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Copyright © 2018 M. R. S. Kulenović et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We investigate the global asymptotic stability of the following second order rational difference equation of the form 𝑥𝑛+1 =(𝐵𝑥𝑛𝑥𝑛−1 + 𝐹)/(𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1), 𝑛 = 0, 1, . . . , where the parameters 𝐵, 𝐹, 𝑏, and 𝑐 and initial conditions 𝑥−1 and 𝑥0 are positive
real numbers. The map associated with this equation is always decreasing in the second variable and can be either increasing or
decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the
unique equilibrium point implies global asymptotic stability. Also, we show that considered equation exhibits the Naimark-Sacker
bifurcation resulting in the existence of the locally stable periodic solution of unknown period.

1. Introduction and Preliminaries

In this paper, we investigate the local and global dynamics of
the following difference equation:

𝑥𝑛+1 = 𝐵𝑥𝑛𝑥𝑛−1 + 𝐹𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1 𝑛 = 0, 1, . . . (1)

where the parameters 𝐵, 𝐹, 𝑏, 𝑐 are positive real numbers
and initial conditions 𝑥−1 and 𝑥0 are arbitrary positive real
numbers. Equation (1) is the special case of a general second
order quadratic fractional equation of the form

𝑥𝑛+1 = 𝐴𝑥2𝑛 + 𝐵𝑥𝑛𝑥𝑛−1 + 𝐶𝑥2𝑛−1 + 𝐷𝑥𝑛 + 𝐸𝑥𝑛−1 + 𝐹𝑎𝑥2𝑛 + 𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1 + 𝑑𝑥𝑛 + 𝑒𝑥𝑛−1 + 𝑓 ,
𝑛 = 0, 1, . . . , (2)

with nonnegative parameters and initial conditions such that𝐴+𝐵+𝐶 > 0, 𝑎+𝑏+𝑐+𝑑+𝑒+𝑓 > 0 and 𝑎𝑥2𝑛+𝑏𝑥𝑛𝑥𝑛−1+𝑐𝑥2𝑛−1+𝑑𝑥𝑛 + 𝑒𝑥𝑛−1 + 𝑓 > 0, 𝑛 = 0, 1, . . .. Several global asymptotic
results for some special cases of Equation (2) were obtained
in [1–11]. Also, Equation (1) is a special case of the equation

𝑥𝑛+1 = 𝐵𝑥𝑛𝑥𝑛−1 + 𝐶𝑥2𝑛−1 + 𝐹𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1 + 𝑓 , 𝑛 = 0, 1, . . . , (3)

with positive parameters and nonnegative initial conditions𝑥−1, 𝑥0. Local and global dynamics of Equation (3) was
investigated in [12].

The special case of Equation (3) when 𝐵 = 𝐶 = 0, i.e.,
𝑥𝑛+1 = 𝐹𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1 + 𝑓, 𝑛 = 0, 1, . . . (4)

was studied in [8]. The authors performed the local stabil-
ity analysis of the unique equilibrium point and gave the
necessary and sufficient conditions for the equilibrium to
be locally asymptotically stable, a repeller or nonhyperbolic
equilibrium. Also, it was shown that Equation (4) exhibits the
Naimark-Sacker bifurcation.

The special case of Equation (3) (when 𝐵 = 𝐹 = 0 and𝐶 = 1) is the following equation:
𝑥𝑛+1 = 𝑥2𝑛−1𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1 + 𝑓 , 𝑛 = 0, 1, . . . , (5)

where the parameters 𝑏, 𝑐, and 𝑓 are nonnegative numbers
with condition 𝑏 + 𝑐 > 0, 𝑓 ̸= 0 and the initial conditions𝑥−1, 𝑥0 arbitrary nonnegative numbers such that 𝑥−1+𝑥0 > 0.
Equation (5) is a perturbed Sigmoid Beverton-Holt difference
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equation and it was studied in [9]. The special case of
Equation (5) for 𝑏 = 0 is the well-knownThomson equation

𝑥𝑛+1 = 𝑥2𝑛−1𝑐𝑥2𝑛−1 + 𝑓, 𝑛 = 0, 1, . . . , (6)

where the parameters 𝑐 and 𝑓 are positive numbers and the
initial conditions 𝑥−1, 𝑥0 are arbitrary nonnegative numbers,
is used in the modelling of fish population [13].

The dynamics of (6) is very interesting and follows from
the dynamics of related equation

𝑥𝑛+1 = 𝑥2𝑛𝑐𝑥2𝑛 + 𝑓, 𝑛 = 0, 1, . . . . (7)

Indeed (6) is delayed version of (7) and so it exhibits the
existence of period-two solutions.

Two interesting special cases of Equation (2) are the
following difference equations:𝑥𝑛+1 = 𝛼 + 𝛾𝑥𝑛−1𝐵𝑥𝑛 + 𝐷𝑥𝑛𝑥𝑛−1 + 𝑥𝑛−1 , 𝑛 = 0, 1, . . . , (8)

studied in [14], and𝑥𝑛+1 = 𝑥𝑛𝑥𝑛−1 + 𝛼𝑥𝑛 + 𝛽𝑥𝑛−1𝑎𝑥𝑛𝑥𝑛−1 + 𝑏𝑥𝑛−1 , 𝑛 = 0, 1, . . . , (9)

studied in [5]. In both equations, (8) and (9), the associated
map changes its monotonicity with respect to its variable.

In this paper, in some cases when the associated map
changes its monotonicity with respect to the first variable in
an invariant interval, we will use Theorems 1 and 2 below
in order to obtain the convergence results. However, if 𝐹 =𝐹𝑔 = (𝐵/𝑏)3𝑐, we would not be able to use this method, so we
will use the semicycle analysis; see [15] to show that each of
the following four sequences {𝑥4𝑘}∞𝑘=1, {𝑥4𝑘+1}∞𝑘=0, {𝑥4𝑘+2}∞𝑘=0,{𝑥4𝑘+3}∞𝑘=0 converges to the unique equilibrium point.

Also, wewill show that Equation (1) exhibits theNaimark-
Sacker bifurcation resulting in the existence of the locally
stable periodic solution of unknown period.

Note that the problem of determining invariant intervals
in the case when the associated map changes its monotonicity
with respect to its variable has been considered in [17, 18].

In this paper, we will use the following well-known
results, Theorem 2.22, in [16], and Theorem 1.4.7 in [19].

Theorem 1. Let [𝑎, 𝑏] be a compact interval of real numbers
and assume that 𝑓 : [𝑎, 𝑏] × [𝑎, 𝑏] 󳨀→ [𝑎, 𝑏] is a continuous
function satisfying the following properties:

(a) 𝑓(𝑥, 𝑦) is nondecreasing in 𝑥 ∈ [𝑎, 𝑏] for each 𝑦 ∈[𝑎, 𝑏], and 𝑓(𝑥, 𝑦) is nonincreasing in 𝑦 ∈ [𝑎, 𝑏] for
each 𝑥 ∈ [𝑎, 𝑏];

(b) If (𝑚,𝑀) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] is a solution of the system𝑓 (𝑚,𝑀) = 𝑚
and 𝑓 (𝑀,𝑚) = 𝑀, (10)

then 𝑚 = 𝑀.
�en 𝑥𝑛+1 = 𝑓 (𝑥𝑛, 𝑥𝑛−1) , 𝑛 = 0, 1, ⋅ ⋅ ⋅ (11)

has a unique equilibrium 𝑥 ∈ [𝑎, 𝑏] and every solution of
Equation (11) converges to 𝑥.
Theorem 2. Let [𝑎, 𝑏] be an interval of real numbers and
assume that𝑓 : [𝑎, 𝑏]×[𝑎, 𝑏] 󳨀→ [𝑎, 𝑏] is a continuous function
satisfying the following properties:

(a) 𝑓(𝑥, 𝑦) is nonincreasing in both variables
(b) If (𝑚,𝑀) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] is a solution of the system𝑓 (𝑚,𝑚) = 𝑀

and 𝑓 (𝑀,𝑀) = 𝑚, (12)

then 𝑚 = 𝑀.

�en, (11) has a unique equilibrium 𝑥 ∈ [𝑎, 𝑏] and every
solution of Equation (11) converges to 𝑥.
Remark 3. As is shown in [20] the unique equilibrium in
Theorems 1 and 2 is globally asymptotically stable.

The rest of this paper is organized as follows. The second
section presents the local stability of the unique positive
equilibrium solution and the nonexistence of the minimal
period-two solution. The third section gives global dynamics
in certain regions of the parametric space. The results and
techniques depend on monotonic character of the transition
function𝑓(𝑥, 𝑦)which is either decreasing in both arguments
or increasing in first and decreasing in second argument.
In simpler situations Theorems 1 and 2 are sufficient to
prove global stability of the unique equilibrium. In more
complicated situations we use the semicycle analysis, which
is extensively used in [15, 19] for many linear fractional
equations, to prove that every solution has four convergent
subsequences, which leads to the conclusion that every
solution converges to period-four solution. In some parts of
parametric space we prove that there is no minimal period-
four solution and so every solution converges to the equi-
librium, while in other parts of parametric space we prove
that the period-four solution exists. The semicycle analysis
presented here uses innovative techniques based on analysis
of systems of polynomial equationswhich coefficients depend
on four parameters. Finally in the region of parameters
complementary to the one where the period-four solution
exists we prove that the Naimark-Sacker bifurcation takes
place which produces locally stable periodic solution. All
numerical simulations indicate that the equilibrium solution
is globally asymptotically stable whenever it is locally asymp-
totically stable and that the dynamics is chaotic whenever
the equilibrium is repeller. An interesting feature of Equation
(1) is that it gives an example of second order difference
equation with period-four solution for which period-two
solution does not exist. The global dynamics of Equation (11)
when the transition function 𝑓(𝑥, 𝑦) is either increasing in
both arguments or decreasing in the first and increasing in
the second argument is fairly simple as every solution {𝑥𝑛}
breaks into two eventually monotonic subsequences {𝑥2𝑛}
and {𝑥2𝑛+1}; see [21–23]. The global dynamics of Equation
(11) when the transition function 𝑓(𝑥, 𝑦) is either decreasing
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in both arguments or increasing in the first and decreasing
in the second argument could be quite complicated ranging
from global asymptotic stability of the equilibrium, see [19,
21, 22, 24–26] to conservative and nonconservative chaos, see
[3, 19, 26]. Interesting applications can be found in [27].

2. Linearized Stability

In this section, we present the local stability of the unique
positive equilibrium of Equation (1) and the nonexistence of
the minimal period-two solution of Equation (1).

In view of the above restriction on the initial conditions
of Equation (1), the equilibrium points of Equation (1) are the
positive solutions of the equation

𝑥 = 𝐵𝑥2 + 𝐹(𝑏 + 𝑐) 𝑥2 , (13)

or equivalently (𝑏 + 𝑐) 𝑥3 − 𝐵𝑥2 − 𝐹 = 0. (14)

Equation (1) has the unique positive solution 𝑥 given as

𝑥 = 𝐵3 (𝑏 + 𝑐) + 3√2𝐵23 (𝑏 + 𝑐) 3√Δ + √Δ2 − 4𝐵6
+ 3√Δ + √Δ2 − 4𝐵63 3√4 ,

(15)

where Δ = 2𝐵3 + 27𝐹 (𝑏 + 𝑐)2 . (16)

Now, we investigate the stability of the positive equilibrium of
Equation (1). Set

𝑓 (𝑢, V) = 𝐵𝑢V + 𝐹𝑏𝑢V + 𝑐V2 = 𝐵𝑢V + 𝐹
V (𝑏𝑢 + 𝑐V) , (17)

and observe that

𝑓󸀠𝑢 = 𝐵𝑐V2 − 𝑏𝐹
V (𝑏𝑢 + 𝑐V)2 ,

𝑓󸀠V = −𝐵𝑐𝑢V2 + 2𝑐𝐹V + 𝑏𝐹𝑢
V2 (𝑏𝑢 + 𝑐V)2 < 0. (18)

The linearized equation associated with Equation (1) about
the equilibrium point 𝑥 is𝑧𝑛+1 = 𝑠𝑧𝑛 + 𝑡𝑧𝑛−1 (19)

where 𝑠 = 𝑓󸀠𝑢 (𝑥, 𝑥)
and 𝑡 = 𝑓󸀠V (𝑥, 𝑥) . (20)

Theorem 4. Let 𝐹0 = (𝐵/𝑐)3𝑏.�e unique equilibrium point 𝑥
of Equation (1) given by (15) is

(i) locally asymptotically stable if 𝐹 < 𝐹0,
(ii) a repeller if 𝐹 > 𝐹0,
(iii) a nonhyperbolic point of elliptic type if 𝐹 = 𝐹0.

Proof. In view of

𝑠 = 𝑓󸀠𝑢 (𝑥, 𝑥) = 𝐵𝑐𝑥2 − 𝑏𝐹𝑥3 (𝑏 + 𝑐)2 = 𝑐𝑏 + 𝑐 − 𝐹(𝑏 + 𝑐) 𝑥3 ,
𝑡 = 𝑓󸀠V (𝑥, 𝑥) = −𝐵𝑐𝑥2 + 2𝑐𝐹 + 𝑏𝐹𝑥3 (𝑏 + 𝑐)2 = −𝑠 − 2𝐹(𝑏 + 𝑐) 𝑥3
= − 𝑐𝑏 + 𝑐 − 𝐹(𝑏 + 𝑐) 𝑥3 < 0,

(21)

we have that 𝑠 + 𝑡 = − 2𝐹𝑥3 (𝑏 + 𝑐) < 0 (22)

and

𝑠2 − (1 − 𝑡)2 = (𝐵𝑐𝑥2 − 𝑏𝐹𝑥3 (𝑏 + 𝑐)2)2 − (1 + 𝐵𝑐𝑥2 + 2𝑐𝐹 + 𝑏𝐹𝑥3 (𝑏 + 𝑐)2 )2
= (𝐹𝑏 − 𝐵𝑐𝑥2)2𝑥6 (𝑏 + 𝑐)4

− (𝑏2𝑥3 + 2𝑏𝑐𝑥3 + 𝐹𝑏 + 𝑐2𝑥3 + 𝐵𝑐𝑥2 + 2𝐹𝑐)2𝑥6 (𝑏 + 𝑐)4
= −(2𝐹 + 𝑏𝑥3 + 𝑐𝑥3) (𝑏2𝑥3 + 2𝑏𝑐𝑥3 + 𝑐2𝑥3 + 2𝐵𝑐𝑥2 + 2𝐹𝑐)𝑥6 (𝑏 + 𝑐)3< 0,

(23)

and so |𝑠| < |1 − 𝑡|.
Also, we have

1 − 𝑡 = 1 + 𝐵𝑐𝑥2 + 2𝑐𝐹 + 𝑏𝐹𝑥3 (𝑏 + 𝑐)2 > 0 󳨐⇒
𝑡 < 1. (24)

Since |𝑠| < |1 − 𝑡|, the equilibrium point 𝑥 will be nonhyper-
bolic if 𝑡 = −1 and |𝑠| < 2. From 𝑡 = −1 we obtain− 𝑐𝑏 + 𝑐 − 𝐹(𝑏 + 𝑐) 𝑥3 = −1 ⇐⇒

𝑥 = 3√𝐹𝑏 ,
(25)

and by using (14), we have

(𝑏 + 𝑐)( 3√𝐹𝑏 )3 − 𝐵( 3√𝐹𝑏)2 − 𝐹 = 0 ⇐⇒
𝐹 = 𝐹0 = (𝐵𝑐 )3 𝑏.

(26)

Now, 𝑠 = 𝑐𝑏 + 𝑐 − 𝐹(𝑏 + 𝑐) (𝐹/𝑏) = −𝑏 − 𝑐𝑏 + 𝑐 (27)
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−Fo

Ｒ．（

g( x) for F < Fo
g( x) for F = Fo
g( x) for F > Fo

Figure 1: If 𝐹 < 𝐹0, then 𝑥 < 𝑥𝑛ℎ, i.e., 𝑥 is LAS, and if 𝐹 > 𝐹0, then𝑥 > 𝑥𝑛ℎ, i.e., 𝑥 is repeller.

and the characteristic equation of (19) is of the form

𝜆2 + 𝑏 − 𝑐𝑏 + 𝑐𝜆 + 1 = 0, (28)

from which

𝜆1,2 = 𝑐 − 𝑏 ± 𝑖√(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐)
and 󵄨󵄨󵄨󵄨𝜆1,2󵄨󵄨󵄨󵄨 = 1, (29)

that is, 𝑥 is nonhyperbolic equilibrium point. Let us
denote

𝑔 (𝑥) = (𝑏 + 𝑐) 𝑥3 − 𝐵𝑥2 − 𝐹. (30)

Then, 𝑔 (𝑥𝑛ℎ) = 0 ⇐⇒𝐹 = 𝐹0,
and 𝑔 (0) = −𝐹 = −𝐹0. (31)

The condition |𝑠| < |1 − 𝑡| = 1 − 𝑡 is always satisfied. Hence,
it holds: the equilibrium solution 𝑥 is locally asymptotically
stable if 𝑡 < −1 ⇐⇒

− 𝑐𝑏 + 𝑐 − 𝐹(𝑏 + 𝑐) 𝑥3 < −1 ⇐⇒
𝑥 < 3√𝐹𝑏 = 𝑥𝑛ℎ,

(32)

i.e., 𝐹 < 𝐹0 and a repeller if 𝑡 > −1, which is equivalent with𝑥 > 3√𝐹/𝑏 = 𝑥𝑛ℎ, i.e., 𝐹 > 𝐹0. See Figure 1.
Lemma 5. Equation (1) has no minimal period-two solution.

Proof. Otherwise Equation (1) has a minimal period-two
solution . . . 𝑥, 𝑦, 𝑥, 𝑦, . . . which satisfies

𝑥 = 𝐵𝑦𝑥 + 𝐹𝑏𝑦𝑥 + 𝑐𝑥2 ,
𝑦 = 𝐵𝑥𝑦 + 𝐹𝑏𝑥𝑦 + 𝑐𝑦2 . (33)

Then, 𝑏𝑥2𝑦 + 𝑐𝑥3 = 𝐵𝑥𝑦 + 𝐹,𝑏𝑥𝑦2 + 𝑐𝑦3 = 𝐵𝑥𝑦 + 𝐹, (34)

which yields(𝑥 − 𝑦) (𝑏𝑥𝑦 + 𝑐 (𝑥2 + 𝑥𝑦 + 𝑦2)) = 0, (35)

which implies 𝑥 = 𝑦. So, there is no a minimal period-two
solution.

3. Global Results

In this section, we prove several global attractivity results in
the parts of parametric space.

We notice that the function 𝑓(𝑢, V) is always decreasing
with respect to the second variable and can be either decreas-
ing or increasing with respect to the first variable, depending
on the sign of the nominator of 𝑓󸀠𝑢. Therefore,𝑓󸀠𝑢 = 0 ⇐⇒

V = √ 𝑏𝐹𝐵𝑐 , (36)

and the function 𝑓(𝑢, V) is nonincreasing in both variables
if V ≤ √𝑏𝐹/𝐵𝑐, and nondecreasing with respect to the
first variable and nonincreasing with respect to the second
variable if V ≥ √𝑏𝐹/𝐵𝑐. Since

𝑓(√𝑏𝐹𝐵𝑐 , √ 𝑏𝐹𝐵𝑐) = 𝐵𝑏 , (37)

if we denote 𝐹𝑔 = (𝐵/𝑏)3𝑐, we can have three possible cases:

𝐵𝑏 > √𝑏𝐹𝐵𝑐 ⇐⇒
𝐹 < 𝐹𝑔,
𝐵𝑏 = √𝑏𝐹𝐵𝑐 ⇐⇒
𝐹 = 𝐹𝑔,
𝐵𝑏 < √𝑏𝐹𝐵𝑐 ⇐⇒
𝐹 > 𝐹𝑔.

(38)
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As we have been seen, the nature of the local stability of
the equilibrium point depends on the parameter 𝐹0, so we
distinguish the following scenarios:

(1) 𝐹𝑔 ≤ 𝐹0,
(2) 𝐹𝑔 > 𝐹0.

Case 1 (𝐹𝑔 ≤ 𝐹0). Notice first that 𝐹𝑔 < 𝐹0 implies 𝑐 < 𝑏 and
that 𝐹𝑔 = 𝐹0 implies 𝑐 = 𝑏. Now, we observe three subcases.
(a) 𝐹 < 𝐹𝑔 ≤ 𝐹0. If 𝐹 < 𝐹𝑔 ≤ 𝐹0, the function 𝑓(𝑢,
V) is nondecreasing with respect to the first variable and
nonincreasing with respect to the second variable on the
invariant interval of Equation (1) which is given by

[𝐿,𝑈] = [[√𝑏𝐹𝐵𝑐 , 𝐵𝑏 ]] , (39)

i.e., it holds

𝑓 : [[√ 𝑏𝐹𝐵𝑐 , 𝐵𝑏 ]]
2 󳨀→ [[√𝑏𝐹𝐵𝑐 , 𝐵𝑏 ]] . (40)

Indeed, since

max
(𝑥,𝑦)∈[𝐿,𝑈]2

𝑓 (𝑥, 𝑦) = 𝑓 (𝑈, 𝐿)
and min
(𝑥,𝑦)∈[𝐿,𝑈]2

𝑓 (𝑥, 𝑦) = 𝑓 (𝐿, 𝑈) (41)

we have that

𝑓 (𝑈, 𝐿) = 𝑓(𝐵𝑏 ,√ 𝑏𝐹𝐵𝑐)
= 𝐹 + (𝐵2/𝑏)√(1/𝐵) 𝐹 (𝑏/𝑐)𝐵√(1/𝐵) 𝐹 (𝑏/𝑐) + (1/𝐵) 𝐹𝑏 = 𝐵𝑏 = 𝑈, (42)

and 𝑓 (𝐿,𝑈) ≥ 𝐿 ⇐⇒
𝑓(√𝑏𝐹𝐵𝑐 , 𝐵𝑏 ) = 𝐹 + (𝐵2/𝑏)√(1/𝐵) 𝐹 (𝑏/𝑐)𝐵√(1/𝐵) 𝐹 (𝑏/𝑐) + (𝐵2/𝑏2) 𝑐

≥ √ 𝑏𝐹𝐵𝑐 ⇐⇒
𝐹 + 𝐵2𝑏 √ 1𝐵𝐹𝑏𝑐 ≥ 𝐵(𝑏𝐹𝐵𝑐) + 𝐵2𝑏2 𝑐√ 𝑏𝐹𝐵𝑐 ⇐⇒

𝐹𝑏2𝑐 + 𝑏𝑐𝐵2√𝑏𝐹𝐵𝑐 ≥ 𝑏3𝐹 + 𝐵2𝑐2√𝑏𝐹𝐵𝑐 ⇐⇒
𝐹𝑏2 (𝑐 − 𝑏) ≥ (𝑐 − 𝑏) 𝑐𝐵2√𝑏𝐹𝐵𝑐

(43)

which is true for 𝑐 ≤ 𝑏 and 𝐹 < 𝐹𝑔.

Also, since 𝐹 < (𝐵3/𝑏3)𝑐 = 𝐹, we obtain
𝑔(√𝑏𝐹𝐵𝑐)𝑔(𝐵𝑏 )

= −(𝑏 + 𝑐) (𝐵3𝑐 − 𝐹𝑏3) (𝐹 − 𝑐√(𝑏𝐹/𝐵𝑐)3)𝑏3𝑐 < 0.
(44)

This means that the equilibrium point 𝑥 belongs to the
invariant interval [𝐿,𝑈].
Theorem 6. If 𝐹 < 𝐹𝑔 ≤ 𝐹0, then the equilibrium point 𝑥 is
globally asymptotically stable.

Proof. The system of algebraic equations𝑓 (𝑚,𝑀) = 𝑚,𝑓 (𝑀,𝑚) = 𝑀, (45)

is reduced to the system𝐹 + 𝐵𝑀𝑚 = 𝑚(𝑐𝑀2 + 𝑏𝑚𝑀) ,
𝐹 + 𝐵𝑀𝑚 = 𝑀(𝑐𝑚2 +𝑀𝑏𝑚) , (46)

which yields 𝑀𝑚(𝑏 − 𝑐) (𝑀 − 𝑚) = 0. (47)

Since 𝑐 ̸= 𝑏, then it implies that 𝑚 = 𝑀 = 𝑥. Now, by using
Theorems 1 and 4, the conclusion follows.

For some numerical values of parameters we give a visual
evidence forTheorem 6which indicates that in the case when𝐹 < 𝐹𝑔 < 𝐹0, the corresponding orbit converges very quickly
(see Figure 2(a)), and in the case when 𝐹 < 𝐹𝑔 = 𝐹0,
the corresponding orbit converges significantly slower (see
Figure 2(b)).

(b) 𝐹𝑔 < 𝐹 < 𝐹0
Lemma 7. If 𝐹 < 𝐹𝑑 = 4𝐵3/(𝑏 + 𝑐)2, then the system of
algebraic equations 𝑓 (𝑚,𝑚) = 𝑀

and 𝑓 (𝑀,𝑀) = 𝑚, (48)

has the unique solution (𝑚,𝑀) = (𝑥, 𝑥)
Proof. From (48) we have that𝐵𝑚2 + 𝐹 = 𝑀𝑚2 (𝑏 + 𝑐) ,𝐵𝑀2 + 𝐹 = 𝑚𝑀2 (𝑏 + 𝑐) , (49)

that is,𝑀(𝑏𝑚2 + 𝑐𝑚2) − 𝐵𝑚2 − 𝑚(𝑏𝑀2 + 𝑐𝑀2) + 𝐵𝑀2= 0(𝑀 − 𝑚) [𝐵 (𝑚 +𝑀 − (𝑏 + 𝑐)𝑚𝑀)] = 0, (50)

from which𝑚 = 𝑀 = 𝑥 or 𝐵(𝑚 +𝑀 − (𝑏 + 𝑐)𝑚𝑀) = 0.
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Figure 2: The orbit for (a) 𝑏 = 2, 𝑐 = 1, 𝐵 = 4, 𝐹 = 7, 𝐹𝑔 = 8, 𝐹0 = 128, and (𝑥0, 𝑥−1) = (0.3, 2.8) and (b) 𝑏 = 0.5, 𝑐 = 0.5, 𝐵 = 2, 𝐹 = 30,𝐹𝑔 = 𝐹0 = 32, and (𝑥0, 𝑥−1) = (1.1, 1) generated by Dynamica 4 [16].

If 𝐵(𝑚+𝑀−(𝑏+𝑐)𝑚𝑀) = 0, then𝑚 = 𝐵𝑀/(−𝐵+𝑀(𝑏+𝑐)). Since𝑀 = (𝐵𝑚2 + 𝐹)/𝑚2(𝑏 + 𝑐) > 𝐵/(𝑏 + 𝑐) (see the first
equation of system (49)), then𝑚 > 0. After substituting 𝑚 in
the second equation of system (49), we get

𝐵𝑀2 + 𝐹 = 𝑀2 (𝑏 + 𝑐2) 𝐵𝑀−𝐵 +𝑀 (𝑏 + 𝑐) ⇐⇒𝐵2𝑀2 + 𝐹 (𝑏 + 𝑐)𝑀 + 𝐵𝐹 = 0, (51)

from which we have that

𝑀1,2 = 12𝐵2 (𝐹 (𝑏 + 𝑐) ± √𝐹2 (𝑏 + 𝑐)2 − 4𝐵3𝐹) > 0. (52)

Straightforward calculation show that 𝑚1 = 𝑀2 and 𝑚2 =𝑀1. Notice that the solution (𝑚2,𝑀2) is exactly the same
as the solution (𝑀1, 𝑚1), and that system (48) has a unique
solution 𝑚 = 𝑀 = 𝑥 if 𝐹 ≤ 4𝐵3/(𝑏 + 𝑐)2 = 𝐹𝑑.
Theorem 8. If 𝐹𝑔 < 𝐹 ≤ 𝐹𝑑 < 𝐹0, where 𝐹𝑑 = 4𝐵3/(𝑏 + 𝑐)2,
then the equilibrium 𝑥 is globally asymptotically stable.

Proof. If 𝐹𝑔 < 𝐹 < 𝐵3/𝑏𝑐, then
𝑓 : [[𝐵𝑏 ,√ 𝑏𝐹𝐵𝑐]]

2 󳨀→ [[𝐵𝑏 ,√ 𝑏𝐹𝐵𝑐]] , (53)

which means that the interval [𝐿,𝑈] = [𝐵/𝑏, √𝑏𝐹/𝐵𝑐] is an
invariant interval.

Indeed, since the function 𝑓 is nonincreasing in both
variables on the invariant interval, then

max
(𝑥,𝑦)∈[𝐿,𝑈]2

𝑓 (𝑥, 𝑦) = 𝑓 (𝐿, 𝐿)
and min
(𝑥,𝑦)∈[𝐿,𝑈]2

𝑓 (𝑥, 𝑦) = 𝑓 (𝑈,𝑈) , (54)

and we obtain that

𝑓 (𝑈,𝑈) = 𝑓(√𝑏𝐹𝐵𝑐 , √ 𝑏𝐹𝐵𝑐)
= 𝐹 (𝑏/𝑐) + 𝐹(1/𝐵) 𝐹 (𝑏2/𝑐) + (1/𝐵) 𝐹𝑏 = 𝐵𝑏 = 𝐿, (55)

and 𝑓 (𝐿, 𝐿) ≤ 𝑈 ⇐⇒
𝑓(𝐵𝑏 , 𝐵𝑏 ) = 𝐵3 + 𝐹𝑏2𝐵2 (𝑏 + 𝑐) ≤ √𝑏𝐹𝐵𝑐 ⇐⇒

( 𝐵3 + 𝐹𝑏2𝐵2 (𝑏 + 𝑐))2 − 𝑏𝐹𝐵𝑐 < 0 ⇐⇒
(𝐵3𝑐 − 𝐹𝑏3) (𝐵3 − 𝐹𝑏𝑐) < 0 ⇐⇒

𝐹𝑔 = 𝐵3𝑏3 𝑐 < 𝐹 < 𝐵3𝑏𝑐 .

(56)

Hence,

𝑓(𝐵𝑏 , 𝐵𝑏 ) = 𝐹𝑏2 + 𝐵3𝐵2 (𝑏 + 𝑐) ∈ [[𝐵𝑏 ,√ 𝑏𝐹𝐵𝑐]] ,
if 𝑐 < 𝑏 and 𝐹𝑔 = 𝐵3𝑏3 𝑐 < 𝐹 < 𝐵3𝑏𝑐 .

(57)

The following calculation will show that 𝐹𝑑 < 𝐵3/𝑏𝑐. Indeed,4𝐵3(𝑏 + 𝑐)2 < 𝐵3𝑏𝑐 ⇐⇒
−𝐵3 (𝑏 − 𝑐)2𝑏𝑐 (𝑏 + 𝑐)2 < 0, (58)

which is true.
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Figure 3: The orbit and the phase portrait for 𝑏 = 2, 𝑐 = 1, 𝐵 = 4, 𝐹 = 28, 𝐹𝑔 = 8, 𝐹0 = 128, and (𝑥0, 𝑥−1) = (0.3, 2.8) generated by Dynamica
4 [16].

Also, since 𝑔(√𝑏𝐹/𝐵𝑐)𝑔(𝐵/𝑏) < 0, it means that the
equilibrium point 𝑥 belongs to the invariant interval [𝐿,𝑈].

Now, by using Lemma 7, Theorems 2 and 4, we get the
conclusion that the equilibrium 𝑥 is globally asymptotically
stable.

For some numerical values of parameters we give a visual
evidence for Theorem 8. See Figure 3.

Lemma 9. Assume that 𝐹 ̸= 𝐹𝑔.
(i) If 𝑥𝑛−1 < √𝑏𝐹/𝐵𝑐, then 𝑥𝑛+1 > 𝐵/𝑏.
(ii) If 𝑥𝑛−1 > √𝑏𝐹/𝐵𝑐, then 𝑥𝑛+1 < 𝐵/𝑏.
(iii) If 𝑥𝑛−1 = √𝑏𝐹/𝐵𝑐, then 𝑥𝑛+1 = 𝐵/𝑏.

Proof. Since the map associated with the right-hand side of
Equation (1) is always decreasing in the second variable, we
have that

𝑥𝑛−1{{{{{
<>=
}}}}}√𝑏𝐹𝐵𝑐 󳨐⇒

𝑥𝑛+1 = 𝐵𝑥𝑛𝑥𝑛−1 + 𝐹𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1 {{{{{
><=
}}}}}

𝐵𝑥𝑛√𝑏𝐹/𝐵𝑐 + 𝐹𝑏𝑥𝑛√𝑏𝐹/𝐵𝑐 + 𝑏𝐹/𝐵
= 𝐵𝑏 .

(59)

Note that under assumption of Lemma 9, the following
inequality holds:

min
{{{√𝑏𝐹𝐵𝑐 , 𝐵𝑏}}} < 𝑥 < max

{{{√𝑏𝐹𝐵𝑐 , 𝐵𝑏}}} . (60)

(c) 𝐹 = 𝐹𝑔 < 𝐹0. By substituting parameter 𝐹 = 𝐹𝑔 =(𝐵/𝑏)3𝑐 = 𝐸3𝑐, where 𝑥 = 𝐸 = 𝐵/𝑏, in Equation (1), we obtain

𝑥𝑛+1 = 𝐵𝑥𝑛𝑥𝑛−1 + (𝐵3/𝑏3) 𝑐𝑏𝑥𝑛𝑥𝑛−1 + 𝑐𝑥2𝑛−1
= (𝐵/𝑏) 𝑥𝑛𝑥𝑛−1 + (𝐵/𝑏)3 (𝑐/𝑏)𝑥𝑛𝑥𝑛−1 + (𝑐/𝑏) 𝑥2𝑛−1
= 𝐸𝑥𝑛𝑥𝑛−1 + 𝐸3 (𝑐/𝑏)𝑥𝑛𝑥𝑛−1 + (𝑐/𝑏) 𝑥2𝑛−1 .

(61)

Lemma 10. (i) Assume that 𝐹 = 𝐹𝑔 < 𝐹0, i.e., 𝑐 < 𝑏. �en
Equation (61) does not possess a minimal period-four solution.

(ii) Assume that 𝐹 = 𝐹𝑔 = 𝐹0, i.e., 𝑐 = 𝑏. �en Equation
(61) has the minimal period-four solutions of the form

. . . , 𝐸, 𝐸2𝑡 , 𝐸, 𝑡, 𝐸, 𝐸2𝑡 , 𝐸, 𝑡, . . . (62)

where 𝐸 = 𝑥 = (𝐵/𝑏)(= 𝐵/𝑐) and 𝑡 > 0 is an arbitrary number
depending on initial conditions 𝑥0 and 𝑥−1.
Proof. Suppose that Equation (61) has a minimal period-four
solution . . . 𝑥, 𝑦, 𝑧, 𝑡, 𝑥, 𝑦, 𝑧, 𝑡, . . .; then it holds

𝑥 = 𝐸𝑡𝑧 + 𝐸3 (𝑐/𝑏)𝑡𝑧 + (𝑐/𝑏) 𝑧2 ,
𝑦 = 𝐸𝑥𝑡 + 𝐸3 (𝑐/𝑏)𝑥𝑡 + (𝑐/𝑏) 𝑡2 ,
𝑧 = 𝐸𝑥𝑦 + 𝐸3 (𝑐/𝑏)𝑥𝑦 + (𝑐/𝑏) 𝑥2 ,
𝑡 = 𝐸𝑦𝑧 + 𝐸3 (𝑐/𝑏)𝑦𝑧 + (𝑐/𝑏) 𝑦2 ,

(63)

where 𝐸 = 𝑥. By eliminating 𝑥 and 𝑦 we obtain𝑧 (𝑧 − 𝐸)𝑊 (𝑡, 𝑧) = 0,𝑡 (𝑡 − 𝐸)𝑈 (𝑡, 𝑧) = 0, (64)
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where the functions𝑊(𝑡, 𝑧) and 𝑈(𝑡, 𝑧) can be written in the
polynomial form as𝑊(𝑡, 𝑧) = 𝛽4𝑧4 + 𝛽3𝑧3 + 𝛽2𝑧2 + 𝛽1𝑧 + 𝛽0, (65)𝑈 (𝑡, 𝑧) = 𝛼5𝑧5 + 𝛼4𝑧4 + 𝛼3𝑧3 + 𝛼2𝑧2 + 𝛼1𝑧 + 𝛼0, (66)

where𝛽4 = 𝑐3𝑡𝐸 (𝑏2𝐸 − 𝑐2𝑡) ,
𝛽3 = 𝑐 (𝑏𝑐3𝐸4 − 𝑐4𝑡2𝐸2 + 𝑏2𝑐2𝑡4 − 𝑏2𝑐2𝑡2𝐸2

+ 2𝑏3𝑐𝑡2𝐸2 − 3𝑏𝑐3𝑡3𝐸 + 𝑏4𝑡3𝐸) ,𝛽2 = 𝑏5𝑡4𝐸 − 𝑐5𝑡2𝐸3 + 𝑏3𝑐2𝑡5 − 𝑏𝑐4𝑡3𝐸2 + 2𝑏2𝑐3𝑡𝐸4− 2𝑏2𝑐3𝑡4𝐸 + 𝑏4𝑐𝑡3𝐸2 − 𝑏2𝑐3𝑡2𝐸3 + 2𝑏3𝑐2𝑡2𝐸3− 2𝑏3𝑐2𝑡3𝐸2 − 𝑏𝑐4𝑡𝐸4 + 𝑏4𝑐𝑡4𝐸,𝛽1 = 𝑏𝑐𝑡𝐸3 (−𝑐3𝐸2 + 2𝑏3𝑡2 − 𝑐3𝑡2 + 𝑏𝑐2𝐸2 + 𝑏2𝑐𝑡2
− 3𝑏𝑐2𝑡𝐸 + 𝑏2𝑐𝑡𝐸) ,

𝛽0 = 𝑏𝑐2𝑡𝐸5 (𝑏2𝑡 − 𝑐2𝐸) ,𝛼5 = 𝑏𝑐4𝑡𝐸 > 0,𝛼4 = 𝑐2 (𝑏2𝑡2 (𝑐𝐸 + 𝑏𝑡) − 𝑐3𝐸3 + (𝑏3 − 𝑐3) 𝑡𝐸2
+ (𝑏2 − 𝑐2) 𝑐𝑡2𝐸) ,

𝛼3 = 𝑏 (𝑏𝑐3𝐸4 + 𝑏4𝑡3𝐸 − 2𝑐4𝑡𝐸3 − 2𝑐4𝑡3𝐸 − 2𝑐4𝑡2𝐸2
+ 𝑏3𝑐𝑡4 − 𝑏𝑐3𝑡2𝐸2 + 𝑏2𝑐2𝑡3𝐸 + 𝑏3𝑐𝑡2𝐸2) ,

𝛼2 = 𝑏𝑐𝑡𝐸 (−2𝑐3𝐸3 + 𝑏2𝑐𝐸3 + 2𝑏3𝑡𝐸2 + 𝑏3𝑡2𝐸
− 𝑏𝑐2𝑡2𝐸 − 𝑏𝑐2𝑡3 − 𝑏𝑐2𝑡𝐸2 − 𝑏2𝑐𝑡2𝐸) ,

𝛼1 = 𝑏2𝑐2𝑡𝑧𝐸4 (𝑏𝐸 + 2𝑡 (𝑏 − 𝑐)) > 0,𝛼0 = 𝑏2𝑐3𝑡𝐸6 > 0.

(67)

Since 𝑧 ̸= 0 and 𝑡 ̸= 0, from system (64), we obtain the
following four cases:

(1) The system 𝑧 − 𝐸 = 0,𝑡 − 𝐸 = 0, (68)

implies 𝑧 = 𝑡 = 𝐸, and by using (63), we get 𝑥 = 𝑦 =𝐸.
(2) The system 𝑧 − 𝐸 = 0,𝑈 (𝑡, 𝑧) = 0, (69)

implies 𝑧 = 𝐸 and𝑈 (𝑡, 𝐸) = 𝐸3 (𝑏 − 𝑐) (𝑏 + 𝑐) (𝑐𝑡2 + 𝑡𝐸 (𝑏 + 𝑐) + 𝑐𝐸2)⋅ (𝑐𝐸 + 𝑏𝑡)2 > 0 (70)

if 𝑐 < 𝑏. If 𝑏 = 𝑐, then 𝑈(𝑡, 𝑧) = 0 is satisfied for every𝑡 > 0, and by using system (63), it follows that the
periodic solution of the minimal period four is of the
form (62).

(3) The system 𝑊(𝑡, 𝑧) = 0,𝑡 − 𝐸 = 0, (71)

implies 𝑡 = 𝐸 and𝑊(𝐸, 𝑧) = 𝐸3 (𝑏 − 𝑐) (𝑏 + 𝑐) (𝑐𝑧2 + 𝑧𝐸 (𝑏 + 𝑐) + 𝑐𝐸2)
⋅ (𝑐2𝑧2 + 𝑏𝑧𝐸 (𝑏 + 𝑐) + 𝑏𝑐𝐸2) > 0, (72)

so the conclusion is the same as in the previous case.
(4) The system 𝑊(𝑡, 𝑧) = 0,𝑈 (𝑡, 𝑧) = 0, (73)

demands more detailed analysis.

(a) Assume that 𝑏 > 𝑐. Then we can write 𝑏 = 𝑐 + 𝜉, 𝜉 > 0.
Consider the polynomials𝑊(𝑡, 𝑧) and 𝑈(𝑡, 𝑧) as polynomials
in one variable 𝑡:𝑊(𝑡, 𝑧) = 𝑎5𝑡5 + 𝑎4𝑡4 + 𝑎3𝑡3 + 𝑎2𝑡2 + 𝑎1𝑡 + 𝑎0,𝑈 (𝑡, 𝑧) = 𝑏4𝑡4 + 𝑏3𝑡3 + 𝑏2𝑡2 + 𝑏1𝑡 + 𝑏0, (74)

where𝑎5 = 𝑐2𝑧2 (𝑐 + 𝜉)3 ,𝑎4 = 𝑧2 (𝑐 + 𝜉)2 (𝑐3𝑧 + 𝜉3𝐸 + 4𝑐𝜉2𝐸 + 5𝑐2𝜉𝐸) ,
𝑎3 = 2𝑐5𝑧𝐸 (𝐸2 − 𝑧𝐸 − 𝑧2) + 𝑐4𝑧𝜉𝐸 (10𝐸2 − 3𝑧𝐸

+ 𝑧2) + 3𝑐3𝑧𝜉2𝐸 (5𝐸2 + 2𝑧2) + 𝑐2𝑧𝜉3𝐸 (2𝑧𝐸
+ 9𝐸2 + 4𝑧2) + 𝑐𝑧𝜉4𝐸 (𝑧𝐸 + 2𝐸2 + 𝑧2) ,

𝑎2 = 𝑐5𝐸 (𝐸4 − 2𝑧𝐸3 − 𝑧4) + 𝑐4𝜉𝐸2 (3𝐸3 − 3𝑧𝐸2
+ 4𝑧2𝐸 + 4𝑧3) + 𝑐3𝜉2𝐸2 (3𝐸3 + 5𝑧2𝐸 + 5𝑧3)
+ 𝑐2𝜉3𝐸2 (𝑧 + 𝐸) (𝐸2 + 2𝑧2) ,

𝑎1 = 𝑐3𝐸2 (𝑐 + 𝜉) (𝑐 (𝑧4 − 𝐸4) + 𝑧4𝜉 + 𝑐𝑧2𝐸2 + 2𝑧2𝜉𝐸2
+ 𝑧𝜉𝐸3) ,𝑎0 = 𝑐4𝑧3𝐸4 (𝑐 + 𝜉) ,
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𝑏4 = 𝑐𝑧2 (𝑐 + 𝜉)2 (𝑧 (𝑐 + 𝜉)2 − 𝑐2𝐸) ,
𝑏3 = 𝑧2𝐸 (𝑐 + 𝜉)3 (𝑧 (𝑐 + 𝜉)2 − 𝑐2𝐸) + 𝑐𝑧2𝜉𝐸2 (2𝑐 + 𝜉)

⋅ (𝑐 + 𝜉)2 + 𝑐2𝑧3 (𝑐 + 𝜉) (𝜉2𝐸 + 2𝑐𝜉𝐸 + 𝑧 (𝑐 + 𝜉)2
− 𝑐2𝐸) ,

𝑏2 = 𝑐5𝑧2𝐸 (𝐸 − 𝑧)2 + 2𝑐4𝑧𝐸𝜉 (𝐸3 + 3𝑧𝐸2 + 2𝑧3)
+ 𝑐3𝑧𝐸𝜉2 (4𝐸3 + 11𝑧𝐸2 + 5𝑧2𝐸 + 2𝑧3)
+ 2𝑐2𝑧𝐸2𝜉3 (4𝑧𝐸 + 𝐸2 + 2𝑧2) + 𝑐𝑧2𝐸2𝜉4 (𝑧 + 2𝐸) ,

𝑏1 = 𝑐5𝐸 (𝐸 − 𝑧) (𝑧 + 𝐸) (𝐸3 + 𝑧 (𝐸2 − 𝑧2))
+ 𝑐4𝜉𝐸 (𝑧2𝐸3 + 2 (𝐸3 − 𝑧3) 𝐸2 + 3𝑧𝐸4 + 3𝑧4𝐸
+ 𝑧5) + 𝑐3𝜉2𝐸2 (3𝑧2𝐸2 + 𝐸4 + 3𝑧𝐸3 + 3𝑧4)
+ 𝑐2𝑧𝜉3𝐸2 (𝐸3 + 𝑧𝐸2 + 𝑧3) ,

𝑏0 = 𝑐3𝑧3𝐸3 (𝐸 (𝑐 + 𝜉)2 − 𝑐2𝑧) .
(75)

If 𝑧 ∈ [𝑐2𝐸/(𝑐 + 𝜉)2, 𝐸], then 𝑏𝑖 ⩾ 0, for 𝑖 = 0, 1, 4 and 𝑏2 >0, 𝑏3 > 0, so we have that
𝑈 (𝑡, 𝑧) > 0 for 𝑧 ∈ [ 𝑐2𝐸(𝑐 + 𝜉)2 , 𝐸] . (76)

Since 𝑊(𝑡, 𝑧) and 𝑈(𝑡, 𝑧) are polynomials of the fifth and
fourth degrees, respectively, the resultant of these polynomi-
als is the determinant of the ninth degree:𝑟𝑒𝑠𝑡 (𝑊,𝑈)

= det

[[[[[[[[[[[[[[[[[[[[

𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 0 0 00 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 0 00 0 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 00 0 0 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0𝑏4 𝑏3 𝑏2 𝑏1 𝑏0 0 0 0 00 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0 0 0 00 0 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0 0 00 0 0 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0 00 0 0 0 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

]]]]]]]]]]]]]]]]]]]]

, (77)

from which we obtain𝑟𝑒𝑠𝑡 (𝑊,𝑈) = (𝑧 − 𝐸)4 Υ1 (𝑧) Υ2 (𝑧) Υ3 (𝑧) Υ4 (𝑧)⋅ Φ (𝑧, 𝐸, 𝑐 + 𝜉, 𝑐) , (78)

whereΥ1 (𝑧) = 𝜉𝑧2 + 𝜉𝐸𝑧 − 𝑐𝐸2,
Υ2 (𝑧) = (𝑐2𝑧2 + 𝜉𝑏𝐸𝑧 − (𝑐 + 𝜉) 𝑐𝐸2)2 ,

Υ3 (𝑧) = (𝑐 + 𝜉)9 𝑐17𝑧9𝐸10 (𝑧 + 𝐸)6 ((2𝑐 + 𝜉) 𝑧2+ 𝑐 (𝑧 + 𝐸) 𝐸) > 0,Υ4 (𝑧) = 𝑐2𝑧2 + 𝑧 (2𝑐 + 𝜉) 𝑏𝐸 + (𝑐 + 𝜉) 𝑐𝐸2 > 0,Φ (𝑧, 𝐸, 𝑐 + 𝜉, 𝑐) = 𝑐4𝑧4 + 𝑐3𝑧3 + 𝑐2𝑧2 + 𝑐1𝑧 + 𝑐0,𝑐4 = 8𝑐2 (2𝑐𝜉 + 𝜉2 + 2𝑐2) (𝑐 + 𝜉)7 ,𝑐3 = −2𝐸 (2𝑐𝜉 + 𝜉2 + 2𝑐2) (−55𝑐2𝜉4 − 50𝑐3𝜉3 + 2𝑐4𝜉2
− 4𝜉6 − 24𝑐𝜉5 + 32𝑐5𝜉 + 16𝑐6) (𝑐 + 𝜉)3 ,𝑐2 = 96𝑐11𝐸2 + 512𝑐10𝜉𝐸2 + 1208𝑐9𝜉2𝐸2+ 1512𝑐8𝜉3𝐸2 + 768𝑐7𝜉4𝐸2 − 644𝑐6𝜉5𝐸2− 1600𝑐5𝜉6𝐸2 − 1542𝑐4𝜉7𝐸2 − 903𝑐3𝜉8𝐸2− 338𝑐2𝜉9𝐸2 − 76𝑐𝜉10𝐸2 − 8𝜉11𝐸2,𝑐1 = −2𝑐𝐸3 (2𝑐𝜉 + 𝜉2 + 2𝑐2) (31𝑐2𝜉4 + 48𝑐3𝜉3
+ 62𝑐4𝜉2 + 4𝜉6 + 16𝑐𝜉5 + 48𝑐5𝜉 + 16𝑐6) (𝑐 + 𝜉)2 ,𝑐0 = 16𝑐3𝐸4 (𝑐 + 𝜉)8 .

(79)

If the equation 𝑟𝑒𝑠𝑡(𝑊,𝑈) = 0 has solutions for variable 𝑧,
then they are the common roots of both equations in system
(73) for a fixed value of 𝑡. One of these positive roots is 𝑧1 = 𝐸,
but for 𝑧 = 𝐸 and 𝑡 > 0 system (73) has no solutions since𝑈(𝑡, 𝐸) > 0, see (76). Therefore, in this case, Equation (61)
has no minimal period-four solution.

The positive solution of the equation Υ1(𝑧) = 0 is
𝑧2 = 𝐸 (−𝜉 + √𝜉 (𝜉 + 4𝑐))2𝜉 . (80)

We will show later that 𝑧2 can not be a component of any
positive solutions of system (73).

The positive solution of the equation Υ2(𝑧) = 0 is𝑧3
= 𝐸(− (𝑐 + 𝜉) 𝜉 + √(2𝑐 + 𝜉) (𝑐 + 𝜉) (𝜉2 − 𝑐𝜉 + 2𝑐2))2𝑐2 , (81)

and 𝑧3 ∈ (𝑐2𝐸/(𝑐 + 𝜉)2, 𝐸). Namely,𝑧3 < 𝐸 ⇐⇒4𝑐2𝜉2 > 0, (82)

which is true, and𝑐2(𝑐 + 𝜉)2𝐸 < 𝑧3 ⇐⇒
𝑐2𝐸(𝑐 + 𝜉)2
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− 𝐸(− (𝑐 + 𝜉) 𝜉 + √(2𝑐 + 𝜉) (𝑐 + 𝜉) (𝜉2 − 𝑐𝜉 + 2𝑐2))2𝑐2< 0 ⇐⇒− 4𝑐3𝜉 (4𝑐𝜉3 + 7𝑐3𝜉 + 7𝑐2𝜉2 + 4𝑐4 + 𝜉4) < 0,
(83)

which is also true. So, system (73) has no solutions since𝑈(𝑡, 𝐸) > 0, see (76).
Now, we prove that the eventually positive roots of the

equation Φ(𝑧, 𝐸, 𝑐 + 𝜉, 𝑐) = 0 for variable 𝑧 can belong only to
the interval (𝑐2𝐸/(𝑐 + 𝜉)2, 𝐸) and that every 𝑧 ∈ (𝑐2𝐸/(𝑐 +𝜉)2, 𝐸) can not be a component of any positive solution of
system (73). First, we prove thatΦ(𝑧, 𝐸, 𝑐+𝜉, 𝑐) > 0 for 𝑧 > 𝐸.
Let 𝑧 = 𝐸 + 𝛾, 𝛾 > 0; then we obtain

Φ(𝐸 + 𝛾, 𝐸, 𝑐 + 𝜉, 𝑐) = 16𝑐11𝛾4 + 128𝑐10𝛾2𝜉 (𝛾2 + 𝐸2
+ 𝛾𝐸) + 8𝑐9𝜉2 (57𝛾4 + 16𝐸4 + 142𝛾2𝐸2 + 48𝛾𝐸3
+ 111𝛾3𝐸) + 8𝑐8𝜉3 (119𝛾4 + 76𝐸4 + 522𝛾2𝐸2
+ 256𝛾𝐸3 + 349𝛾3𝐸) + 8𝑐7𝜉4 (161𝛾4 + 162𝐸4
+ 1101𝛾2𝐸2 + 627𝛾𝐸3 + 657𝛾3𝐸) + 4𝑐6𝜉5 (294𝛾4
+ 402𝐸4 + 3013𝛾2𝐸2 + 1839𝛾𝐸3 + 1646𝛾3𝐸)
+ 2𝑐5𝜉6 (364𝛾4 + 636𝐸4 + 5653𝛾2𝐸2 + 3550𝛾𝐸3

+ 2879𝛾3𝐸) + 2𝑐4𝜉7 (148𝛾4 + 330𝐸4 + 3708𝛾2𝐸2
+ 2333𝛾𝐸3 + 1789𝛾3𝐸) + 𝑐3𝜉8 (72𝛾4 + 221𝐸4
+ 3375𝛾2𝐸2 + 2082𝛾𝐸3 + 1570𝛾3𝐸) + 2𝑐2𝜉9 (𝛾
+ 𝐸) (4𝛾3 + 22𝐸3 + 281𝛾𝐸2 + 231𝛾2𝐸)
+ 4𝑐𝜉10𝐸 (𝛾 + 𝐸) (22𝛾2 + 𝐸2 + 25𝛾𝐸) + 8𝛾𝜉11𝐸 (𝛾
+ 𝐸)2 ,

(84)

i.e., Φ(𝐸 + 𝛾, 𝐸, 𝑐 + 𝜉, 𝑐) > 0. It means that the functionΦ(𝑧, 𝐸, 𝑐+𝜉, 𝑐) eventually has the positive roots in the interval(0, 𝐸]. Since we already considered the case when 𝑧 = 𝐸,
now we investigate the existence of the positive roots of the
equation Φ(𝑧, 𝐸, 𝑏, 𝑐) = 0 for 0 < 𝑧 < 𝐸. As we have seen,𝑈(𝑡, 𝑧) > 0 for 𝑐2𝐸/(𝑐 + 𝜉)2 < 𝑧 < 𝐸 and 𝑡 > 0, so system
(73) has no solution in the case when the equation Φ(𝑧, 𝐸, 𝑐 +𝜉, 𝑐) = 0 has the positive roots in the interval (𝑐2𝐸/(𝑐+𝜉)2, 𝐸).
This implies that Equation (61) has no minimal period-four
solution whenever any root of equation 𝑟𝑒𝑠𝑡(𝑊,𝑈) = 0 lies in
the interval (𝑐2𝐸/(𝑐 + 𝜉)2, 𝐸).

Now, we prove that the equation Φ(𝑧, 𝐸, 𝑐 + 𝜉, 𝑐) = 0 has
no root for variable 𝑧 if 𝑧 ∈ (0, 𝑐2𝐸/(𝑐 + 𝜉)2) and 𝜉 > 0. It is
easy to see the following:

Φ0 = Φ (0, 𝐸, 𝑐 + 𝜉, 𝑐) = 16𝑐3𝐸4 (𝑐 + 𝜉)8 > 0. (85)

For Φ1 = Φ(𝑐2𝐸/(𝑐 + 𝜉)2, 𝐸, 𝑐 + 𝜉, 𝑐) we have
Φ1 = 𝑐3𝜉2𝐸4 (72𝑐𝜉7 + 184𝑐7𝜉 + 278𝑐2𝜉6 + 618𝑐3𝜉5 + 877𝑐4𝜉4 + 820𝑐5𝜉3 + 500𝑐6𝜉2 + 32𝑐8 + 8𝜉8) (2𝑐 + 𝜉)2(𝑐 + 𝜉)4 > 0, (86)

and

Φ0 − Φ1
= 𝑐3𝐸4 (2𝑐𝜉 + 2𝑐2 + 𝜉2) (5𝑐𝜉2 + 4𝑐2𝜉 + 2𝑐3 + 2𝜉3) (26𝑐𝜉6 + 36𝑐6𝜉 + 76𝑐2𝜉5 + 135𝑐3𝜉4 + 154𝑐4𝜉3 + 104𝑐5𝜉2 + 4𝑐7 + 4𝜉7)(𝑐 + 𝜉)4> 0.

(87)

Now, it is sufficient to prove 𝑑Φ(𝑧, 𝐸, 𝑏, 𝑐)/𝑑𝑧 < 0 in(0, 𝑐2𝐸/(𝑐 + 𝜉)2), 𝜉 > 0. Since𝑑Φ (𝑧, 𝐸, 𝑐 + 𝜉, 𝑐)𝑑𝑧= 2 ((𝑐 + 𝜉)2 + 𝑐2) 𝑃 (𝑧, 𝐸, 𝑐 + 𝜉, 𝑐) , (88)

where𝑃 (𝑧, 𝐸, 𝑐 + 𝜉, 𝑐)

= 16𝑐9 (𝑧 − 𝐸)3
+ 16𝑐8𝜉 (𝑧 − 𝐸) (−8𝑧𝐸 + 5𝐸2 + 7𝑧2)
+ 6𝑐7𝜉2 (−29𝐸3 + 62𝑧𝐸2 − 73𝑧2𝐸 + 56𝑧3)
+ 4𝑐6𝜉3 (−55𝐸3 + 70𝑧𝐸2 − 51𝑧2𝐸 + 140𝑧3)
+ 𝑐5𝜉4 (−189𝐸3 − 82𝑧𝐸2 + 501𝑧2𝐸 + 560𝑧3)
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+ 𝑐4𝜉5 (−126𝐸3 − 380𝑧𝐸2 + 1011𝑧2𝐸 + 336𝑧3)
+ 𝑐3𝜉6 (−67𝐸3 − 379𝑧𝐸2 + 873𝑧2𝐸 + 112𝑧3)
+ 𝑐2𝜉7 (−24𝐸3 − 202𝑧𝐸2 + 417𝑧2𝐸 + 16𝑧3)
+ 4𝑐𝜉8𝐸 (−15𝑧𝐸 − 𝐸2 + 27𝑧2)+ 4𝑧𝜉9𝐸 (3𝑧 − 2𝐸) ,

(89)

then for 𝑧 = 𝑐2𝐸/𝑘(𝑐 + 𝜉)2, 𝜉 > 0, 𝑘 > 1 we obtain
𝑃( 𝑐2𝐸𝑘 (𝑐 + 𝜉)2 , 𝐸, 𝑐 + 𝜉, 𝑐) = 𝑐𝐸3 Ω (𝑐, 𝜉, 𝑘)𝑘3 (𝑐 + 𝜉)2 < 0, (90)

with

Ω (𝑐, 𝜉, 𝑘)= −16𝑐10 (𝑘 − 1)3− 16𝑐9𝜉 (𝑘 − 1) (6𝑘 (𝑘 − 1) + 𝑘2 + 3)
− 2𝑐8𝜉2 (51𝑘 − 186𝑘2 + 175𝑘3 − 24)
− 8𝑐7𝜉3 ((𝑘 − 1) (20𝑘 + 55𝑘2 + 2) + 26𝑘3)
− 𝑐6𝜉4𝑘 (82𝑘 + 488𝑘2 + 315 (𝑘2 − 1))
− 𝑐5𝜉5𝑘 (380𝑘 + 487𝑘2 + 237 (𝑘2 − 1))
− 𝑐4𝜉6𝑘 (379𝑘 + 424𝑘2 + 84 (𝑘2 − 1))
− 2𝑐3𝜉7𝑘 (101𝑘 + 136𝑘2 + 6 (𝑘2 − 1))

− 𝑐2𝜉8𝑘2 (119𝑘 + 60) − 8𝑐𝜉9𝑘2 (4𝑘 + 1)− 4𝜉10𝑘3 < 0.
(91)

Similarly, now we will consider 𝑊(𝑡, 𝑧) and 𝑈(𝑡, 𝑧) as
polynomials in the variable 𝑡 (with the coefficients 𝛼𝑖, 𝛽𝑗,𝑖 ∈ {0, 1, . . . , 5}, 𝑗 ∈ {0, 1, . . . , 4}). The resultant of these
polynomials is

𝑟𝑒𝑠𝑧 (𝑊,𝑈) = (𝑡 − 𝐸)2 (𝑡 + 𝐸)4 ((𝑐 + 𝜉) 𝑡 − 𝑐𝐸)6 Λ 1 (𝑡)⋅ Λ 2 (𝑡) Φ (𝑡, 𝐸, 𝑐 + 𝜉, 𝑐) , (92)

whereΛ 1 (𝑡) = (𝑐 + 𝜉)4 𝑐18𝑡4𝐸15 ((2𝑐 + 𝜉) 𝑡2 + 𝑐𝐸 (𝑡 + 𝐸))⋅ (𝑐𝐸 + (𝑐 + 𝜉) 𝑡)4 > 0,Λ 2 (𝑡) = 𝜉𝑡2 + 𝜉𝐸𝑡 − 𝑐𝐸2. (93)

If the equation 𝑟𝑒𝑠𝑧(𝑊,𝑈) = 0 has solutions for variable 𝑡,
then they are the common roots of both equations in system
(73) for a fixed value of 𝑧. One of these positive roots is 𝑡1 = 𝐸,
and for 𝑡 = 𝐸 and 𝑧 > 0 system (73) has no solutions since𝑊(𝐸, 𝑧, 𝑐 + 𝜉, 𝑐) = 𝜉𝐸3 (2𝑐 + 𝜉)⋅ (𝑐𝑧2 + 𝑧𝐸 (2𝑐 + 𝜉) + 𝑐𝐸2)

⋅ (𝑐2𝑧2 + (𝑧 (2𝑐 + 𝜉) + 𝑐𝐸) (𝑐 + 𝜉) 𝐸) > 0 (94)

for 𝜉 > 0. It means that Equation (61) has no minimal period-
four solution.

Similarly, for the second root 𝑡2 = 𝑐𝐸/(𝑐 + 𝜉), 𝜉 > 0 we
obtain 𝑈̃ = 𝑈(𝑐𝐸/(𝑐 + 𝜉), 𝑧, 𝑐 + 𝜉, 𝑐),

𝑈̃
= 𝑐3𝐸2 (𝑧 + 𝐸)2 (𝑐4 (𝑧 + 𝐸) (𝑧 − 𝐸)2 + 𝑐3𝜉 (3𝐸3 + 3𝑧2𝐸 + 2𝑧3) + 𝑐2𝜉2 (3𝐸3 + 4𝑧𝐸2 + 6𝑧2𝐸 + 𝑧3) + 𝑐𝜉3𝐸 (2𝑧 + 𝐸)2 + 𝜉4𝑧𝐸 (𝑧 + 𝐸))(𝑐 + 𝜉)2> 0,

(95)

where 𝜉 > 0. It means that Equation (61) has no minimal
period-four solution in this case. As we have already seen, the
equationΦ(𝑡, 𝐸, 𝑐+𝜉, 𝑐) = 0 has eventually positive roots only
in the interval 𝑡 ∈ (𝑐2𝐸/(𝑐 + 𝜉)2, 𝐸), 𝜉 > 0. Then,𝛽4 = 𝑐3𝑡𝐸 ((𝐸 − 𝑡) 𝑐2 + 𝜉2𝐸 + 2𝑐𝜉𝐸) > 0,𝛽3 = 𝑐5 (𝐸 − 𝑡) (𝐸3 − 𝑡3 + 𝑡𝐸2 + 𝑡2𝐸) + 𝑐4𝜉 (4𝑡2𝐸2+ 𝐸4 + 𝑡3𝐸 + 2𝑡4) + 𝑐3𝜉2𝑡2 (𝑡 + 𝐸) (𝑡 + 5𝐸)+ 2𝑐2𝜉3𝑡2𝐸 (2𝑡 + 𝐸) + 𝑐𝑡3𝜉4𝐸 > 0,𝛽2 = 𝑐5𝑡 (𝑡 − 𝐸)2 (𝑡 + 𝐸)2 + 𝑐4𝑡𝜉 (3𝐸2 (𝐸2 − 𝑡2)

+ 4𝑡𝐸3 + 5𝑡3𝐸 + 3𝑡4) + 𝑐3𝑡𝜉2 (2𝐸4 + 5𝑡𝐸3 + 14𝑡3𝐸
+ 3𝑡4) + 𝑐2𝑡2𝜉3 (2𝐸3 + 2𝑡𝐸2 + 14𝑡2𝐸 + 𝑡3)
+ 𝑐𝑡3𝜉4𝐸 (6𝑡 + 𝐸) + 𝑡4𝜉5𝐸 > 0,

𝛽1 = 𝑐𝑡𝐸3 (𝑐 + 𝜉) (𝑐𝜉 ((𝑐 + 𝜉) 𝑡2 + 𝑐𝑡2 + 𝑐𝐸2)
+ (𝑐 + 𝜉) 𝑡 (𝑐𝐸𝜉 + 2 ((𝑐 + 𝜉)2 𝑡 − 𝑐2𝐸))) > 0,

𝛽0 = 𝑐2𝑡𝐸5 (𝑐 + 𝜉) ((𝑐 + 𝜉)2 𝑡 − 𝑐2𝐸) > 0.
(96)
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This implies 𝑊(𝑡, 𝑧) > 0 for 𝑐2𝐸/(𝑐 + 𝜉)2 < 𝑡 < 𝐸 and 𝑧 > 0,
so system (73) has no solution in the case when the equationΦ(𝑡, 𝐸, 𝑐 + 𝜉, 𝑐) = 0 has the positive roots in the interval(𝑐2𝐸/(𝑐 + 𝜉)2, 𝐸), which further means that Equation (61) has
no minimal period-four solution.

Also, the positive solution of the equation Λ 2(𝑡) = 0 is
𝑡3 = 𝐸 (−𝜉 + √𝜉 (𝜉 + 4𝑐))2𝜉 . (97)

Note that 𝑡3 = 𝑧2. Now, we prove that (𝑧2, 𝑧2) can not be
solution of system (73). Indeed, suppose the opposite, i.e.,𝑈(𝑧2, 𝑧2, 𝑐 + 𝜉, 𝑐) = 0,𝑊 (𝑧2, 𝑧2, 𝑐 + 𝜉, 𝑐) = 0,⇕𝑐10 + 2𝑐9𝜉 + 8𝑐8𝜉2 + 26𝑐7𝜉3 + 45𝑐6𝜉4 + 43𝑐5𝜉5+ 13𝑐4𝜉6 − 27𝑐3𝜉7 − 35𝑐2𝜉8 − 15𝑐𝜉9 − 2𝜉10 = 0,𝑐10 − 2𝑐9𝜉 + 27𝑐8𝜉2 + 51𝑐7𝜉3 − 30𝑐6𝜉4 − 165𝑐5𝜉5− 214𝑐4𝜉6 − 148𝑐3𝜉7 − 58𝑐2𝜉8 − 12𝑐𝜉9 − 𝜉10 = 0,⇕(𝑐 = 0, 𝜉 = 0) ,

(98)

which is a contradiction with the assumption that 𝑐 > 0 and𝜉 > 0.
Consequently system (73) does not have positive solu-

tions when 𝑏 > 𝑐.
(b) Assume that 𝑏 = 𝑐. Then, system (73)𝑊(𝑡, 𝑧, 𝑐, 𝑐) = 0,𝑈 (𝑡, 𝑧, 𝑐, 𝑐) = 0, (99)

is of the form(𝑡 − 𝐸) (𝑡4𝑧2 + 𝑡3 (𝑧 + 𝐸) 𝑧2
− 𝑡2 (𝑧3𝐸 + 𝑧2𝐸2 − 2𝑧𝐸3)
− 𝑡 (𝑧4𝐸 + 𝑧3𝐸2 + 𝑧2𝐸3 − 𝐸5) − 𝑧3𝐸3 = 0) = 0,

(𝑧 − 𝐸) (𝑡4𝑧2 + 𝑡3 (𝑧 + 𝐸) 𝑧2 − 𝑡2 (𝑧2𝐸2 − 𝑧3𝐸)
− 𝑡 (−𝑧4𝐸 − 𝑧3𝐸2 + 𝑧2𝐸3 + 2𝑧𝐸4 + 𝐸5) − 𝑧3𝐸3)= 0,

(100)

and combining those equations, we have the following four
cases:

(i) 𝑡 − 𝐸 = 0,𝑧 − 𝐸 = 0, (101)

and the solution in this case is 𝑡 = 𝑧 = 𝐸,

(ii) 𝑡 − 𝐸 = 0,𝑡4𝑧2 + 𝑡3 (𝑧 + 𝐸) 𝑧2 − 𝑡2 (𝑧2𝐸2 − 𝑧3𝐸)
− 𝑡 (−𝑧4𝐸 − 𝑧3𝐸2 + 𝑧2𝐸3 + 2𝑧𝐸4 + 𝐸5)− 𝑧3𝐸3 = 0,

(102)

and substituting 𝑡 by 𝐸 we obtain𝐸2 (𝑧 − 𝐸) (𝑧 + 𝐸)3 = 0 (103)

from which we get that the solution is 𝑡 = 𝑧 = 𝐸,
(iii)𝑡4𝑧2 + 𝑡3 (𝑧 + 𝐸) 𝑧2 − 𝑡2 (𝑧3𝐸 + 𝑧2𝐸2 − 2𝑧𝐸3)

− 𝑡 (𝑧4𝐸 + 𝑧3𝐸2 + 𝑧2𝐸3 − 𝐸5) − 𝑧3𝐸3 = 0,𝑧 − 𝐸 = 0, (104)

i.e., 𝐸2 (𝑡 − 𝐸) (𝑡 + 𝐸)3 = 0, (105)

and the solution is 𝑡 = 𝑧 = 𝐸,
(iv)𝑡4𝑧2 + 𝑡3 (𝑧 + 𝐸) 𝑧2 − 𝑡2 (𝑧3𝐸 + 𝑧2𝐸2 − 2𝑧𝐸3)

− 𝑡 (𝑧4𝐸 + 𝑧3𝐸2 + 𝑧2𝐸3 − 𝐸5) − 𝑧3𝐸3 = 0,
𝑡4𝑧2 + 𝑡3 (𝑧 + 𝐸) 𝑧2 − 𝑡2 (𝑧2𝐸2 − 𝑧3𝐸)

− 𝑡 (−𝑧4𝐸 − 𝑧3𝐸2 + 𝑧2𝐸3 + 2𝑧𝐸4 + 𝐸5)− 𝑧3𝐸3 = 0.
(106)

By subtracting we get−2𝑡𝐸 (𝑧 − 𝐸) (𝑧 + 𝐸) (𝑧𝐸 + 𝐸2 + 𝑡𝑧 + 𝑧2) = 0, (107)

i.e., 𝑧 = 𝐸. (108)

Hence, the solution is 𝑡 = 𝑧 = 𝐸.
Thismeans that (𝐸, 𝐸) is a solution of system (73) and
that Equation (61) does not possess aminimal period-
four solution.

Thus, if 𝐹 = 𝐹𝑔 < 𝐹0, then Equation (61) does not possess
aminimal period-four solution. Consequently if𝐹 = 𝐹𝑔 = 𝐹0,
then Equation (61) has the minimal period-four solutions of
the form (62).

Theorem 11. Assume that 𝐹 = 𝐹𝑔 = (𝐵/𝑏)3𝑐 < 𝐹0. �en,
the unique equilibrium point 𝑥 = 𝐵/𝑏 of Equation (61) is
globally asymptotically stable. Also, every solution of Equation
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Figure 4: The orbit and the phase portrait for 𝑏 = 2, 𝑐 = 1, 𝐵 = 4, 𝐹 = 8, 𝐹𝑔 = 8, 𝐹0 = 128, and (𝑥0, 𝑥−1) = (0.3, 2.8) generated by Dynamica
4 [16].

(61) oscillates about the equilibrium point 𝑥 with semicycles of
length two.

Proof. Notice that

𝑥𝑛+1 − 𝐵𝑏 = 𝐵𝑐 (𝐵 + 𝑏𝑥𝑛−1)𝑏2 (𝑏𝑥𝑛 + 𝑐𝑥𝑛−1) 𝑥𝑛−1 (𝐵𝑏 − 𝑥𝑛−1) , (109)

i.e., 𝑥𝑛+1 and 𝑥𝑛−1 are from the different sides of the equilib-
rium point (see also Lemma 9, when √𝑏𝐹/𝐵𝑐 = 𝐵/𝑏). Also,
that means 𝑥𝑛+1 and 𝑥𝑛+5 are always from the same side of the
equilibrium point 𝑥 = 𝐵/𝑏. Since

𝑥𝑛+4 − 𝑥𝑛 = 𝐵𝑥𝑛+3𝑥𝑛+2 + (𝐵3/𝑏3) 𝑐𝑏𝑥𝑛+3𝑥𝑛+2 + 𝑐 (𝑥𝑛+2)2 − 𝑥𝑛
= 𝐻𝑏3 (𝑏𝑥𝑛+3𝑥𝑛+2 + 𝑐 (𝑥𝑛+2)2) ,

(110)

where𝐻 = 𝐵(𝑏3𝑥𝑛+3𝑥𝑛+2+𝐵2𝑐)−𝑏3(𝑏𝑥𝑛+3𝑥𝑛+2+𝑐(𝑥𝑛+2)2)𝑥𝑛 is
a linear function in variable 𝑥𝑛, it can be seen that𝐻 = 0 ⇐⇒𝑥𝑛+4 = 𝑥𝑛 = 𝐵/𝑏 because Equation (61) has no period-two
solutions nor period-four solutions (and it holds that 𝑥𝑛 =𝐵/𝑏 󳨐⇒ 𝑥𝑛+2 = 𝐵/𝑏 󳨐⇒ 𝑥𝑛+4 = 𝐵/𝑏, see Lemma 9). Also,𝑥𝑛 > 𝐵𝑏 󳨐⇒𝐻 < 0 󳨐⇒

𝑥𝑛 > 𝑥𝑛+4 > 𝐵𝑏 ,𝑛 ∈ N,
𝑥𝑛 < 𝐵𝑏 󳨐⇒𝐻 > 0 󳨐⇒
𝑥𝑛 < 𝑥𝑛+4 < 𝐵𝑏 ,𝑛 ∈ N,

(111)

which means that every sequence {𝑥4𝑘}∞𝑘=1, {𝑥4𝑘+1}∞𝑘=0,{𝑥4𝑘+2}∞𝑘=0, {𝑥4𝑘+3}∞𝑘=0 is monotone and bounded.That implies
that each of the sequences is convergent. Since, by Lemmas
5 and 10, Equation (61) has neither minimal period-two nor
period-four solutions, it holds

lim
𝑘󳨀→∞

𝑥4𝑘 = lim
𝑘󳨀→∞

𝑥4𝑘+1 = lim
𝑘󳨀→∞

𝑥4𝑘+2 = lim
𝑘󳨀→∞

𝑥4𝑘+3= 𝑥, (112)

which implies that equilibrium 𝑥 is an attractor and by using
Theorem 4, which completes the proof of the theorem.

For some numerical values of parameters we give a visual
evidence for Theorem 11. See Figure 4.

Remark 12. One can see from Theorems 6, 8, and 11 that the
equilibrium point 𝑥 is globally asymptotically stable for all
values of parameter 𝐹 such that 0 < 𝐹 ≤ 𝐹𝑑, where 𝐹𝑔 < 𝐹0,
i.e., 𝑐 < 𝑏 (see Figure 5(a)) and for all values of parameter 𝐹
such that 0 < 𝐹 < 𝐹𝑔 = 𝐹0 = 𝐹𝑑, i.e., 𝑐 = 𝑏 (see Figure 5(b)).
(d) 𝐹 = 𝐹𝑔 = 𝐹0. Since 𝐹𝑔 = 𝐹0 implies 𝑐 = 𝑏, Equation (61) is
of the form

𝑥𝑛+1 = 𝐵𝑏3 𝑏2𝑥𝑛𝑥𝑛−1 + 𝐵2𝑥𝑛 (𝑥𝑛 + 𝑥𝑛−1) . (113)

In this case, by using Lemma 10, we see that Equation (61) has
minimal period-four solutions of the form (62). Based on our
many numerical simulations and the proof ofTheorem 11, we
believe that the following conjectures are true.

Conjecture 13. If 𝐹 = 𝐹𝑔 = 𝐹0 (that is 𝑏 = 𝑐), then
every solution of Equation (61) converges to some period-four
solution of the form (62) or to the equilibrium point 𝑥.

For some numerical values of parameters we give a visual
evidence for this case. See Figures 6 and 7.
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Figure 5: Visual representation of local and global asymptotic stability of Equation (1) when (a) 𝐹𝑔 < 𝐹𝑑 < 𝐹0, i.e., 𝑐 < 𝑏, and (b) 𝐹0 = 𝐹𝑔, i.e.,𝑐 = 𝑏.
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(a) (𝑥0, 𝑥1) = (1.5, 1)
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(b) (𝑥0, 𝑥1) = (5.9, 5)

Figure 6: The orbit and phase portraits for 𝑏 = 1, 𝑐 = 1, 𝐵 = 2, and 𝐹 = 𝐹𝑔 = 𝐹0 = 8 generated by Dynamica 4 [16].
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Figure 7: Bifurcation diagram in (𝐹, 𝑥) plane for 𝑏 = 1, 𝑐 = 1, and 𝐵 = 2, generated by Dynamica 4 [16].
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Figure 8: The orbit and phase portrait for 𝑐 = 2, 𝑏 = 1, 𝐵 = 4, 𝐹 = 7, 𝐹0 = 8, 𝐹𝑔 = 128, and (𝑥0, 𝑥−1) = (0.3, 2.8) generated by Dynamica 4
[16].
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Figure 9: The orbit and phase portrait for 𝑐 = 2, 𝑏 = 1, 𝐵 = 4, 𝐹 = 3, 𝐹0 = 8, 𝐹𝑔 = 128, and (𝑥0, 𝑥−1) = (0.3, 2.8) generated by Dynamica 4
[16].

Case 2 (𝐹 < 𝐹0 < 𝐹𝑔). We give a visual evidence for
some numerical values of parameters which indicates very
interesting behaviour and verifies our suspicion that the
equilibrium point 𝑥 is globally asymptotically stable in this
case also. See Figures 8 and 9.

Conjecture 14. If 𝐹 < 𝐹0 < 𝐹𝑔 (that is, 𝑏 < 𝑐), then the
equilibrium point 𝑥 of Equation (1) is globally asymptotically
stable.

4. Naimark-Sacker Bifurcation for 𝑏 ≠ 𝑐
In this section, we consider bifurcation of a fixed point ofmap
associated with Equation (1) in the case where the eigenvalues
are complex conjugates and of unit module. We use the
following standard version of the Naimark-Sacker result, see
[28, 29]

Theorem 15 (Naimark-Sacker or Poincare-Andronov-Hopf
Bifurcation for maps). Let𝐹 : R × R

2 󳨀→ R
2;(𝜆, 𝑥) 󳨀→ 𝐹 (𝜆, 𝑥) (114)

be a 𝐶4 map depending on real parameter 𝜆 satisfying the
following conditions:

(i) 𝐹(𝜆, 0) = 0 for 𝜆 near some fixed 𝜆0;
(ii) 𝐷𝐹(𝜆, 0) has two nonreal eigenvalues𝜇(𝜆) and𝜇(𝜆) for𝜆 near 𝜆0 with |𝜇(𝜆0)| = 1;
(iii) (𝑑/𝑑𝜆)|𝜇(𝜆)| = 𝑑(𝜆0) ̸= 0 at 𝜆 = 𝜆0;
(iv) 𝜇𝑘(𝜆0) ̸= 1 for 𝑘 = 1, 2, 3, 4.
�en there is a smooth 𝜆-dependent change of coordinate

bringing 𝐹 into the form𝐹 (𝜆, 𝑥) = F (𝜆, 𝑥) + 𝑂 (‖𝑥‖5) (115)

and there are smooth function 𝑎(𝜆), 𝑏(𝜆), and 𝜔(𝜆) so that in
polar coordinates the functionF(𝜆, 𝑥) is given by

F : (𝑟𝜃) 󳨀→ ( 󵄨󵄨󵄨󵄨𝜇 (𝜆)󵄨󵄨󵄨󵄨 𝑟 − 𝑎 (𝜆) 𝑟3𝜃 + 𝜔 (𝜆) + 𝑏 (𝜆) 𝑟2) . (116)

If 𝑎(𝜆0) > 0, then there is a neighborhood 𝑈 of the origin and
a 𝛿 > 0 such that for |𝜆 − 𝜆0| < 𝛿 and 𝑥0 ∈ 𝑈, then 𝜔-limit set
of 𝑥0 is the origin if 𝜆 < 𝜆0 and belongs to a closed invariant𝐶1 curve Γ(𝜆) encircling the origin if 𝜆 > 𝜆0. Furthermore,Γ(𝜆0) = 0.

If 𝑎(𝜆0) < 0, then there is a neighborhood 𝑈 of the origin
and a 𝛿 > 0 such that for |𝜆−𝜆0| < 𝛿 and 𝑥0 ∈ 𝑈, then 𝛼-limit
set of 𝑥0 is the origin if 𝜆 > 𝜆0 and belongs to a closed invariant
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Figure 10: Bifurcation diagrams in (𝐹, 𝑥) plane for 𝑏 = 0.5, 𝑐 = 1, and 𝐵 = 2, generated by Dynamica 4 [16].

𝐶1 curve Γ(𝜆) encircling the origin if 𝜆 < 𝜆0. Furthermore,Γ(𝜆0) = 0.
Consider a general map 𝐹(𝜆, 𝑥) that has a fixed point at

the origin with complex eigenvalues 𝜇(𝜆) = 𝛼(𝜆) + 𝑖𝛽(𝜆) and𝜇(𝜆) = 𝛼(𝜆) − 𝑖𝛽(𝜆) satisfying (𝛼(𝜆))2 + (𝛽(𝜆))2 = 1 and𝛽(𝜆) ̸= 0. By putting the linear part of such a map into Jordan
Canonical form, wemay assume𝐹 to have the following form
near the origin:

𝐹 (𝜆, 𝑥) = (𝛼 (𝜆) −𝛽 (𝜆)𝛽 (𝜆) 𝛼 (𝜆) )(𝑥1𝑥2)
+ (𝑔1 (𝜆, 𝑥1, 𝑥2)𝑔2 (𝜆, 𝑥1, 𝑥2)) . (117)

Then the coefficient 𝑎(𝜆0) of the cubic term in Equation (116)
in polar coordinate is equal to

𝑎 (𝜆0) = Re((1 − 2𝜇 (𝜆0)) 𝜇 (𝜆0)21 − 𝜇 (𝜆0) 𝜉11𝜉20)
+ 12 󵄨󵄨󵄨󵄨𝜉11󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜉02󵄨󵄨󵄨󵄨2 − Re (𝜇 (𝜆0)𝜉21) ,

(118)

where𝜉20 = 18 (𝜕2𝑔1 (0, 0)𝜕𝑥21 − 𝜕2𝑔1 (0, 0)𝜕𝑥22 + 2𝜕2𝑔2 (0, 0)𝜕𝑥1𝜕𝑥2
+ 𝑖(𝜕2𝑔2 (0, 0)𝜕𝑥21 − 𝜕2𝑔2 (0, 0)𝜕𝑥22 − 2𝜕2𝑔1 (0, 0)𝜕𝑥1𝜕𝑥2 )) , (119)

𝜉11 = 14 (𝜕2𝑔1 (0, 0)𝜕𝑥21 + 𝜕2𝑔1 (0, 0)𝜕𝑥22
+ 𝑖(𝜕2𝑔2 (0, 0)𝜕𝑥21 + 𝜕2𝑔2 (0, 0)𝜕𝑥22 )) , (120)

𝜉02 = 18 (𝜕2𝑔1 (0, 0)𝜕𝑥21 − 𝜕2𝑔1 (0, 0)𝜕𝑥22 − 2𝜕2𝑔2 (0, 0)𝜕𝑥1𝜕𝑥2
+ 𝑖(𝜕2𝑔2 (0, 0)𝜕𝑥21 − 𝜕2𝑔2 (0, 0)𝜕𝑥22 + 2𝜕2𝑔1 (0, 0)𝜕𝑥1𝜕𝑥2 )) , (121)

and

𝜉21 = 116 (𝜕3𝑔1𝜕𝑥31 + 𝜕3𝑔1𝜕𝑥1𝜕𝑥22 + 𝜕3𝑔2𝜕𝑥21𝜕𝑥2 + 𝜕3𝑔2𝜕𝑥32
+ 𝑖(𝜕3𝑔2𝜕𝑥31 + 𝜕3𝑔2𝜕𝑥1𝜕𝑥22 − 𝜕3𝑔1𝜕𝑥21𝜕𝑥2 − 𝜕3𝑔1𝜕𝑥32 )) . (122)

Theorem 16. Assume that 𝑏, 𝑐, 𝐵 > 0, 𝐹0 = (𝐵/𝑐)3𝑏, and 𝑥 =𝐵/𝑐.
(i) If 𝑘2𝑐 < 𝑏 < 𝑐 or 𝑐 < 𝑏 < 𝑘3𝑐, where 𝑘2 and 𝑘3 are

positive solutions of the equation 3𝑘3 − 9𝑘2 − 3𝑘 + 1 =0, then there is a neighborhood 𝑈 of the equilibrium
point 𝑥 and 𝜌 > 0 such that for |𝐹 − 𝐹0| < 𝜌 and𝑥0, 𝑥−1 ∈ 𝑈 then 𝜔-limit set of solution of Equation (1),
with initial condition 𝑥0, 𝑥−1 is the equilibrium point 𝑥
if 𝐹 < 𝐹0 and belongs to a closed invariant 𝐶1 curveΓ(𝐹0) encircling the equilibrium point 𝑥 if 𝐹 > 𝐹0.
Furthermore, Γ(𝐹0) = 0.

(ii) If 0 < 𝑏 < 𝑘2𝑐 or 𝑘3𝑐 < 𝑏 < +∞, then there is a
neighborhood𝑈 of the equilibrium point 𝑥 and a 𝜌 > 0
such that for |𝐹 − 𝐹0| < 𝜌 and 𝑥0, 𝑥−1 ∈ 𝑈 then 𝛼-limit
set of 𝑥0, 𝑥−1 is the equilibrium point 𝑥 if 𝐹 > 𝐹0 and
belongs to a closed invariant 𝐶1 curve Γ(𝐹0) encircling
the equilibrium point𝑥 if𝐹 < 𝐹0. Furthermore, Γ(𝐹0) =0.

Proof. See Figures 10 and 11 for visual illustration. In order to
apply Theorem 15 we make a change of variable𝑦𝑛 = 𝑥𝑛 − 𝑥 󳨐⇒𝑥𝑛 = 𝑦𝑛 + 𝑥,

𝑦𝑛+1 = 𝐵 (𝑦𝑛 + 𝑥) (𝑦𝑛−1 + 𝑥) + 𝐹𝑏 (𝑦𝑛 + 𝑥) (𝑦𝑛−1 + 𝑥) + 𝑐 (𝑦𝑛−1 + 𝑥)2 − 𝑥. (123)

Set 𝑢𝑛 = 𝑦𝑛−1
and V𝑛 = 𝑦𝑛

for 𝑛 = 0, 1, . . . , (124)
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Figure 11: Phase portraits when 𝑐 = 1, 𝑏 = 0.5, 𝐵 = 2, 𝑥−1 = 𝑥0 = 2.1 (green), and 𝑥−1 = 𝑥0 = 6.8 (blue), generated by Dynamica 4 [16].

then 𝑢𝑛+1 = V𝑛,
V𝑛+1 = 𝐵 (V𝑛 + 𝑥) (𝑢𝑛 + 𝑥) + 𝐹𝑏 (V𝑛 + 𝑥) (𝑢𝑛 + 𝑥) + 𝑐 (𝑢𝑛 + 𝑥)2 − 𝑥. (125)

Let us define the function

𝐾(𝑢
V
) = ( V𝐵 (V + 𝑥) (𝑢 + 𝑥) + 𝐹𝑏 (V + 𝑥) (𝑢 + 𝑥) + 𝑐 (𝑢 + 𝑥)2 − 𝑥) . (126)

Then 𝐾(𝑢, V) has the unique fixed point (0, 0). The Jacobian
matrix of𝐾(𝑢, V) is given by

𝐽𝐾(𝑢V) = ( 0 1
−𝑏𝐹 (V + 𝑥) + 𝑐 (𝑢 + 𝑥) (2𝐹 + 𝐵 (𝑢 + 𝑥) (V + 𝑥))(𝑢 + 𝑥)2 (𝑐 (𝑢 + 𝑥) + 𝑏 (V + 𝑥))2 −𝑏𝐹 + 𝐵𝑐 (𝑢 + 𝑥)2(𝑢 + 𝑥) (𝑐 (𝑢 + 𝑥) + 𝑏 (V + 𝑥))2) (127)

and its value at the zero equilibrium is

𝐽0 = 𝐽𝐾(00)
= ( 0 1

−𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2𝑥3 (𝑏 + 𝑐)2 −𝑏𝐹 + 𝐵𝑐𝑥2𝑥3 (𝑏 + 𝑐)2 ), (128)

i.e.,

𝐽0 = 𝐽𝐾(00)
= ( 0 1− 𝑐𝑏 + 𝑐 − 𝐹𝑥3 (𝑏 + 𝑐) 𝑐𝑏 + 𝑐 − 𝐹𝑥3 (𝑏 + 𝑐)) . (129)

The eigenvalues 𝜇(𝐹), 𝜇(𝐹), using (128), are

𝜇 (𝐹) = −𝑏𝐹 + 𝐵𝑐𝑥2 ± 𝑖√4 (𝑏 + 𝑐)2 𝑥3 (𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2) − (𝑏𝐹 − 𝐵𝑐𝑥2)22 (𝑏 + 𝑐)2 𝑥3 (130)
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because

(𝑏𝐹 − 𝐵𝑐𝑥2)2 − 4 (𝑏 + 𝑐)2 𝑥3 (𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2)
= (𝑏𝐹 − 𝐵𝑐𝑥2)2 − 4 (𝑏 + 𝑐) (𝐵𝑥2 + 𝐹) (𝑏𝐹 + 2𝑐𝐹
+ 𝐵𝑐𝑥2) = − (8𝐹2𝑐 + 3𝐹2𝑏2 + 3𝐵2𝑐2𝑥4 + 12𝐹2𝑏𝑐
+ 4𝐵𝐹𝑏2𝑥2 + 12𝐵𝐹𝑐2𝑥2 + 4𝐵2𝑏𝑐𝑥4 + 18𝐵𝐹𝑏𝑐𝑥2)2< 0.

(131)

Then

𝐾(𝑢
V
)

= ( 0 1− 𝑐𝑏 + 𝑐 − 𝐹𝑥3 (𝑏 + 𝑐) 𝑐𝑏 + 𝑐 − 𝐹𝑥3 (𝑏 + 𝑐))(𝑢
V
)

+ (𝑓1 (𝐹, 𝑢, V)𝑓2 (𝐹, 𝑢, V)) ,
(132)

where𝑓1 (𝐹, 𝑢, V) = 0,
𝑓2 (𝐹, 𝑢, V) = 𝐵 (V + 𝑥) (𝑢 + 𝑥) + 𝐹𝑏 (V + 𝑥) (𝑢 + 𝑥) + 𝑐 (𝑢 + 𝑥)2

+ 𝑐𝑥3 + 𝐹𝑥3 (𝑏 + 𝑐)𝑢 + 𝐹 − 𝑐𝑥3𝑥3 (𝑏 + 𝑐)V − 𝑥.
(133)

Denote 𝐹0 = (𝐵/𝑐)3𝑏. For 𝐹 = 𝐹0 we have 𝑥 = 3√𝐹0/𝑏 = 𝐵/𝑐.
The eigenvalues of 𝐽0 are 𝜇(𝐹0) and 𝜇(𝐹0) where

𝜇 (𝐹0) = 𝑐 − 𝑏 + 𝑖√(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐)
and 󵄨󵄨󵄨󵄨𝜇 (𝐹0)󵄨󵄨󵄨󵄨 = 1. (134)

The eigenvectors corresponding to 𝜇(𝐹0) and 𝜇(𝐹0) are V(𝐹0)
and V(𝐹0) where

V (𝐹0) = (𝑐 − 𝑏 + 𝑖√(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐) , 1) . (135)

Further,󵄨󵄨󵄨󵄨𝜇 (𝐹0)󵄨󵄨󵄨󵄨 = 1,𝜇2 (𝐹0)
= −𝑐2 + 6𝑏𝑐 + 𝑏22 (𝑏 + 𝑐)2 − 𝑖 (𝑐 − 𝑏)√(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐)2 ,

𝜇3 (𝐹0)
= (𝑏 − 𝑐) (𝑏2 + 4𝑏𝑐 + 𝑐2)(𝑏 + 𝑐)3

+ 𝑖2𝑏𝑐√(𝑏 + 3𝑐) (3𝑏 + 𝑐)(𝑏 + 𝑐)3 ,
𝜇4 (𝐹0)

= −𝑏4 − 4𝑏𝑐3 − 4𝑏3𝑐 − 26𝑏2𝑐2 + 𝑐42 (𝑏 + 𝑐)4
− 𝑖 (𝑏 − 𝑐) (𝑏2 + 6𝑏𝑐 + 𝑐2)√(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐)4 ,

(136)

and 𝜇𝑘(𝐹0) ̸= 1 for 𝑘 = 1, 2, 3, 4 for 𝑐 > 0, 𝑏 > 0, and 𝑏 ̸= 𝑐.
For 𝐹 = 𝐹0 and 𝑥 = 𝐵/𝑐

𝐾(𝑢
V
) = ( 0 1−1 −𝑏 − 𝑐𝑏 + 𝑐)(𝑢

V
) + (ℎ1 (𝑢, V)ℎ2 (𝑢, V)) , (137)

and

ℎ1 (𝑢, V) = 𝑓1 (𝐹0, 𝑢, V) = 0,ℎ2 (𝑢, V) = 𝑓2 (𝐹0, 𝑢, V)
= 𝐵 (𝐵2𝑏 + 𝐵2𝑐 + 𝐵𝑐2𝑢 + 𝐵𝑐2V + 𝑐3𝑢V)𝑐 (𝐵 + 𝑐𝑢) (𝑐2𝑢 + 𝐵𝑏 + 𝐵𝑐 + 𝑏𝑐V) + 𝑢

+ 𝑏 − 𝑐𝑏 + 𝑐V − 𝐵𝑐 .
(138)

Hence, for 𝐹 = 𝐹0 system (125) is equivalent to

(𝑢𝑛+1
V𝑛+1

) = ( 0 1−1 −𝑏 − 𝑐𝑏 + 𝑐)(𝑢𝑛
V𝑛
) + (ℎ1 (𝑢𝑛, V𝑛)ℎ2 (𝑢𝑛, V𝑛)) . (139)

Let ( 𝑢𝑛V𝑛 ) = 𝑃 ( 𝜉𝑛𝜂𝑛 ), where
𝑃 = ( 𝑐 − 𝑏2 (𝑏 + 𝑐) √(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐)1 0 ) ,
𝑃−1

= ( 0 12 (𝑏 + 𝑐)√(𝑏 + 3𝑐) (3𝑏 + 𝑐) − 𝑐 − 𝑏√(𝑏 + 3𝑐) (3𝑏 + 𝑐)) .
(140)
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Then system (125) is equivalent to its normal form

(𝜉𝑛+1𝜂𝑛+1)
= ( 𝑐 − 𝑏2 (𝑏 + 𝑐) −√(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐)√(𝑏 + 3𝑐) (3𝑏 + 𝑐)2 (𝑏 + 𝑐) 𝑐 − 𝑏2 (𝑏 + 𝑐) )(𝜉𝑛𝜂𝑛)

+ 𝑃−1𝐻(𝑃(𝜉𝑛𝜂𝑛))
(141)

where

𝐻(𝑢
V
) fl (ℎ1 (𝑢, V)ℎ2 (𝑢, V)) . (142)

Let

𝐺(𝑢
V
) = (𝑔1 (𝑢, V)𝑔2 (𝑢, V)) = 𝑃−1𝐻(𝑃(𝑢

V
)) . (143)

By the straightforward calculation we obtain that

𝑔1 (𝑢, V) = −𝐵𝑐 + 𝑏 − 𝑐𝑏 + 𝑐𝑢
+ (𝑐 − 𝑏) 𝑢 + √(𝑏 + 3𝑐) (3𝑏 + 𝑐)V2 (𝑏 + 𝑐)+ Ω (𝑢, V) ,

(144)

where

Ω (𝑢, V) = 2𝐵 (𝑏 + 𝑐) 𝜅1𝑐𝜅2𝜅3 ,
𝜅1 = 2𝐵2𝑏2 + 2𝐵2𝑐2 + 𝑐4𝑢2 + 4𝐵2𝑏𝑐 + 3𝐵𝑐3𝑢− 𝑏𝑐3𝑢2 + 𝐵𝑐2V√(𝑏 + 3𝑐) (3𝑏 + 𝑐)+ 𝑐3𝑢V√(𝑏 + 3𝑐) (3𝑏 + 𝑐) + 𝐵𝑏𝑐2𝑢,

𝜅2 = 𝑐2𝑢 + 2𝐵𝑏 + 2𝐵𝑐 + 𝑐V√(𝑏 + 3𝑐) (3𝑏 + 𝑐)− 𝑏𝑐𝑢,𝜅3 = 2𝐵𝑏2 + 2𝐵𝑐2 + 𝑐3𝑢+ 𝑐2V√(𝑏 + 3𝑐) (3𝑏 + 𝑐) + 𝑏𝑐2𝑢+ 2𝑏2𝑐𝑢 + 4𝐵𝑏𝑐,
(145)

and

𝑔2 (𝑢, V) = 𝑏 − 𝑐√(𝑏 + 3𝑐) (3𝑏 + 𝑐)𝑔1 (𝑢, V) . (146)

Further,

𝜕2𝑔1 (0, 0)𝜕𝑢2 = 𝑐 (𝑏 − 𝑐) (3𝑏2 + 𝑐2)2𝐵 (𝑏 + 𝑐)3 ,
𝜕2𝑔1 (0, 0)𝜕𝑢𝜕V = 𝑏𝑐2√(𝑏 + 3𝑐) (3𝑏 + 𝑐)𝐵 (𝑏 + 𝑐)3 ,
𝜕2𝑔1 (0, 0)𝜕V2 = 𝑐 (3𝑏 + 𝑐) (𝑏 + 3𝑐)2𝐵 (𝑏 + 𝑐)2 ,
𝜕3𝑔1 (0, 0)𝜕𝑢3 = −3𝑐2 (𝑏 − 𝑐) (5𝑏4 + 4𝑏3𝑐 + 6𝑏2𝑐2 + 𝑐4)4𝐵2 (𝑏 + 𝑐)5 ,
𝜕3𝑔1 (0, 0)𝜕𝑢2𝜕V
= 𝑐2 (−3𝑏4 − 8𝑏3𝑐 + 2𝑏2𝑐2 − 8𝑏𝑐3 + 𝑐4)√(𝑏 + 3𝑐) (3𝑏 + 𝑐)4𝐵2 (𝑏 + 𝑐)5 ,
𝜕3𝑔1 (0, 0)𝜕𝑢𝜕V2
= −𝑐2 (3𝑏 + 𝑐) (𝑏 + 3𝑐) (−𝑏3 + 3𝑏2𝑐 + 9𝑏𝑐2 + 𝑐3)4𝐵2 (𝑏 + 𝑐)5 ,
𝜕3𝑔1 (0, 0)𝜕V3 = −3𝑐2 (3𝑏 + 𝑐) (𝑏 + 3𝑐)√(𝑏 + 3𝑐) (3𝑏 + 𝑐)4𝐵2 (𝑏 + 𝑐)3 .

(147)

Now, by using (118), (119), (120), (121), and (122) we obtain

𝜉11 = 𝑐 (7𝑏𝑐2 + 5𝑏2𝑐 + 3𝑏3 + 𝑐3)4𝐵 (𝑏 + 𝑐)3 (1 + 𝑖 𝑏 − 𝑐√(𝑏 + 3𝑐) (3𝑏 + 𝑐)) ,
𝜉20 = − 𝑐24𝐵 (𝑏 + 𝑐)2 (3𝑏 + 𝑐 + 𝑖 7𝑏2 + 2𝑏𝑐 − 𝑐2√(𝑏 + 3𝑐) (3𝑏 + 𝑐)) ,
𝜉02 = 𝑐24𝐵 (𝑏 + 𝑐)3 (− (5𝑏2 + 2𝑏𝑐 + 𝑐2) + 𝑖−𝑏3 + 11𝑏2𝑐 + 5𝑏𝑐2 + 𝑐3√(𝑏 + 3𝑐) (3𝑏 + 𝑐) ) ,
𝜉21 = 𝑐28𝐵2 (𝑏 + 𝑐)4 (−(3𝑏4 + 2𝑏3𝑐 + 8𝑏2𝑐2 − 𝑐4) + 𝑖3𝑏5 + 35𝑏4𝑐 + 60𝑏3𝑐2 + 74𝑏2𝑐3 + 33𝑏𝑐4 + 3𝑐5√(𝑏 + 3𝑐) (3𝑏 + 𝑐) ) ,
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(1 − 2𝜇 (𝐹0)) 𝜇 (𝐹0)21 − 𝜇 (𝐹0) = −8𝑏𝑐 + 𝑏2 + 3𝑐22 (𝑏 + 𝑐)2 + 𝑖√10𝑏𝑐 + 3𝑏2 + 3𝑐2 5𝑏2 − 𝑐22 (3𝑏 + 𝑐) (𝑏 + 𝑐)2 ,
𝜉11𝜉20 = −𝑐3 (3𝑏3 + 5𝑏2𝑐 + 7𝑏𝑐2 + 𝑐3)16𝐵2 (𝑏 + 𝑐)5 (2 (𝑏3 + 19𝑏2𝑐 + 11𝑏𝑐2 + 𝑐3)3𝑏2 + 10𝑏𝑐 + 3𝑐2 + 𝑖 2 (5𝑏2 − 𝑐2)√3𝑏2 + 10𝑏𝑐 + 3𝑐2) ,
Re((1 − 2𝜇 (𝐹0)) 𝜇 (𝐹0)21 − 𝜇 (𝐹0) 𝜉11𝜉20) = 𝑐3 (13𝑏2 + 12𝑏c + 3𝑐2) (3𝑏3 + 5𝑏2𝑐 + 7𝑏𝑐2 + 𝑐3)8𝐵2 (𝑏 + 𝑐)4 (3𝑏 + 𝑐) (𝑏 + 3𝑐) ,
12 󵄨󵄨󵄨󵄨𝜉11󵄨󵄨󵄨󵄨2 = 𝑐2 (3𝑏3 + 5𝑏2𝑐 + 7𝑏𝑐2 + 𝑐3)28𝐵2 (𝑏 + 𝑐)4 (3𝑏 + 𝑐) (𝑏 + 3𝑐) ,󵄨󵄨󵄨󵄨𝜉02󵄨󵄨󵄨󵄨2 = 19𝑏3𝑐4 + 15𝑏2𝑐5 + 5𝑏𝑐6 + 𝑐74𝐵2 (3𝑏 + 𝑐) (𝑏 + 3𝑐) (𝑏 + 𝑐)3 ,
Re (𝜇 (𝐹0)𝜉21) = 𝑐2 (3𝑏4 + 14𝑏3𝑐 + 19𝑏2𝑐2 + 14𝑏𝑐3 + 2𝑐4)8𝐵2 (𝑏 + 𝑐)4

(148)

and finally,

𝑎 (𝐹0) = −𝑏𝑐3 (3𝑏3 − 9𝑏2𝑐 − 3𝑏𝑐2 + 𝑐3)8𝐵2 (𝑏 + 𝑐)4 (3𝑏 + 𝑐) . (149)

If we substitute 𝑏 with 𝑘𝑐 we obtain
3𝑏3 − 9𝑏2𝑐 − 3𝑏𝑐2 + 𝑐3= 3 (𝑘𝑐)3 − 9 (𝑘𝑐)2 𝑐 − 3 (𝑘𝑐) 𝑐2 + 𝑐3

= 𝑐3 (3𝑘3 − 9𝑘2 − 3𝑘 + 1) . (150)

So, 𝑎 (𝐹0) = 0 ⇐⇒3𝑘3 − 9𝑘2 − 3𝑘 + 1 = 0. (151)

Solutions, determined numerically, are 𝑘1 ≈ −0.48445, 𝑘2 ≈0.21014, and 𝑘3 ≈ 3.2743. Since 𝑏 > 0 and 𝑐 > 0 it must be𝑘 > 0. Now,𝑎 (𝐹0) > 0 for 𝑏 = 𝑘𝑐, 𝑘 ∈ (𝑘2, 1) ∪ (1, 𝑘3) ,𝑎 (𝐹0) < 0 for 𝑏 = 𝑘𝑐, 𝑘 ∈ (0, 𝑘2) ∪ (𝑘3, +∞) . (152)

Further,

𝜇 (𝐹) = −𝑏𝐹 + 𝐵𝑐𝑥2 ± 𝑖√4 (𝑏 + 𝑐)2 𝑥3 (𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2) − (𝑏𝐹 − 𝐵𝑐𝑥2)22 (𝑏 + 𝑐)2 𝑥3 (153)

and 𝜇(𝐹)𝜇(𝐹) = (𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2)/(𝑏 + 𝑐)2𝑥3, i.e.,|𝜇(𝐹)| = √(𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2)/(𝑏 + 𝑐)2𝑥3. By differentiating
the equilibrium equation

(𝑏 + 𝑐) 𝑥3 − 𝐵𝑥2 − 𝐹 = 0 (154)

with respect to 𝐹 and solving for 𝑥󸀠(𝐹) we obtain 𝑥󸀠(𝐹) =1/(3(𝑏 + 𝑐)𝑥2 − 2𝐵𝑥), i.e., 𝑥(𝐹0) = 3√𝐹0/𝑏 = 𝐵/𝑐.
𝑥󸀠 (𝐹0) = 13 (𝑏 + 𝑐) (𝐵/𝑐)2 − 2𝐵 (𝐵/𝑐) = 𝑐2𝐵2 (3𝑏 + 𝑐) . (155)

Now,

𝑑 󵄨󵄨󵄨󵄨𝜇 (𝐹)󵄨󵄨󵄨󵄨𝑑𝐹
= 12√(𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2) / (𝑏 + 𝑐)2 𝑥3 (𝑏 + 2𝑐 + 2𝐵𝑐𝑥𝑥󸀠(𝑏 + 𝑐)2 𝑥3
− 3 (𝑏𝐹 + 2𝑐𝐹 + 𝐵𝑐𝑥2) 𝑥󸀠(𝑏 + 𝑐)2 𝑥4 ) .

(156)

By substituting 𝑥󸀠(𝐹) in the above expression and considering
the fact that |𝜇(𝐹0)| = 1, we obtain
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𝑑 󵄨󵄨󵄨󵄨𝜇 (𝐹)󵄨󵄨󵄨󵄨𝑑𝐹 (𝐹0)
= 12 (𝑏 + 2𝑐 + 2𝐵𝑐 (𝐵/𝑐) (𝑐2/ (𝐵2 (3𝑏 + 𝑐)))(𝑏 + 𝑐)2 (𝐵/𝑐)3
− 3 (𝑐2/ (𝐵2 (3𝑏 + 𝑐)))𝐵/𝑐 ) ,

(157)

i.e., 𝑑 󵄨󵄨󵄨󵄨𝜇 (𝐹)󵄨󵄨󵄨󵄨𝑑𝐹 (𝐹0) = 𝑐42𝐵3 (𝑏 + 𝑐) (3𝑏 + 𝑐) > 0 (158)

and that completes the proof of the theorem.
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