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Oyster reefs provide habitat for numerous fish and decapod crustacean species that

mediate ecosystem functioning and support vibrant fisheries. Recent focus on the

restoration of eastern oyster (Crassostrea virginica) reefs stems from this role as a critical

ecosystem engineer. Within the shallow estuaries of the northern Gulf of Mexico (nGoM),

the eastern oyster is the dominant reef building organism. This study synthesizes data on

fish and decapod crustacean occupancy of oyster reefs across nGoM with the goal of

providing management and restoration benchmarks, something that is currently lacking

for the region. Relevant data from 23 studies were identified, representing data from all

five U.S. nGoM states over the last 28 years. Cumulatively, these studies documented

over 120,000 individuals from 115 fish and 41 decapod crustacean species. Densities

as high as 2,800 ind m−2 were reported, with individual reef assemblages composed of

as many as 52 species. Small, cryptic organisms that occupy interstitial spaces within

the reefs, and sampled using trays, were found at an average density of 647 and 20

ind m−2 for decapod crustaceans and fishes, respectively. Both groups of organisms

were comprised, on average, of 8 species. Larger-bodied fishes captured adjacent to the

reef using gill nets were found at an average density of 6 ind m−2, which came from 23

species. Decapod crustaceans sampled with gill nets had a much lower average density,

<1 ind m−2, and only contained 2 species. On average, seines captured the greatest

number of fish species (n = 33), which were made up of both facultative residents

and transients. These data provide general gear-specific benchmarks, based on values

currently found in the region, to assist managers in assessing nekton occupancy of

oyster reefs, and assessing trends or changes in status of oyster reef associated nekton

support. More explicit reef descriptions (e.g., rugosity, height, area, adjacent habitat)

would allow for more precise benchmarks as these factors are important in determining

nekton assemblages, and sampling efficiency.
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INTRODUCTION

Understanding the impacts of habitat change on natural
resources remains a key component for informing restoration
andmanagement policy (Barbier et al., 2011; Bennett et al., 2015).
Fisheries policy in particular, through the 1996 amendment
to the U.S. Magnuson-Stevens Act (passed 1976), introduced
a mandate on defining and protecting Essential Fish Habitat,
which include “all waters and substrate necessary to fish for
spawning, breeding, feeding, or growth to maturity” (Magnuson
Stevens Fishery Management Conservation Act, 1996, 16U.S.C.
section 1801–1804). This placed high importance on species-
habitat associations (Magnuson Stevens Fishery Management
Conservation Act, 1996: 50 CFR, sections 600.805–930). Since
then, data on habitat-specific fisheries and associated species have
been used to justify, inform, and guide policy and management
activities (Rondinini and Chiozza, 2010; Vasconcelos et al.,
2015; NRC, 2017). Thus, documenting species richness and
assemblages within a habitat type is a first crucial step to defining
habitat support and ensuring collection of proper baseline data.
These baseline data can be used to support modeling, evaluate
restoration outcomes (Dufrêne and Legendre, 1997; NRC, 2017),
and, as highlighted recently, to evaluate resource injury (i.e.,
under the U.S. Oil Pollution Act, 19901, section 1006I(1) for
coastal resources).

Reefs built by the eastern oyster, Crassostrea virginica, have
been recognized as Essential Fish Habitat (Coen and Grizzle,
2007). Historically valued for their economic impact as a
direct food commodity, oysters also create reefs, providing
valuable three-dimensional habitat within coastal environments.
In recent decades, significant efforts to conserve, and restore
oyster reefs have been justified based on the valuable ecosystem
services they provide, including water quality improvements,
shoreline protection, and habitat creation for commercially
and recreationally important fisheries (Coen and Grizzle, 2007;
Grabowski et al., 2012). Importantly, for fisheries and restoration
policy, oyster reefs are recognized as key biogenic habitat for
a diverse assemblage of fishes and decapod crustaceans (e.g.,
Mobius, 1877; Frey, 1946; Wells, 1961; Coen et al., 1999; Coen
and Grizzle, 2007, 2016). The reported functional decline in
oyster reefs (Beck et al., 2011; Zu Ermgassen et al., 2012) is
likely to have broad consequences for habitat provision, and
thus biodiversity and fisheries production (Peterson et al., 2003;
Humphries and La Peyre, 2015; Zu Ermgassen et al., 2015),
but a lack of established benchmarks hinders our ability to
assess impacts.

Recent guidelines for monitoring oyster reefs suggest setting
explicit goals for assessing habitat support (Baggett et al., 2015;
NRC, 2017). Goals for restoration projects may focus simply on
provision of habitat (i.e., La Peyre et al., 2014a; Baggett et al.,
2015), or, they may be expanded to include local enhancement
of ecosystem services (i.e., Coen and Luckenbach, 2000). Central
to either of these goals, however, is an understanding of what
the nekton assemblages look like on the desired habitat in terms
of expected assemblages, abundance, and biomass of species.

1Oil Pollution Act of 1990 (OPA) (101 H.R.1465, P.L. 101–380).

As such, many oyster reef restoration planning documents call
for the use of project-specific reference sites (Coen et al., 2004;
SER Society for Ecological Restoration, 2004; Baggett et al.,
2015; NRC, 2017); however, such sites are often not available,
or monitoring efforts fail to collect these data. An alternative
is to establish desirable conditions, or benchmarks to measure
changes in resource status (Ehrenfeld, 2000; Kentula, 2000).

Benchmarks provide a tool to assess the status of natural,
managed, or restored ecosystems (Angermeier and Karr, 1994;
McClanahan et al., 2019). Ideally, benchmarks are set using
baseline data derived from natural or pristine systems, which
are defined by functional and evolutionary limits of the
ecosystem (Pickett et al., 1992). For many resources and regions,
effects of altered landscapes (e.g., river management, climate
change), and a lack of historical data confound efforts to set
benchmarks representing pristine conditions (Toledo et al.,
2011). Lacking these historical data, useful benchmarks can
still be established for current ecosystem status against which
future assessments of natural resource condition or management
effects can be measured. Across the northern Gulf of Mexico
(nGoM), significant coastal restoration, river management, and
climate change impacts have affected local hydrology, water
quality, and landscape configurations (Pendleton et al., 2010;
Montagna et al., 2011). These changes alter oyster population
dynamics and reef characteristics which ultimately impacts the
oyster reef ’s provision of ecosystem services, including nekton
habitat. Benchmarks representing reef-resident and transient
assemblages based on the current range or means of values from
recent assessments would provide useful tools to assess changes
in status of natural reefs, as well as managed and restored reefs.

The nGoM supports extensive natural oyster reefs (Kilgen
and Dugas, 1989), and recently has experienced significant
restoration activities related to oyster reefs, with a goal of
providing fisheries habitat (La Peyre et al., 2014a). Reports from
the Atlantic coast of the United States document occupancy of
eastern oyster reefs by 50 to over 300 species, with the wide
range of reported species depending on whether the surveys
include fish, decapod crustaceans, molluscs or other organisms,
such as protozoans, sponges and flatworms (e.g., Frey, 1946;
Wells, 1961; Coen and Grizzle, 2007). Similar data do not exist
for the nGoM, despite the exceptional fisheries support and
habitat characteristics of the region. For example, the nGoM
is characterized by a microtidal regime (<0.5m) where water
level changes are driven mostly by winds, precipitation, and
runoff (Kim and Park, 2012). As such, depth and exposure
of Gulf coast oyster reefs can vary and be difficult to predict
(Kilgen andDugas, 1989). Importantly, water depth and substrate
or reef exposure influence reef formation, which impacts
oyster population dynamics (Ridge et al., 2015). Oysters in
the nGoM have higher growth rates and reduced mortality
rates compared to other regions, despite experiencing lower
salinity, and higher temperatures than other regions (Lowe et al.,
2017). These differences in reef formation, water quality, and
growth characteristics likely influence the associated nekton
communities, suggesting a need for region specific benchmarks.

This study aims to quantify fish and decapod crustacean
assemblages associated with nGoM oyster reefs. The goal is to
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FIGURE 1 | Flow diagram for records search documenting number of records

identified and screened for inclusion in this data review.

provide benchmarks using available data collected on nekton
occupancy across a broad spectrum of oyster reefs. These
benchmarks will be useful as a guideline to assess policy and
restoration outcomes in the nGoM, as well as inform future
injury assessments (Geist and Hawkins, 2016). These needs have
been identified in previous studies and planning documents and
represent a critical information gap for assessing restoration and
policy goals (Baggett et al., 2015; Coen and Humphries, 2017;
NRC, 2017).

METHODS

Peer Reviewed Study Selection
A literature search for fish and decapod crustacean sampling
on oyster reefs across the nGoM was conducted by searching
Google Scholar using the following search terms: “oyster reef”
AND (Texas OR Louisiana OR Mississippi OR Alabama OR
Florida) AND (macrofauna OR nekton), for all papers dated
through April 2019. Only peer-reviewed, regional nGoM shallow
water (<3m) studies that provided oyster reef location, sample
size, sample methods (i.e., gear), species identities, and density
information were included in the final database. Also, only

studies targeting oyster reef fish and/or decapod crustacean
communities (and not individual species focused studies) were
included for the targeted evaluation of community composition,
and not specific species.

Nekton Variables
Nekton variables were collected by gear type, and standardized
across studies. To address the issue of unequal sampling effort,
all nekton density data were standardized to individuals m−2

for all gear types, except gill net, which was standardized to
individuals hr−1 of net soak time. Sampling effort was calculated
by multiplying the number of samples taken by either the total
area sampled, or total hours fished.

Reef and Water Quality Characteristics
Variables describing reef characteristics and water quality, where
available, were added to the database. Data availability was
examined for tidal height, reef elevation, exposure, and water
quality for selected study reefs and locations. Water quality
data for salinity, temperature (◦C), and dissolved oxygen (mg
L−1) were the only three variables consistently available. We
recorded reef type (natural vs. constructed) as there were few
data sets for natural reefs, and using data from only natural
reefs resulted in a very limited database. For the purposes of
this study, we define natural reefs as reefs that had not, to
the best of our knowledge, been anthropogenically enhanced,
restored, or created in any way. We define “constructed” reefs
as those that were anthropogenically enhanced, restored, or
created using shell or other materials such as rock or cement
with the goal of reef restoration and not oyster production
for human consumption. Reefs were classified as intertidal or
subtidal based on information from the original studies. Any reef
not explicitly identified as intertidal was classified as subtidal,
although we acknowledge that some subtidal reefs in this region
are occasionally exposed from weather events (i.e., La Peyre et al.,
2017).

Final Database
The final database included density or catch per unit effort
(CPUE) of fish and decapod crustaceans, number of fish
and decapod crustacean species, list of species collected,
sample size, sampling gear, reef type (natural, constructed),
tidal status (intertidal vs. subtidal), and a few discrete
environmental parameters (water temperature, salinity,
dissolved oxygen).

Data are presented and discussed using statistical means and
distributions by gear type.We use themeans for fish and decapod
crustacean density and species number separately, by dominant
gear type quantifying “on-reef” and “near reef” values to suggest
potential benchmarks based on the range and means of values
currently found across the nGoM (R 3.5.1; R Core Team, 2018).

RESULTS

From a total of 1,072 search results, 23 articles were selected for
this analysis based on their overall goals and data availability
(Figure 1; Table 1). The majority of studies were excluded
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TABLE 1 | List of studies identified as sampling for nekton assemblages on oyster reefs within estuaries across the northern Gulf of Mexico.

Code Reference Location Reef type Exposure Salinity Temperature (◦C) Dissolved oxygen

(mg L−1)

A Zimmerman et al., 1989 Galveston Bay, TX Natural Intertidal n/a n/a n/a

B Glancy et al., 2003 Citrus County, FL Natural Subtidal 12.0–25.0 16.5–32.4 3.0–9.6

C Plunket and La Peyre, 2005 Barataria Bay, LA Natural Subtidal 4.3–22.1 13.7–28.8 3.3–10.2

D Tolley and Volety, 2005 Tarpon Bay, FL Natural Intertidal 28.2–36.8* 26.0–28.3* n/a

E Tolley et al., 2006 Estero Bay, FL Natural Intertidal 9.3–26.4* 28.1–29.0* 5.1–5.9*

F Shervette and Gelwick, 2008 Grand Bay, MS Natural Intertidal 3.0–22.8 25.1–33.1 4.7–7.0

G Simonsen, 2008; Simonsen

and Cowan, 2013

Barataria Bay, LA Natural Subtidal 8.1–32.7 11.8–32.1 2.1–9.8

H Gregalis et al., 2009 Mobile Bay, AL Constructed, 2004 Subtidal 5.0–23.0 9.6–32.8 3.5–15.7

I Gain, 2009; Gain et al., 2017 Corpus Christi Bay, TX Natural Intertidal 31.0–36.1 20.3–28.1 5.8–6.1

J Stunz et al., 2010 Galveston Bay, TX Constructed, 2003 Subtidal 20.1–37.4* 16.9–31.2* 5.8–8.8 *

K Robillard et al., 2010 Lavaca Bay, TX Natural Subtidal 8.6–21.7 13.6–27.4 6.1–9.8

L Humphries et al., 2011a Sister Lake, LA Constructed, 2009 Subtidal 0–23.0 2.0–34.0 4.0–11.0

M Scyphers et al., 2011 Mobile Bay, AL Constructed, 2007 Subtidal 8.7–31.8# 11.3–31.5# n/a

N La Peyre et al., 2013 Breton Sound, LA Constructed, 2009 Subtidal 8.3–20.5 12.9–34.7 0.4–8.8

O Brown et al., 2013 Gulf-wide Constructed, 1990-2010 Subtidal 0.2–31.7 28.5–30.7* 4.5–9.5

P Nevins et al., 2014 Sabine Lake, TX, LA Natural Subtidal 4.2–27.5 13.3–31.9 4.3–9.7

Q La Peyre et al., 2014b Sister Lake, LA Constructed, 2010 Subtidal 0.3–29.8 2.2–34.4 0.4–17.3

R Beck and La Peyre, 2015 Louisiana Natural Subtidal 12.0–20.0 24.9–31.1 4.4–6.9

S George et al., 2015 St. Charles Bay, TX Natural1 Subtidal 22.0–25.0 25.0–28.0 7.0–7.1

T Graham et al., 2017 Aransas Bay, TX Constructed, 2013 Subtidal 16.3–34.0 6.8–29.7 5.2–10.8

U Rezek et al., 2017 Aransas Bay, TX Natural & Constructed, 2012 Subtidal 30.6–39.5*# 10.9–30.4*# n/a

V Aguilar, 2017; Aguilar Marshall

et al., 2019

Matagorda Bay, TX Constructed, 2013-2014 Subtidal 8.2–31.2 8.7–40.6 4.7–10.6

W Blomberg et al., 2018b Copano Bay, TX Natural & Constructed, 2011 Subtidal 26.6–38.8 13.8–30.1 4.6–8.7

Reef type (natural vs. constructed), and exposure (intertidal vs. subtidal) are listed. Environmental conditions for water quality parameters are reported as a range as most studies report

only discrete sample data.
1Study compares trays of constructed material adjacent to natural reef.
2Reef construction years vary, some unknown.

*Range of means reported from discrete sampling.
#Range was downloaded from data recorders for the study sites.

because they focused on a region other than the Gulf of Mexico,
the study was not related to oyster reefs, or data were not
reported for all species. Within the Gulf of Mexico, there were
many studies examining various aspects of fisheries, nekton
production, and trophic changes on oyster reefs, but they failed
to meet our criteria for inclusion in the final dataset. A number
of studies focused exclusively on indicator species, economically
important species, a subset of the reef community, or failed
to report all catch data. While valuable, such studies were
not included.

The studies selected for analyses covered all five Gulf Coast
states and used multiple gear types. Texas had the most data (9
studies), followed by Louisiana (6 studies), Florida (3 studies),
Alabama (2 studies), and Mississippi (1 study), and 2 studies
covered multiple states (Figure 2). Across the 23 studies, seven
different gear types were used with most studies using more than
one gear type on a single oyster reef. Trays (TR) were the most
frequently used gear type (n = 12). Gill nets (GN) were the next
most used gear type (n= 8), although the lengths, mesh sizes and
soak times varied. Drop-samplers (DS), throw traps (TT), and

lift nets (LN) were grouped in one category (DS/TT/LN; n = 8).
Seines (SN; n = 4) and epibenthic sleds (ES; n = 3) represented
the remainder of sampling gear included in these analyses. We
classified TR, DS/TT/LN and ES as sampling “on-reef,” and GN
and SN as sampling “near-reef” assemblages.

Reefs sampled across the selected studies included a mix
of reef types, tidal status, and location. Studies sampled either
natural reefs (n = 12) or constructed reefs (n = 9), with
two studies comparing natural and constructed. Constructed
reef habitats (n = 9) were built at different times (1990–2014)
using different base materials that included shell, limestone, and
concrete basematerials. There was amix of intertidal and subtidal
reefs (intertidal = 5; subtidal = 18). Due to lack of site-specific
water level data, we were unable to determine exposure levels of
reefs or exposure time. Intertidal reefs were all located nearshore
(identified as< 25m from shore), along with a few of the subtidal
reefs (n= 3); the remainder of reefs were located offshore (>25m
from shore).

Water quality parameters commonly reported included
salinity, temperature, and dissolved oxygen. Oyster reefs were
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FIGURE 2 | Map of study sites used to examine the diversity and abundance of fish and decapod crustacean communities on oyster reefs across the northern coast

of the Gulf of Mexico (Texas, Louisiana, Mississippi, Alabama, and Florida Gulf coast). See Table 1 for explanation of study codes.

sampled through a broad range of salinities (0–39.5) from
Florida to Texas with most studies reporting ranges of salinities
>20, reflecting the highly variable nature of the estuarine
environments where many oysters are found in the nGoM
(Table 1). Temperature reflected the annual range in the
region, from 2.0◦ to 40.6◦C, encompassing winter and summer
samples, while dissolved oxygen conditions ranged from 0.4 to
17.3mg L−1. No other environmental parameters were reported
consistently across studies.

A total of 115 fish species, based on over 32,000 individual
fish, were reported on or near oyster reefs (Table 2,
Supplementary Table 1). Of the 115 reported fish species,
22 species (∼19%) were collected in eight or more of the
studies (Table 3), and 40 species were only reported in one
study (Supplementary Table 1). The number of fish species
collected ranged from 4 to 46 per study (Table 2; Figure 3;
Supplementary Table 1). Species assemblages varied among
gear types with TR and DS/TT/LN capturing more known reef
residents, such as gobies and blennies, which included 15 species
found only in these gear types. Gill nets captured larger and more
mobile transient fish species, such as sheepshead (Archosargus
probatocephalus) and red drum (Sciaenops ocellatus), while
seines captured a mix of both the transient fish species and
some of the smaller more ubiquitous resident species (Table 3;
Supplementary Table 1). Seine and gill net data included 51 fish
species not captured with any of the other methods. Of these, 23
species were captured exclusively by gill net, including many of
the shark species, and 15 species were captured exclusively by
seine. Combined, the SN and GN gear types uniquely captured
44% of the fish species (Supplementary Table 1). Densities
reported were gear-dependent, with TR and TT/DS/LN having
mean densities of 20.2 ± 4.3 ind m−2 (mean ± SE) and 15.6
± 2.8 ind m−2, respectively (Figure 4). GN, capturing larger

bodied fish, reported mean densities of 6.7 ± 8.4 ind m−2. SN
and ES reported low densities (< 1 ind m−2).

A total of 56 decapod crustacean species, based on over 90,000
individuals were identified (Table 2, Supplementary Table 2).
The number of decapod crustacean species ranged up to 26
per study. Of the 56 reported crustacean species, 11 species
(snapping shrimp, blue crabs, depressed mud crabs, brown
shrimp, white shrimp, Gulf stone crabs, Palaemonetes pugio and
P. vulgaris grass shrimp, Panopeid mud crabs, green porcelain
crabs, Harris mud crabs) were listed in eight or more of the
studies (Table 4) while 27 species were only listed in one study
(Supplementary Table 2). Species composition differed between
gear types, with TR, TT/DS/LN, and ES capturing the most
species. TR consistently captured highest densities (mean ± SE:
647.9± 245.9; Figure 4), while GN and SN captured few decapod
crustaceans (Figure 4, Supplementary Table 2).

DISCUSSION

Modern day natural and constructed reefs across the nGoM
support diverse and dense assemblages of fishes and decapod
crustaceans. Nekton density was as high as 2,800 ind m−2 and
some reefs had >50 species of fish and decapod crustaceans.
Using the available published data, gear-dependent means for
density and species richness of dominant “on-reef” sampling
(tray) and “near reef” sampling (gill net) serve as useful
benchmarks. These benchmarks provide quantitative measures
that can be used to assess changes in the status of existing
and constructed oyster reefs. Management of coastal habitat
and fisheries requires data on species-habitat associations to
delineate Essential Fish Habitat, better implement restoration,
perform injury assessments, and set policy goals. These suggested
benchmarks, based on current reef status, may be used to assess
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TABLE 2 | Synthesis of sampling effort and catch for studies for the northern Gulf of Mexico.

Study Reef

Type

Gear

type

No.

samples

No. fish

collected

No. crustaceans

collected

Effort (m−2

or hrs)

Mean fish density

(ind m−2 OR ind hr−1)

Mean crustacean density

(ind m−2 OR ind hr−1)

No. fish

species

No. crustacean

species

Plunket and La Peyre, 2005 N TR 22 226 1,560 6.7 m2 33.2 (4.5) 168.4 (16.1) 8 5

Gregalis et al., 2009 C TR 576 4,985 13,970 115.2 m2 41.5 (5.6) 116.4 (15.9) 9 8

Brown et al., 2013 C TR 80 201 15,004 7.2 m2 2.4 (4.3) 188.5 (33.8) 5 12

La Peyre et al., 2014b C TR 60 784 302 19.8 m2 38.9 (16.6) 18.2 (14.2) 7 8

Beck and La Peyre, 2015 N TR 58 1,273 5,360 12.8 m2 56.2 (5.5) 223.7 (12.6) 10 10

George et al., 2015 N TR 50 – – 37.5 m2 19.6 (–) 414.5 (–) 13 9

Graham et al., 2017 C TR 72 – – 10.8 m2 20.7 (–) 1031.9 (–) 8 10

Rezek et al., 2017 N TR 15 56 3,142 2.025 m2 27.7 (–) 1551.5 (–) 5 3

Rezek et al., 2017 C TR 15 24 5,758 2.025 m2 11.9 (–) 2843.6 (–) 7 7

Aguilar, 2017; Aguilar Marshall

et al., 2019

C TR 72 – – 20.16 m2 19.5 (–) 393.4 (–) 4 13

Blomberg et al., 2018b N TR 36 217 5,769 15.84 m2 13.95 (–) 371.6 (–) 15 10

Blomberg et al., 2018b C TR 36 285 7,046 15.84 m2 18.35 (–) 453.86 (–) 13 9

Plunket and La Peyre, 2005 N GN 18 234 0 32 h 6.4 (1.9) 0.0 16 0

Simonsen, 2008; Simonsen

and Cowan, 2013

N GN 28 2,156 66 28 h 68 (13.2) < 1.0 25 2

Gregalis et al., 2009 C GN 288 – 0 1,152 h 8.4 (5.3) 0.0 40 0

Robillard et al., 2010 N GN 16 470 2 40 h 11.8 (–) < 0.1 (–) 18 2

Scyphers et al., 2011 C GN – 4,647 0 1,258 h 3.87 (–) 0.0 46 0

La Peyre et al., 2013 C GN 18 36 4 18 h 2.0 (0.6) 0.2 (0.1) 9 1

Brown et al., 2013 C GN 104 217 2 104 h 1.3 (0.3) < 0.5 22 2

La Peyre et al., 2014b C GN 60 845 87 120 h 7.0 (0.8) 0.7 (0.2) 23 3

Zimmerman et al., 1989 N DS 16 791 2,937 41.6 m2 4.3 (1.0)−34.0 (16.9) 36.4 (4.3)−104.8 (18.8) 15 11

Shervette and Gelwick, 2008 N DS 24 345 1,122 28.1 m2 12.3 (–) 39.9 (–) 26 16

Stunz et al., 2010 C DS 40 609 2,491 104 m2 17.2 (1.9) 62.3 (9.9) 26 26

Humphries et al., 2011a C DS 40 244 324 40 m2 6.9 (1.5) 9.1 (1.9) 16 6

Simonsen, 2008; Simonsen

and Cowan, 2013

N SN 28 1,993 2 560 m2 0.7 (0.39) < 0.1 34 2

Scyphers et al., 2011 C SN – 3,385 776 55,440 m2 0.5 (–) 0.23 (–) 42 7

La Peyre et al., 2013 C SN 36 836 141 2,160 m2 0.8 (0.3) 0.1 (0.04) 14 4

La Peyre et al., 2014b C SN 117 4,839 1,883 14,625 m2 0.3 (0.09) 0.1 (0.04) 44 7

Robillard et al., 2010 N ES 16 433 635 1,600 m2 0.3 (–) 0.4 (–) 16 11

Nevins et al., 2014 N ES 48 1,001 1,411 3,744 m2 0.15 (0.10) 0.14 (0.03) 14 10

Aguilar, 2017; Aguilar Marshall

et al., 2019

C ES 40 – – 5,760 m2 0.11 (–) 3.42 (–) 10 21

Tolley and Volety, 2005 N LN 30 300 1,920 30 m2 10 (–) 64 (–) 16 10

Tolley et al., 2006 N LN 90 299 5,187 45 m2 6.6 (–) 115.3 (–) 12 11

Glancy et al., 2003 N TT 76 n/a 11,543 76 m2 n/a 155.4 (–) n/a 15

Gain, 2009; Gain et al., 2017 N TT 27 ∼600 ∼2,300 27 m2 25.1 (2.1) 157.1 (30.2) 28 15

Natural, Reef type is either N; or C, Constructed. TR, Gear type includes tray; GN, gill net; DS, drop sampler; SN, seine; ES, epibenthic sled; LN, lift net; TT, throw trap. Details on exact gear dimension are available within the sources.

All gear types are standardized; effort is calculated as the number of samples * area sampled (or hours fished), and reported in m−2 (or h−1) for comparison. Standard error for mean density, when available, is reported in parentheses.
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TABLE 3 | List of fish species reported in 8 studies or more, with sampling gear, location, and source.

Fish species Common name Sampling gear Location Source

Anchoa mitchilli Bay anchovy DS, ES, SN, TR LA, MS, TX A, F, G, J, K, N, P, Q, S, V

Ariopsis felis Hardhead catfish GN, SN AL, LA, TX C, G, H, K, M, N, O, Q

Archosargus probatocephalus Sheepshead DS, GN, LN, SN, TR AL, FL, LA, TX A, C, D, E, H, J, L, M, Q, S

Bagre marinus Gaftopsail catfish GN, SN, TR AL, LA, TX C, G, H, K, M, N, O, Q, S

Bairdiella chrysoura Silver perch DS, ES, GN, LN, SN, TR, TT AL, FL, LA, TX C, D, G, H, I, J, K, L, M, N, Q, S, V

Brevoortia patronus Gulf menhaden DS, ES, GN, SN AL, LA, TX A, C, G, H, J, K, M, N, O, Q

Chaetodipterus faber Atlantic spadefish DS, GN, SN, TR AL, LA C, G, H, L, M, O, Q, R

Chasmodes bosquianus Striped blenny DS, ES, TR, TT LA, MS, TX A, C, F, I, J, K, O, Q, R, S

Ctenogobius boleosoma Darter goby DS, ES, SN, TR, TT AL, LA, MS, TX C, F, G, H, I, J, K, L, P, Q, R, W

Cynoscion arenarius Sand seatrout GN, SN AL, LA, TX C, G, H, K, M, N, O, Q

Cynoscion nebulosus Spotted seatrout DS, ES, GN, SN, TT AL, LA, TX C, G, H, I, J, K, M, N, O, P, Q

Gobiesox strumosus Skilletfish DS, ES, LN, SN, TR AL, FL, LA, MS, TX A, C, E, F, H, J, L, N, O, P, Q, R, S, T, U, V, W

Gobiosoma bosc Naked goby DS, ES, LN, SN, TR, TT AL, FL, LA, MS, TX A, C, E, F, H, I, J, K, L, N, P, Q, R, S, T, U, W

Hypsoblennius hentz Feather blenny DS, ES, LN, TR AL, FL, LA, MS, TX C, D, E, F, H, P, S, V, W

Lagodon rhomboides Pinfish DS, ES, LN, GN, SN, TR, TT AL, FL, LA, MS, TX A, C, D, E, F, G, H, I, J, K, M, N, Q, S

Leiostomus xanthurus Spot DS, GN, SN, TR AL, LA, MS, TX C, F, G, H, J, K, M, Q, W

Lutjanus griseus Mangrove/gray snapper DS, GN, LN, SN, TR, TT AL, FL, LA, TX D, E, G, I, J, L, M, Q, R, W

Micropogonias undulatus Atlantic croaker DS, ES, GN, SN, TR AL, LA, TX C, G, H, J, K, M, O, P, Q, V

Myrophis punctatus Speckled worm eel DS, TR AL, LA, MS, TX A, F, H, J, L, M, Q, R, W

Opsanus beta Gulf toadfish DS, LN, SN, TR, TT AL, FL, LA, TX A, C, D, E, H, I, J, L, M, O, Q, R, S, T, U, V, W

Pogonias cromis Black drum ES, GN, SN AL, LA, TX C, G, H, K, M, N, O, P, Q

Symphurus plagiusa Blackcheek tonguefish DS, ES, LN, GN, SN AL, FL, LA, MS, TX D, F, G, J, K, L, M, P

TR, Gear type includes tray; GN, gill net; DS, drop sampler; SN, seine; ES, epibenthic sled; LN, lift net; TT, throw trap. Source is indicated in Table 1 by letter.

FIGURE 3 | Boxplot of number of fish and decapod crustacean species presented by gear type TR, tray; GN, gill net; DS, drop sampler; LN, lift net; TT, throw trap;

SN, seine; ES, epibenthic sled. Box represents 25, 50, and 75% quantilets, with whiskers at ±1.5*IQR.
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FIGURE 4 | Boxplot of fish and decapod crustacean density presented by gear type TR, tray; GN, gill net; DS, drop sampler; LN, lift net; TT, throw trap; SN, seine;

ES, epibenthic sled. Note different y-axes for each gear type. Box represents 25, 50, and 75% quantilets, with whiskers at ±1.5*IQR.

trends in oyster reef habitat support of fisheries and ecosystem
functioning for this region.

Relating specific assemblages or densities to reef
characteristics or across locations was problematic due to a
lack of gear standardization, established gear conversion factors
for oyster reefs, and reef habitat metrics. For example, some
studies only used gill nets and seines to sample whereas others
used drop samplers; given differences in catch efficiencies based
on species’ identity and size, and variable efficiency of different
gear types across reefs, results from different gear types are not
directly comparable (Zimmerman et al., 1984). As more data are
collected, methodologies are standardized, or conversion factors
developed, these fish and decapod crustacean benchmarks will
become more targeted to specific locations, reef complexity or
reef type.

Reef Characteristics and Complexity
Reef characteristics, such as adjacent habitats, connectivity,
habitat redundancy, and water quality all affect fish and
decapod crustacean assemblages, and are thus vital metrics
for interpreting benchmark data. In general, data synthesized
for this study lacked consistent reporting of reef location, in
terms of adjacent habitats, connectivity or habitat redundancy,
or complexity even though these factors influence nekton
assemblages. For example, in Texas, Nevins et al. (2014)

hypothesized that low faunal densities observed on natural
oyster reefs may be a result of adjacent habitats, as well as
difficulties sampling the complex habitat. Tolley et al. (2006)
highlighted the impacts of salinity and freshwater flow on reef
assemblages identifying flow rates and salinity as key location
characteristics influencing reef communities. For constructed
reefs, Gregalis et al. (2009) demonstrated that reef height affected
fish abundance, while resident species abundance and transient
fish assemblages varied by reef location. In some cases, reefs
have been proposed as potentially redundant habitat due to
their location adjacent to or near other high-quality habitat (i.e.,
Geraldi et al., 2009; La Peyre et al., 2014a; Heck et al., 2017).
Reporting distance to adjacent habitats, reef exposure, and water
quality/level at sampling would be useful for studies to better
understand drivers of fish and decapod crustacean occupancy of
oyster reefs.

Habitat complexity may also affect nekton assemblages
through direct and indirect effects on trophic cascades, predation
and habitat availability (e.g., Grabowski et al., 2008; Humphries
et al., 2011a). Quantifying complexity, particularly across various
constructed reef materials remains challenging. In particular,
while habitat complexity may be important, some studies have
suggested a potential complexity threshold due to failure of
finding increasing nekton numbers with increased complexity
(e.g., Humphries et al., 2011b; George et al., 2015). For example,
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TABLE 4 | List of decapod crustacean species reported in 8 studies or more, with sampling gear, location, and source.

Decapod crustacean species Common name Sampling gear Location Source

Alpheus heterochaelis Snapping shrimp DS, ES, LN, TR, TT AL, FL, LA, TX A, B, D, E, H, I, J, K, L, O, P, Q, R, S, T, U, V, W

Callinectes sapidus Blue crab DS, ES, GN, LN, SN, TR, TT AL, FL, LA, MS, TX A, B, C, D, E, F, H, I, J, K, L, M, N, O, Q, R, S, T, W

Eurypanopeus depressus Depressed/flatback

mud crab

DS, LN SN, TR, TT AL, FL, LA, MS, TX A, B, D, E, F, H, I, J, O, Q, R,U

Farfantepenaeus aztecus Brown shrimp DS, ES, GN, SN, TR LA, MS, TX F, G, I, J, K, L, N, O, P, Q, R, U, W

Litopenaeus setiferus White shrimp DS, ES, GN, SN, TR, TT LA, MS, TX F, G, I, J, K, L, N, O, P, Q, W

Menippe adina Gulf stone crab DS, ES, TR, TT LA, MS, TX F, I, K, O, R, S, T, U, V, W

Palaemonetes pugio Grass shrimp DS, SN, TR, TT FL, LA, MS, TX A, B, F, I, J, L, N, O, Q, T, W

Palaemonetes vulgaris Marsh grass shrimp DS, LN, TR FL, MS, TX A, D, E, F, J, T, U, W

Panopeidae/Xanthidae Mud crab sp. DS, ES, LN, SN, TR, TT AL, FL, LA, MS, TX A, B, C, D, E, F, H, I, J, K, L, M, O, P, Q, R, S, U, V, W

Petrolisthes armatus Green porcelain crab DS, LN, TR, TT FL, LA, TX A, B, D, E, I, J, O, R

Rhithropanopeus harrisii Harris mud crab DS, LN, SN, TR, TT FL, LA, MS, TX B, E, F, I, J, O, Q, R

TR, Gear type includes tray; GN, gill net; DS, drop sampler; SN, seine; ES, epibenthic sled; LN, lift net; TT, throw trap. Source is indicated in Table 1 by letter.

George et al. (2015) found no difference in nekton assemblages
or prey mortality in experimental studies comparing five possible
substrate materials. Similar densities of resident nekton despite
increasing oyster density led the authors of one study to
hypothesize that there might be a low threshold for habitat
complexity (Beck and La Peyre, 2015). These studies highlight the
difficulty of relating nekton density and assemblage composition
to habitat complexity; some of the differences, however, might
also relate to faulty comparisons across studies as a result of
sampling gear issues.

Impact of Sampling Gear
Sampling gear are selective for specific size ranges or species,
and are not equally effective across, or within, complex habitats
(Rozas and Minello, 1997). For oyster reefs in particular, the
natural and constructed reefs include a wide range of reef
complexity, heterogeneity, reef sizes, reef history, and reef
locations. All of these factors influence the assemblages found
on or around oyster reefs (Grabowski et al., 2005; Luckenbach
et al., 2005; Geraldi et al., 2009; Nevins et al., 2014; Beck and
La Peyre, 2015), as well as the effectiveness of gear types. While
gear-dependent benchmarks for fish and decapod crustacean
density and species number provide general region-wide values,
the effects of the interaction of gear type with reef complexity,
type, and location remain unknown.

Our study highlighted that different gear types capture
different assemblages and numbers of nekton. The highest
densities of fish and decapod crustaceans were consistently
quantified using methods sampling “on-reef” despite reporting
the lowest sampling effort. Specifically, trays, and/or enclosure
samplers (lift nets, throw traps, drop-samplers), report sampling
“on-reef,” where they capture species generally occupying
interstitial spaces within the reef structure. Some variance
between these gear types likely reflects differences in location as
they cannot be used across all reef types (i.e., throw traps and
drop-samplers require water depth < 1. 5m), or require small
patches of reefs where the sampler can fully enclose the reef
(i.e., Stunz et al., 2010; Humphries et al., 2011a). Substrate trays

sampled similar resident faunal assemblages as other “on-reef”
gear, but can be used at greater depths and on larger reef patches.
Trays are often criticized for allowing organisms to escape during
retrieval in deeper waters, although modifications including
nets that can be drawn closed have been suggested (Beck and
La Peyre, 2015). Overall, resident decapod crustaceans (e.g.,
panopeid crabs) and resident fishes (e.g., gobies, blennies) were
ubiquitous on the nGoM oyster reefs. In coral reef systems, these
cryptobenthic fauna have been shown to provide as much as 70%
of the energy consumed in the ecosystem (Brandl et al., 2019).
However, many of these species were captured only with tray
sampling, suggesting that without these sampling approaches,
an important part of the oyster reef community would not
be captured.

In contrast, lower numbers were generally captured using
gear sampling adjacent to the reef; specifically, by seines and
gill nets. Due to the nature of the reef, these techniques limit
sampling to near the reef. These approaches however captured
the larger commercially and recreationally important fish species
of interest, such as red drum (Sciaenops ocellatus), and Spanish
mackerel (Scomberomorus maculatus). For both gill net and
seine sampling, variation in mesh size, time of day, water flow,
and distance covered all influence catch rates (e.g., Vandergroot
et al., 2011; Hubert et al., 2012). While techniques exist for
standardizing data for some of these differences (i.e., mesh size;
Shoup and Ryswky, 2016), other details may be more difficult to
reconcile (i.e., interaction with hydrology, reef characteristics),
and are often not fully reported.

Gear conversion factors have been developed for comparing
different sampling gear, using a variety of statistical techniques
(i.e., Pelletier, 1998; Gibson-Reinemer et al., 2016). This might
be a useful technique to standardize reported densities and
species’ numbers for oyster reefs, if effects of habitat location
and complexity can be reconciled. For example, even when
similar gears can be used, their catch efficiencies and deployment
techniques can vary dramatically across conditions. Drop
samplers were found to have over 90% catch efficiency at small
Texas oyster reefs (Zimmerman et al., 1984; Stunz et al., 2010),
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but this rate is highly correlated to water clarity and wave action
(Rozas and Minello, 1997), two variables that are not frequently
reported. Improved reporting of full environmental conditions,
standardization of gear type for specific habitats, and, as data
permit, exploring possible gear conversion factors could help
in developing more targeted reef benchmarks than what we
present here.

Reef Restoration, Monitoring, and
Benchmarks
If we consider the current state of oyster reefs to be the
desired reference condition for assessing changes in status and
setting goals and policy for restoration (Coen and Luckenbach,
2000; NRC, 2017), this synthesis provides a set of benchmarks
based on means and ranges of current values found across the
region. These benchmarks help provide an abundance, density
and composition of fish and decapod crustaceans expected to
occupy a reef. We suggest these benchmarks as gear-dependent
goals, using trays and gill nets, the two most versatile gear
types used to sample “on-reefs” (tray), and “near-reefs” (gill
nets). To effectively develop and use this approach, habitat
characteristics that may be driving the differences between reef
assemblages, densities, and species richness need to be better
documented. Specifically, habitat characteristics, including reef
location, complexity, water quality, and reef exposure critically
influence occupancy of reefs by nekton, and benchmarks should
be developed to reflect these variations. These same habitat
characteristics, along with sampling conditions (i.e., winds,
currents, waves, tidal conditions) may also impact sampling
gear efficiency. Suggested benchmarks should be treated as a
general guide for this region, with adjustments made based on
knowledge of local reef habitat characteristics and conditions
during sampling. Ideally, future data collection will provide for
more targeted benchmarks for this region.

Over the last decade, the oyster reef restoration community
has developed and increasingly follows detailed guidance for
selection of restoration sites (Coen et al., 2004, and further
discussed in Coen and Humphries, 2017) and monitoring reef
restoration (i.e., Baggett et al., 2015). However, the difference
between these original criteria for guiding site selection, and
assessing occupancy by fish and decapod crustaceans, is that
the characteristics of the species assemblage using a reef may
be dependent on variables that do not necessarily limit oyster
reef development (e.g., structural complexity). As a result, better
quantification of occupancy of oyster reefs by fish and decapod
crustaceans would significantly help in predicting effects of reef
complexity, or location (Gilby et al., 2018).

With enormous investments targeted for habitat restoration
in the nGoM, and continued emphasis on habitat-species
linkages through Essential Fish Habitat policy, quantitative

and standardized baseline data to establish benchmarks are
increasingly important for managers and policy-makers (Baggett
et al., 2015; NRC, 2017; Blomberg et al., 2018a). In the nGoM,
over 6 billion USD has been designated for restoration of
ecosystems (Environmental Law Institute, 2016) as a result
of injury settlements. To ensure effective use of these funds,
and to support existing policies related to fisheries and habitat
management, generation of standardizedmonitoringmetrics and
clear benchmarks to help assess restoration and policy outcomes
remains critical.
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