whittaker 1977)—and the occurrence of additional rock-forming minerals, like 

chlorite, add to the complexity of the system (Caillaud et al., 2006).  It is not 

uncommon to see saponite, nontronite, montmorillonite, or vermiculite. The 

XPowder XRD database does not have a nontronite or a saponite reference file, 

however XRD data show multiple peaks consistent with the presence of 

montmorillonite and/or vermiculite.  In the CRO, smectites are a result of serpentine 

weathering and are represented in all tables in this paper as “clay”. Vermiculite 

indicates weathering of chlorite, which occurs in each core also.  Often both clay 

minerals are mixed together, and their diffraction peaks overlap, so it is difficult to 

parse which mineral is present. 

  

Tremolite (Ca2Mg5Si8O22(OH)2) is an amphibole mineral that occurs in low-grade 

metamorphic ultramafic rocks and is a common accessory mineral for serpentinites 

(Deer et al., 1992).  It is also a regular component of greenstones and as such only 

occurs in the core samples when other greenstone minerals are present.  Tremolite 

alters to talc, chlorite, and carbonate minerals, depending on geochemical context 

(Deer et al., 1992).   

Calcite (CaCO3) is a product of the calcium-rich and carbon-poor groundwater 

coming into contact with carbon dioxide either from the atmosphere or from 

meteoric water.  Veins of calcite are strewn throughout the core samples, a result of 

hydrothermal precipitation of waters enriched in calcite via meteoric influx. 
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Lizardite (Mg,Fe)3Si2O5(OH)4  is a polymorph of serpentine and is produced through 

alteration of olivine and pyroxene.  It is the lower temperature and pressure phase 

of serpentine polymorphs (Moody, 1976).  It is impossible to discern antigorite from 

lizardite in a hand sample, so x-ray diffraction must be utilized.  Even with XRD, it is 

not entirely clear which polymorph is present. XRD most strongly supports the 

presence of lizardite. 

 
 
 
4.3 Core Descriptions of Serpentinites from CROMO1 and CROMO2 
 

One or more samples were taken from each core section.  Interval sizes are 

irregular as a result of incomplete core collection, different sized core inserts during 

drilling, and occasions when auger drilling with no sample retrieval were necessary. 

 
 
 
4.3.1 Summary Stratigraphy: CROMO1 
 
0-1.98 m:  The first 1.98 m of the Core Shed Well is a soil layer near the surface and 

records intense biological, physical, and chemical weathering.  The bulk composition 

of this soil is magnetite-rich clay with albite and quartz, most likely from the 

weathering of nearby greenstones (Fig. 8).  Albite is one of the primary minerals 

composing both basalts and greenstones.  When basalt is metamorphosed to 

greenstones, some minerals get chloritized.  Further erosion of chlorite can produce 

vermiculite (Caillaud et al., 2006), which is suggested by XRD data but would 

require further testing to confirm. 
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1.98-2.44 m CROMO1 1,5 represents the first strong presence of lizardite (Fig. 9) 

and additionally the end of any evidence of bioturbation (e.g., the first 20 cm contain 

roots, however no signs of flora or fauna exist beyond the first 20 cm).  Core samples 

have a fine-grained clayey matrix with angular clasts.  XRD determined the clay is 

composed of primarily lizardite and the clasts are greenstone, composed primarily 

of albite with minor chlorite.   

 
2.44-4.57 m. This horizon nearly mimics the topsoil in terms of mineralogy, but 

shows increasing lizardite (Fig. 10).  Cores consist of rounded clasts (sand- to 

pebble-sized), in a muddy clay matrix.  Separate samples of the clay yield evidence 

of both serpentinite and greenstone minerals along with clay minerals.  Clasts of 

both serpentinite and of greenstone are dispersed throughout the clay.   

 

8.61-12.65 m A mélange of serpentinite, greenstone, and clay minerals continues, 

with a distinct tremolite signature (Fig. 11), which differentiates this interval from 

the 2.44-4.57 m horizon.  One section of CROMO1-13 is covered by a white rind that 

effervesces when reacted with HCl; thus it is carbonate-rich.  The peak does not 

show up definitively in XRD as there are too many other mineral phases (XRD noise) 

represented. Most clasts range from coarse sand to coarse pebbles.  Drilling may 

have broken up larger weathered cobbles of serpentinite.   

 
12.65 - 27.43 m Greenstone minerals tremolite, chlorite, and albite are absent for 

the next 15 meters. There is a predominance of lizardite and magnetite (Fig. 12) 
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with some clay (Fig. 13).  Lizardite is not in solid cobbles, but rather large, intact, 

amalgamated pieces that appear to be massed together from tectonic activity; quite 

possibly the cores sample a shear zone and this is representative fault gouge 

material.  Samples from this site are very friable, with clay intruding where some of 

the lizardite is schistose with stacked and separated phyllosilicate layers.   

 
27.43 - 31.09 m Greenstone and serpentine mix as large cobbles and intact core 

segments.  Hand samples are denser than pure serpentine and lack the greasy luster 

and platy qualities of serpentine hand samples.  Petrography reveals abundance of 

twinned plagioclase crystals (Fig. 14), which is supported by XRD (Fig. 15).  Since 

entire cobbles from this horizon show concurrent greenstone and serpentinite, it 

can be attributed not to the mixing of horizons from tectonism, but rather from 

partial serpentinization during the metamorphosis of basalt to greenstone.  

Additionally, there was a vein of calcite in this section at 27.5 m depth, which was 

isolated and analyzed (Fig. 16).  Recall that calcite formation is a result of the 

natural carbonation process that ultramafic rocks undergo. 

 
 
 
4.3.2 Summary Stratigraphy: CROMO2 
 
0.00-1.37 m The topsoil layer is composed predominantly of lizardite and magnetite 

present in friable pieces situated in a yellow-brown lizardite clay (Fig. 17).  Plant 

roots are present throughout, though less so than at CROMO1.  CROMO2 area is 

considerably drier, so the top soil is not as moist and is more oxidized than CROMO1 

(Fig. 18). 
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5.03 – 22.86 m This interval contains an extensive segment of pure serpentinite 

minerals, with a predominance of lizardite and magnetite and little to no clay 

minerals or greenstone minerals.  There is an exception occurring at 6.10m depth, 

where there is a small pocket of greenstone clasts (Fig. 19) fragmented along with 

lizardite clay (Fig. 20).  Aside from this interval, the specimens appear identical in 

hand sample and contain angular pebble-sized lizardite clasts in light grey clay (Fig. 

21).   

22.86 – 25.91 m This interval displays an extremely strong clay mineral signature 

with a slight lizardite and magnetite presence (Fig. 22).  Individual clasts within the 

clay matrix register as clay minerals as well, possibly montmorillonite.   

 
25.91 – 36.58 m The mineralogy in this interval signifies a return to the mineralogy 

seen in horizon 18.08-22.68 m.  Serpentinite and greenstone mineral assemblages 

(Fig. 23) are present in friable, loosely compacted cobbles and small angular clasts, 

respectively.  The cores from this sample are very muddy and very dark in color.  

Within the mud, there are greenstone and serpentinite clasts (Fig. 24) that appear 

black with traces of dark green, along with schistose green and white serpentinite 

masses (Fig. 25). 

 
36.58 - 45.72 m The deepest CROMO2 interval contains pure serpentinite minerals.  

The diffractogram pattern shows prominent sharp peaks for lizardite and magnetite 

(Fig. 26).  The rocks from this interval were harder than the overlying schistose 

rocks. The hardness of the rock from enabled us to make thin sections of a few of the 
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sections.  The thin section images enforce what the XRD data showed, in terms of 

mineralogical content (Figs. 27 and 28) 

 
 The cores from this interval appear far less weathered and the presence of 

clay and clay minerals is largely absent.  Serpentinite is present as friable but intact 

material, with a small layer of hard serpentinite cobbles (Fig. 29) at CROMO2-136 at 

44 m depth.  Though the mineralogy does not change in this interval, there is 

variance in color and rock habit throughout. The topmost 3 m of this layer consists 

of a very hard dark green serpentinite that is not friable like most of the serpentinite 

seen in other core samples; the serpentinite is together in solid hard pieces. There is 

then a transition to a light brown and green serpentinite (42.5 m) that becomes 

more friable with increasing depth, and ultimately the core ends with a very dark 

green and black sample of serpentinite of intermediate hardness.  CROMO drilling 

ceased here, so for deeper data, we must rely upon previously drilled holes and data 

in the literature. 

 Prior to the 1980s, when the Homestake Mining Corporation surveyed the 

land that is now the McLaughlin Natural Reserve, a series of strategically placed 

holes were drilled to focus gold-mining activities in nearby silica-rich hydrothermal 

deposits.  These exploration-related cores remain intact, and one deep serpentinite 

core was sampled for thin section review.  The drill site for this core was destroyed 

during gold mining activities, but was located <5 km to the SE of the CROMO drilling 

location;  this site will for simplicity be called Homestake Mine Pit Borehole (HMPB), 

and the depth of the sample is about 110 m below the surface. 
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4.3.3 Deep Core Specimen- Homestake Mine Pit Borehole 
 

Homestake Mine Pit Borehole (HMPB), ~110 m depth: This core sample  is 

very hard and shows no signs of friability or schistosity.  The sample resembles hard 

serpentine in hand sample, and while subtly different in texture, does not appear 

different from shallower cored sections until examination with petrographic 

microscope. Fig. 30 shows that strongly birefringent olivine is present (note blues, 

pinks, purples, yellows, and oranges) and there is also a large pyroxene crystal in 

the NE corner of the slide with streaks of serpentine running through it.  Both the 

olivine and the pyroxene have been serpentinized to some degree [serpentine 

minerals and magnetite are scattered throughout the thin section field of view], 

however much less so than in shallower rocks.   

 

 

4.3.4 Integrated View of CRO Subsurface Rocks, McLaughlin Locality 
 

Overall, the shallowest 45 m of CRO rock at McLaughlin show nearly 

complete serpentinization. In addition to serpentinite rocks, there are greenschist 

facies rocks distributed throughout the cores.  Often, greenschist facies rocks (here 

taken to be metamorphosed mafic igneous rocks containing chlorite, albite and 

tremolite among other phases) occur in a sample of core alongside serpentinite 

minerals, with the close juxtaposition of phases a result of the history of repeated 

convergent margin tectonism in northern California.  Peridotite with relict olivine 

grains does not occur in the shallowest rocks, but does indeed present at 110 m 

depth (Fig. 30).  Between 45 m and 110 m, the mineralogy may shift gradually from 
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more to less serpentinized, or there may be a contact zone of some kind (not 

detected in cored samples) that causes a sharp transition; only further coring or 

comprehensive access to archived cores with Homestake will determine the nature 

of the transition. Presently access to Homestake cores is limited due to a building 

structure safety issue where they are being housed. 

 

Notably absent from the cores were some of the more common accessory 

minerals in ultramafic rocks. Talc (Mg3Si4O10(OH)2) is often found associated with 

serpentinization, however, XRD failed to show any significant proof of its presence, 

perhaps due to a dearth of excess silica during serpentinization or the absence of 

CO2 during any metamorphic changes in the serpentine.  Also absent from the XRD 

results is brucite (Mg(OH)2), which forms during the serpentinization of dunites 

(Deer et al., 1965).  It is possible that brucite was once present, but has since been 

weathered away or dissolved by either meteoric water or groundwater, or is 

present in such small amounts that it is undetectable by XRD. 

Observations of ultramafic rock cores sampled at the McLaughlin Natural 

Reserve indicate that the peridotite has been heavily serpentinized in general, but 

that relict olivine and pyroxene grains were present and visible under the 

petrographic microscope.   
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4.4 Geochemistry  
 

The mineralogy of a system controls whether it is an effective sequestration 

vehicle, but geochemical data determine to what degree the host rock will function 

effectively in sequestration projects.  Ultramafic rocks are defined by their mineral 

content.  The adjective ultramafic implies the abundant presence of magnesium and 

iron (recall that magnesium-ferric contracts to mafic) and those elements, along 

with calcium, serve as the primary cations in sequestration reactions.  

 While I will concentrate my efforts on olivine only, efforts continue to make 

carbonation of serpentine a more feasible sequestration option.  Park et al. (2003), 

for example,  increased the rate of dissolution of magnesium from serpentine by 

adding a mixture of 1 vol% orthophosphoric acid, 0.9 wt% of oxalic acid and 0.1 

wt% EDTA (ethylenediaminetetraacetic acid); they greatly enhanced the Mg 

leaching process of ground serpentine while preventing the precipitation of Fe(III) 

on the surface of the mineral particles (Park et al., 2003). When this acidic solvent 

was used for the aqueous mineral carbonation, the overall process was limited by 

the rates of dissolution of CO2 and dissociation of carbonic acid, rather than the 

dissolution rate of the serpentine (Park et al., 2003).  However, the temperature at 

which these processes occurred is ~500°C and requires too much energy input to 

make sequestration a viable option.   

 In fact, serpentinite-based carbon sequestration has a useful advantage over 

peridotite-based models in one sense: the carbonation of serpentinite results in 

considerably less volume change than carbonation of peridotite.  Because 

carbonation of serpentinite results in a smaller volume difference, the chance of 
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clogging pore spaces is reduced, allowing CO2-rich fluids to percolate over longer 

time scales in the subsurface during in situ carbonation (Beinlich et al., 2012).  Free 

flow of pore fluids allows the reaction to proceed continuously, though the slow rate 

of carbonation of serpentinite (Gerdemann et al., 2007) may not result in the 

generation of sufficient heat, through exothermic reaction to bring the surrounding 

rocks up to temperature. 

The focus here will be on the divalent cation elements in olivine that occur in 

abundance in ultramafic rocks, i.e., calcium, iron, and magnesium; these elements 

are particularly good at binding with carbonate anions to form carbonate minerals 

(O’Connor et al., 2005).  

Since the CROMO surface rocks have considerably lower olivine: serpentine 

ratio and also contain abundant greenstone and clay minerals, they are not ideal for 

in situ carbon sequestration.  However, they still have potential as a source for ex 

situ sequestration, whereby the rocks are mined, ground up, heated, and exposed to 

CO2-rich fluids and allowed to react.  This process is much more controversial, given 

dollar costs, carbon footprint, and environmental impacts, and is discussed in more 

detail in section 4.9.1. 

 

 

4.4.1 Point Geochemistry via SEM-EDS, to Determine Cation Abundances 

 SEM-EDS was applied to areas of interest on selected thin sections, for which 

separate mineral phases were analyzed for specified elements. Geochemical data for 
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the ultramafic mineral phases relevant to carbon sequestration are presented 

below, as average wt% of each element from multiple samples analyzed.  

 
 
CROMO2-134, 40 m depth: The serpentine phases from this section average 22.0 

wt% Mg and 11.3 wt% Fe and less than 1 wt% Ca (Tables 3 and 5).  The serpentine 

from this interval is in the form of a massive matrix-like lizardite (Fig. 31 and 32) 

and chrysotile, which grows laterally in vein-like structures (Fig. 31). There is also 

abundant magnetite scattered throughout the thin section, either as a massive-

textured rim-like growth or as octahedral individual crystals (Fig. 31).  The 

magnetite is enriched in iron, with weight percentage averaging 70.4% (Table 4). 

 

CROMO2-136, 43 m depth: The serpentine phases from this section average 22.4% 

Mg, 10.9% Fe and 0.2% Ca (Table 6).  Aluminum in these rocks was extremely low; 

0.06 wt% Al was the maximum value obtained.  The serpentine phases in this 

section were predominantly of a massive texture with no evidence any vein-like 

growths.  There were two scant magnetite crystals as well (Fig. 33), but they were 

not analyzed for elemental abundance. 

 

Homestake Mine Pit Borehole (HMPB) at 110 m depth:  The thin section from HMPB 

shows a different mineralogy.  As in the petrography image, there are far more 

pyroxene than olivine crystals.  This thin section provided geochemical data for 

deeper CRO olivine and pyroxene phases, yielding valuable insight into the 

sequestration capability of the CRO rocks. 
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 Six fields of view were examined via SEM-EDS. The first region of interest 

(ROI) contained a sample of pyroxene amid a groundmass of serpentine (Fig. 34).  

The serpentine was of massive texture and was likely lizardite.  The geochemical 

make-up of the serpentine phase was lower in magnesium (18.4%) and higher in 

calcium (1.33%) and iron (12.4%) than any of the previous serpentine samples 

(Table 7). 

Pyroxene is visible in two different ROI (Figs. 34 and 35). The pyroxene in 

Fig. 34 contains a crystal displaying parallel cleavage planes, with ongoing 

serpentinization around and within the crystal.  Of the common ultramafic minerals, 

pyroxene minerals (including wollastonite and diopside) typically contain the 

highest calcium wt% (Table 2).  The pyroxene crystal analyzed here had higher 

calcium (22.3%) than any of the serpentine or olivine minerals analyzed.  The 

crystal from the ROI in Fig. 34 also showed minor amounts of iron (3.9%) and 

magnesium (7.4%) for a total divalent cation percentage of 33.6%.  The crystal in 

Fig. 35 was thoroughly fractured but lacked cleavage.  Elemental abundances for the 

Fig. 35 pyroxene show slightly lower Ca (20.5%), but higher Mg (8.5%) and Fe 

(4.5%). However, the amount of calcium in the grain is still significantly higher than 

any other mineral phase.  Pyroxene with this proportion of minerals relates most 

accurately (Fig. 40) to diopside (MgCaSi2O6), thus it is taken to be the dominant 

pyroxene present in the CROMO1 and CROMO2 cores.   Olivine was also present in 

this slide and can be seen in the ROIs in Figs. 36 and 37.  Olivine is represented in 

the ROI in Fig. 37 as four scattered and fractured crystals amid massive lizardite and 

streaks of magnetite.  The olivine from the ROI in Fig. 36 contains a higher 
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percentage (Table 12) of magnesium (24.5%) than any of the other mineral phases 

present in any of the ROI.  The olivine from the ROI in Fig. 37 contains less Mg 

(Table 13) than the portion of olivine sampled from Fig. 36, and has relatively the 

same concentration of Mg as the serpentine phases sampled from all depths. 

 The other ROI of the slide from Fig. 37 and the other prevalent mineral phase 

in the HMPB slide is a spinel group mineral enriched in iron, chromium, magnesium, 

and aluminum (Tables 14, 15, and 18).  The spinel began as chromite (FeCr2O4) and 

due to ion replacement, a ferritchromite rind forms that is completely devoid of 

aluminum (Ulmer, 1974).  As mineral assemblages alter, iron may also be 

concentrated in magnetite (Fe3O4), which tends to form rims around the 

ferritchromite rinds (Ulmer, 1974), which can be seen in the CRO rocks (Figs. 38 and 

39).  As a result, the spinel takes on the characteristics of a zoned crystal, with 

chromium and aluminum concentrated in the center and, iron and chromium on the 

inner edge, and iron with little to no aluminum or chromium on the outer edge 

(González-Mancera et al., 2007). 

 
Iron and magnesium are both mobilized in the course of serpentinization; the 

inventories of these elements are lower in the serpentine phase products than they 

are in the initial olivine phase.  During serpentinization and carbonation, minerals 

with higher Mg# (i.e., nMg/(nMg+nFe), where n is number of moles)) than parent 

olivine and pyroxene are formed (Evans 2008) thus lowering the concentration of 

Mg in the olivine and pyroxene phases.  These minerals include serpentine, talc, 

dolomite, magnesite, and calcite. Formation of high Mg# minerals increases the total 
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amount of mobile iron in the system; excess iron is typically taken up in oxide and 

hydroxide minerals including goethite [FeO(OH)], brucite [(Mg,Fe)(OH)2], hematite 

[Fe2O3], and magnetite [Fe3O4].  Among these iron-rich oxyhydroxides, a 

preponderance of magnetite occurs relative to the other minerals in the rocks at the 

McLaughlin locality (see section 4.3.1). 

Table 19 shows the average weight percentages for serpentine, spinel, 

olivine, and pyroxene present in the CRO rocks analyzed in this work.  The 

elemental concentrations of the rocks closely resemble the predicted values from 

Table 2.  Serpentine minerals had higher average (over 3%) Mg and slightly lower 

than average Fe.  Olivine had lower than expected Mg and higher than expected Fe.  

Pyroxene contained minor amounts iron and aluminum; however this cation 

replacement alters the percentages of magnesium and calcium. 

 

 

4.4.2 Bulk Solid Geochemical Data from X-Ray Fluorescence 

 Additional geochemical data was obtained for samples from CROMO1 and 

CROMO2.  The XRF unit operated under atmospheric pressure rather than under 

vacuum, thus concentration data for elements lighter than sulfur including 

magnesium and aluminum data are absent.    

Given the relatively shallow total depth of coring (to only 30 m and 45 m below 

surface), no strong pattern emerged from calcium or iron data.  One core sample per 

section was analyzed, thus these data should be taken as spot samples of the entire 

cored volume.  The highest concentration analytes were calcium and iron (Tables 3 
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and 4).  Nickel, manganese, chromium, and titanium were also abundant in the 

cores, with sections of the core often containing 1,000 ppm or more (see tables 20 

and 21).  A strong potassium signature in the geochemical data matches up with the 

XRD evidence of greenstone minerals, mirroring K-inventories in altered clay 

phases.  Potassium and sodium often substitute for one another in feldspar 

minerals, so tracking potassium in the cores could help indicate where greenstone 

intercalations are likely to be found in a dominantly serpentinitic set of cores. 

 
 
 
 
4.5 Porosity and Permeability Constraints 
 

Maintaining travel paths for the CO2–rich fluids requires both creation and 

maintenance of pathways.  Opening new pathways is achieved by the precipitation 

of carbonate: as carbonation proceeds, stress builds up in the host rock (Rudge et 

al., 2010), and fractures result.   

Continuation of the forward reaction must be ensured, sustaining 

carbonation as long as reactants are available.  This would result in fewer drilled 

holes and lower energy consumption overall, cutting drilling-related CO2 emissions 

and total project costs.  Ensuring continuation of the reaction requires a continual 

heat source and open flowpaths (i.e., permeability) through which the CO2-rich fluid 

can travel and react with the surrounding rock, as well as ongoing replenishment of 

CO2. Furthermore, heterogeneity of the pore structure leads to the establishment of 

preferential flow paths, which ensure efficient spreading of CO2-rich fluids 

throughout the whole sample of rock (Andreani et al., 2009). 
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Carbonation efficiency can be hindered by the formation of minerals on the 

surface of olivine grains.  Magnetite and/or silica-rich saponite and talc form around 

the rims of olivine grains, preventing the dissolution of olivine and/or pyroxene.  

Eliminating the “protective” barrier from the olivine grains is critical to allowing the 

dissolution reaction (Eq. 14) to progress. 

 
 Mg2SiO4 + 4H+ → 2Mg2+ + H4SiO4 (O’Connor et al., 2005)                             (14) 
 
Curtailing unwanted mineralization on olivine grains is critical.  A study by 

Andreani et al. (2008) showed that silica-rich layers form on olivine grains at the 

greatest frequency during diffusion-dominated transport of the flowing solution.  

Diffusion-dominated transport implies that transport is controlled by a 

concentration gradient and not by advective forces and, as such, is much slower.  

The reduced speed provides sufficient time for the silica-rich layers to form, 

enhancing the surface reactions.  On the other hand, if flow is advection-dominant 

(fast), the flowing solution does not have sufficient time to interact with the olivine 

grain and passes without appreciable dissolution of the olivine grain.  Therefore, 

transport that is both advective and diffusive (i.e., moderate injection rates) should 

ensure at least partial carbonation of the rock while maintaining reservoir 

permeability, given that other conditions are met (Andreani et al., 2008). 

Lastly, cracking of surrounding rock relies on kinetics.  Reactive cracking 

may be likely during rapid mineral carbonation and unlikely during slow 

carbonation (Matter and Kelemen, 2009).  This notion further supports the use of 

olivine as the primary mineral reactant, owing to the rapid kinetics of olivine 
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carbonation (O’Connor et al., 2005).   A reaction-driven kinetics model is supported 

by extensive outcrops of completely carbonated peridotite (listvenite or listwanite) 

in the Semail Ophiolite in Oman that show that natural carbonation is not always 

self-limiting (Nasir et al., 2007).  Further, Boschi et al. (2009) discovered in 

Malentrata, Italy, hydraulic fracturing and subsequent magnesite precipitation of 

surrounding ultramafic rocks helped maintain a high structural permeability during 

the whole hydrothermal event, creating conduits for the input and output fluids.  If 

the natural processes seen in Italy and Oman can be reproduced, then in situ mineral 

sequestration would hold an even greater advantage over ex situ mineral 

sequestration. 

 

 

 
4.6 Solution Chemistry 
 
 The final component of the carbonation process is the composition of 

formation fluids.  Supercritical CO2 would be the most reactive available solution, 

but obtaining it would be difficult and maintaining a temperature and pressure 

regime capable of supporting a supercritical state may not be economically feasible.  

Compressed liquid CO2 is more feasible, but still requires processing to obtain.  

Dissolving carbon dioxide into solution is the next best option.  O’Connor et al., 

(2005) conducted a set of experiments designed to determine the optimal 

combination and concentration of additives to enhance the rate of carbonation. 
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4.6.1 pH 

 pH plays a conflicting role in carrier solution chemistry (O’Connor et al., 

2005).  An acidic solution would better serve a solution targeting olivine dissolution. 

As can be seen from Eq. (14), a supply of H+ ions is needed for the reaction to 

proceed.   The reaction for carbonation of Mg2+ ions requires a basic solution, 

however.   As in Eq. (15): 

 
 Mg2+ + HCO3- → MgCO3 (s) + H+                                                                                     (15) 
 
For this reaction to proceed to the right, H+ ions must be consumed, which in a basic 

solution is accomplished by free OH- ions that will react as follows: 

 
  OH- + H+ → H2O(l)                                                                                                           (16)  
  
O’Connor et al. (2005) showed that the addition of sodium bicarbonate (NaHCO3) to 

the solution reduced the required residence times to achieve a reaction of 

approximately 80% from 24 hours to 6 hours, while holding all other carbonation 

constants stable.  It was proposed that the addition of NaHCO3 causes the Mg in 

olivine to interact directly with bicarbonate ions (Eq. 17). 

 
 Mg2SiO4 (s) (forsteritic olivine) + 2HCO3- → 2MgCO3(s) + SiO2 + 2OH-                    (17) 
   
This reaction, which is even more exothermic than serpentinization, is followed by  
 
hydroxide interacting with dissolved carbon dioxide to form more bicarbonate. 
 
 OH- + CO2 (aq) → HCO3-                                                                                                   (18)             
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Additionally, O’Connor et al. (2005) found that the addition of NaCl also improved 

the reaction rate, possibly due to Na+ ions modifying the surface charge of silicate 

particles, which expedite ion exchange at the solid liquid interface. Cl- ions may form 

complexes with magnesium, further increasing solubility of magnesium in solution 

(O’Connor et al., 2005); interestingly, regional groundwaters very near the 

McLaughlin locality exhibit some brine characteristics derived from interaction with 

local Great Valley sedimentary sequences and could serve as a readily available 

source of these ions (Goff et al., 2001).   In general, the maximum concentrations of 

NaHCO3 and NaCl found to be soluble in water at ambient conditions are 0.64 M 

NaHCO3 and 1M NaCl. Overall, there is now sufficient experimental evidence for 

enhanced carbonation to serve pilot studies in the field in the CRO.  

 

 
 

 
 
 

4.7 Calculation of CO2 Sequestration Potential in the CRO 
 
Using the volume of reactable rock, the mineralogy of the rock, and the 

chemical compositions of the minerals which compose the rock, the approximate 

total carbonation yield is calculated here.  If the calculation is based solely on the 

magnesium content of olivine (Goff et al., 2000), a conservative, minimum estimate 

is reached for the possible amount of CO2 that can be sequestered.   Examples of the 

calculations involved are provided below (from Kelemen and Matter, 2008). 
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For example, to calculate sequestration potential using only Mg2+:  

 With a depth of 5 km, volume: 19,500 km3 = 1.95x1013 m3  

 Density of partially serpentinized peridotite: 2800 kg/m3 

 Calculation for mass of serpentinized peridotite: 1.95x1013 m3 x 2800 kg/m3 

= 5.5x1016 kg  

  

 Percentage relict olivine: 30% (Choi et al., 2008; Kelemen and Matter, 2008)  

 Weight percentage of Mg in olivine: 24.4  wt% Mg  

 Carbonation rate: 1% carbonation rate (Matter and Kelemen, 2009) 

 5.5x1016 kg ore * 30% * 24.4% * 1%* (44g/mol CO2 / 24.305 g/mol Mg) = 7.3 

x 1013 kg CO2 sequestered or 73000 Mt.                                                                 (19) 

  

 The sequestration potential of these rocks is increased by including calcium, 

magnesium, and iron in olivine in the reaction with CO2.  By repeating the same 

computation for iron and calcium and summing the three figures, it is possible to 

obtain a total CO2 sequestration amount, binding all three cations. 

7.3x1013 kg CO2 (from Mg) + 1.7 x 1013 kg CO2  (from Fe)+ 7.0 x 1012 kg CO2 (from 

Ca) = 9.7 x 1013 kg CO2 total CO2 or 97000 Mt.                                             (20) 

  

The difference between using only magnesium and using all three cations is 

23,600 Mt of CO2; this is a large mass of carbon, but within the same order of 

magnitude.  In this particular example, considering iron and calcium results in a 

34% increase in the amount of CO2 sequestered.   



 

41 
 

   

 Certain variables that factor into sequestration potential impact the 

estimated potential sequestration quantities to greater and lesser degrees.  Figures 

41, 42, and 43 display sequestration potential, with variables such as formation 

depth, formation density, and olivine percentage in the formation being 

manipulated.  Considering a wide range of variables creates a range of possible CO2 

drawdown figures.  These figures constrain a most conservative estimate and also 

allow for a best-possible scenario. 

 Figure 41 shows sequestered CO2 mass against density of the formation.  

Density of the formation affects sequestration potential in that a higher density 

calculates to a greater mass of reactable rock, which in turn allows for a greater 

mass of carbonate to form from the rock.  Density is primarily dependent upon the 

mineral composition of the rock.  If peridotite is around 30% olivine and 70% 

serpentine as is the case in the Semail Ophiolite (Kelemen and Matter 2008), and is 

the ratio I have chosen for the CRO then the density would equate to ~ 2800 kg/m3.   

 Figure 42 shows the olivine fraction of the peridotite against sequestered CO2 

mass.  Since olivine is the most reactive of the ultramafic minerals (aside from rare 

wollastonite), a higher percentage of olivine in the rock will increase the 

sequestration potential of the rock.  A study by Choi et al. (2008) showed a wide 

range of serpentinization of Coast Range peridotite.  Some sites were as low as 18% 

serpentinized and some were as high as 95% serpentinized.  An average of all the 

values acquired from this study reveals a mean serpentinization of 61.5%.  The 

Semail Ophiolite consists of ~30% olivine peridotite (Kelemen and Matter, 2008), so 



 

42 
 

to again be conservative with estimates, I chose to round the 61.5% obtained from 

Choi et al. (2008) to 70%, based on review of the new data in this study.  I have 

chosen values as low as 20% and as high as 40% to determine a maximum and 

minimum percentage of olivine in the CRO rocks. 

 By considering possible depths to which the Coast Range Ophiolite ultramafic 

unit extends, I have created a range of volumes for the CRO.  A deeper formation 

simply means more there is more volume and thus more mass of rock to react.  

Depth is difficult to determine in the formation, as complex tectonism has 

confounded the determination of depth for each individual portion of the CRO.  

Wakabayashi and Dilek (2000) provide an average depth of around 5000 m, 

considered here as a generous estimate.  5500 m is taken as a maximum depth and 

3500 m as a minimum depth, so as to err on the conservative side and to recognize 

the practical difficulty of drilling 5000 m or more. 

 After all of the possible scenarios were evaluated, the Mg-only case (Table 

22) and the Mg+Fe+Ca case (Table 23) are presented.  Furthermore, the maximum 

possible value and the minimum possible value, based on the parameters set forth 

in this paper, are hereby established—providing extremely conservative and  

extremely generous estimates for CRO sequestration potential (Table 24).  Note that 

the upper limit of sequestration potential is only 3.6 times greater than the lower 

limit, showing that even given variability in host rock and cation reactivity, the 

sequestration potential is in fact fairly well constrained. 

 The averages obtained are close in value to the calculations shown in (Eqs. 

19 and 20).  For Mg-only sequestration, a total of 6.8 x 1013 kg CO2 (6.8 x 104 Mt, 7.5 
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x 1010 tons) is able to be sequestered in the CRO and for Mg, Ca, and Fe, the total 

amount of CO2 that can be sequestered is  9.1 x 1013 kg (9.1 x 104 Mt, 1.00 x 1011 

tons).  There are currently ~2.9 x 1015 kg CO2 in the atmosphere; if we were to draw 

down all 9.1 x 1013 kg of CO2, we could eliminate 3.1% of the carbon dioxide in the 

atmosphere.  If only Mg reacted, then 2.3 % of the carbon dioxide could be drawn 

down.   
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5.0 Conclusion 

 The Coast Range Ophiolite, situated along a 700 km stretch in California, 

provides an opportunity to study and work with highly reactive rocks that are in 

disequilibrium with surface conditions. I proposed to evaluate the harnessing of this 

disequilibrium to react the ultramafic rocks with carbon dioxide, in an effort to 

sequester atmospheric CO2, as has been proposed as a large scale means of 

geological sequestration of carbon recently (Kelemen and Matter, 2008; Goldberg et 

al., 2009; Gislason et al., 2010).   Geochemical and mineralogical data enabled 

calculation of the potential of the CRO rocks for carbon sequestration capability.  

XRD, SEM-EDS, and petrography determined that surface rocks were rather 

thoroughly serpentinized, with no visible trace of relict olivine in any of the surface 

rocks sampled.  One deeper serpentinite sample from the vicinity had prevalent 

olivine and pyroxene. Through the compilation of SEM-EDS mineral geochemistry 

data, with relevant geochemical data from sources from previous research, the total 

quantity of CO2 that may be sequestered in CRO ultramafic rocks was estimated as 

ranging from 4.60x1013 to 1.24x1014 kg CO2.  For comparison, Kelemen and Matter 

(2008) estimated the larger Semail Opholite’s potential total drawdown as 6.9x1014 

kg CO2. 

 In all, the quantity of carbon dioxide that can be sequestered in the Coast 

Range Ophiolite alone is significant. Whether the capacity of the CRO is based on 

magnesium only (2.3% of atmospheric CO2) or magnesium, iron, and calcium (3.1% 

of atmospheric CO2), the capability of the CRO to serve as a mitigating agent should 

not be ignored.  If we are to return to 350 ppm (as recommended by the IPCC) from 
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present (as of 1/3/2013) 392 ppm, we would need 11% of the CO2 currently in the 

atmosphere to be consumed.  This is not to say we are capable of pulling that 

quantity of CO2 out of the atmosphere, but rather we are able to sequester a quantity 

that represents a percentage of current atmospheric CO2.  Industry will continue to 

produce carbon dioxide, and the best way to currently control emitted CO2 is to 

capture and store it, preferably in close propinquity to where it is produced. 

Since there are ~2.9x1015 kg CO2 in the atmosphere, 3.2x1014 kg of that 

quantity need to be sequestered.  The CRO represents 14% (Mg-only) - 39% (Mg, Fe, 

Ca) of that total, which is insufficient by itself, but represents a significant value for a 

moderate sized ophiolite. 

 While serpentinites and peridotites remain compelling as candidate rock 

hosts for the geologic sequestration of carbon, research regarding their utility in 

more than experimental scales is still inchoate.  Any field-scale test of carbon 

sequestration potential in the CRO must consider also environmental impact 

assessments (the protection of rare serpentine endemic eco-systems is of 

paramount importance), dangers of carbon leakage from an incompletely sealed 

subsurface reservoir, and net carbon emissions of the entire process, among other 

concerns.  Given the considerable areas of variably altered peridotite in continental 

and submarine settings, serpentinite-based carbon sequestration would be an 

enticing mitigation strategy for anthropogenically enhanced atmospheric CO2 levels, 

should the reaction conditions and longevity be sufficiently controllable. 
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Appendix A - Figures and Tables 

 

 

Fig. 1. Graph shows CO2 levels in parts per million in the atmosphere since 1958.  
Sawtooth pattern is due to seasonal changes as shown in inset plot at lower right 
(NOAA 2010). 
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Fig 2. Graph shows possible CO2 emissions scenarios based on courses of action 
taken (Mathez, 2009). 
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Fig. 3. Burning Embers graph showing probability of side effects with relation to 
temperature rise (Richardson et al. 2009). 
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Fig. 4. (Jayko 1987) Map of California displaying presence of select geologic 
formations: note the Coast Range Ophiolite rocks are solid black. 
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Fig. 5. Map showing location of McLaughlin Natural Reserve (in red) in relation to 
California.   
 

 

 

 

 

 



 

51 
 

Fig. 6. Location of CROMO1 (CSW) and CROMO2 (QV) sites on the McLaughlin 

Natural Reserve (Fig. 5) in Lower Lake, CA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Map of California displaying serpentinite outcrops in black.  Zoomed portion of map 
focuses on Colusa (C), Yolo (Y), Napa (N), and Lake (L) counties. (Created in ArcGIS 10.) 
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Fig. 14. 2x magnification of a thin section from CROMO1-29 at 31 m depth under 
cross-polarized light.  Albite crystals are the white and black twinned crystals that 
appear to extrude vein-like diagonally from the SE corner to the NW corner.  
Serpentine is present as black and white mottled minerals in the N and NE portion 
of the slide.  Chlorite, another greenstone mineral shows up as slightly green-hued 
under cross polarized light and can be seen pervading the thin section. 
  



 

60 
 

 

Fi
g.

 1
5.

 D
iff

ra
ct

og
ra

m
 fr

om
 C

RO
M

O1
-2

5 
at

 2
7.

97
 m

 d
ep

th
 sh

ow
s r

et
ur

n 
to

 g
re

en
st

on
e 

as
se

m
bl

ag
e 

pr
ep

on
de

ra
nc

e 
(a

lb
ite

 (3
.1

96
 Å

), 
tr

em
ol

ite
 (8

.4
8 

Å,
 o

th
er

 m
in

or
 p

ea
ks

), 
ch

am
os

ite
 (1

4.
25

 Å
, o

th
er

 m
in

or
 p

ea
ks

) w
ith

 m
in

or
 a

m
ou

nt
s 

of
 li

za
rd

ite
 (7

.1
 Å

, 4
.7

 Å
) a

nd
 m

ag
ne

tit
e 

(2
.4

5 
Å)

 a
s w

el
l a

s c
la

y 
m

in
er

al
 (1

4.
2 

Å)
 p

ea
ks

. 



 

61 
 

  

Fi
g.

 1
6.

 D
iff

ra
ct

og
ra

m
 fr

om
 C

RO
M

O1
-2

5 
at

 2
7.

5 
m

 d
ep

th
 sh

ow
in

g 
m

aj
or

 p
ea

k 
of

 ca
lc

ite
 w

ith
 o

th
er

 m
in

or
 

un
id

en
tif

ie
d 

m
in

er
al

s. 
 



 

62 
 

 

  

Fi
g.

 1
7.

 D
iff

ra
ct

og
ra

m
 fr

om
 C

RO
M

O2
-1

 a
t 0

.4
5 

m
 d

ep
th

.  T
he

 to
ps

oi
l i

s v
er

y 
m

ag
ne

tic
 a

nd
 is

 co
m

po
se

d 
al

m
os

t 
en

tir
el

y 
of

 m
ag

ne
tit

e 
(2

.5
 Å

) a
nd

 li
za

rd
ite

 (7
.3

 Å
, 4

.5
 Å

, 3
.6

 Å
) w

ith
 so

m
e 

m
in

or
 p

ea
ks

 a
ro

un
d 

qu
ar

tz
 (3

.3
 Å

) a
nd

 cl
ay

 
m

in
er

al
s o

n 
th

e 
fa

r l
ef

t. 



 

63 
 

 

 
Fig. 18. Core taken from first 0.9 m of CROMO 2, essentially equivalent to 
serpentine-dominated valley topsoil.  Photo credit: A. McCann. 
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Fig. 21. Black, grey, and white clasts of serpentinite embedded in clay from 
CROMO2-121 at a depth of 21 m. Photo credit: A. McCann. 
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Fig. 24. Greenstone and serpentine minerals lie in a muddy serpentine-rich clay 
matrix in a core from CROMO2-131 at 36 m depth.  Photo credit: A. McCann. 
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Fig. 25. Serpentinite mass displaying schistose texture, visible by the friable black, 

white and light green massive minerals, in a core from CROMO2-131 at 36 m depth.  
Photo credit: A. McCann. 

 



 

71 
 

   

Fi
g.

 2
6.

 D
iff

ra
ct

io
n 

fr
om

 C
RO

M
O2

-1
32

 a
t 3

7 
m

 d
ep

th
.  T

he
 tw

o 
hi

gh
es

t p
ea

ks
, a

t 7
.3

65
9 

Å 
an

d 
3.

65
90

 Å
 co

rr
es

po
nd

 
to

 li
za

rd
ite

 p
ea

ks
, a

nd
 th

e 
gr

ou
p 

of
 p

ea
ks

 a
t 2

.5
04

5 
Å 

an
d 

2.
45

69
 Å

 co
rr

es
po

nd
 to

 m
ag

ne
tit

e 
pe

ak
s. 

 C
la

y 
pe

ak
s a

re
 

ra
re

 in
 th

is
 sa

m
pl

e,
 a

nd
 w

ou
ld

 ty
pi

ca
lly

 sh
ow

 u
p 

ar
ou

nd
 th

e 
15

.9
 Å

. 
 



 

72 
 

 
Fig. 27. 2x thin section from CROMO2-134 at 41.15 m depth.  The thin section 
confirms the results from the XRD.  Lizardite, the mesh-like white and blue matrix, 
makes up most of the slide, with white veinlets of chrysotile and scattered black 
blebs of magnetite.  Some unidentifiable clay minerals are present as well as opaque 
brown steaks and smears. 
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Fig. 28. Thin section from CROMO2-136 at 45.72 m depth.  Thin section image 
confirms XRD data.  The majority of the slide is lizardite, with veinlets of clay and 
chrysotile as well as angular crystals of magnetite. 
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Fig. 29. Hard cobbles of greasy  serpentinite from CROMO2-136 at 44 m depth. 
Photo credit: A. McCann. 
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Fig. 30. Core sample from Homestake Mine Pit Borehole at 110 m depth.  Sample 
shows 4 different mineral phases.  Olivine is a low order birefringent mineral (i.e., 
under cross polarized light, olivine appears iridescent with bright, bold colors 
ranging across the spectrum 
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Fig. 31. 600X SEM backscatter image of a slide from CROMO2-134 at 40 m depth.  
Heavier elements show up as lighter shades on the image.  The grey massive mineral 
in the image is lizardite (tags 3, 4, 5, and 8), and the white octahedral crystal (tag 6) 
is magnetite.  Chrysotile is proposed as the mineral filling the fracture holding tags 1 
and 2. 
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Fig. 32. 600X SEM backscatter image of a slide from CROMO2-134 at 40 m depth, at 
a different portion of the slide from the one in Fig. 31.  Heavier elements show up as 
lighter colored on the image.  The grey mineral in the image is lizardite and the two 
white minerals are crystals of magnetite.   
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Fig. 33. 600X SEM backscatter image of a slide from CROMO2-136 at 43 m depth.  
Heavier elements show up as lighter shades on the image.  The grey mineral in the 
image is lizardite and the white is magnetite. 
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Fig. 34. 600X SEM backscatter image of a slide from Homestake Mine Pit Borehole 
(HMPB) core at 110 m depth.  Heavier elements show up as lighter shades on the 
image.  The darker grey mineral (tags 4 and 5) in the image is lizardite and the 
lighter grey mineral with the parallel cleavage plains is pyroxene (tags 1, 2, and 3).  
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Fig. 35. 600X SEM backscatter image of a slide from HMPB core at 110 m depth.  
Heavier elements show up as lighter shades on the image.  The darker grey mineral 
in the image is lizardite and the lighter grey mineral where tags 1, 2 and 3 are is 
pyroxene.  The white streaks were not analyzed, but are almost certainly magnetite. 
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Fig. 36. 600X SEM backscatter image of a slide from HMPB core at 110 m depth.  
Heavier elements show up as lighter shades on the image.  The darker grey mineral 
in the image is lizardite and the lighter grey mineral where tags 2 and 3 are is 
olivine.  The white streaks are magnetite. 
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Fig. 37. 600X SEM backscatter image of a slide from HMPB core at 110 m depth.  
Heavier elements show up as lighter shades on the image.  The large grain in the 
center of the screen is a magnesium-rich silica-poor aluminum oxide mineral. The 
elemental abundances are similar to that of a spinel group mineral, and spinel fits in 
with the petrology of the other rocks. The grain in the top right of the image, where 
tag 3 lies, is olivine. The white spot on tag 6 is magnetite. 
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Fig. 38. 600X SEM backscatter image of a slide from HMPB core at 110 m depth.  
Heavier elements show up as lighter colored on the image.  The grain in the center 
of the screen is a spinel, while the matrix is serpentine and the lightly colored veined 
mineral is magnetite. 
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Fig. 39. 600X SEM backscatter image of a slide from HMPB core at 110 m depth.  
Heavier elements show up as lighter colored on the image.  The fractured crystal 
with slightly higher relief than the groundmass is a spinel, while the groundmass 
itself is serpentine and the lightly colored veined mineral is magnetite. 
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Fig. 40. Ternary displaying plot location of pyroxene found in CRO rocks.  Fs = 
ferrosilite, En = enstatite, Wo = wollastonite. Created with TriPlot v. 1.4.2. 
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Fig. 41. Graph displaying maximum potential CO2 sequestration potential with variable 
density, at 5 km depth, with olivine fraction fixed at 0.2. 
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Fig. 42. Graph displaying maximum potential CO2 sequestration potential at  5km depth, 
with density set at 2700 kg/m3; these trends show how variable serpentinization in mantle 
rocks shifts the total possible mineralized CO2 load 
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Fig. 43. Graph displaying maximum potential CO2 sequestration potential for the CRO, given 
assumed basal depth of the ultramafic unit ranging from 3 to 6 km, with olivine fraction 
fixed at 0.2 and density set at 2700 kg/m3. 
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Table 1 
Table showing mineral presence in core samples CROMO1 (Core Shed Well) and 
CROMO2 (Quarry Valley) as determined by XRD.  
Liz = lizardite, mag = magnetite, chlor = chlorite, trem = tremolite 
 

Core Depth (m) Liz Clay Mag Albite Quartz Chlor Trem Calcite 
CROMO1 1 0.45 

 
X X X X 

   CROMO1 2 0.91 
 

X X X X 
   CROMO1 3 1.52 

 
X X X X 

   CROMO1 4 1.98 
 

X X X X 
   CROMO1 5 2.44 X X X X X 
   CROMO1 6 3.05 X X X X X 
   CROMO1 7 3.51 X X X X X 
   CROMO1 8 3.96 X X X X X 
   CROMO1 9 4.57 X X X X X 
   CROMO1 10 8.15 NA NA NA NA NA NA NA 

 CROMO1 11 8.61 X X X X 
  

X 
 CROMO1 12 9.02 X X X 

   
X X 

CROMO1 13 10.74 X X X 
   

X 
 CROMO1 14 12.65 X X X 

   
X 

 CROMO1 15 13.82 X 
 

X 
     CROMO1 16 16.76 X X X 
     CROMO1 17 18.29 X X X 
     CROMO1 18 19.81 X X X 
     CROMO1 19 21.34 X 

 
X 

     CROMO1 20 22.86 NA NA NA NA NA NA NA 
 CROMO1 21 22.86 X 

 
X 

     CROMO1 22 24.38 X 
 

X 
     CROMO1 23 25.91 X 

 
X 

     CROMO1 24 27.43 X 
 

X 
     CROMO1 25 27.97 X X X X 

 
X X X 

CROMO1 26 28.50 X 
  

X 
 

X X 
 CROMO1 27 28.96 X 

  
X 

 
X X 

 CROMO1 28 30.48 
     

X 
  CROMO1 29 31.09 

   
X 

  
X 

 CROMO2 100                0.46 X 
 

X 
     CROMO2 102 1.37 X 

 
X 

     CROMO2 103 5.03 
        CROMO2 104 5.49 X 

 
X 
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CROMO2 105 6.10 X 
 

X                  X 
 

X 
  CROMO2 106 6.55 X 

 
X 

     CROMO2 107 7.01 X 
 

X 
     CROMO2 108 7.62 X 

 
X 

     CROMO2 109 8.08 X 
 

X 
     CROMO2 110 8.53 X 

 
X 

     CROMO2 111 9.14 X 
 

X 
     CROMO2 112 9.60 X 

 
X 

     CROMO2 113 10.06 X 
 

X 
     CROMO2 114 10.67 X 

 
X 

     CROMO2 115 10.92 X 
       CROMO2 116 14.78 N/A N/A N/A N/A N/A 

   CROMO2 117 15.24 X 
 

X 
     CROMO2 118 16.76 X 

 
X 

     CROMO2 119 18.29 X 
 

X 
     CROMO2 120 19.81 

 
X 

      CROMO2 121 21.34 X X X X X 
   CROMO2 122 22.86 X 

 
X 

     CROMO2 123 24.38 
 

X 
      CROMO2 124 25.91 

 
X 

      CROMO2 125 27.43 X X X X 
    CROMO2 126 28.96 X X X X X 

   CROMO2 127 30.48 
 

X X X 
    CROMO2 128 32.00 X X X X X 

   CROMO2 129 33.53 X X X X X 
   CROMO2 130     35.05 

   
X X X 

  CROMO2 131 36.58 X X X 
     CROMO2 132 38.10 X 

 
X 

     CROMO2 133 39.62 X 
 

X 
     CROMO2 134 41.15 X 

 
X 

     CROMO2 135 42.67 X 
 

X 
     CROMO2 136 44.20 X 

 
X 

     CROMO2 137 45.72 X 
 

X 
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Table 2  
Typical element concentrations in common and uncommon (wollastonite) 
ultramafic minerals encountered in ophiolitic rocks, based solely on chemical 
formula.  Olivine and wollastonite have the highest percentage of divalent cations 
among the listed minerals, where talc and serpentine have the lowest percentages. 
 

Mineral %Mg  %Fe %Si %H %O %Ca 
Serpentine (including lizardite, antigorite, 
chrysotile, based on (Mg2.25Fe2+0.75Si2O5(OH)4) 18.18 13.93 18.68 1.34 47.88 0 

Olivine (based on Mg1.6Fe0.4SiO4) 25.37 14.57 18.32 0 41.74 0 
Talc (based on Mg3Si4O10(OH)2) 19.23 0.53 29.62 0 50.62 0 
Diopside (pyroxene) (based on CaMgSi2O6) 11.22 0 25.94 0 44.33 34.5 
Wollastonite (based on CaSiO3) 0 0 24.18 0 41.32 34.5 
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Table 3 
CROMO2-134 oxide wt% and wt% of the serpentine phases from Fig. 31 at 40 m 
depth, as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
IYO9-1 1 

 
37.52 11.22 48.76 1.04 0.40 

IYO9-1 2 
 

37.12 12.61 49.13 0.51 0.23 
IYO9-1 5 

 
37.64 13.77 47.30 0.49 0.15 

IYO9-1 8 
 

35.42 15.72 46.98 0.61 0.18 

        
Average 

 

oxide 
wt% 36.93 13.33 48.04 0.66 0.24 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

 Average   wt% 22.27 10.36 22.10 0.48 0.13 
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Table 4 
CROMO2-134 oxide wt % and wt% of the magnetite phases from the magnetite in 
Fig. 31 from 40 m depth, as determined by SEM-EDS.  Magnetite (Fe3O4) is the most 
iron-rich mineral phase found in CRO rocks and appears in every thin section.  
Formation and occurrence of magnetite are discussed in further detail in section 
4.2.1. 
 

Thin Section Tag 
 

Mg Fe Si Ca Al 
IYO9-Magnetite 6 

 
4.72 90.52 3.71 0.35 0.32 

        Average 
 

oxide wt% 4.72 90.52 3.71 0.35 0.32 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 2.85 70.36 1.71 0.25 0.17 
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Table 5 
CROMO2-134 thin section wt% of the serpentine phases from Fig. 32 at 40 m depth, 
as determined by SEM-EDS. 
 

Slide Tag   Mg Fe Si Ca Al 
IYO9-Serp 1 

 
34.7 17.32 47.73 0 0 

IYO9-Serp 2 
 

32.56 22.36 42.88 0.8 0.22 
IYO9-Serp 3 

 
35.42 15.11 46.84 0.11 0 

IYO9-Serp 4 
 

36.79 14.44 47.47 0.86 0 
IYO9-Serp 5 

 
36.94 14.58 46.32 0.49 0.29 

IYO9-Serp 7 
 

38.99 11.37 48.54 0.45 0.16 

        
Average 

 

oxide 
wt% 35.9 15.86 46.63 0.45 0.11 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

 Average   wt% 21.65 12.33 21.45 0.32 0.059 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

95 
 

Table 6 
CROMO2-136 wt% of elements of the serpentine phases from the image in Fig. 32 at 
40 m depth, as determined by SEM-EDS. 
 

Slide Tag 
 

        Mg        Fe           Si           Ca            Al 
IYO10-Serp 1 

 
35.53 16.18 46.67 0.22 0.12 

IYO10-Serp 2 
 

37.85 11.39 49.42 0 0.10 
IYO10-Serp 3 

 
37.45 14.77 46.31 0.56 0 

IYO10-Serp 4 
 

36.53 11.06 50.92 0.71 0 
IYO10-Serp 6 

 
38.14 15.51 44.48 0 0 

IYO10-Serp 7 
 

37 15.15 47.13 0.15 0 

        
Average 

 

oxide 
wt% 37.08 14.01 47.49 0.27 0.037 

  
c.f.  0.603 0.777 0.46 0.717 0.529 

Average 
 

wt% 22.36 10.89 21.85 0.20 0.019 
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Table 7 
Serpentine phase mineral weight percentages from HMPB slide (Fig. 34) at 110 m 
depth, as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_Serp 4 

 
30.77 15.51 43.60 1.93 6.51 

HMPB_Deep_Serp 5 
 

30.32 16.39 47.56 1.79 2.49 

        
Average 

 

oxide 
wt% 30.55 15.95 45.58 1.86 4.5 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 18.42 12.40 20.97 1.33 2.38 
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Table 8 
Pyroxene phase mineral weight percentages from HMPB slide (Fig. 34) at 110 m 
depth, as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_Pyx 1 

 
12.14 5.90 43.93 29.54 6.18 

HMPB_Deep_Pyx 2 
 

11.87 4.05 44.22 33.06 5.33 
HMPB_Deep_Pyx 7 

 
12.72 5.19 43.93 30.58 6.13 

        
Average 

 

oxide 
wt% 12.24 5.05 44.03 31.06 5.88 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 7.383 3.93 20.25 22.27 3.11 
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Table 9 
Serpentine phase mineral weight percentages from HMPB slide (Fig. 35) at 110 m 
depth, as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_Serp3 5 

 
38.45 11.63 47.62 0.68 0.80 

HMPB_Deep_Serp3 6 
 

33.04 17.20 45.23 1.63 2.14 

        
Average 

 

oxide 
wt% 35.75 14.42 46.43 1.16 1.47 

  
c.f. 0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 21.55 11.21 21.36 0.828 0.78 
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Table 10 
Pyroxene phase mineral weight percentages from HMPB slide (Fig. 35) at 110 m 
depth, as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_Pyx3 1 

 
14.16 7.33 44.36 27.87 5.03 

HMPB_Deep_Pyx3 2 
 

14.36 4.35 45.16 29.14 5.23 
HMPB_Deep_Pyx3 3 

 
13.69 5.70 44.34 27.88 6.00 

        
Average 

 

oxide 
wt% 14.07 5.79 44.62 28.30 5.42 

  
c.f. 0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 8.484 4.50 20.53 20.29 2.87 
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Table 11 
Serpentine phase mineral weight percentages from HMPB slide (Fig. 36) at 110 m 
depth as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_SERP 6 

 
37.33 13.15 48.36 0.2 0.86 

        
Average 

 

oxide 
wt% 37.33 13.15 48.36 0.2 0.86 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 22.51 10.22 22.25 0.14 0.46 
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Table 12 
Olivine phase mineral weight percentages from HMPB slide (Fig. 36) at 110 m 
depth, as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_OLV1 1 

 
39.69 18.61 41.62 0 0.09 

HMPB_Deep_OLV1 2 
 

39.73 19.75 39.64 0 0.31 
HMPB_Deep_OLV1 3 

 
41.27 17.12 40.63 0 0 

HMPB_Deep_OLV1 7 
 

41.77 13.66 44.15 0.27 0.16 

        
Average 

 

oxide 
wt% 40.62 17.285 41.51 0.068 0.14 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 24.49 13.44 19.10 0.048 0.074 
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Table 13 
Olivine phase mineral weight percentages from HMPB slide (Fig. 37) at 110 m 
depth, as determined by SEM-EDS. 
 

Slide Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_OLV4 3 

 
28.90 13.40 50.67 0.69 4.84 

        
Average 

 

oxide 
wt% 28.9 13.4 50.67 0.69 4.84 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 17.43 10.42 23.31 0.49 2.56 
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Table 14 
Spinel phase mineral weight percentages from HMPB slide (Fig. 37) at 110 m depth, 
as determined by SEM-EDS.  Spinel holds much more chromium and aluminum than 
any other mineral in the CRO. 
 

Thin Section Tag 
 

Mg Fe Si Ca Al Cr 
HMPB_Deep_Spn4 1 

 
15.34 22.71 4.26 0 40.38 17.26 

HMPB_Deep_Spn4 2 
 

16.60 19.05 5.66 0 45.2 13.29 
HMPB_Deep_Spn4 4 

 
15.99 18.53 5.48 0.49 42.99 16.52 

HMPB_Deep_Spn4 5 
 

15.53 23.80 9.94 0.90 37.61 11.11 

         
Average 

 

oxide 
wt% 15.87 21.02 6.34 0.35 41.55 14.55 

  
c.f.  0.603 0.7773 0.46 0.717 0.5293 0.6842 

Average 
 

wt% 9.567 16.34 2.91 0.25 21.99 9.952 
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Table 15 
Spinel phase mineral weight percentages from HMPB slide (Fig. 38) at 110 m depth, 
as determined by SEM-EDS.   The spinel holds much more chromium and aluminum 
than any other mineral in the CRO. 
 

Thin Section Tag 
 

Mg Fe Si Ca Al Cr 
HMPB_Deep_Spn5 1 

 
12.98 38.18 5.87 0 29.52 13.04 

HMPB_Deep_Spn5 2 
 

13.58 36.39 6.01 0 31.01 12.24 
HMPB_Deep_Spn5 3 

 
13.93 36.82 5.92 0 31.19 11.52 

         
Average 

 

oxide 
wt% 13.50 37.13 5.93 0 30.57 12.27 

  
c.f. 0.603 0.7773 0.46 0.717 0.5293 0.6842 

Average 
 

wt% 8.139 28.86 2.73 0 16.18 8.393 
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Table 16 
Serpentine phase mineral weight percentages from HMPB slide (Fig. 38) at 110 m 
depth, as determined by SEM-EDS.  
 

Thin Section Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_Serp5 5 

 
35.82 14.90 48.04 0 0.43 

HMPB_Deep_Serp5 6 
 

34.58 14.67 49.94 0.18 0 
HMPB_Deep_Serp5 7 

 
36.81 13.57 48.92 0.35 0 

        
Average 

 

oxide 
wt% 35.74 14.38 48.97 0.18 0.14 

  
c.f. 0.603 0.7773 0.46 0.717 0.5293 

Average 
 

wt% 21.55 11.18 22.53 0.13 0.076 
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Table 17 
Serpentine phase mineral weight percentages from HMPB slide (Fig. 39) at 110 m 
depth, as determined by SEM-EDS. 
 

Thin Section Tag 
 

Mg Fe Si Ca Al 
HMPB_Deep_Serp6 7 

 
32.8 19.81 41.21 0 4.58 

        
Average 

 

oxide 
wt% 32.8 19.81 41.21 0 4.58 

  
c.f.  0.603 0.777 0.46 0.717 0.529 

Average 
 

wt% 19.78 15.40 18.96 0 2.42 
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Table 18 
Spinel phase mineral weight percentages from HMPB slide (Fig. 39) at 110 m depth. 
 

Thin Section Tag 
 

Mg Fe Si Ca Al Cr 
HMPB_Deep_Spn6 1 

 
16.28 20.22 5.76 0.52 41.4 15.82 

HMPB_Deep_Spn6 3 
 

16.17 24.48 5.34 0.12 39.78 14.10 
HMPB_Deep_Spn6 4 

 
15.60 23.47 5.13 0.12 40.76 14.05 

HMPB_Deep_Spn6 5 
 

15.96 22.08 5.98 0 40.09 15.34 
HMPB_Deep_Spn6 8 

 
15.90 20.11 4.96 0 43.65 14.69 

         
Average 

 

oxide 
wt% 15.98 22.07 5.434 0.15 41.14 14.80 

  
c.f. 0.603 0.7773 0.46 0.717 0.529 0.684 

Average 
 

wt% 9.637 17.16 2.50 0.11 21.77 10.12 
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Table 19 
Combined averages for the elemental weight percentages of each of the major 
mineral phases in the core samples from CROMO1, CROMO2, and HMPB. 
 

Serpentine 

Element Mg Fe Si Ca Al 
Wt% 21.49 11.49 21.66 0.33 0.42 

 
Olivine 

Element Mg Fe Si Ca Al 

Wt% 24.37 13.44 19.10 0.041 0.074 
 

Pyroxene 

Element Mg Fe Si Ca Al 

Wt% 7.89 4.21 20.39 21.21 3.00 
    
Spinel                                                                                                                              

Element Mg Fe Si Ca Al Cr 
Wt% 7.92 29.89 2.67 0.11 15.99 8.03 
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Table 20 
Bulk solid XRF data for CROMO1 cores.  Units for all values in ppm. 
 

Segment 
Depth 

(m) Zr Sr Rb Pb As Zn Ni Co Ca Fe Mn Cr V Ti K 

CROMO1 1 0.45 0 75 17 0 0 29 85 0 43066 121120 2119 56 295 2598 6876 
CROMO1 2 0.91 150 174 43 12 0 79 258 0 8962 62850 2149 409 135 3552 9359 
CROMO1 3 1.52 132 156 34 15 13 73 254 0 9183 68577 1308 320 216 3403 7585 
CROMO1 4 1.98 76 101 20 0 0 37 119 0 7524 25112 295 236 175 3352 7383 
CROMO1 5 2.44 104 105 26 0 0 49 128 0 5166 33183 322 149 104 2207 4834 
CROMO1 6 3.05 145 116 25 0 8 41 671 0 9287 54323 1038 1176 147 3465 7477 
CROMO1 7 3.51 43 170 31 11 8 37 1730 368 8588 56739 838 693 103 1832 6616 
CROMO1 8 3.96 31 64 10 0 0 23 1692 0 8982 64099 2747 1758 139 1641 2793 
CROMO1 9 4.57 168 538 18 0 9 51 413 0 42418 66822 1177 1280 206 3779 5128 

CROMO1 10 8.15 44 113 0 0 0 22 1233 0 18168 84036 1154 1474 130 3743 498 
CROMO1 11 8.61 10 123 0 0 26 0 1789 292 18384 65185 956 2060 104 955 0 
CROMO1 12 9.02 18 184 0 8 0 0 1652 253 17279 74545 2148 1221 121 2148 2118 
CROMO1 13 10.74 79 67 0 0 0 66 616 0 39704 68759 2245 420 166 3199 308 
CROMO1 14 12.65 32 114 0 0 8 32 1550 0 36938 65054 1204 1935 141 2280 371 
CROMO1 15 13.82 0 41 0 0 0 0 1705 0 4860 48629 773 1884 54 299 0 
CROMO1 16 16.76 0 93 0 0 0 0 1705 270 8599 52580 911 1351 65 337 0 
CROMO1 17 18.29 0 113 0 0 0 0 1385 0 4483 75711 990 1541 141 877 0 
CROMO1 18 19.81 0 124 0 0 14 0 3754 371 8277 53873 866 1827 85 752 0 
CROMO1 19 21.34 0 55 0 0 0 0 2147 0 2567 61354 925 2533 0 148 264 
CROMO1 21 22.86 7 74 0 0 0 0 1467 302 17973 50545 986 1949 120 1277 524 
CROMO1 22 24.38 0 38 0 0 0 0 1624 220 1574 42905 731 1120 0 114 253 
CROMO1 23 25.91 0 52 0 0 0 0 1966 292 2440 49707 703 1779 0 202 0 

                 



 

110 
 

Segment 
Depth 

(m) Zr Sr Rb Pb As Zn Ni Co Ca Fe Mn Cr V Ti K 

                 
CROMO1 24 27.43 71 170 5 0 0 39 106 0 29645 70258 1815 244 208 4700 1906 
CROMO1 25 27.97 54 538 0 13 0 28 0 0 74291 69891 1409 0 253 3780 0 
CROMO1 27 28.96 22 334 0 0 0 50 576 0 67044 56193 1432 860 183 2289 1157 
CROMO1 28 30.48 13 194 0 0 0 0 0 0 46488 47998 1109 0 194 1799 1139 
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Table 21 
Bulk solid XRF data for CROMO2 cores.  Units for all values in ppm. 

Segment 
Depth 

(m) Zr Sr Rb Pb Zn Ni Co Ca Fe Mn Cr V Ti K 
CROMO2 100 0.46 9 49 0 0 0 2151 284 9016 45995 742 835 58 399 1025 
CROMO2 101 0.91 0 0 0 0 0 2191 237 313 40844 551 592 31 0 0 
CROMO2 102 1.37 0 6 0 0 0 2581 426 780 52611 690 1497 62 0 213 
CROMO2 103 6.55 0 13 0 0 0 2113 330 0 54303 709 771 0 0 0 
CROMO2 104 7.01 0 33 0 0 0 1637 0 2513 48491 841 956 0 402 0 
CROMO2 105 6.10 0 13 0 0 0 2445 247 0 56531 624 1460 54 0 0 
CROMO2 106 6.55 0 21 0 0 0 1757 222 2295 43454 598 706 46 220 0 
CROMO2 107 7.01 0 11 0 0 0 1999 0 0 47846 584 895 0 0 210 
CROMO2 108 7.62 0 9 0 0 25 1641 167 0 40759 708 1074 50 0 0 
CROMO2 109 8.08 0 14 0 0 0 2407 225 322 50937 623 1148 44 0 0 
CROMO2 110 8.53 0 13 0 0 21 2018 0 298 46077 637 1247 0 0 0 
CROMO2 111 9.14 0 7 0 0 0 2457 347 0 63440 568 856 0 0 253 
CROMO2 112 9.60 0 12 0 0 0 1973 241 416 42794 523 1303 0 0 0 
CROMO2 113 10.06 0 9 0 0 0 2860 185 280 51565 707 1874 43 0 0 
CROMO2 114 10.67 0 11 0 0 19 3232 203 1044 43180 762 1352 0 0 0 
CROMO2 115 10.92 0 14 0 0 0 2856 0 523 51917 961 1308 0 0 0 
CROMO2 117 15.24 0 15 0 0 0 2479 188 270 49684 532 844 0 0 0 
CROMO2 118 16.76 0 17 0 0 32 2682 296 498 48072 698 802 0 0 0 
CROMO2 119 18.29 0 39 0 0 0 2218 187 1498 34664 1070 1217 0 0 0 
CROMO2 120 19.81 59 480 0 0 39 640 0 10895 46082 1445 670 143 2406 409 
CROMO2 121 21.34 51 447 9 0 42 1141 0 13084 60525 1444 1458 158 2058 2568 
CROMO2 122 22.86 0 309 0 0 0 1708 0 8946 59767 1515 2227 98 810 416 
CROMO2 123 24.38 28 479 11 0 48 2341 0 18169 58205 1160 2194 167 1920 2840 
CROMO2 124 25.91 34 469 0 0 28 244 0 41369 52349 1371 198 153 3175 311 
CROMO2 125 27.43 110 272 43 0 72 109 0 13547 56429 1288 292 242 3962 16065 
CROMO2 126 28.96 78 388 27 0 97 864 0 24961 85300 1956 1404 230 3831 10454 
CROMO2 127 30.48 68 562 18 0 42 626 0 14914 61254 1204 597 159 2990 5294 
CROMO2 128 32.00 134 351 46 18 93 0 0 14152 61009 1364 62 251 4261 17266 
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Segment 
Depth 

(m) Zr Sr Rb Pb Zn Ni Co Ca Fe Mn Cr V Ti K 
CROMO2 129 33.53 113 339 45 9 59 0 0 13188 74521 1602 57 249 4478 17621 
CROMO2 130 35.05 118 407 27 0 62 423 0 17954 50174 1197 370 163 3260 9445 
CROMO2 131 36.58 64 674 11 9 44 535 175 14031 41952 1218 450 158 2313 3057 
CROMO2 132 38.10 0 32 0 0 0 2469 0 964 53032 750 2941 0 169 294 
CROMO2 133 39.62 0 15 0 0 0 2240 186 455 46986 511 768 0 0 0 
CROMO2 134 41.15 0 14 0 0 0 1849 268 361 44132 442 827 0 0 0 
CROMO2 135 42.67 0 11 0 0 0 2043 0 0 46199 605 1410 0 0 191 
CROMO2 136 44.20 0 12 0 0 0 2403 213 443 48289 642 2450 0 129 0 
CROMO2 137 45.72 0 6 0 0 0 1455 187 798 35024 570 494 0 67 0 
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Table 22 
List of values of sequestered CO2 masses for Mg as the only reactive cation, ordered 
by sequestration potential. 
 

Values assigned to variables 
kg CO2 

sequestered 
MT CO2 

sequestered 
tons CO2 

sequestered 
20% olivine, 5 km depth, 2700 kg/m3 4.60 x 1013 4.60 x 104 5.07 x 1010 
30% olivine, 3.5 km depth, 2700 kg/m3 4.83 x 1013 4.83 x 104 5.33 x 1010 
30% olivine, 4 km depth, 2700 kg/m3 5.52 x 1013 5.52 x 104 6.09 x 1010 
25% olivine, 5 km depth, 2700 kg/m3 5.75 x 1013 5.75 x 104 6.34 x 1010 
30% olivine, 4.5 km depth, 2700 kg/m3 6.22 x 1013 6.22 x 104 6.85 x 1010 
30% olivine, 5 km depth, 2600 kg/m3 6.65 x 1013 6.65 x 104 7.33 x 1010 
30% olivine, 5 km depth, 2700 kg/m3 6.91 x 1013 6.91 x 104 7.61 x 1010 
30% olivine, 5 km depth, 2800 kg/m3 7.16 x 1013 7.16 x 104 7.89 x 1010 
30% olivine, 5 km depth, 2900 kg/m3 7.42 x 1013 7.42 x 104 8.18 x 1010 
30% olivine, 5.5 km depth, 2700 kg/m3 7.60 x 1013 7.60 x 104 8.37 x 1010 
30% olivine, 5 km depth, 3000 kg/m3 7.67 x 1013 7.67 x 104 8.46 x 1010 
35% olivine, 5 km depth, 2700 kg/m3 8.06 x 1013 8.06 x 104 8.88 x 1010 
40% olivine, 5 km depth, 2700 kg/m3 9.21 x 1013 9.21 x 104 1.01 x 1011 
Average 6.76 x 1013 6.76 x 104 7.45 x 1010 
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Table 23 
List of values of sequestered CO2 masses for Mg, Fe, and Ca, ordered by 
sequestration potential. 
 
 

Values assigned to variables 
kg CO2 

sequestered 
MT CO2 

sequestered 
tons CO2 

sequestered 
20% olivine, 5 km depth, 2700 kg/m3 6.18 x 1013 6.18 x 104 6.81 x 1010 
30% olivine, 3.5 km depth, 2700 kg/m3 6.49 x 1013 6.49 x 104 7.15 x 1010 
30% olivine, 4 km depth, 2700 kg/m3 7.41 x 1013 7.41 x 104 8.17 x 1010 
25% olivine, 5 km depth, 2700 kg/m3 7.72 x 1013 7.72 x 104 8.51 x 1010 
30% olivine, 4.5 km depth, 2700 kg/m3 8.34 x 1013 8.34 x 104 9.19 x 1010 
30% olivine, 5 km depth, 2600 kg/m3 8.92 x 1013 8.92 x 104 9.84 x 1010 
30% olivine, 5 km depth, 2700 kg/m3 9.27 x 1013 9.27 x 104 1.02 x 1011 
30% olivine, 5 km depth, 2800 kg/m3 9.61 x 1013 9.61 x 104 1.06 x 1011 
30% olivine, 5 km depth, 2900 kg/m3 9.95 x 1013 9.95 x 104 1.10 x 1011 
30% olivine, 5.5 km depth, 2700 kg/m3 1.02 x 1014 1.02 x 105 1.12 x 1011 
30% olivine, 5 km depth, 3000 kg/m3 1.03 x 1014 1.03 x 105 1.14 x 1011 
35% olivine, 5 km depth, 2700 kg/m3 1.08 x 1014 1.08 x 105 1.19 x 1011 
40% olivine, 5 km depth, 2700 kg/m3 1.24 x 1014 1.24 x 105 1.36 x 1011 
Average 9.07 x 1013 9.07 x 104 1.00 x 1011 
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Table 24 
Listing of maximum and minimum possible sequestered CO2 values based on highest and 
lowest range of variables used. 
 

Description 
kg CO2 

sequestered 
MT CO2 

sequestered 
tons CO2 

sequestered 
Mg only, shallowest depth, lowest olv 
%, least dense 4.16 x 1013 4.16 x 104 4.59 x 1010 

Mg, Fe and Ca, greatest depth, highest 
olv %, most dense 1.51 x 1014 1.51 x 105 1.66 x 1011 
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Appendix B - Chemical Equations Used in this Paper 
 
2Mg2SiO4 (forsteritic olivine) + CO2 + 2H2O  Mg3Si2O5(OH)4 + MgCO3                      (1)              

Mg2SiO4 (forsteritic olivine) + 2CO2 + 2H2O  2MgCO3 + H4SiO4                                   (2) 

Mg3Si2O5(OH)4 (serpentine)+ 3CO2 + 2H2O  3MgCO3 +2H4SiO4                                  (3) 

Fe2SiO4 (fayalitic olivine) + 2CO2 + 2H2O  2FeCO3 + H4SiO4                                         (4) 

CaSiO3 (wollastonite) + CO2 + 2H2O  CaCO3 + H4SiO4                                                     (5) 

CO2 (g) + H2O(l) → H2CO3-(aq)                                                                                                   (6) 

 
1
3 Mg3Si2O5(OH)4 + 2H+ → Mg2+ +  

2
3 SiO2 (aq) +  

2
3 H2O                                                       (7) 

Mg2SiO4 (s) + 4H+ → 2Mg2+ + H4SiO4 (aq)                                                                                    (8) 

Mg2+ + HCO3- → MgCO3(s) + H+                                                                                                  (9) 

RCO2                                                 (10) 

3Fe(OH)2 (iron(ii) hydroxide) → Fe3O4 (magnetite) + 2H2O(l) + H2(g)                      (11) 

5Mg2SiO4 (forsterite) + 9H2O(l) + Fe2SiO4 (fayalite) →  

        3Mg3Si2O5(OH)4   (serpentine)  + Mg(OH)2 (brucite) + 2Fe(OH)2  

       (iron(ii) hydroxide)                                                                                                             (12)               

(Mg,Fe)2SiO4 + nH2O + CO2 → Mg3Si2O5(OH)4 + Fe3O4 + CH4                                         (13) 

Mg2SiO4 + 4H+ → 2Mg2+ + H4SiO4                                                                                                  (14) 

Mg2+ + HCO3- → MgCO3 + H+                                                                                                            (15) 

OH- + H+ → H2O                                                                                                                             (16) 

Mg2SiO4 (forsteritic olivine) + 2HCO3- → 2MgCO3 + SiO2 + 2OH-                                  (17) 

OH- + CO2 → HCO3-                                                                                                                      (18) 
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Appendix  C - Ex Situ vs. In Situ Carbon Sequestration Options 

 In situ and ex situ sequestration are both viable options for the Coast Range 

Ophiolite. There are certainly benefits and disadvantages to both, meriting 

exploration.    

 Ex situ sequestration is analogous to strip mining.  During ex situ processing, 

rock must first be extracted from the underlying rock before it can be processed.  

The extraction itself is both a labor- and energy-intensive process, requiring 

removal of overlying soil and plant life.  The amazing biodiversity of serpentine 

endemic plant and soil communities would make it difficult to justify this approach, 

particularly in conserved lands of any sort.  Given the dearth of serpentine outcrops 

and soils in specific climates, removal of the endemic flora would prove highly 

controversial in addition to being environmentally deleterious.   

 A benefit of ex situ sequestration is that when an entire block of rock is 

extracted, it can be ground up to a diameter of a specific grain size, thereby 

increasing the surface area for chemical reactions—but this approach is not without 

costs.  Decreasing the grain size of the rock requires copious amounts of grinding; 

the grinding process demands energy, which results in CO2 generation, thus 

negating the entire motivation behind sequestration. 

  In the case of the Coast Range Ophiolite, the rocks of interest are at 

least 100 m below the surface.  In related units elsewhere in the region, the olivine-

rich peridotites may be even deeper beneath the surface.  Removing shallow layers 

of olivine-poor serpentinite would require even more energy and destruction of 

landscape.  Deeply buried olivine-rich lithologies, as at the McLaughlin locality of the 
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CRO, cause the cost of ex situ sequestration to escalate.  Quarrying rocks may be 

more viable in cases of shallowly buried or exposed blocks of peridotites in deserts 

or other remote locations. 

  O’Connor et al. (2005) estimated to cost of sequestration for pure 

olivine at $69/ton CO2 sequestered.  Serpentine carbonation costs were reduced to 

roughly $78 per ton of CO2 sequestered, including a necessary heat-treatment step 

prior to reacting the serpentine with CO2. While thermal activation makes 

serpentine an effective medium of sequestration, the process results in more CO2 

generated than is sequestered by the process, making it impractical (O’Connor, 

2005).  The report does not mention if the cost and CO2 generation figures include 

the process of mining the rocks.  Mining is energy-intensive and surely would 

subtract from the benefits of the process.   

 Both in situ and ex situ sequestration generate carbonate minerals as a result 

of the chemical reaction, but ex situ processes allow access to the carbonate. Because 

in situ sequestration happens so far beneath the surface, access to the minerals is 

extremely limited.   Industrial uses of magnesite, calcite and siderite include uses in 

antacids, construction materials, pigments, and cement-making. 

  

 In situ sequestration is seen as less environmentally deleterious, as it does 

not require the extraction of rock from the subsurface.  Instead, holes of varying 

depth are drilled, and carbon-rich fluid is pumped deep into the subsurface where it 

is allowed to react freely with rocks. There are still untallied costs and energy inputs 

associated with in situ carbonation, yet there are simply fewer steps involved, thus 
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likely less cost in dollars.  Part of those costs comes from the numerous holes that 

need to be drilled.  Over a lengthy expanse of ultramafic rocks, thousands of holes 

would need to be drilled.  Cost is also incurred through the necessary heating of rock 

prior to reaction.  This is accomplished by pumping preheated water into a 

borehole.  Costs can be considerably reduced if the exothermic reaction (Eq. 9) of 

carbonation preheats the surrounding rock and allows continuous heating 

throughout the process, eliminating the need for additional inputs of thermal 

energy. 
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