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7 Statistically interacting quasiparticles in Ising chains

Ping Lu1, Jared Vanasse1, Christopher Piecuch1, Michael

Karbach1,2, and Gerhard Müller1

1Department of Physics, University of Rhode Island, Kingston RI 02881, USA
2Fachbereich Physik, Bergische Universität Wuppertal, 42097 Wuppertal,
Germany

PACS numbers: 75.10.-b

Abstract. The exclusion statistics of two complementary sets of quasiparticles,
generated from opposite ends of the spectrum, are identified for Ising chains with
spin s = 1/2, 1. In the s = 1/2 case the two sets are antiferromagnetic domain
walls (solitons) and ferromagnetic domains (strings). In the s = 1 case they are
soliton pairs and nested strings, respectively. The Ising model is equivalent to a
system of two species of solitons for s = 1/2 and to a system of six species of soliton
pairs for s = 1. Solitons exist on single bonds but soliton pairs may be spread
across many bonds. The thermodynamics of a system of domains spanning up to
M lattice sites is amenable to exact analysis and shown to become equivalent, in
the limit M → ∞, to the thermodynamics of the s = 1/2 Ising chain. A relation
is presented between the solitons in the Ising limit and the spinons in the XX
limit of the s = 1/2 XXZ chain.

1. Introduction

Ising chains are among the simplest systems of interacting degrees of freedom and have
been thoroughly studied in a wide variety of circumstances including the presence of
transverse fields, time-dependent fields, inhomogeneities in field or coupling etc. Is
there anything of substance left that we can still learn from the Ising model in one
dimension [1] with homogeneous coupling? This paper presents a case (by no means
the only one [2, 3]) for an affirmative answer.

The Hamiltonian of the spin-s Ising model for s = 1/2, 1, 3/2, . . . on a periodic
chain of N sites reads

Hs =

N
∑

n=1

(

JSz
nSz

n+1 + hSz
n

)

, Sz
n = s, s − 1, . . . ,−s, (1.1)

where the exchange coupling is antiferromagnetic (ferromagnetic) for J > 0 (J < 0)
and h is a magnetic field. This model system has simple product eigenstates, a
dispersionless spectrum, and no intrinsic dynamics to speak of. Its thermodynamics,
derived via transfer matrix [4, 5], is predictably simple.

One interesting aspect of Hs that promises usefulness in a wider context is the
quasiparticle composition of the product eigenstates as will be demonstrated. The
entire spectrum of Hs can be systematically generated from opposite ends by different
sets of quasiparticles with exotic exclusion statistics. The nature of these quasiparticles
strongly varies with s but a systematics in their make-up is recognizable.

http://arxiv.org/abs/0710.1687v1
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In H1/2 we consider antiferromagnetic domain walls (solitons with spin ±1/2 and
fractional exclusion statistics) for J > 0 or with ferromagnetic domains (strings of
flipped spins with integer-valued exclusion statistics) for J < 0. The corresponding
quasiparticles in H1 turn out to be soliton pairs with spin 0,±1 (for J > 0) and nested
strings (for J < 0), both with unusual exclusion statistics.

We use the concept of statistically interacting quasiparticles to show that the
thermodynamics of Hs is equivalent to that of a gas of solitons (for s = 1/2) or soliton
pairs (for s = 1). The same framework is shown to work also for the thermodynamics of
string particles. It is expected that these particles, whose detailed exclusion statistics
is worked out here, are still relevant in integrable spin chain models away from their
Ising limit. The particles identified here then become objects of a coordinate Bethe
ansatz [6, 7, 8] applied to those models.

We first review the concept of statistical interaction and its use in thermodynamics
(Sec. 2). Then we introduce the soliton particles for H1/2, describe their exclusion
statistics, and determine the thermodynamics in a magnetic field from a soliton
perspective (Sec. 3). Next we introduce the six species of soliton-pair particles that
govern the spectrum of H1 and work out their thermodynamics in zero magnetic
field (Sec. 4). Then we present the combinatorics for the statistical interaction of a
system of strings in H1/2 and of nested strings in H1. We proceed by calculating
the thermodynamics of a system of strings of restricted size and recover the Ising
thermodynamics when that restriction is lifted (Sec. 5). Finally, we assess the progress
reported here and discuss possible extensions and comparisons (Sec. 6) including a
relation between solitons and spinons, both with semionic statistics (Appendix A).

2. Statistical interaction

Quasiparticles in solid matter are not restricted to be either bosons or fermions. In
integrable quantum many-body model systems [6, 7, 8] quasiparticles with infinite
lifetimes and unusual exclusion statistics have indeed been identified. The generalized
Pauli principle as introduced by Haldane [9] expresses how the number of states
available to one particle is affected by the presence of other particles:

∆di
.
= −

∑

j

gij∆Nj . (2.1)

The indices i, j refer to distinct particle species. The gij are statistical interaction

coefficients. For bosons we have gij = 0 and for fermions gij = δij . Upon integration
Eq. (2.1) becomes

di = Ai −
∑

j

gij(Nj − δij), (2.2)

where the Ai are statistical capacity constants. The number of many-body states
containing {Ni} particles of the various species is then determined by the multiplicity
expression

W ({Ni}) =
∏

i

(

di + Ni − 1
Ni

)

. (2.3)

We shall determine the ingredients Ai, gij to (2.2) for two species of solitons or
N species of strings, all pertaining to H1/2, and for six species of soliton pairs or
N(N + 1)/2 species of nested strings pertaining to H1.
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The thermodynamic properties of a macroscopic system of statistically interacting
particles are amenable to a rigorous analysis as shown by Wu [10]. For given sets of
1-particle energies ǫi, statistical interaction coefficients gij , and statistical capacity
constants Ai, the grand partition function is

Z =
∏

i

[

1 + wi

wi

]Ai

, (2.4)

where the quantities wi are determined by the nonlinear algebraic equations

ǫi − µ

kBT
= ln(1 + wi) −

∑

j

gji ln

(

1 + wj

wj

)

. (2.5)

The temperature T and the chemical potential µ are the control variables. Additional
control variables such as external fields may come into play as part of the energies ǫi.
The average numbers of particles, 〈Ni〉, of each species are related to the wi by the
linear equations

wi〈Ni〉 +
∑

j

gij〈Nj〉 = Ai. (2.6)

We shall apply this method of exact analysis to the solitons and the strings in the
context of H1/2 and to soliton pairs in the context of H1.

3. Solitons

Here we consider H1/2 with J > 0 and h > 0 for even or odd N . The task at hand
has a combinatorial part and a statistical mechanical part. We first relate the Ising
spectrum to soliton configurations, then we undertake a thermodynamic analysis of
the soliton system, using the methodology outlined in Sec. 2.

3.1. Combinatorics of solitons

Among the four distinct bonds in the general product state |σ1σ2 · · ·σN 〉 (see Table 1),
the bonds ↑↑, ↓↓ represent solitons with spin +1/2, −1/2, respectively, and ↑↓, ↓↑ are
vacuum bonds. Close-packed solitons with like spin orientation reside on successive
bonds (e.g. ↑↑↑), whereas close-packed solitons with opposite spin orientation are
separated by one vacuum bond (e.g. ↑↑↓↓). More generally, the number of vacuum
bonds between nearest-neighbor solitons with like (opposite) spin orientation is even
(odd). Solitons only interact statistically. The energy of a soliton is unaffected by the
presence of other solitons.

Table 1. Distinct bonds in H1/2, their soliton content, and their contribution to
the energy of the product eigenstate (relative to the soliton vacuum).

bond ↑↑ ↓↓ ↑↓ ↓↑
N+ 1 0 0 0

N− 0 1 0 0

∆E J+h
2

J−h
2 0 0



Statistically interacting quasiparticles in Ising chains 4

The two soliton vacuum states, | ↑↓ · · · ↑↓〉 and | ↓↑ · · · ↓↑〉, represent the lowest
energy level for even N . The lowest level for odd N is 2N -fold degenerate and contains
one soliton. The soliton content of an Ising eigenstate is specified either by the numbers
N± of spin-up/down solitons or, alternatively, by the total number of solitons and the
magnetisation:

NA = N+ + N−, Mz =
1

2
(N+ − N−). (3.1)

The energy level of all states with NA solitons and magnetisation Mz is

E(NA, Mz) − E0 =
1

2
NAJ + hMz, (3.2)

where E0 = −NJ/4 is the energy of the soliton vacuum.
How many Ising eigenstates exist for given N+ and N− (or NA and Mz)?

The solution of this combinatorial problem is the following multiplicity expression
constructed from extensive tabulated data such as sampled in Table 2:

WA(N+, N−) =
2N

N − NA

∏

σ=±

(

dσ + Nσ − 1
Nσ

)

, (3.3)

dσ =
1

2
(N − 1) − 1

2

∑

σ′

(Nσ′ − δσσ′). (3.4)

It is indeed compatible with the standard form (2.3). The range of NA is 0, 2, · · · , N
for even N and 1, 3, · · · , N for odd N . NA = N is only realized for the two states
with N+ = NA or N− = NA. This multiplicity expression specifies the statistical
interaction between soliton particles.

Table 2. Number of states, WA(N+, N−), with NA = N+ + N− solitons and
magnetisation Mz = (N+ − N−) /2 for H1/2 with N = 6 (left) and N = 7 (right).

Mz\NA 0 2 4 6
3 – – – 1 1
2 – – 6 – 6
1 – 9 6 – 15
0 2 12 6 – 20

−1 – 9 6 – 15
−2 – – 6 – 6
−3 – – – 1 1

2 30 30 2 64

Mz\NA 1 3 5 7
7/2 – – – 1 1
5/2 – – 7 – 7
3/2 – 14 7 – 21
1/2 7 21 7 – 35

−1/2 7 21 7 – 35
−3/2 – 14 7 – 21
−5/2 – – 7 – 7
−7/2 – – – 1 1

14 70 42 2 128

3.2. Statistical mechanics of solitons

For the statistical mechanical analysis of H1/2 as a soliton gas we use the statistical
capacity constants Aσ = (N − 1)/2 and the statistical interaction coefficients gσσ′ =
1/2 extracted from Eq. (3.4), and the soliton energies ǫσ = (J + σh)/2 from Table 1.
We have to solve two coupled nonlinear algebraic equations of the type (2.5):

J ± h

2kBT
= ln(1 + w±) +

1

2
ln

w±

1 + w±

+
1

2
ln

w∓

1 + w∓

. (3.5)
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The solution,

w± =
1

2

[

e±h/kBT − 1 +
√

(e±h/kBT − 1)2 + 4e(J±h)/kBT

]

, (3.6)

determines the grand partition function via (2.4) with the asymptotic value A±  N/2
for the capacity constants. The result,

Z =
[

e2K
(

coshH +
√

sinh2 H + e−4K
)]N

, K
.
= − J

4kBT
, H

.
= − h

2kBT
, (3.7)

is in exact agreement with the well-known canonical partition function ZN obtained
via transfer-matrix [4]. In the relation Z = ZNeNK , the factor eNK accounts for the
relative shift of energy scales used in the two methods.

For the average numbers of solitons, 〈N±〉, we infer from (2.6) the two coupled
linear equations,

(

w± +
1

2

)

〈N±〉 +
1

2
〈N∓〉 =

N

2
, (3.8)

which have the solutions

〈N±〉 =
N

2

e±H
[
√

sinh2 H + e−4K ± sinhH
]

sinh2 H + e−4K + coshH
√

sinh2 H + e−4K

h→0−→ N/2

e−2K + 1
. (3.9)

The dependence of 〈N+〉/N on J/kBT is shown in Fig. 1 for various values of h/J . All
curves start from 〈N+〉/N = 1/4 in the high-T limit. For h = 0 we have 〈N+〉 = 〈N−〉;
this curve has a monotonically decreasing trend toward zero as T → 0. For h > 0
(h < 0) the average number 〈N+〉 of solitons with spin directed antiparallel (parallel)
to h is more (less) rapidly suppressed as T → 0. For sufficiently weak, negative fields,
0 > h/J > −0.25, the curve is still monotonically decreasing. For −0.25 > h/J > −1,
it acquires a smooth maximum at finite, nonzero T . For h/J < −1 the curve is
monotonically increasing toward 〈N+〉/N=1. Here the ground state contains N spin-
polarized solitons.
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Figure 1. Average number 〈N+〉/N of spin-up solitons per lattice bond versus
J/kBT for several values of magnetic field.
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4. Soliton pairs

Here we consider H1 with J > 0 and h = 0 for even or odd N . The generalization
to h 6= 0 is straightforward conceptually. The independent particles are now soliton
pairs.

4.1. Combinatorics of soliton pairs

The nine different kinds of bonds are listed in Table 3. Each bond can accommodate
up to two solitons. The energy of a soliton is not the same in all configurations.

Table 3. Distinct bonds in H1, their soliton content, and their contribution to
the energy of a product eigenstate (relative to the soliton vacuum).

bond ↑↑ ◦◦ ↓↓ ↑ ◦ ◦ ↑ ↓ ◦ ◦ ↓ ↑↓ ↓↑
N+ 2 1 0 1 1 0 0 0 0

N− 0 1 2 0 0 1 1 0 0

∆E/J 2 1 2 1 1 1 1 0 0

Our search for the independent particles again starts from extensive tabulated
data for WA(N+, N−) such as sampled in Table 4. Several clues suggest that the
independent particles are soliton pairs. For example, the number of solitons is always
even. Also, the number of states with N− = 0 grows ∝ NN+/2 for N+ ≪ N as opposed
to the growth ∝ NN+ observed in H1/2

The systematic examination of the data tables for WA(N+, N−) points to the
existence of six distinct species of soliton-pair particles, two groups of three species
with spin (+1, 0,−1). In the first group the paired solitons are confined to the same
bond. In the second group the paired solitons are deconfined. They can be on bonds
with any number of lattice sites between them.

Confined-soliton pairs with spin up (named r+) are identified by any element ↑↑
in the product state. In like manner, confined-soliton pairs with spin zero (down) are

Table 4. Number of states, WA(N+, N−), with NA = N+ + N− solitons and
magnetisation Mz = (N+ − N−) /2 for H1 with N = 3 (left) and N = 4 (right).

Mz\NA 0 2 4 6
3 – – – 1 1
2 – – 3 – 3
1 – 3 3 – 6
0 – 6 – 1 7

−1 – 3 3 – 6
−2 – – 3 – 3
−3 – – – 1 1

0 12 12 3 27

Mz\NA 0 2 4 6 8
4 – – – – 1 1
3 – – – 4 – 4
2 – – 6 4 – 10
1 – 4 8 4 – 16
0 2 – 16 – 1 19

−1 – 4 8 4 – 16
−2 – – 6 4 – 10
−3 – – – 4 – 4
−4 – – – – 1 1

2 8 48 20 3 81
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named r0 (r−) and identified by elements ◦◦ (↓↓) in the product state. Deconfined-
soliton pairs with spin up (down) are named q+ (q−) and identified by any element
↑ ◦ · · · ◦ ↑ (↓ ◦ · · · ◦ ↓) in the product state, where the presence of n = 1, 2, . . . site
variables ◦ between two site variables ↑ (↓) indicate the presence of n − 1 spin-zero
confined-soliton pairs (r0). Deconfined-soliton pairs with spin zero are named q0 and
are identified by elements ↑ ◦ · · · ◦ ↓ or ↓ ◦ · · · ◦ ↑ in the product state.

A list of name, motif, and soliton content for all six species of soliton-pair particles
is shown in the top three rows of Table 5. In some instances, two close-packed particles
share one lattice site (e.g. ◦ ◦ ◦, ↑ ◦ ↑↑, ↑ ◦ ↓ ◦ ↓), in other instances, there is one
vacuum bond in between (e.g. ↑↑↓↓, ↑ ◦ ↑↓ ◦ ↑). The particle r0 can only exist inside
one of the particles q+, q0, q−. The former is instrumental to the soliton deconfinement
in the latter.

The six particles are thus naturally classified into three groups, the confined-
soliton pairs r+, r−, the deconfined-soliton pairs q+, q0, q−, and the spacer particle r0

(deconfinement agent). In a vague QCD analogy, solitons play the role of quarks, the
soliton pairs r+, r−, q+, q0, q− the role of mesons and baryons, and the spacer particle
r0 the role of gluon with opposite action.

Table 5. Specifications of particles in H1: confined-soliton pairs (r+, r−), spacer
particle (r0), deconfined-soliton pairs (q+, q0, q−); motif in product state; soliton
content; index m used in (4.1); statistical capacity constants Am; energies ǫm.

particle r+ r− r0 q+ q− q0

motif ↑↑ ↓↓ ◦◦ ↑ ◦ ↑ ↓ ◦ ↓ ↑ ◦ ↓, ↓ ◦ ↑
N+ + N− 2 + 0 0 + 2 1 + 1 2 + 0 0 + 2 1 + 1

m 1 2 3 4 5 6

Am
N−1

2
N−1

2 0 N
2 − 1 N

2 − 1 N − 2

ǫm 2J 2J J 2J 2J 2J

We have determined the multiplicity expression

W6({Xm}) =
2N

N − NΣ

6
∏

m=1

(

dm + Xm − 1
Xm

)

, (4.1)

dm = Am −
∑

m′

gmm′(Xm′ − δmm′), (4.2)

NΣ = X1 + X2 + X3 + 2(X4 + X5 + X6) ≤ N, (4.3)

for product eigenstates containing Xm soliton pairs of species m = 1, . . . , 6, where the
index m is defined in Table 5. It confirms the independent status of the soliton-pair
particles and contains the specifications of their statistical interaction. The capacity
constants Am and the particle energies ǫm are given in Table 5, and the interaction
coefficients gmm′ in Table 6. Again there exist restrictions and exceptions regarding
the allowed configurations {Xm}. We do not list them here because they have no
bearing on the statistical mechanical analysis. The only model specifications needed
are the quantities Am, ǫm, gmm′ .



Statistically interacting quasiparticles in Ising chains 8

Table 6. Statistical interaction coefficients gmm′ between soliton-pair particles
as identified in Table 5.

gmm′ 1 2 3 4 5 6

1 1
2

1
2

1
2 0 1 1

2

2 1
2

1
2

1
2 1 0 1

2

3 0 0 0 −1 −1 −1

4 1
2

1
2

1
2 1 1 1

2

5 1
2

1
2

1
2 1 1 1

2

6 1 1 1 2 2 2

Note that the gmm′ include some zeros and some negative values. To make sense
of these peculiarities we rewrite each of the six binomial factors of (4.1) in the form

(

Bm + (1 − gmm)Xm − Ym

Xm

)

, (4.4)

where

Bm
.
= Am + gmm, Ym

.
=
∑

m′ 6=m

gmm′Xm′ + 1. (4.5)

The maximum capacity for particles of species m,

Xmax
m =

Bm − Ym

gmm
. (4.6)

is thus primarily dictated by the diagonal coefficient gmm, but is also influenced by
the off-diagonal coefficients gmm′ via Ym.

If one of the off-diagonal coefficients is zero, gmm′ = 0 for m′ 6= m, it merely
means that the presence of particles of species m′ has no effect on the capacity for
particles of species m. If one of the diagonal coefficients vanishes, gmm = 0, then (4.4)
does no longer limit the capacity for particles of species m. This can either mean that
there is no limit (as is the case for bosons) or it can mean (as is the case here for
m = 3) that a limit is implied by a different rule associated with (4.1).

The existence of negative off-diagonal coefficients gmm′ as found in Table 6 for
m = 3 and m′ = 4, 5, 6 has the consequence that particles from species m′ contribute
negatively to Ym. Adding particles of species m′ increases the capacity of the system
for particles of species m. This is indeed to be expected because the latter can only
exist inside the former. In this instance, the Pauli exclusion principle turns into what
might be called an accommodation principle.

4.2. Statistical mechanics of soliton pairs

Carrying out the statistical mechanical analysis of H1 as a gas of soliton pairs starts
with solving six coupled nonlinear equations of the type (2.5) with µ = 0, the ǫm from
Table 5, and the gmm′ from Table 6. Symmetry implies w1 = w2, w4 = w5. The
remaining four equations in exponentiated form (with K

.
= −J/kBT ),

e−2K =
w1w4w6

(1+w4)(1+w6)
, e−K =

(1+w3)w1w4w6

(1+w1)(1+w4)(1+w6)
, (4.7)
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e−2K =
w1(1 + w3)w

2
4w

2
6

(1 + w1)w3(1 + w4)(1 + w6)2
, e−2K =

w1(1 + w3)w4w
2
6

(1 + w1)w3(1 + w4)(1 + w6)
, (4.8)

can be simplified into

1 + w3

1 + w1
= eK ,

w3

w6
= eK , w4 = 1 + w6,

2 + w6

w1w6
= e2K , (4.9)

and reduced to a quadratic equation for w3 with the (physically significant) solution

w3 = cosh K − 1

2
+

√

(

cosh K − 1

2

)2

+ 2. (4.10)

The grand partition function (2.4) with the (asymptotic) Am from Table 5 and the
solutions (4.9), (4.10) becomes

Z =

[

(1 + w1)
2

w2
1

(1 + w4)
2

w2
4

(1 + w6)
2

w2
6

]N/2

=
[

(1 + w3)e
K
]N

= ZNeKN , (4.11)

in agreement with the transfer-matrix result for the canonical partition function ZN

[5], where the factor eKN again originates from a shift in energy scale.
For the average numbers of soliton pairs, 〈Nm〉, we must solve six linear equations

of the type (2.6) with the wm from (4.9), (4.10). Symmetry dictates that 〈N1〉 = 〈N2〉
and 〈N4〉 = 〈N5〉. The solution reads

〈N1〉 = 〈N2〉 =
N

2

w3(w
2
3 + 2eK)

(w3 + 1)(w2
3e

−K + 4w3 + 2 − 2eK)
, (4.12)

〈N3〉 = N
2(w3 + 1 − eK)

(w3 + 1)(w2
3e

−K + 4w3 + 2 − 2eK)
, (4.13)

〈N4〉 = 〈N5〉 =
1

4
w3〈N3〉, 〈N6〉 =

1

2
w3〈N3〉. (4.14)

The relation 〈N6〉 = 2〈N4〉 = 2〈N5〉 may be anticipated on the basis of the motif
shown in Table 5. The reduced averages 〈Nm〉/N are plotted versus J/kBT in Fig. 2.

Increasing the temperature from T = 0 results in a gradual increase of average
particle numbers from all species. Notice that the spacer particles r0 (m = 3), which
can only exist inside particles of species q+, q0, q− (m = 4, 5, 6) are slowest to appear
in significant numbers as would be expected.

For the generalization of these results to h 6= 0 we must add the Zeeman
contribution to the energies ǫm listed in Table 5. The statistical mechanical analysis
of soliton pairs as demonstrated here is by no means limited to the Ising Hamiltonian
(1.1). We can freeze out some of the particle species by making their activation energies
infinitely large, ǫm → ∞. This has the consequence that wm → 0 and 〈Nm〉 → 0. For
the remaining active particles we can assign arbitrary values ǫm for their energies. For
example, if we freeze out all particles except those of species m = 1, 2 then the results
of Sec. 3 for H1/2 are, effectively, recovered.

Among the issues that must be heeded in generalizations of the calculations
reported here to models with arbitrary particle energies are the following: (i) The
particle r0 can only exist inside a particle q0, q+, or q−. Therefore freezing out the
latter three will freeze out the former even if its energy remains finite. (ii) The particle
q0 comes in two parity-violating versions. In the context of H1 or other models where
the two configurations ↑ ◦ ↓ and ↓ ◦ ↑ have the same energy, they can be treated as
identical particles. However, in situations where the two configurations have to be
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Figure 2. Average numbers 〈Nm〉/N of soliton-pair particles (per site) versus
inverse temperature J/kBT of H1.

assigned different energies we must treat them as belonging to different species and
determine their statistical interaction with each other and with all the other particle
species. (iii) A spin interaction beyond nearest neighbors added to H1 will, in general,
produce a coupling between the particles listed in Table 5.

5. Domains and nested domains

Here we consider Hs for s = 1/2, 1, J < 0, and h ≤ 0. In the following we describe
how the entire spectrum is systematically generated from the ferromagnetic ground
state | ↑↑ · · · ↑〉 by domains (s = 1/2) or nested domains (s = 1) of flipped spins.
These domains are independent particles subject to a statistical interaction. The
thermodynamic analysis of domains is then carried out for the s = 1/2 case at h = 0.

5.1. Combinatorics of domains

In the notation used here, {|σ1 · · ·σN 〉}r
m represents the set of m product vectors with

r flipped spins that are generated from |σ1 · · ·σN 〉 via translations. The 2N = 16
states for N = 4 in this representation are

{| ↑↑↑↑〉}0
1, {| ↑↑↑↓〉}1

4, {| ↑↑↓↓〉}2
4,

{| ↑↓↑↓〉}2
2, {| ↑↓↓↓〉}3

4, {| ↓↓↓↓〉}4
1. (5.1)

The first among them is the (non-degenerate) ground state of H1/2 with J < 0 and
h < 0. Domains are strings of µ consecutive down-spins. In (5.1) the states in the
second set contain one 1-string, and the state in the fourth set two 1-strings. The
states in the third, fifth, and sixth set contain one string with µ = 2, 3, 4, respectively.
Each string of length µ contributes the amount J + µh to the energy of the state. An
Ising chain of length N can thus accommodate strings with µ = 1, . . . , N − 1, which
are treated here as distinct species of independent particles. The lone state containing
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one string with µ = N is exceptional in several respects, ignorable in macroscopic
systems.

What is the number of product eigenstates that contain a configuration {Nµ}
of strings? Since there must be at least one up-spin between successive strings, only
those configurations can be realized which satisfy the constraint

N−1
∑

µ=1

(µ + 1)Nµ ≤ N. (5.2)

We found that the number of states with given string configuration is determined by
the multiplicity expression

W ({Nµ}) =
N

N − r

N−1
∏

µ=1

(

dµ + Nµ − 1
Nµ

)

, (5.3)

dµ = N − µ −
N−1
∑

µ′=1

gµµ′(Nµ′ − δµµ′ ), (5.4)

where

gµµ′ =

{

µ′, µ < µ′,
µ′ + 1, µ ≥ µ′ , r

.
=

N−1
∑

µ=1

µNµ. (5.5)

5.2. Combinatorics of nested domains

The concept of nested quasiparticles in lattice models is well-known in the context
of the Bethe ansatz as applied, for example, to the Hubbard model or to integrable
spin-1 models [8, 11, 12, 13, 14, 15, 16]. The nested particles in Ising product states
have a particularly simple structure.

In the context of H1 the nesting involves two shells. The particles on the outer
shell (µ-strings) are structurally identical to the strings of H1/2. We start from the
µ-string vacuum, {| ↑↑ · · · ↑〉}0

1, and generate a total of 2N product states composed
of site variables ↑ and ◦. On the inner shell we take any µ-string of the outer shell
and use it as the vacuum for ν-strings. Hence a ν-string is a sequence of ν successive
↓-sites embedded in a region of µ ◦-sites between consecutive ↑-sites. Naturally, we
must have ν ≤ µ. This prescription is illustrated in Table 7 for N = 4. The two-shell
nesting of string particles leads to the multiplicity expression

W
(

{Nµ}, {N (µ)
ν }

)

=
N

N − r

∏

µ

(

dµ + Nµ − 1
Nµ

)

× µ

µ − rµ

∏

ν

(

d
(µ)
ν + N

(µ)
ν − 1

N
(µ)
ν

)

(5.6)

with dµ from (5.4), gµµ′ , r from (5.5), and

d(µ)
ν = µ − ν −

∑

ν′

gνν′(N
(µ)
ν′ − δνν′), rµ =

∑

ν

νN (µ)
ν . (5.7)

As in previous applications, there are instances (ignorable for macroscopic systems)
where expression (5.6) is inapplicable.
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Table 7. Nested-string interpretation of the product eigenstates for N = 4 in
H1. The 2N states on the left represent the outer shell of the nesting. Each
µ-string is underlined and serves as the vacuum for ν-strings on the inner shell.
From each of the 2N effective H1/2 product states on the left are thus generated

one or several H1 product states on the right for a total of 3N .

1 {| ↑↑↑↑〉}+4
1 {| ↑↑↑↑〉}+4

1×1, 1

4 {| ↑↑↑ ◦〉}+3
4 {| ↑↑↑ ◦〉}+3

4×1, {| ↑↑↑↓〉}+2
4×1, 8

4 {| ↑↑ ◦◦〉}+2
4 {| ↑↑ ◦◦〉}+2

4×1, {| ↑↑↓ ◦〉}+1
4×2, {| ↑↑↓↓〉}0

4×1, 16

4 {| ↑ ◦ ◦ ◦〉}+1
4 {| ↑ ◦ ◦ ◦〉}+1

4×1, {| ↑↓ ◦◦〉}0
4×3, {| ↑↓↓ ◦〉}−1

4×3, {| ↑↓↓↓〉}−2
4×1 32

1 {|◦ ◦ ◦◦〉}0
1 {| ◦ ◦ ◦ ◦〉}0

1×1, {| ↓ ◦ ◦ ◦〉}−1
1×4

{| ↓↓ ◦◦〉}−2
1×4, {| ↓ ◦ ↓ ◦〉}−2

1×2, {| ↓↓↓ ◦〉}−3
1×4, {| ↓↓↓↓〉}−4

1×1, 16

2 {| ↑ ◦ ↑ ◦〉}+2
2 {| ↑ ◦ ↑ ◦〉}+2

2×1, {| ↑↓↑ ◦〉}+1
4×1, {| ↑↓↑↓〉}0

2×1, 8

16 81

5.3. Statistical mechanics of domains

Returning to H1/2 with J < 0 and setting h = 0, we now derive the exact
thermodynamics of a system of strings via the method outlined in Sec. 2. It is evident
from Wu’s derivation [10] of Eqs. (2.5) that their applicability in the present context is
limited to situations where the system has a large capacity for strings of all sizes that
are permitted. To circumnavigate this restriction we introduce a limit on the length
of allowed strings, µ ≤ M ≪ N . The thermodynamic limit of H1/2 requires that we
set N → ∞ before setting M → ∞.

With the specifications regarding statistical interaction of strings from Sec. 5.1
we write for the grand potential the expression

ΩM (K) = −kBT

M
∑

µ=1

Aµ ln

(

wµ + 1

wµ

)

, Aµ = N − µ, (5.8)

where the wµ satisfy

4K = ln(wµ + 1) −
M
∑

µ′=1

gµ′µ ln
wµ′ + 1

wµ′

, K =
|J |

4kBT
. (5.9)

The transformation of variable, ξµ
.
= ln(wµ + 1), turns Eqs. (5.8) and (5.9) into

ΩM (K) =
|J |
4K

M
∑

µ=1

(N − µ) ln
(

1 − e−ξµ
)

, (5.10)

ξµ = 4K − µ

M
∑

µ′=1

ln
(

1 − e−ξµ′

)

−
M
∑

µ′=µ

ln
(

1 − e−ξµ′

)

. (5.11)

Introducing the quantity

Φµ
.
= − 1

4K

µ
∑

µ′=1

ln
(

1 − e−ξµ′

)

(5.12)
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we rewrite (5.11) in the form

ξµ = 4K [1 + (µ + 1)ΦM − Φµ−1] . (5.13)

This sets the stage for determining ΦM via a recursive scheme:

Φ1 = − 1

4K
ln
(

1 − q1+2ΦM
)

, q
.
= e−4K ,

Φ2 = Φ1 −
1

4K
ln
(

1 − exp
(

−4K(1 + 3ΦM ) − ln
(

1 − q1+2ΦM
)))

,

leading to

Φµ = − 1

4K
ln

(

1 − q1+2ΦM
1 − qµΦM

1 − qΦM

)

. (5.14)

Setting µ = M we arrive at a polynomial equation for qΦM :

q q(M+2)ΦM + (1 − q)q2ΦM − 2qΦM + 1 = 0. (5.15)

The solution of (5.15) substituted into (5.10) via (5.14) and (5.13) determines the
grand potential of a system of strings with maximum length M in a chain of N sites
with M ≪ N . Taking the limit N → ∞ while keeping M finite we have

ωM (K)
.
= lim

N→∞

1

N
ΩM (K) =

|J |
4K

M
∑

µ=1

ln
(

1−e−ξµ
)

= −|J |ΦM . (5.16)

If we now take the limit M → ∞, the first term in Eq. (5.15) vanishes, and the
solution,

qΦ∞ = (1 +
√

q)−1, (5.17)

substituted into (5.16), yields

ω∞(K) = − |J |
4K

ln
(

1 + e−2K
)

, (5.18)

which is indeed the exact result for H1/2 with h = 0, J < 0 and the string vacuum at
the origin of the energy scale.

The statistical mechanics of a system of domains with maximum length M on
a lattice of N sites may very well be of interest in a number of contexts outside
magnetism. We have reduced the problem to solving a polynomial equation of degree
M + 1. Consider the entropy per site of strings with µ ≤ M on an infinite lattice,
sM (K)

.
= limN→∞ SM (K)/N , inferred from (5.16). Compact analytic solutions are

readily calculated for M = 1 (one-strings only) and M = ∞ (all strings allowed):

s1(K)

kB
= ln

(√
1 + 4e−4K + 1

2

)

+
8Ke−4K

1 + 4e−4K +
√

1 + 4e−4K
, (5.19)

s∞(K)

kB
= ln

(

1 + e−2K
)

+
2K

e2K + 1
. (5.20)

Entropy curves for several M are shown in Fig. 3. As we relax the restriction
on the length of permissible domains, the entropy at any given nonzero temperature
becomes larger. The relative contribution of longer domains is larger at low T than
at high T . All domains have the same energy. With T increasing, the longer domains
tend to be crowded out by the shorter ones. As the restriction on length is lifted
altogether, the Ising result (M = ∞) is approached from below.

The same type of analysis is applicable to any model with spin-1/2 Ising
product eigenstates and with arbitrary energy values ǫm, µ = 1, 2, . . . , M assigned
to the domains. The left-hand side of Eq. (5.9) must then be replaced by 4Kµ,
Kµ = ǫµ/4kBT . For H1/2 at h 6= 0 we must use ǫµ = J + µh.
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Figure 3. Entropy per site for N → ∞ versus reduced temperature of a system
of domains with maximum length M . The case M = ∞ represents H1/2.

5.4. Distribution of domains

What is the relative frequency of occurrence of domains of size µ for given maximum
size M at temperature T in an infinite chain? To answer this question we adapt Wu’s
linear equations (2.6) to the situation at hand:

wµ〈nµ〉 +

M
∑

µ′=1

µ′〈nµ′〉 +

µ
∑

µ′=1

〈nµ′〉 = 1, µ = 1, . . . , M, (5.21)

where nµ
.
= Nµ/N and where we have ignored a contribution of O(µ/N) to the

right-hand side by effectively taking the limit N → ∞, while keeping M finite. The
quantities wµ = eξµ − 1 are known from the solution of (5.15) via (5.14) and (5.13).

Here we carry out the calculation for the case M → ∞. The solution (5.17)
substituted into (5.14) yields

qΦµ =
1

1 +
√

q

(

1 +

√
q

(1 +
√

q)µ

)

(M = ∞), (5.22)

which, upon substitution in (5.13), produces the wµ needed in (5.21):

wµ =
1√
q

+
(1 +

√
q)µ

q
(M = ∞). (5.23)

Now we rewrite Eqs. (5.21) in the form

wµ〈nµ〉 +

µ
∑

ν=1

〈nν〉 = ζ, µ = 1, 2, . . . (5.24)

where the quantity

ζ
.
= 1 −

∞
∑

ν=1

ν〈nν〉 (5.25)
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can be treated as a constant to be determined self-consistently at the end. The solution
of Eqs. (5.24), obtained by induction, is

〈nµ〉 =
Pµ

wµ

(

1 +

∞
∑

ν=1

ν

wν
Pν

)−1

, Pµ
.
=

µ
∏

ν=1

wν

wν + 1
, (5.26)

and, after normalization,

〈n̂µ〉 .
= 〈nµ〉

(

∞
∑

ν=1

〈nν〉
)−1

=
Pµ

wµ

(

∞
∑

ν=1

Pν

wν

)−1

=
Pµ

wµ(1 − P∞)
, (5.27)

From (5.12) and (5.26) we infer that Pµ = qΦµ a quantity evaluated in (5.22). The
assembly of the ingredients (5.22), (5.23), and (5.17) to expression (5.27) produces the
following explicit result for the distribution of lengths µ of string particles in H1/2 at
temperature T and zero magnetic field:

〈n̂µ〉 =

√
q

(1 +
√

q)µ
=

e−2K

(1 + e−2K)µ
, µ = 1, 2, . . . (5.28)

This is a realization of Pascal’s distribution, P (µ) = γ(1 − γ)µ−1, if we set γ =
e−K/(eK + e−K). This result was previously derived by Denisov and Hänggi [3] using
a very different method in their study of finite Ising chains with open boundaries.
This distribution indeed favors short strings in the crowded conditions at high T , in
agreement with observations made in our discussion of the entropy curves (Fig. 3). At
low T the distribution is flat, consistent with the fact that all strings have the same
energy. With some additional effort our solution can be generalized to finite M , and
to models with arbitrary values for the energies ǫµ of domains of size µ.

6. Conclusion

We have demonstrated that the conceptual framework of statistical interaction
between quasiparticles in many-body systems [9, 10] leads to significant new insights
into the statistical mechanics of Ising chains and related models with spin-1/2 or spin-
1 product eigenstates on a one-dimensional lattice. We have identified, in particular,
the nature of complementary sets of independent particles on the basis of which the
spectrum of Ising chains with s = 1/2 and s = 1 can be generated systematically from
either the ferro- or antiferromagnetic ground state.

The Néel state is the vacuum for solitonic particles. In the s = 1/2 case the
solitons themselves are the independent particles. They are antiferromagnetic domain
walls, confined to single bonds, with spin ±1/2 and semionic statistical interaction.
In the s = 1 case the solitons are merely building blocks of particles. All independent
particles are soliton pairs. The paired solitons may be on the same bond or on bonds
any number of lattice units apart. We have carried out the exact statistical mechanical
analysis of solitons (two species) for s = 1/2 and of soliton pairs (six species) for s = 1.

The state with all spins up is the vacuum for string particles. In the s = 1/2
case the independent particles are domains of overturned spins and in the s = 1 case
they are nested domains, i.e. domains inside domains of halfway overturned spins. By
working out their exact statistical interaction we have set the stage for the statistical
mechanical analysis of domains and nested domains. We have carried out that analysis
for the s = 1/2 case and established contact with previous work based on different
methods [3].
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The work presented here opens up numerous opportunities for extensions and
comparisons including the following. (i) The methodology developed in Secs. 3
and 4 for the identification and specification of independent solitonic particles looks
promising for applications to Ising chains with s > 1 and to Ising ladders. Preliminary
results for H3/2, for example, indicate that the independent solitonic particles contain
at least two and no more than six solitons. This again includes particles confined
to one bond and particles spread across many bonds with more than one species of
spacer particles acting as deconfinement agents. (ii) A question of considerable interest
is how the methodology developed here can be generalized to situations with Ising
interactions beyond nearest neighbors, which, in general, leads to a coupling between
solitonic particles and between string particles. (iii) There exist integrable spin chain
models with a parametric Ising limit. Consequently, the solitonic particles analyzed
here must exist in some variant form away from the Ising limit of those models. One
such link (to the spinons of the s = 1/2 XXZ model) is outlined in Appendix A.
Corresponding links are bound to exist between the string and nested-string particles
of Ising chains and the string solutions of the Bethe ansatz applied to integrable spin
models with s = 1/2 [17, 18, 19, 20, 21, 22] and s = 1 [11, 12, 13, 14, 15, 16] near
their Ising limits.

Appendix A. Solitons versus spinons

The ground state of the s = 1/2 XXZ model,

HXXZ =
N
∑

n=1

[

J⊥(Sx
nSx

n+1 + Sy
nSy

n+1) + JzS
z
nSz

n+1

]

, (A.1)

at J⊥, Jz ≥ 0 for even N is non-degenerate except in the Ising limit (J⊥ = 0). The
finite-size gap is of O(N−1) in the planar regime (J⊥ > Jz) and of O(e−N) in the axial
regime (J⊥ < Jz). The lowest energy level in both regimes has been identified as the
(unique) vacuum of spinons [22]. The two lowest levels, again in both regimes, can be
identified as the (twofold) vacuum of solitons.‡

Spinons and solitons have similar but not identical semionic exclusion statistics.
The similarities and differences are encoded in the multiplicity expressions. Equations
(3.3)-(3.4) for solitons are to be compared with

WS(N+, N−) =
∏

σ=±

(

dσ + Nσ − 1
Nσ

)

, (A.2)

dσ =
1

2
(N + 1) − 1

2

∑

σ′

(Nσ′ − δσσ′) (A.3)

for spinons [9]. Away from the Ising limit, solitons (and spinons) are dispersive
and scatter off each other elastically. Both kinds of particles are most conveniently
identified by their momentum quantum numbers. Every XXZ eigenstate has a unique
spinon composition and a unique soliton composition. The relation between the spinon
composition and the soliton composition is most transparent in the XX limit (Jz = 0).

In Ref. [23] a motif was developed that relates the configuration of (free) Jordan-
Wigner fermions with the configuration of spinons. This motif is reproduced in Fig. A1
for N = 4 (16 eigenstates) and amended to also show the soliton configuration. The

‡ The names attributed to quasiparticles in quantum spin chains vary among authors. Our usage is
common but not universal.
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allowed fermion momenta (in units of π/N) are

m̄i ∈
{

{1, 3, . . . , 2N − 1} for even NF

{0, 2, . . . , 2N − 2} for odd NF
(A.4)

and the allowed spinon orbital momenta (in units of π/N) are

mi =
NS

2
,
NS

2
+ 2, . . . , N − NS

2
, (A.5)

where NF is the number of fermions and NS = N+ + N− the number of spinons in
any given XX eigenstate.

The exact spinon configuration is encoded in the fermion configuration as
described in the following: (i) Consider the the gray fork as dividing the fermion
momentum space into two domains, the inside and the outside. The outside domain
wraps around at the extremes (m̄i = N mod N = 0). (ii) Every fermionic hole
(open circle) inside represents a spin-up spinon (square surrounding open circle) and
every fermionic particle (full circle) outside represents a spin-down spinon (square

0 2 4 6

m i
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Figure A1. Fermion configurations of all eigenstates for N = 4 of the XX model
(Jz = 0). Fermionic particles (holes) are denoted by full (open) circles. Spinons
with spin up (down) are denoted by (black or gray) squares around open (full)
circles. Solitons with spin up (down) are denoted by black squares around open
(full) circles. The fermion momenta m̄i (in units of π/N) can be read off the
diagram. The spinon orbital momenta mi (also in units of π/N) and the spinon
spins σi are given explicitly and can be inferred from the fermion configuration
as explained in the text. Also given are the wave number k (in units of 2π/N)
and the energy E (in units of J⊥) of each eigenstate.
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surrounding full circle). (iii) Any number of adjacent spinons in the representation of
Fig. A1 are in the same orbital. Two spin-up (spin-down) spinons that are separated
by ℓ consecutive fermionic particles (holes) have quantum numbers separated by 2ℓ.
(iv) The spinon orbital momenta are sorted in increasing order from the right-hand
prong of the gray fork toward the left across the inside domain and toward the right
with wrap-around through the outside domain.

For the determination of the soliton content of any XX eigenstate we must also
consider the black fork in Fig. A1, which is shifted two units to the left. If there is
any spin-up/spin-down spinon pair as identified by the rules pertaining to the gray
fork that does not also satisfy the same rules with respect to the black fork, then it
is omitted from the list of solitons. All such spinons are identified by gray squares
in Fig. A1. The spinon vacuum is just one of two soliton vacua, the other soliton
vacuum being a two-spinon state. The two soliton vacua have wave numbers differing
by π. In the Ising limit of the XXZ model they correspond to the symmetric and
antisymmetric combinations of the two product Néel states.
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